JP2009109205A - Charge quantity measuring circuit and charge quantity measuring method - Google Patents

Charge quantity measuring circuit and charge quantity measuring method Download PDF

Info

Publication number
JP2009109205A
JP2009109205A JP2007278569A JP2007278569A JP2009109205A JP 2009109205 A JP2009109205 A JP 2009109205A JP 2007278569 A JP2007278569 A JP 2007278569A JP 2007278569 A JP2007278569 A JP 2007278569A JP 2009109205 A JP2009109205 A JP 2009109205A
Authority
JP
Japan
Prior art keywords
voltage
charge
measurement
storage means
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007278569A
Other languages
Japanese (ja)
Inventor
Kenichi Matsushima
健一 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2007278569A priority Critical patent/JP2009109205A/en
Publication of JP2009109205A publication Critical patent/JP2009109205A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure a fine charge quantity and a capacitance with high resolution by a simple constitution wherein a power source, a resister, a capacitor or the like is added to a digital circuit. <P>SOLUTION: An electricity accumulation means is controlled to have a constant voltage according to whether the voltage of the electricity accumulation means into which the charge of a measuring object flows is higher or lower than a threshold value, and the charge quantity of the measuring object is determined from the charge quantity required for control. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、静電容量の測定や人体通信での電界変化の検出などに用いられる特定の電圧に流れる電荷量測定回路及びその方法に関する。   The present invention relates to a circuit for measuring an amount of charge flowing in a specific voltage used for measuring capacitance, detecting electric field changes in human body communication, and the like, and a method thereof.

静電容量の測定や接近物体の電圧変化の検出などを行う場合に、所定の電圧Vtに流れる電荷量を測定するために、演算増幅器による方法が用いられている。   A method using an operational amplifier is used to measure the amount of charge flowing through a predetermined voltage Vt when measuring capacitance or detecting voltage change of an approaching object.

従来の演算増幅器を用いた電荷量測定回路について、図2を基に説明する。   A charge amount measurement circuit using a conventional operational amplifier will be described with reference to FIG.

図2に於いて、コンデンサCsは、電圧Vtに流れ込む電荷Qxを蓄積して電圧に変換する。スイッチSWは、このコンデンサの電荷を初期化するためのものである。Qxを蓄えたコンデンサCsの電圧は、AD変換手段51にてデジタル値に変換される。さらに、コンデンサCsの値とAD変換手段51で変換されたデジタル値とから、演算手段52において電荷量Qxが計算されていた。
特表2002−530680号公報
In FIG. 2, the capacitor Cs accumulates the charge Qx flowing into the voltage Vt and converts it into a voltage. The switch SW is for initializing the electric charge of the capacitor. The voltage of the capacitor Cs storing Qx is converted into a digital value by the AD conversion means 51. Further, the charge amount Qx is calculated by the calculation means 52 from the value of the capacitor Cs and the digital value converted by the AD conversion means 51.
Japanese translation of PCT publication No. 2002-530680

このように、従来の電荷量測定回路は、能動的なアナログ回路とデジタル回路が混在し、演算増幅器とAD変換手段と演算手段とを必要とするため、回路規模が大きくなると言う課題があった。   As described above, the conventional charge amount measurement circuit has a problem that the circuit scale becomes large because an active analog circuit and a digital circuit are mixed and an operational amplifier, an AD conversion unit, and a calculation unit are required. .

本発明の目的は、デジタル回路に電源や抵抗やコンデンサなどを付加した簡単な構成で、高分解能な測定を可能にする電荷量測定回路あるいはその方法を実現することである。   An object of the present invention is to realize a charge amount measurement circuit or a method thereof that enables high-resolution measurement with a simple configuration in which a power supply, a resistor, a capacitor, and the like are added to a digital circuit.

本発明による電荷量測定回路は、測定対象の電荷を入力するとともに蓄えている電荷量を電圧に変換する蓄電手段と、前記蓄電手段に電荷を入出力する電荷入出力手段と、前記蓄電手段の電圧を測定する電圧測定手段と、前記電圧測定手段の測定結果により前記電荷入出力手段を制御する第一の制御手段と、前記第一の制御手段の制御情報から測定対象の電荷量を演算する第一の演算手段とにより構成した。   The charge amount measurement circuit according to the present invention includes a power storage unit that inputs a charge to be measured and converts the stored charge amount into a voltage, a charge input / output unit that inputs and outputs a charge to the power storage unit, A voltage measuring means for measuring a voltage; a first control means for controlling the charge input / output means according to a measurement result of the voltage measuring means; and a charge amount to be measured is calculated from control information of the first control means. It comprised with the 1st calculating means.

本発明によると、デジタル回路に電源や抵抗やコンデンサなどを付加した簡単な構成で、高分解能な測定を可能にする電荷量測定回路あるいはその方法を実現することが出来る。   According to the present invention, it is possible to realize a charge amount measurement circuit or a method thereof that enables high-resolution measurement with a simple configuration in which a power supply, a resistor, a capacitor, and the like are added to a digital circuit.

一般的に電荷には正の電荷と負の電荷とがあるが、説明の便宜上、特に断りのない限り以下の記述に於いては電荷とは正の電荷を意味するものとする。   Generally, there are a positive charge and a negative charge. For convenience of explanation, unless otherwise specified, in the following description, a charge means a positive charge.

本発明の好適な実施例を、図1を基に説明する。   A preferred embodiment of the present invention will be described with reference to FIG.

本発明による電荷量測定回路は、測定対象の電荷を入力するとともに蓄えている電荷量を電圧に変換する蓄電手段1と、前記蓄電手段1に電荷を入出力する電荷入出力手段2と、前記蓄電手段1の電圧を測定する電圧測定手段3と、前記電圧測定手段3の測定結果により前記電荷入出力手段2を制御する第一の制御手段4と、前記第一の制御手段4の制御情報から測定対象の電荷量を演算する第一の演算手段5とにより構成される。   The charge amount measurement circuit according to the present invention includes a power storage unit 1 that inputs a charge to be measured and converts a stored charge amount into a voltage, a charge input / output unit 2 that inputs and outputs a charge to and from the power storage unit 1, Voltage measuring means 3 for measuring the voltage of the storage means 1, first control means 4 for controlling the charge input / output means 2 based on the measurement result of the voltage measuring means 3, and control information of the first control means 4 To the first calculating means 5 for calculating the charge amount of the measurement object.

これより、各構成手段について、詳細に説明する。   Hereafter, each component means will be described in detail.

蓄電手段1は、蓄えている電荷をそれに対応した電圧Vsに変換する。また、蓄電手段1には測定対象の電荷Qxを入力する。ここで、蓄電手段1の電圧Vsは、電圧測定手段3の閾値電圧Vtに近づくように、電荷入出力手段2からの電荷Qaにより制御されている。しだかって、厳密には蓄電手段の電圧Vsは時間により微小な変動があるが、以下の記述では特に断りのない限りその変動による影響は許容出来るものとする。   The power storage means 1 converts the stored charge into a corresponding voltage Vs. Further, the charge Qx to be measured is input to the power storage unit 1. Here, the voltage Vs of the power storage unit 1 is controlled by the charge Qa from the charge input / output unit 2 so as to approach the threshold voltage Vt of the voltage measurement unit 3. Strictly speaking, the voltage Vs of the power storage means varies minutely depending on time, but in the following description, the influence of the variation is acceptable unless otherwise specified.

具体的には、蓄電手段1は、図3に一例を示すように、コンデンサCsにより実現することが可能であるが、キャパシタ等、蓄えている電荷量を対応した電圧Vsに変換するものであれば、どのようなものを用いても良い。   Specifically, as shown in FIG. 3, the power storage unit 1 can be realized by a capacitor Cs. However, the capacitor 1 or the like can convert the stored charge amount into a corresponding voltage Vs. Any type may be used.

電荷入出力手段2は、蓄電手段1に電荷Qaを流す。このため、電荷入出力手段2の具体的な構成例を、図4に示す。   The charge input / output unit 2 causes the charge Qa to flow through the power storage unit 1. Therefore, a specific configuration example of the charge input / output unit 2 is shown in FIG.

図4aは、定電流Ip,Imを流す2つの定電流源と第一の制御手段4により制御される2つのスイッチSWp,SWmとにより構成した場合の例である。ここで、定電流源Ipは蓄電手段1に電荷を入力するためのもので、定電流源Imは蓄電手段1から電荷を出力するためのものである。従って、蓄電手段に流れる電荷量Qaは、定電流値Ip,ImおよびスイッチSWpのオンしていた時間TpとスイッチSWmのオンしていた時間Tmとから数1により求めることが出来る。
(数1)Qa=Ip×Tp−Im×Tm
なお、電流値Ip,Imが時間の関数になる場合には、乗算を積分に置き換えたり、時間ごとの電流値を加算したりするなどで、蓄電手段に流れる電荷量Qaを求めることも可能である。
FIG. 4 a is an example in the case of comprising two constant current sources for passing constant currents Ip and Im and two switches SWp and SWm controlled by the first control means 4. Here, the constant current source Ip is for inputting charges to the power storage means 1, and the constant current source Im is for outputting charges from the power storage means 1. Therefore, the amount of charge Qa flowing through the power storage means can be obtained from Equation 1 from the constant current values Ip and Im, the time Tp when the switch SWp is on, and the time Tm when the switch SWm is on.
(Expression 1) Qa = Ip × Tp−Im × Tm
When the current values Ip and Im are functions of time, the charge amount Qa flowing through the power storage means can be obtained by replacing multiplication with integration or adding current values for each time. is there.

ここで、スイッチSWpのオンしていた時間TpとスイッチSWmのオンしていた時間Tmとは、測定期間Ttの間にオンしていた時間の合計である。例えば、スイッチSWp,SWmの1回のオンの時間をそれぞれtp,tmに固定し、それぞれのスイッチが測定期間Ttの間にオンした回数を、Np[回],Nm[回]とすると、スイッチSWpのオンしていた時間TpとスイッチSWmのオンしていた時間Tmは、数2によりそれぞれ求められる。
(数2)Tp=tp×Np, Tm=tm×Nm
図4bは、図4aの定電流源Ipの代わりに、定電圧電源Vpと抵抗Rpとにより蓄電手段1に電荷を入力するようにしたものである。蓄電手段1の電圧Vsは前述のように電圧測定手段3の閾値電圧Vtに近づくように制御されているため、スイッチSWpがオンすると、数3で求められる電流値で蓄電手段1に電荷を入力する。
(数3)Ip≒(Vp−Vt)÷Rp
同様に、定電圧電源Vmと抵抗Rmは、定電流源Imの代わりに蓄電手段1から電荷を出力するようにしたものである。スイッチSWmがオンすると、数4で求められる電流値で、蓄電手段1から電荷を出力する。
(数4)Im≒(Vt−Vm)÷Rm
ここで、蓄電手段1に電荷を入力するための回路と蓄電手段1から電荷を出力するための回路は必ずしも同様である必要はなく、例えば図4cに示すように、片方で定電流源を用いて、もう一方で定電圧源と抵抗を用いるなど、組み合わせに制限はない。
Here, the time Tp during which the switch SWp was turned on and the time Tm during which the switch SWm was turned on are the total time during which the switch SWp was turned on during the measurement period Tt. For example, when the switch ON times of the switches SWp and SWm are fixed to tp and tm, respectively, and the number of times each switch is turned on during the measurement period Tt is Np [times] and Nm [times], the switches The time Tp during which the SWp is on and the time Tm during which the switch SWm is on can be obtained from Equation 2, respectively.
(Equation 2) Tp = tp × Np, Tm = tm × Nm
FIG. 4B shows an example in which charges are input to the power storage means 1 by a constant voltage power source Vp and a resistor Rp instead of the constant current source Ip of FIG. 4A. Since the voltage Vs of the power storage unit 1 is controlled so as to approach the threshold voltage Vt of the voltage measurement unit 3 as described above, when the switch SWp is turned on, a charge is input to the power storage unit 1 with the current value obtained by Equation 3. To do.
(Equation 3) Ip≈ (Vp−Vt) ÷ Rp
Similarly, the constant voltage power source Vm and the resistor Rm output electric charge from the power storage means 1 instead of the constant current source Im. When the switch SWm is turned on, electric charge is output from the power storage means 1 at the current value obtained by Equation 4.
(Equation 4) Im≈ (Vt−Vm) ÷ Rm
Here, the circuit for inputting electric charge to the electric storage means 1 and the circuit for outputting electric charge from the electric storage means 1 are not necessarily the same. For example, as shown in FIG. On the other hand, there are no restrictions on the combination, such as using a constant voltage source and a resistor.

また、スイッチSWpやSWmは、定電流源や抵抗と直列に接続されているため、図4dに示すように、蓄電手段1側に入れ換えても構わないことは言うまでもない。   Further, since the switches SWp and SWm are connected in series with a constant current source and a resistor, it goes without saying that the switches SWp and SWm may be replaced with the power storage unit 1 as shown in FIG. 4d.

さらに、図4eに示すように、スイッチSWpとスイッチSWmは必ずしも両方にある必要はなく、最低限どちらか一方にあれば良い。例えば、スイッチSWmがない場合とは、スイッチSWmがオンし続けているのと同じことなので、蓄電手段1に流れる電荷量Qaは、数1のSWmのオンしていた時間Tmに測定時間Ttを代入して求めることが出来る。同様に、スイッチSWpがない場合には、スイッチSWpのオンしていた時間Tpに測定時間Ttを代入して求めることが出来る。   Furthermore, as shown in FIG. 4e, the switch SWp and the switch SWm do not necessarily have to be in both, and may be in either one at least. For example, the case where the switch SWm is not present is the same as the case where the switch SWm is kept on. Therefore, the amount of charge Qa flowing through the power storage means 1 is calculated by setting the measurement time Tt to the time Tm when the SWm of Formula 1 is on. It can be obtained by substitution. Similarly, when there is no switch SWp, it can be obtained by substituting the measurement time Tt for the time Tp when the switch SWp was on.

また、蓄電手段1に電荷を入力するための回路と蓄電手段1から電荷を出力するための回路は必ずしも両方ある必要はない。例えば、測定対象の電荷Qxが蓄電手段1から常に流れ出る場合には、図4fに示すように蓄電手段1に電荷を入力するための回路があれば、蓄電手段1の電圧Vsを電圧測定手段3の閾値電圧Vtに近づくように制御することが出来る。同様に、測定対象の電荷Qxが蓄電手段1に常に流れ込む場合には、蓄電手段1から電荷を出力するための回路があれば、蓄電手段1の電圧Vsを電圧測定手段3の閾値電圧Vtに近づくように制御することが出来る。   Further, it is not always necessary to have both a circuit for inputting charges to the power storage means 1 and a circuit for outputting charges from the power storage means 1. For example, when the charge Qx to be measured always flows out of the power storage means 1, if there is a circuit for inputting charge to the power storage means 1 as shown in FIG. It can be controlled to approach the threshold voltage Vt. Similarly, when the charge Qx to be measured always flows into the power storage unit 1, if there is a circuit for outputting the charge from the power storage unit 1, the voltage Vs of the power storage unit 1 is changed to the threshold voltage Vt of the voltage measurement unit 3. It can be controlled to approach.

このほかの構成としても、例えば図4gに示すように、1つの抵抗Rによっても、2つのスイッチSWp,SWmがあれば、蓄電手段1に電荷を入力したり蓄電手段1から電荷を出力したりすることが出来る。このように、電荷入出力手段2は、様々な構成や組み合わせが考えられるが、第一の制御手段4により蓄電手段1に流す電荷量Qaを制御できるものであれば、どのような手段や方法を用いても良い。   As another configuration, for example, as shown in FIG. 4g, if there are two switches SWp and SWm even with a single resistor R, a charge can be input to the power storage means 1 or a charge can be output from the power storage means 1. I can do it. As described above, the charge input / output unit 2 may have various configurations and combinations, but any means or method may be used as long as the charge amount Qa flowing to the power storage unit 1 can be controlled by the first control unit 4. May be used.

電圧測定手段3は、蓄電手段1の電圧を測定する。このため、蓄電手段1の電圧Vsが閾値電圧Vtより高いか低いかを検出するようにした。   The voltage measuring unit 3 measures the voltage of the power storage unit 1. For this reason, whether the voltage Vs of the power storage means 1 is higher or lower than the threshold voltage Vt is detected.

電圧測定手段3は、この限りではなく、蓄電手段1の電圧を一定の範囲に制御するために必要な電圧に関する情報を第一の制御手段4に出力するものであれば、どのようなものを用いても良い。   The voltage measuring means 3 is not limited to this, and any voltage measuring means 3 can be used as long as it outputs information on the voltage necessary for controlling the voltage of the power storage means 1 to a certain range to the first control means 4. It may be used.

第一の制御手段4は、蓄電手段1の電圧Vsが一定の電圧に収まるように、電荷入出力手段2を制御し、制御情報を第一の演算手段5に出力する。   The first control unit 4 controls the charge input / output unit 2 so that the voltage Vs of the power storage unit 1 falls within a constant voltage, and outputs control information to the first calculation unit 5.

このため、第一の制御手段4は、電圧測定手段3で蓄電手段1の電圧Vsが閾値電圧Vtより低いことを検出した場合には電荷入出力手段2のスイッチSWpを短時間tpだけオンし、蓄電手段1の電圧Vsが閾値電圧Vtより高いことを検出した場合にはスイッチSWmを短時間tmだけオンするようにして、これを小刻みに繰り返すようにする。   Therefore, the first control unit 4 turns on the switch SWp of the charge input / output unit 2 for a short time tp when the voltage measuring unit 3 detects that the voltage Vs of the power storage unit 1 is lower than the threshold voltage Vt. When it is detected that the voltage Vs of the power storage means 1 is higher than the threshold voltage Vt, the switch SWm is turned on for a short time tm, and this is repeated in small increments.

なお、図4e,fの場合のように、電荷入出力手段のスイッチが一つの場合も動作は同様である。例えば、電荷入出力手段2にスイッチSWmがない場合には、電圧測定手段で蓄電手段1の電圧Vsが閾値電圧Vtより低いことを検出した場合にスイッチSWpをオンし、電圧測定手段3で蓄電手段の電圧Vsが閾値電圧Vtより高いことを検出した場合にはスイッチSWpはオフしたまま電圧測定手段3の検出結果が変化するのを待てば良い。   The operation is the same when the charge input / output means has only one switch as in FIGS. For example, when the charge input / output unit 2 does not have the switch SWm, the switch SWp is turned on when the voltage measurement unit detects that the voltage Vs of the power storage unit 1 is lower than the threshold voltage Vt, and the voltage measurement unit 3 stores the voltage. When it is detected that the voltage Vs of the means is higher than the threshold voltage Vt, it is only necessary to wait for the detection result of the voltage measuring means 3 to change while the switch SWp is turned off.

但し、初期的には蓄電手段1の電圧Vsが閾値電圧Vtと大きく異なることもあるため、蓄電手段1の電圧Vsが閾値電圧Vtに近づいたことを確認するまでを初期化中として、その間の制御情報を用いないようにする。このため、例えば、図14に示すフローに従って、電圧測定手段3が蓄電手段1の電圧Vsが閾値電圧Vtより小さいと検出していた状態から大きいと検出する状態に変化したことにより初期化を完了としても良い。或いはその逆を初期化の完了としても良い。なお、図14におけるPは、真と偽の2値をとりえる状態変数で、電圧測定手段の測定が変化したことを検出するためのものである。この他にも、例えば閾値電圧同等の電圧源を蓄電手段に直接スイッチ接続して初期化するようにしても良い。蓄電手段1の電圧Vsが閾値電圧Vtに近づいたことを確認できる方法であれば、どのような初期化方法を用いても良い。   However, since the voltage Vs of the power storage means 1 may be greatly different from the threshold voltage Vt in the initial stage, the time until it is confirmed that the voltage Vs of the power storage means 1 has approached the threshold voltage Vt is being initialized. Do not use control information. Therefore, for example, in accordance with the flow shown in FIG. 14, the initialization is completed because the voltage measuring unit 3 has changed from the state where the voltage Vs of the power storage unit 1 is detected as being smaller than the threshold voltage Vt to the state where it is detected as being large. It is also good. Or the reverse may be the completion of initialization. Note that P in FIG. 14 is a state variable that can take a true value and a false value, and is used to detect a change in the measurement of the voltage measuring means. In addition to this, for example, a voltage source equivalent to the threshold voltage may be directly connected to the power storage means by switch connection. Any initialization method may be used as long as it can be confirmed that the voltage Vs of the power storage means 1 has approached the threshold voltage Vt.

測定する電荷Qxが瞬時に1回流れる場合には、例えば初期化後にスイッチSWp,スイッチSWmのオンオフ回数Np,Nm及びオン時間Tp,Tmも0にして、測定電荷Qxを蓄電手段1に流して、再び初期化と同じ条件になるまで図14に示すように第一の制御手段4を1サイクル動作させれば良い。この場合には、この1サクイルが測定期間Ttである。   When the charge Qx to be measured flows instantaneously once, for example, after the initialization, the switch SWp and the switch SWm are turned on and off Np and Nm and the on-times Tp and Tm are also set to 0, and the measurement charge Qx is caused to flow to the power storage unit 1. The first control means 4 may be operated for one cycle as shown in FIG. In this case, this one squill is the measurement period Tt.

また、測定する電荷Qxがある程度の時間をかけて蓄電手段1に流れる場合には、蓄電手段1の電圧Vsが電圧測定手段3の閾値電圧Vtから大きく離れないように、測定対象の電荷Qが流れている時間を包含するように、複数サイクルの動作を繰り返すことが望ましい。この場合には、包含する複数のサイクルが測定期間Ttである。   Further, when the charge Qx to be measured flows to the power storage unit 1 over a certain period of time, the charge Q to be measured is set so that the voltage Vs of the power storage unit 1 does not greatly deviate from the threshold voltage Vt of the voltage measurement unit 3. It is desirable to repeat the operation of multiple cycles so as to include the flowing time. In this case, a plurality of included cycles is the measurement period Tt.

それでも、蓄電手段の電圧が必ずしも常にVtに近づくように第一の制御手段が動作し続けている必要はなく、測定対象による電荷Qxでの蓄電手段の電圧変化が充分小さく、電荷量の測定速度として許容できる範囲であれば、間欠的に動作するようにしても良い。例えば、10[ms]ごとに1サイクル第一の制御手段4を動作させて、その後動作を停止しても、停止している時間の蓄電手段1の電圧変化が微小であれば問題はない。但し、測定対象の電荷の時間変化を測定する必要がある場合には、測定サイクルの周期により測定速度が支配される。   Nevertheless, the first control means does not necessarily have to operate so that the voltage of the power storage means always approaches Vt, the voltage change of the power storage means at the charge Qx by the measurement object is sufficiently small, and the charge amount measurement speed As long as it is within the allowable range, it may be operated intermittently. For example, even if the first control unit 4 is operated for one cycle every 10 [ms] and the operation is stopped thereafter, there is no problem as long as the voltage change of the power storage unit 1 during the stopped time is minute. However, when it is necessary to measure the time change of the charge to be measured, the measurement speed is governed by the cycle of the measurement cycle.

第一の制御手段4の動作はこの限りではなく、例えば電圧測定手段3で蓄電手段1の電圧Vsが閾値電圧Vtより低いことを検出した場合には電圧測定手段3で蓄電手段1の電圧Vsが閾値電圧Vtより高いことを検出するまで電荷入出力手段2のスイッチSWpをオンし続け、逆に電圧測定手段3で蓄電手段1の電圧Vsが閾値電圧Vtより高いことを検出した場合には電圧測定手段3で蓄電手段1の電圧Vsが閾値電圧Vtより低いことを検出するまで電荷入出力手段2のスイッチSWmをオンし続けるようにして、これを繰り返すようにしても良い。   The operation of the first control unit 4 is not limited to this. For example, when the voltage measurement unit 3 detects that the voltage Vs of the power storage unit 1 is lower than the threshold voltage Vt, the voltage measurement unit 3 uses the voltage Vs of the power storage unit 1. If the switch SWp of the charge input / output unit 2 is kept on until it is detected that the voltage Vs is higher than the threshold voltage Vt, and the voltage measuring unit 3 detects that the voltage Vs of the power storage unit 1 is higher than the threshold voltage Vt. This may be repeated by continuously turning on the switch SWm of the charge input / output means 2 until the voltage measuring means 3 detects that the voltage Vs of the power storage means 1 is lower than the threshold voltage Vt.

第一の制御手段4は、この他にも、例えば電荷入出力手段2のスイッチSWpを一定時間オンした後に、電圧測定手段3で蓄電手段1の電圧Vsが閾値電圧Vtより低いことを検出するまで、スイッチSWmを短時間オンすることを繰り返すなど、電荷入出力手段2のスイッチSWp,SWmをオンする時間Tp,Tmなど蓄電手段に出し入れする電荷量の分かる値を管理しながら、蓄電手段1の電圧Vsを狙いの電圧Vtから大きくずれないように電荷入出力手段2を制御するものであれば、どのような手段や方法を用いても良い。   In addition to this, the first control unit 4 detects, for example, that the voltage Vs of the power storage unit 1 is lower than the threshold voltage Vt by the voltage measurement unit 3 after the switch SWp of the charge input / output unit 2 is turned on for a predetermined time. Until the switch SWm is turned on for a short time, the power storage means 1 is managed while managing the values for understanding the amount of charge to and from the power storage means such as the times Tp and Tm for turning on the switches SWp and SWm of the charge input / output means 2. Any means or method may be used as long as it controls the charge input / output means 2 so that the voltage Vs is not greatly deviated from the target voltage Vt.

第一の演算手段5では、第一の制御手段4での制御情報から、測定対象の電荷量を求める。   The first calculation means 5 obtains the charge amount to be measured from the control information from the first control means 4.

測定対象から蓄電手段1に流れ込んだ電荷Qxは、電荷量保存のため数5を満たす。
(数5) Qx+Qa=0
これは、蓄電手段1の電圧Vsが第一の制御手段によりほぼ一定に保たれていて蓄電している電荷量もほぼ一定に保たれているために、蓄電手段1に流れ込む電荷Qxと電荷入出力手段2からの電荷Qaの和が零になるためである。
The charge Qx flowing into the power storage unit 1 from the measurement target satisfies Equation 5 in order to preserve the charge amount.
(Formula 5) Qx + Qa = 0
This is because the voltage Vs of the power storage means 1 is kept substantially constant by the first control means and the amount of stored charge is also kept almost constant, so that the charge Qx flowing into the power storage means 1 and the charge input This is because the sum of the charges Qa from the output means 2 becomes zero.

このため、第一の演算手段5では、まず数2により電荷入出力手段2のスイッチが測定期間Ttの間にオンした合計時間を演算する。なお、この演算は、加算や乗算のみならず、タイマーやカウンタなどにより実現しても良いことは言うまでもない。求められたTp,Tmを数1に代入して、Qaを演算により求める。その後、符号が必要な場合は、数5によりマイナス1倍する。   For this reason, the first calculation means 5 first calculates the total time during which the switch of the charge input / output means 2 is turned on during the measurement period Tt according to Equation 2. Needless to say, this calculation may be realized not only by addition and multiplication but also by a timer or a counter. Substituting the obtained Tp and Tm into Equation 1, Qa is obtained by calculation. After that, if a sign is required, it is reduced by 1 by Equation 5.

電荷入出力手段2に定電流源を用いた図4aの場合の例として、定電流値Ip=Im=1[mA],電荷入出力手段2のスイッチSWp,SWmの1回のオン時間ta=tb=1[μs],電荷入出力手段2のスイッチSWpのオン回数Na=100[回],スイッチSWmのオン回数Nb=50[回]の場合には、数2によりスイッチSWpがオンしていた時間Tp=100[μs],スイッチSWmがオンしていた時間Tm=50[μs]で、数1により電荷入出力手段2の入力電荷量Qa=50[nC]となり、Qx=−50[nC]で50[nC]の電荷が引き出された計算になる。ちなみに、測定期間Tt=10[ms]の場合には、その間の平均電流は、−5[μA]である。   As an example in the case of FIG. 4 a using a constant current source for the charge input / output means 2, a constant current value Ip = Im = 1 [mA], one on time ta of the switches SWp and SWm of the charge input / output means 2 = When tb = 1 [μs], the number of times the switch SWp of the charge input / output means 2 is turned on Na = 100 [times], and the number of times the switch SWm is turned on Nb = 50 [times], the switch SWp is turned on according to Equation 2. The time Tp = 100 [μs], the time Tm = 50 [μs] when the switch SWm was turned on, the input charge amount Qa = 50 [nC] of the charge input / output means 2 is obtained by Equation 1, and Qx = −50 [ In the calculation, 50 [nC] is extracted from nC]. Incidentally, in the case of the measurement period Tt = 10 [ms], the average current during that period is −5 [μA].

なお、この計算手順は一例であり、予めまとめた式により1回で計算したり、Tp・Tmの値ごとに予め計算されたテーブルを参照したりするなどの様々な方法が考えられる。第一の演算手段5での演算は、第一の制御手段4での制御情報と回路的な定数とから測定対象の電荷量あるいは電荷量に対応した値を求めるものであれば、どのような手段や方法を用いても良い。   Note that this calculation procedure is an example, and various methods are conceivable, such as calculating at once by a previously summarized formula or referring to a table calculated in advance for each value of Tp · Tm. Any calculation can be performed by the first calculation means 5 as long as the charge amount to be measured or a value corresponding to the charge amount is obtained from the control information of the first control means 4 and circuit constants. Means and methods may be used.

以上に、本発明の基本的な動作について説明したが、これより精度や分解能を向上させる方法について説明する。   Although the basic operation of the present invention has been described above, a method for improving accuracy and resolution will be described.

本発明による電荷量測定回路では、通常電荷入出力手段に用いられる定電流源の電流値や定電圧源の電圧値や抵抗値などにはバラツキがあるため、電荷量の測定値には相当量の誤差を生じてしまう。この課題を解決するためには、図15にフローを示すように、測定対象の電荷を入出力しない状態や定常状態で測定対象の電荷の入出力がない場合などに、電荷量の測定動作を行い、その結果が0に近くなるように、第一の演算手段での電荷計算結果を補正するための係数を予め求めておいてから、測定対象の電荷量を測定するようにすると良い。   In the charge amount measurement circuit according to the present invention, since there are variations in the current value of the constant current source, the voltage value and resistance value of the constant voltage source, etc., which are normally used for the charge input / output means, the charge amount measurement value is a considerable amount. Will cause an error. In order to solve this problem, as shown in the flow of FIG. 15, the charge amount measurement operation is performed when the charge to be measured is not input or output or when the charge to be measured is not input or output in a steady state. It is preferable to measure the charge amount of the measurement object after obtaining in advance a coefficient for correcting the charge calculation result in the first calculation means so that the result is close to zero.

例えば、例えば測定対象の電荷が0の場合の電荷量測定動作により、電荷入出力手段が110[nC]の電荷を蓄電手段に入力した計算になり、91[nC]の電荷を蓄電手段から出力した計算になる場合には、これらを割り算して平方根を計算した値及びその逆数を用いて、実際の測定対象の電荷量を計算する場合に電荷入出力手段の蓄電手段に入力した電荷を0.91倍し、蓄電手段から出力した電荷を1.1倍することにより測定精度を向上させることが出来る。計算方法は、加減算を用いるなど、同様の効果を得られるものであれば、どのような方法や手段を用いても良い。   For example, in the charge amount measurement operation when the charge to be measured is 0, for example, the charge input / output unit calculates 110 [nC] charge to the power storage unit, and outputs 91 [nC] charge from the power storage unit. In the case where the calculation is performed, the charge input to the storage unit of the charge input / output unit is calculated as 0 when the charge amount of the actual measurement target is calculated using the value obtained by dividing these values and the inverse of the square root. The measurement accuracy can be improved by multiplying the charge output from the power storage means by 1.1. As a calculation method, any method or means may be used as long as the same effect can be obtained, such as addition and subtraction.

また、本発明による電荷量測定回路では、電圧測定手段にヒステリシス特性がある場合には、蓄電手段の電圧制御範囲が広くなってしまう。そのため、測定対象の電荷量Qxそのものが影響を受けたり、電荷入出力手段に定電圧源と抵抗を用いる場合には制御する電荷量Qaが蓄電手段の電圧の影響を受けたりしてしまうことがある。   In the charge amount measuring circuit according to the present invention, when the voltage measuring means has a hysteresis characteristic, the voltage control range of the power storage means becomes wide. For this reason, the charge amount Qx itself to be measured may be affected, or the charge amount Qa to be controlled may be affected by the voltage of the power storage means when a constant voltage source and a resistor are used for the charge input / output means. is there.

この課題を解決するには、電荷入出力手段の1回のスイッチオンによる蓄電手段の電圧の変動が電圧測定手段のヒステリシス特性の電圧範囲と比べて充分小さくなるように設定して、測定のための制御サイクルの開始と終了で蓄電手段の電圧がほぼ同じになるようにすることにより、ヒステリシス電圧範囲をほぼ均一に用いることが出来るため、測定精度や繰り返し再現性を向上することが出来る。具体的には、図14に示すような動作サイクルで初期化した後に、同様の動作サイクルを用いて繰り返すようにすれば良い。   In order to solve this problem, the voltage fluctuation of the power storage means due to one-time switch on of the charge input / output means is set to be sufficiently smaller than the voltage range of the hysteresis characteristic of the voltage measuring means for measurement. By making the voltage of the power storage means substantially the same at the start and end of the control cycle, the hysteresis voltage range can be used almost uniformly, so that the measurement accuracy and repeatability can be improved. Specifically, after initialization with an operation cycle as shown in FIG. 14, it may be repeated using the same operation cycle.

ここで、電荷入出力手段のスイッチSWpとスイッチSWmを流れる電流値の小さい方を利用して制御動作のサイクル起点を求めると良い。例えば、Ip=2[mA],Im=1[mA]の場合には、図14の場合のように、スイッチSWmをオンすることによって、電圧測定手段が蓄電手段の電圧Vsが閾値電圧Vtより小さくなったことを検出した時点を制御サイクルの起点にする方が良い。   Here, the cycle starting point of the control operation may be obtained by using the smaller value of the current flowing through the switches SWp and SWm of the charge input / output means. For example, when Ip = 2 [mA] and Im = 1 [mA], as shown in FIG. 14, the voltage measuring means causes the voltage Vs of the power storage means to be higher than the threshold voltage Vt by turning on the switch SWm. It is better to set the starting point of the control cycle at the time when it is detected that the size has become smaller.

更に、電荷量の測定の分解能を向上させるには、電荷入出力手段の電流値Ip,Imを充分小さい値にすることにより、電荷入出力手段の1回のスイッチオンによる電荷の入出力量を小さく設定したり、繰り返し測定が可能な場合には、繰り返し測定した結果を合計したり平均することなどにより、分解能や精度を向上出来ることは言うまでもない。   Furthermore, in order to improve the resolution of the charge amount measurement, the current values Ip and Im of the charge input / output means are made sufficiently small to reduce the charge input / output amount by one-time switch on of the charge input / output means. Needless to say, when setting or repeated measurement is possible, the resolution and accuracy can be improved by summing or averaging the results of repeated measurements.

また、従来の演算増幅器を用いた電荷量測定回路では、測定を行う都度初期化が必要であったが、本発明による電荷測定回路では、制御動作の1サイクルが完了した状態で次のサイクルを開始できるため、繰り返しの測定や測定対象の電荷が時間により変化する場合などでも、連続的に測定することが出来る。   In addition, in the charge amount measurement circuit using the conventional operational amplifier, initialization is required every time measurement is performed, but in the charge measurement circuit according to the present invention, the next cycle is performed after one cycle of the control operation is completed. Since the measurement can be started, continuous measurement can be performed even when repeated measurement or the charge to be measured changes with time.

この場合に、例えばサイクル毎に得られた電流値を平均したりフィルタ処理したりすることによっても、ノイズの影響を排除しつつ、測定の分解能を更に高めることが出来る。   In this case, for example, by averaging or filtering the current values obtained for each cycle, it is possible to further increase the measurement resolution while eliminating the influence of noise.

さらに、本発明による電荷測定回路では、図4bの電荷入出力手段を用いた電荷測定回路全体を図5に示すように、定電圧源VpをVdd,定電圧源VmをVss,Vtを入力閾値電圧とすると、電圧測定手段3と第一制御手段4と第一演算手段5の部分を汎用的マイクロコンピューターのような論理回路20にて実現し、入出力ポートに抵抗とコンデンサを付加するだけの簡単な構成で、電荷測定回路を実現することができる。   Further, in the charge measurement circuit according to the present invention, as shown in FIG. 5 as a whole of the charge measurement circuit using the charge input / output means of FIG. 4b, the constant voltage source Vp is Vdd, the constant voltage source Vm is Vss, and Vt is the input threshold value. In terms of voltage, the voltage measuring means 3, the first control means 4, and the first computing means 5 are realized by a logic circuit 20 such as a general-purpose microcomputer, and only a resistor and a capacitor are added to the input / output port. A charge measurement circuit can be realized with a simple configuration.

ここで、図5の例では汎用的な入出力ポートを3ポート必要とするが、図6aに示すように電荷入出力回路にスイッチSWmを設けないようにすると必要なポートを1ポート減らすことができ、図6bに示すように電荷入出力手段のスイッチSWpと抵抗Rpの間に電圧測定手段を接続してスイッチSWpがオフしている時に電圧測定を行うようにしても1ポート減らすことができ、さらにこの両方を用いたり図6cに示すように図4gの電荷入出力手段を用いたりすることなどにより2ポート減らして入出力ポート1ポートのみを用いて電荷測定回路を構成することも出来る。   Here, in the example of FIG. 5, three general-purpose input / output ports are required. However, if the switch SWm is not provided in the charge input / output circuit as shown in FIG. 6B, even if voltage measurement means is connected between the switch SWp of the charge input / output means and the resistor Rp as shown in FIG. 6B and voltage measurement is performed when the switch SWp is off, one port can be reduced. Further, by using both of them, or by using the charge input / output means of FIG. 4g as shown in FIG. 6c, the charge measuring circuit can be configured using only one input / output port by reducing two ports.

以上に説明したように、従来の方法では演算増幅器により電荷を蓄積したコンデンサの電圧をAD変換して電荷量を求めていたが、本発明による電荷量測定回路ではコンデンサの電圧を一定に保つための電荷量から測定対象の電荷量を求めるようにしたため、蓄積コンデンサの電圧が飽和することがなく、デジタル回路に電源や抵抗やコンデンサなどを付加するのみの簡単な構成で高分解能な測定を可能にする電荷量測定回路あるいはその方法を実現することが出来る。   As described above, according to the conventional method, the voltage of the capacitor in which the charge is accumulated by the operational amplifier is AD converted to obtain the charge amount. However, in the charge amount measuring circuit according to the present invention, the capacitor voltage is kept constant. Since the amount of charge to be measured is calculated from the amount of charge in the storage, the voltage of the storage capacitor does not saturate, and high-resolution measurement is possible with a simple configuration that simply adds a power supply, resistor, capacitor, etc. to the digital circuit It is possible to realize a charge amount measuring circuit or a method thereof.

実施例1では、電圧Vtに流れ込む電荷量を求める方法を示したが、実施例2では、その応用例として、静電タッチパネルなどに用いられる微小な静電容量を測定することのできる電荷量測定回路について説明する。   In the first embodiment, the method for obtaining the amount of charge flowing into the voltage Vt is shown. In the second embodiment, as an application example, the charge amount measurement capable of measuring a minute capacitance used in an electrostatic touch panel or the like. The circuit will be described.

物体の接近などによる微小な静電容量あるいはその変化を測定する場合には、1回の充放電特性から正確な値を得ることが困難なために、共振周波数の変化を利用する方法や交流インピーダンスを測る方法も用いられるが、これらの方法は比較的回路規模が大きい。   When measuring minute capacitance or its change due to the approach of an object, it is difficult to obtain an accurate value from a single charge / discharge characteristic. Are also used, but these methods have a relatively large circuit scale.

このため、例えば図8に示すように、トランジスターなどのスイッチ切換えにより、スイッチSW3で初期化した後にスイッチSW1とスイッチSW2を交互にオンして、測定対象Cxに繰り返し充放電した電荷を静電容量が既知の累積コンデンサCsに累積し、累積コンデンサCsの電圧が所定の電圧になるまでの測定対象への充放電の回数から測定対象の静電容量を求める方法が開示されている(例えば、特許文献1参照)。   For this reason, for example, as shown in FIG. 8, the switch SW1 and the switch SW2 are alternately turned on after being initialized by the switch SW3 by switching the switch of a transistor or the like, and the charge repeatedly discharged to the measurement target Cx is electrostatic capacitance. Is accumulated in the known accumulation capacitor Cs, and a method of obtaining the capacitance of the measurement object from the number of times of charge / discharge to the measurement object until the voltage of the accumulation capacitor Cs becomes a predetermined voltage is disclosed (for example, patent Reference 1).

この方法は、例えば、汎用マクイロコンピューターのポートに定数部品を付加するだけで、微小な静電容量を測定することが出来るために、幅広く用いられている。   This method is widely used because, for example, a minute electrostatic capacity can be measured simply by adding a constant component to a port of a general-purpose maciro computer.

しかし、従来のこの方法では、測定の分解能を高くするために測定対象Cxへの充放電回数を多くすればするほど、1回の充放電での累積コンデンサの電圧の変化は小さくなってしまう。したがって、検出の分解能を上げるために充放電の回数を増やすと、累積コンデンサの電圧変化が電圧測定の精度より小さくなって測定できなくなってしまい、測定対象の静電容量に対してその変化が小さい場合には、変化分を正確に測定することが出来ないという課題があった。   However, in this conventional method, as the number of times of charging / discharging the measurement target Cx is increased in order to increase the measurement resolution, the change in the voltage of the cumulative capacitor in one charging / discharging becomes smaller. Therefore, if the number of times of charging / discharging is increased to increase the resolution of detection, the voltage change of the accumulated capacitor becomes smaller than the accuracy of voltage measurement and cannot be measured, and the change is small relative to the capacitance of the measurement target. In some cases, there has been a problem that the amount of change cannot be measured accurately.

図7に構成を示す実施例2による電荷量測定回路ではこのような従来の課題を解決することが可能である。ここで、測定対象の静電容量Cxは、2端子間の静電容量ばかりでなく、静電タッチパネルの検出電極など物体の浮遊容量でも良い。ここで、蓄電手段1と電荷入出力手段2と電圧測定手段3と第一の制御手段4と第一の演算手段5は、実施例1と同様である。したがって、実施例2による電荷量測定回路は、実施例1の電荷量測定回路に、測定対象の静電容量Cxを電荷量Qxに変換するCQ変換手段6と、CQ変換手段6の動作を制御する第二の制御手段7と、第一の演算手段5からの電荷量と第二の制御手段7からの制御情報とから測定対象の静電容量を演算する第二の演算手段8を付加する構成とした。このため、実施例2で追加となるCQ変換手段6と第二の制御手段7と第二の演算手段8について、これより詳細に説明する。   The charge amount measuring circuit according to the second embodiment having the configuration shown in FIG. 7 can solve such a conventional problem. Here, the capacitance Cx to be measured may be not only the capacitance between the two terminals but also the floating capacitance of an object such as a detection electrode of an electrostatic touch panel. Here, the power storage means 1, the charge input / output means 2, the voltage measurement means 3, the first control means 4, and the first calculation means 5 are the same as those in the first embodiment. Therefore, the charge amount measurement circuit according to the second embodiment controls the operation of the CQ conversion unit 6 that converts the capacitance Cx to be measured into the charge amount Qx, and the operation of the CQ conversion unit 6 in addition to the charge amount measurement circuit according to the first embodiment. The second control means 7 is added, and the second calculation means 8 for calculating the capacitance of the measurement object from the charge amount from the first calculation means 5 and the control information from the second control means 7 is added. The configuration. Therefore, the CQ conversion means 6, the second control means 7 and the second calculation means 8 which are added in the second embodiment will be described in detail.

CQ変換手段6は、測定対象の静電容量Cxを電荷量Qxに変換する。このため、CQ変換手段6は、例えば、図9に示すように、測定対象の静電容量Cxと蓄電手段Csを抵抗Rcで接続し、測定対象の静電容量Cxと抵抗Rcとの接続点にスイッチSWcを介した定電圧電源Vcを接続する構成とすることができる。ここで、スイッチSWcは、第二の制御手段7によりオンオフされる。   The CQ conversion unit 6 converts the capacitance Cx to be measured into a charge amount Qx. For this reason, as shown in FIG. 9, for example, the CQ conversion unit 6 connects the capacitance Cx to be measured and the power storage unit Cs with a resistor Rc, and a connection point between the capacitance Cx to be measured and the resistor Rc. A constant voltage power supply Vc can be connected to the switch via the switch SWc. Here, the switch SWc is turned on / off by the second control means 7.

このように接続することにより、SWcがオンしている時間Tcの間に、数6に示す電荷Qrが抵抗Rcを通して蓄電手段に流れる。
(数6) Qr≒Tc×(Vc−Vt)÷Rc
また、スイッチSWcをオフした直後に、測定対象の静電容量Cxの電圧が定電圧電源の電圧Vcから蓄電手段の電圧Vsに変化するために流れる電荷は、スイッチSWcをオフした回数Ncに比例し、数7に示す電荷量Qcが蓄電手段に流れる。
(数7) Qc≒Cx×(Vc−Vt)×Nc
従って、測定される電荷量Qxは、数8に示すようにこれらの電荷量の和である。
(数8) Qx=Qr+Qc
以上にCQ変換手段6の一例を示したが、第二の制御手段7によって制御され、測定対象の静電容量を電荷量に変換できるものであれば、どのような手段や方法を用いても良い。
By connecting in this way, during the time Tc when SWc is on, the charge Qr shown in Equation 6 flows through the resistor Rc to the power storage means.
(Formula 6) Qr≈Tc × (Vc−Vt) ÷ Rc
Immediately after the switch SWc is turned off, the charge flowing because the voltage of the capacitance Cx to be measured changes from the voltage Vc of the constant voltage power supply to the voltage Vs of the storage means is proportional to the number Nc of times the switch SWc is turned off. Then, the charge amount Qc shown in Equation 7 flows to the power storage means.
(Expression 7) Qc≈Cx × (Vc−Vt) × Nc
Therefore, the measured charge amount Qx is the sum of these charge amounts as shown in Equation 8.
(Formula 8) Qx = Qr + Qc
Although an example of the CQ conversion means 6 has been described above, any means or method can be used as long as it is controlled by the second control means 7 and can convert the capacitance of the measurement object into the charge amount. good.

第二の制御手段7は、電荷量測定期間Ttの間に、スイッチSWcを複数回オンオフする。この場合に、オンしている時間は測定対象の静電容量Cxの電圧が蓄電手段の電圧Vsから定電圧電源の電圧Vcに変化するために必要な時間であれば良い。但し、必要以上に長くオンしていると、数6に示す電荷Qrが多くなるが、この電荷Qrは静電容量に無関係なため、必要以上に長くしないことが望ましい。また、SWcをオフしている時間に、測定対象の静電容量Cxから電荷が抵抗Rcを介して移動する。このため、静電容量Cxと抵抗Rcとにより求められる時定数より充分長い時間SWcをオフしている必要がある。また、SWcのオンオフ回数Ncは、多いほど静電容量Cxの測定精度を向上させる。   The second control means 7 turns on / off the switch SWc a plurality of times during the charge amount measurement period Tt. In this case, the ON time may be a time required for the voltage of the capacitance Cx to be measured to change from the voltage Vs of the power storage means to the voltage Vc of the constant voltage power source. However, if the switch is turned on longer than necessary, the charge Qr shown in Equation 6 increases. However, since the charge Qr is not related to the capacitance, it is desirable not to make it longer than necessary. In addition, during the time when SWc is turned off, the charge moves from the capacitance Cx to be measured via the resistor Rc. For this reason, it is necessary to turn off SWc for a time sufficiently longer than the time constant determined by the capacitance Cx and the resistance Rc. Further, as the number of ON / OFF times Nc of SWc increases, the measurement accuracy of the capacitance Cx is improved.

第二の演算手段8は、第一の演算手段5で求めた電荷量と第二の制御手段7での制御情報から、測定対象の静電容量Cxの測定値を演算により求める。ここで、数9は、数8のQrとQcにそれぞれ数6と数7を代入してCxについて解いたものである。
(数9)Cx≒{Qx÷(Vc−Vt)−Tc÷Rc}÷Nc
第二の演算手段8では、数9のQxに第一の演算手段5で求めた電荷量を、Tcに電荷量測定期間Ttの間に第二の制御手段がスイッチSWcをオンしていた合計時間を、Ncに電荷量測定期間Ttの間に第二の制御手段7がスイッチSWcをオンオフした回数をそれぞれ代入して演算を行い、測定対象の静電容量Cxを求めるようにした。但し、これは、演算の一例であり、予め定数の部分を演算しておいたり、測定期間Ttでの第二の制御手段によるスイッチSWcのオン時間Ttやオンオフ回数Ncをあらかじめ定められた条件にしておき第一の演算手段で求めた電荷量のみからテーブル参照したりするなど、第二の演算手段8の演算はCV変換手段の動作と第一の演算手段5からの演算結果を用いて測定対象の静電容量に対応した値を求めるものであれば、どのような手段や方法を用いても良い。
The second calculation means 8 calculates the measured value of the capacitance Cx to be measured from the charge amount calculated by the first calculation means 5 and the control information by the second control means 7 by calculation. Here, Equation 9 is solved for Cx by substituting Equation 6 and Equation 7 into Qr and Qc of Equation 8, respectively.
(Equation 9) Cx≈ {Qx ÷ (Vc−Vt) −Tc ÷ Rc} ÷ Nc
In the second calculation means 8, the amount of charge obtained by the first calculation means 5 in Qx of Equation 9 is added to Tc, and the total that the second control means has turned on the switch SWc during the charge amount measurement period Tt. The time was calculated by substituting Nc for the number of times the second control means 7 turned on / off the switch SWc during the charge amount measurement period Tt to obtain the capacitance Cx to be measured. However, this is an example of calculation, and a constant part is calculated in advance, or the ON time Tt and ON / OFF count Nc of the switch SWc by the second control means in the measurement period Tt are set to predetermined conditions. The calculation of the second calculation means 8 is performed using the operation result of the CV conversion means and the calculation result from the first calculation means 5 such as referring to the table only from the charge amount obtained by the first calculation means. Any means or method may be used as long as the value corresponding to the target capacitance is obtained.

また、図9に示すように、CQ変換手段から測定対象の静電容量Cxを除いた構成は、電荷入出力手段の一部の構成と同様であり、蓄電手段に接続される抵抗を介して制御手段により制御されるスイッチによりオンオフされる定電圧電源が接続されている。従って、図10に示すように、CQ変換手段の変わりに、電荷入出力手段12を用いても測定対象の静電容量Cxに応じた電荷量に変換することができる。従って、これより図10の場合について詳細に説明する。但し、図10の蓄電手段1と電圧測定手段3と第一の演算手段5は、図7に示す場合と同様なため、電荷入出力手段12と第一の制御手段14と第二の演算手段18について、詳細に説明する。   Further, as shown in FIG. 9, the configuration obtained by removing the capacitance Cx to be measured from the CQ conversion unit is the same as that of a part of the charge input / output unit, and is connected via a resistor connected to the power storage unit. A constant voltage power source that is turned on and off by a switch controlled by the control means is connected. Therefore, as shown in FIG. 10, the charge input / output means 12 can be used instead of the CQ conversion means to convert the charge amount according to the capacitance Cx to be measured. Accordingly, the case of FIG. 10 will be described in detail. However, since the power storage means 1, voltage measurement means 3, and first calculation means 5 in FIG. 10 are the same as those shown in FIG. 7, the charge input / output means 12, the first control means 14, and the second calculation means. 18 will be described in detail.

図10に示す電荷入出力手段12は、図7及び図9に示す電荷入出力手段2とほぼ同様である。ただし、図11に示すように測定対象の静電容量Cxが接続されたことにより、数1により得られる電荷量Qaに加えて、スイッチSWpがオフした直後に測定対象の静電容量Cxから数10により求められる電荷Qcが蓄電手段に余分に流れる。この電荷量Qcを測定対象の電荷量Qxとして、電荷測定回路を動作させる。ここで、Npは、電荷入出力手段のスイッチSWpをオンオフする回数である。
(数10) Qx=Qc≒Cx×(Vp−Vt)×Np
なお、この場合も、図12に示すように、実施例1の場合と同様に汎用的な入出力ポートを用いる場合のポート数を少なくすることも出来る。
The charge input / output unit 12 shown in FIG. 10 is substantially the same as the charge input / output unit 2 shown in FIGS. However, as shown in FIG. 11, since the capacitance Cx to be measured is connected, in addition to the charge amount Qa obtained by Equation 1, the capacitance from the capacitance Cx to be measured immediately after the switch SWp is turned off. The electric charge Qc calculated | required by 10 flows into an electrical storage means excessively. The charge measurement circuit is operated with the charge amount Qc as the charge amount Qx to be measured. Here, Np is the number of times the switch SWp of the charge input / output means is turned on / off.
(Expression 10) Qx = Qc≈Cx × (Vp−Vt) × Np
Also in this case, as shown in FIG. 12, the number of ports in the case of using general-purpose input / output ports can be reduced as in the case of the first embodiment.

例えば、図12aに示すように、スイッチSWmを用いずに、抵抗Rpを介して蓄電手段の電圧Vsを電圧測定で測定するようにすると、汎用的なポートの数を1ポートにすることが出来る。   For example, as shown in FIG. 12a, if the voltage Vs of the storage means is measured by voltage measurement via the resistor Rp without using the switch SWm, the number of general-purpose ports can be reduced to one port. .

また、図4gに示す電荷入出力手段を応用しても、図12bに示すように汎用的なポートの数を1ポートにすることが出来る。但し、この場合には、スイッチSWmがオフした直後にも測定対象の静電容量Cxが蓄電手段から電荷を引き出すため、数10に代わって数11に示す電荷量を測定することになる。
(数11) Qx=Qc≒Cx×{(Vp−Vt)×Np−(Vt−Vm)×Nm}
但し、図12bの構成では、例えば電圧測定手段の閾値電圧Vtが定電圧電源の電圧VpとVmのほぼ中間で、スイッチSWpを1回オンする時間tpとスイッチSWmを1回オンする時間tmが同じ場合には、スイッチSWpをオンオフする回数NpとスイッチSWmをオンオフする回数Nmもほぼ同数となり、数11のQxがほぼ0になってしまう。この課題を回避するには、例えば、スイッチSWmを1回オンする時間tmの数倍にスイッチSWpを1回オンする時間tpを設定するなど、数11のQxが0にならないような条件で測定するようにすれば良い。
Further, even if the charge input / output means shown in FIG. 4g is applied, the number of general-purpose ports can be reduced to 1 as shown in FIG. 12b. However, in this case, immediately after the switch SWm is turned off, the capacitance Cx to be measured draws charges from the power storage means, so the amount of charge shown in Equation 11 is measured instead of Equation 10.
(Expression 11) Qx = Qc≈Cx × {(Vp−Vt) × Np− (Vt−Vm) × Nm}
However, in the configuration of FIG. 12b, for example, the threshold voltage Vt of the voltage measuring means is approximately halfway between the voltages Vp and Vm of the constant voltage power supply, and the time tp for turning on the switch SWp once and the time tm for turning on the switch SWm once are In the same case, the number Np of turning on / off the switch SWp and the number of turning Nm of turning on / off the switch SWm are almost the same, and the Qx in the equation 11 becomes almost zero. In order to avoid this problem, for example, the measurement is performed under the condition that Qx in Equation 11 does not become 0, such as setting the time tp for turning on the switch SWp once to several times the time tm for turning on the switch SWm once. You should do it.

図10に示す第一の制御手段14は、図7に示す第一の制御手段4とほぼ同様である。但し、図7のCQ変換手段6のスイッチSWcの制御タイミングと同様に、スイッチSWpをオフしている時間に測定対象の静電容量Cxから電荷が抵抗Rpを介して移動するため、静電容量Cxと抵抗Rpとにより求められる時定数より充分長い時間SWpをオフしている必要がある。   The first control means 14 shown in FIG. 10 is substantially the same as the first control means 4 shown in FIG. However, similar to the control timing of the switch SWc of the CQ conversion means 6 in FIG. 7, the charge moves from the capacitance Cx to be measured through the resistor Rp during the time when the switch SWp is turned off. SWp needs to be off for a time sufficiently longer than the time constant determined by Cx and resistance Rp.

図10に示す第二の演算手段18は、図7に示す第二の演算手段とほぼ同様である。但し、図9におけるスイッチSWcがオンしている時間抵抗Rcを介して蓄電手段に流れる電荷が存在しないためにより簡単な式となり、数10をCxについて解いた数12により、測定対象の静電容量を演算により求めるようにする。ここで、Qxには第一演算手段5で演算した電荷量を、Npには第一制御手段14が電荷入出力手段のスイッチSWpをオンオフした回数を代入した。数11を用いた場合も同様である。
(数12)Cx≒Qx÷{(Vp−Vt)×Np}
但し、これは第二演算手段18の演算の一例であり、予め定数の部分を演算しておいたり、QxとNpによる2次元テーブルを参照したりして求めるなど、第二演算手段18の演算は第一制御手段14により制御される電荷入出力手段12の動作と第一の演算手段5での演算結果を用いて測定対象の静電容量に対応した値を求めるものであれば、どのような手段や方法を用いても良い。
The second calculation means 18 shown in FIG. 10 is substantially the same as the second calculation means shown in FIG. However, since there is no electric charge flowing to the power storage means via the time resistor Rc when the switch SWc in FIG. 9 is on, the equation becomes simpler, and the capacitance of the measurement target is obtained by Equation 12 obtained by solving Equation 10 for Cx. Is obtained by calculation. Here, the amount of charge calculated by the first calculating means 5 is substituted for Qx, and the number of times the first control means 14 turns on / off the switch SWp of the charge input / output means is substituted for Np. The same applies when Expression 11 is used.
(Equation 12) Cx≈Qx ÷ {(Vp−Vt) × Np}
However, this is an example of the calculation of the second calculation means 18, and the calculation of the second calculation means 18, such as calculating a constant part in advance or referring to a two-dimensional table by Qx and Np. If the value corresponding to the capacitance to be measured is obtained using the operation of the charge input / output unit 12 controlled by the first control unit 14 and the calculation result of the first calculation unit 5, Various means and methods may be used.

なお、ここではスイッチSWpと抵抗Rpとの間に測定対象の静電容量Cxを接続した例を示したが、スイッチSWmと抵抗Rmとの間に接続しても同様であることは言うまでもない。   Here, an example is shown in which the capacitance Cx to be measured is connected between the switch SWp and the resistor Rp, but it goes without saying that the same is true even if the capacitance is connected between the switch SWm and the resistor Rm.

また、以上に実施例2の説明の便宜上、第一演算手段と第二演算手段ごとに演算する場合の例を示したが、例えば数1のQaを数5に代入して得られたQxを数11に代入して予めまとめておくなど、第一演算手段と第二演算手段の演算をまとめて、テーブル参照や演算などにより実現するようにしても良いことは言うまでもない。   Further, for convenience of explanation of the second embodiment, the example in the case of performing the calculation for each of the first calculation means and the second calculation means has been described. For example, Qx obtained by substituting Qa of Formula 1 into Formula 5 is used. Needless to say, the calculations of the first calculation means and the second calculation means may be realized by substituting into Equation 11 and preliminarily gathered and realized by table reference, calculation, or the like.

実施例2による電荷量測定回路では、論理回路に抵抗やコンデンサを付加するのみの比較的簡単な構成で、CQ変換のためのスイッチSWcのオンオフ回数及び第一の制御手段の制御サイクルの回数を多くすればするほど測定する静電容量の分解能を高くすることの出来る電荷量測定回路を実現するとこが可能である。   In the charge amount measurement circuit according to the second embodiment, the number of on / off times of the switch SWc for CQ conversion and the number of control cycles of the first control unit are set with a relatively simple configuration by simply adding a resistor or a capacitor to the logic circuit. It is possible to realize a charge amount measurement circuit capable of increasing the resolution of the capacitance to be measured as the number is increased.

実施例3では、実施例1で示した電圧Vtに流れ込む電荷量を求める回路および方法の他の応用例として、人体通信などに用いられる接近物体の電圧変化を検出する電荷量測定回路について説明する。   In the third embodiment, a charge amount measuring circuit for detecting a voltage change of an approaching object used for human body communication or the like will be described as another application example of the circuit and method for obtaining the amount of charge flowing into the voltage Vt shown in the first embodiment. .

実施例3による電荷量測定回路は、実施例1を示す図1に於ける測定対象電荷Qxとして、電界を受信する受信電極を接続したものである。   In the charge amount measurement circuit according to the third embodiment, a reception electrode that receives an electric field is connected as the measurement target charge Qx in FIG.

従って蓄電手段1、電荷入出力手段2、電圧測定手段3、第一の制御手段4、第一の演算手段5は、実施例1と同様なため、受信電極9について説明する。   Therefore, since the power storage unit 1, the charge input / output unit 2, the voltage measurement unit 3, the first control unit 4, and the first calculation unit 5 are the same as those in the first embodiment, the reception electrode 9 will be described.

この受信電極9は、電圧を変化させる接近物体10と静電容量Ceにより結合するように配置する。   The receiving electrode 9 is disposed so as to be coupled to the approaching object 10 that changes the voltage by the capacitance Ce.

接近物体10は、その電圧Veを変化させ、接近物体10と受信電極間9の静電容量に電荷を充放電する。   The approaching object 10 changes its voltage Ve, and charges and discharges the electrostatic capacitance between the approaching object 10 and the receiving electrode 9.

受信電極9の電圧Vsそのものは、電圧測定手段3の閾値電圧Vtに近づくように制御されているため、接近物体10と受信電極9との間の静電容量Ceには数13に示す電荷Qeが蓄積される。
(数13) Qe≒Ce×(Ve−Vt)
ここで、接近物体10の電圧がΔVt上昇した場合には、接近物体10と受信電極9
との間の静電容量Ceに蓄積される電荷Qeは、数14に示す電荷量ΔQx分増加する

(数14) ΔQe≒Ce×(ΔVt)
厳密には、接近物体10側がΔQe分正の電荷が増加し、受信電極9側はΔQe分負
の電荷が増加し、そのための正の電荷ΔQe分が蓄電手段に流れ込みQxとして測定さ
れる。
Since the voltage Vs itself of the receiving electrode 9 is controlled so as to approach the threshold voltage Vt of the voltage measuring means 3, the electrostatic capacity Ce between the approaching object 10 and the receiving electrode 9 has a charge Qe shown in Formula 13. Is accumulated.
(Formula 13) Qe≈Ce × (Ve−Vt)
Here, when the voltage of the approaching object 10 increases by ΔVt, the approaching object 10 and the receiving electrode 9
The charge Qe accumulated in the electrostatic capacitance Ce between and increases by the charge amount ΔQx shown in Equation 14.
(Formula 14) ΔQe≈Ce × (ΔVt)
Strictly speaking, the positive charge is increased by ΔQe on the approaching object 10 side, and the negative charge is increased by ΔQe on the receiving electrode 9 side. The positive charge ΔQe for that flow flows into the power storage means and is measured as Qx.

ここで、接近物体10と受信電極9との位置関係の変化によってその間の静電容量Ceも変動するためにΔQeが流れるが、この変化は受信する信号の変化より充分遅いた
め、フィルタ処理等により容易に分離することが出来る。
Here, ΔQe flows because the capacitance Ce also fluctuates due to the change in the positional relationship between the approaching object 10 and the receiving electrode 9, but this change is sufficiently slower than the change in the received signal. It can be easily separated.

従って、実施例1と同様に、電荷量Qxの測定により、デジタル回路に電源や抵抗やコンデンサなどを付加するのみの簡単な構成で高分解能な接近物体の電圧変化の検出を可能にする。   Therefore, as in the first embodiment, by measuring the charge amount Qx, it is possible to detect a voltage change of an approaching object with high resolution with a simple configuration by simply adding a power source, a resistor, a capacitor, and the like to the digital circuit.

本発明に係る電荷測定回路の第1の実施例を示すブロック図1 is a block diagram showing a first embodiment of a charge measuring circuit according to the present invention. 従来の電荷測定回路を示すプロック図Block diagram showing a conventional charge measurement circuit 第1の実施例の蓄電手段を示す図The figure which shows the electrical storage means of 1st Example 第1の実施例の電荷入出力手段を示す図The figure which shows the electric charge input / output means of 1st Example 第1の実施例の電荷入出力手段の接続例を示す図The figure which shows the example of a connection of the charge input / output means of 1st Example 第1の実施例の入出力手段の他の接続例を示す図The figure which shows the other example of a connection of the input / output means of 1st Example 本発明に係る電荷測定回路の第2の実施例を示すブロック図The block diagram which shows the 2nd Example of the electric charge measurement circuit based on this invention 従来の電荷測定回路を示すプロック図Block diagram showing a conventional charge measurement circuit 第2の実施例のCQ変換手段の接続例を示す図The figure which shows the example of a connection of the CQ conversion means of 2nd Example. 本発明に係る電荷測定回路の第2の実施例を示すブロック図The block diagram which shows the 2nd Example of the electric charge measurement circuit based on this invention 第2の実施例の電荷入出力手段の接続例を示す図The figure which shows the example of a connection of the charge input / output means of 2nd Example 第2の実施例の入出力手段の他の接続例を示す図The figure which shows the other example of a connection of the input-output means of 2nd Example 第3の実施例の電荷入出力手段の接続例を示す図The figure which shows the example of a connection of the charge input / output means of 3rd Example 制御動作サイクルの一例を説明するためのフロー図Flow chart for explaining an example of a control operation cycle 補正フローの一例を示す図Diagram showing an example of correction flow

符号の説明Explanation of symbols

1 蓄電手段
2、12 電荷入出力手段
3 電圧測定手段
4、14 第一の制御手段
5 第一の演算手段
6 CQ変換手段
7 第二の制御手段
8、18 第二の演算手段
9 受信電極
10 接近物体
20 論理回路
DESCRIPTION OF SYMBOLS 1 Power storage means 2, 12 Charge input / output means 3 Voltage measurement means 4, 14 First control means 5 First calculation means 6 CQ conversion means 7 Second control means 8, 18 Second calculation means 9 Reception electrode 10 Approaching object 20 Logic circuit

Claims (19)

一定の電圧に対して流れる電荷量を測定する電荷量測定回路であって、測定対象の電荷を入力するとともに蓄積している電荷量を電圧に変換する蓄電手段と、前記蓄電手段が蓄電する電荷量を増減させる電荷入出力手段と、前記蓄電手段の電圧を測定する電圧測定手段と、前記電圧測定手段の測定結果により前記電荷入出力手段を用いて前記蓄電手段の電圧が一定の電圧に収まるように制御する第一の制御手段と、前記第一の制御手段からの制御情報を用いて前記測定対象の電荷の量を演算により求める演算手段とを有することを特徴とする電荷量測定回路。 A charge amount measurement circuit for measuring the amount of charge flowing with respect to a certain voltage, the storage means for inputting the charge to be measured and converting the accumulated charge amount into a voltage, and the charge stored in the storage means Charge input / output means for increasing / decreasing the amount, voltage measuring means for measuring the voltage of the power storage means, and the voltage of the power storage means within a constant voltage using the charge input / output means according to the measurement result of the voltage measurement means A charge amount measuring circuit, comprising: first control means for controlling in such a manner; and calculation means for calculating the amount of charge of the measurement object using control information from the first control means. 静電容量を測定する電荷量測定回路であって、測定対象の静電容量を電荷量に変換するCQ変換手段と、前記CQ変換手段からの電荷を入力するとともに蓄積している電荷量を電圧に変換する蓄電手段と、前記蓄電手段が蓄電する電荷量を増減させる電荷入出力手段と、前記蓄電手段の電圧を測定する電圧測定手段と、前記電圧測定手段の測定結果により前記電荷入出力手段を用いて前記蓄電手段の電圧が一定の電圧に収まるように制御する第一の制御手段と、前記CQ手段の動作を制御する第二の制御手段と、前記第一の制御手段からの制御情報と前記第二の制御手段からの制御情報とを用いて前記測定対象の静電容量を演算により求める演算手段とを有することを特徴とする電荷量測定回路。 A charge amount measurement circuit for measuring capacitance, comprising: a CQ conversion means for converting a capacitance to be measured into a charge amount; a charge input from the CQ conversion means and a stored charge amount as a voltage Power storage means for converting the power storage means, charge input / output means for increasing or decreasing the amount of charge stored in the power storage means, voltage measurement means for measuring the voltage of the power storage means, and the charge input / output means based on the measurement result of the voltage measurement means Control information from the first control means, first control means for controlling the power storage means so that the voltage of the power storage means falls within a certain voltage, second control means for controlling the operation of the CQ means, and control information from the first control means And a calculation means for calculating the capacitance of the measurement object by using the control information from the second control means. 静電容量を測定する電荷量測定回路であって、蓄積している電荷量を電圧に変換する蓄電手段と、前記測定対象の静電容量に接続され前記蓄電手段が蓄電する電荷量を増減させる電荷入出力手段と、前記蓄電手段の電圧を測定する電圧測定手段と、前記電圧測定手段の測定結果により前記電荷入出力手段を用いて前記蓄電手段の電圧が一定の電圧に収まるように制御する第一の制御手段と、前記第一の制御手段からの制御情報を用いて前記測定対象の静電容量を演算により求める演算手段とを有することを特徴とする電荷量測定回路。 A charge amount measurement circuit for measuring electrostatic capacity, wherein the storage means for converting the accumulated charge amount into a voltage and the amount of charge stored in the storage means connected to the capacitance to be measured are increased or decreased. Charge input / output means, voltage measuring means for measuring the voltage of the power storage means, and the charge input / output means are used to control the voltage of the power storage means to be within a constant voltage based on the measurement result of the voltage measurement means. A charge amount measurement circuit comprising: a first control unit; and a calculation unit that obtains the capacitance of the measurement object by calculation using control information from the first control unit. 接近している物体の電圧の変化を検出する電荷量測定回路であって、前記接近物体の電圧の変化を電荷量に変換する受信電極と、前記受信電極からの電荷を入力するとともに蓄積している電荷量を電圧に変換する蓄電手段と、前記蓄電手段が蓄電する電荷量を増減させる電荷入出力手段と、前記蓄電手段の電圧を測定する電圧測定手段と、前記電圧測定手段の測定結果により前記電荷入出力手段を用いて前記蓄電手段の電圧が一定の電圧に収まるように制御する第一の制御手段と、前記第一の制御手段からの制御情報を用いて前記接近物体の電圧の変化を演算により求める演算手段とを有することを特徴とする電荷量測定回路。 A charge amount measuring circuit for detecting a change in voltage of an approaching object, a receiving electrode for converting the change in voltage of the approaching object into a charge amount, and inputting and storing the charge from the receiving electrode Storage means for converting the amount of charge stored into voltage, charge input / output means for increasing or decreasing the amount of charge stored in the storage means, voltage measurement means for measuring the voltage of the storage means, and the measurement result of the voltage measurement means First control means for controlling the voltage of the power storage means to be kept at a constant voltage using the charge input / output means, and change in voltage of the approaching object using control information from the first control means A charge amount measuring circuit comprising: an arithmetic means for calculating 前記電荷入出力手段は、定電流電源と前記制御手段によりオンオフされるスイッチを有することを特徴とする請求項1ないし4のいずれか1項に記載の電荷量測定回路。 5. The charge amount measuring circuit according to claim 1, wherein the charge input / output means includes a constant current power source and a switch that is turned on / off by the control means. 前記電荷入出力手段は、定電圧電源と電気抵抗と前記制御手段によりオンオフされるスイッチを有することを特徴とする請求項1ないし4のいずれか1項に記載の電荷量測定回路。 5. The charge amount measuring circuit according to claim 1, wherein the charge input / output unit includes a constant voltage power source, an electric resistance, and a switch that is turned on / off by the control unit. 前記第一の演算手段は、測定対象の電荷を入力しない場合の前記第一の制御手段の動作により、測定対象の電荷量の演算に補正を加えることを特徴とする請求項1ないし4のいずれか1項に記載の電荷量測定回路。 5. The method according to claim 1, wherein the first calculation unit corrects the calculation of the charge amount of the measurement target by the operation of the first control unit when the charge of the measurement target is not input. The charge amount measuring circuit according to claim 1. 前記第一の制御手段は、前記電圧測定手段の測定結果が特定の変化をする同一の条件で、前記測定対象の静電容量の測定の開始及び終了を行うことを特徴とする請求項1ないし4のいずれか1項に記載の電荷量測定回路。 The first control means starts and ends the measurement of the capacitance of the measurement object under the same conditions in which the measurement result of the voltage measurement means changes in a specific manner. 5. The charge amount measuring circuit according to any one of 4 above. 前記電圧測定手段及び前記第一及び第二の制御手段及び前記演算手段は、プログラマブルデバイスにより実現されることを特徴とする請求項1ないし4のいずれか1項に記載の電荷量測定回路。 5. The charge amount measurement circuit according to claim 1, wherein the voltage measurement unit, the first and second control units, and the calculation unit are realized by a programmable device. 6. 前記CQ変換手段は、定電圧源と前記第二の制御手段によりオンオフされるスイッチと抵抗を有することを特徴とする請求項2に記載の電荷量測定回路。 3. The charge amount measurement circuit according to claim 2, wherein the CQ conversion unit includes a constant voltage source, a switch that is turned on / off by the second control unit, and a resistor. 前記電圧測定手段は、前記電荷入出力手段の電気抵抗と前記制御手段によりオンオフされるスイッチの接続点に接続されることを特徴とする請求項6項に記載の電荷量測定回路。 7. The charge amount measuring circuit according to claim 6, wherein the voltage measuring means is connected to a connection point of an electric resistance of the charge input / output means and a switch that is turned on / off by the control means. 前記電圧測定手段の測定結果が特定の変化をする同一の条件は、前記電荷入出力手段を構成する複数のスイッチの中でオンした場合の前記蓄電手段の電圧変化が最も小さいスイッチをオンしたことによる変化によるものであることを特徴とする請求項8に記載の電荷量測定回路。 The same condition under which the measurement result of the voltage measuring means changes in particular is that the switch with the smallest voltage change of the power storage means when turned on among the plurality of switches constituting the charge input / output means is turned on. The charge amount measuring circuit according to claim 8, wherein the charge amount measuring circuit is caused by a change due to the above. 一定の電圧に対して流れる電荷量を測定する電荷量測定方法であって、測定対象の電荷を入力するとともに蓄積している電荷量を電圧に変換する蓄電手段と、前記蓄電手段が蓄電する電荷量を増減させる電荷入出力手段と、前記蓄電手段の電圧を測定する電圧測定手段と、前記電圧測定手段の測定結果により前記電荷入出力手段を用いて前記蓄電手段の電圧が一定の電圧に収まるように制御する第一の制御工程と、前記第一の制御工程からの制御情報を用いて前記測定対象の電荷の量を演算により求める演算工程とを有することを特徴とする電荷量測定方法。 A charge amount measuring method for measuring the amount of charge flowing with respect to a certain voltage, the storage means for inputting the charge to be measured and converting the accumulated charge amount into a voltage, and the charge stored in the storage means Charge input / output means for increasing / decreasing the amount, voltage measuring means for measuring the voltage of the power storage means, and the voltage of the power storage means within a constant voltage using the charge input / output means according to the measurement result of the voltage measurement means A charge amount measuring method comprising: a first control step for controlling in such a manner; and a calculation step for calculating the amount of charge to be measured by calculation using control information from the first control step. 静電容量を測定する電荷量測定方法であって、測定対象の静電容量を電荷量に変換するCQ変換手段と、前記CQ変換手段からの電荷を入力するとともに蓄積している電荷量を電圧に変換する蓄電手段と、前記蓄電手段が蓄電する電荷量を増減させる電荷入出力手段と、前記蓄電手段の電圧を測定する電圧測定手段と、前記電圧測定手段の測定結果により前記電荷入出力手段を用いて前記蓄電手段の電圧が一定の電圧に収まるように制御する第一の制御工程と、前記CQ手段の動作を制御する第二の制御工程と、前記第一の制御工程からの制御情報と前記第二の制御工程からの制御情報とを用いて前記測定対象の静電容量を演算により求める演算工程とを有することを特徴とする電荷量測定方法。 A charge amount measuring method for measuring a capacitance, comprising: a CQ conversion means for converting a capacitance to be measured into a charge amount; a charge from the CQ conversion means as input; Power storage means for converting the power storage means, charge input / output means for increasing or decreasing the amount of charge stored in the power storage means, voltage measurement means for measuring the voltage of the power storage means, and the charge input / output means based on the measurement result of the voltage measurement means A first control step for controlling the voltage of the power storage means so as to fall within a constant voltage, a second control step for controlling the operation of the CQ means, and control information from the first control step And a calculation step of calculating the measurement target capacitance by calculation using the control information from the second control step. 静電容量を測定する電荷量測定方法であって、蓄積している電荷量を電圧に変換する蓄電手段と、前記測定対象の静電容量に接続され前記蓄電手段が蓄電する電荷量を増減させる電荷入出力手段と、前記蓄電手段の電圧を測定する電圧測定手段と、前記電圧測定手段の測定結果により前記電荷入出力手段を用いて前記蓄電手段の電圧が一定の電圧に収まるように制御する第一の制御工程と、前記第一の制御工程からの制御情報を用いて前記測定対象の静電容量を演算により求める演算工程とを有することを特徴とする電荷量測定方法。 A charge amount measuring method for measuring an electrostatic capacity, wherein a storage means for converting an accumulated charge amount into a voltage, and an amount of charge stored in the storage means connected to the capacitance to be measured are increased or decreased. Charge input / output means, voltage measurement means for measuring the voltage of the power storage means, and the charge input / output means are used to control the voltage of the power storage means to be within a constant voltage based on the measurement result of the voltage measurement means. A charge amount measuring method comprising: a first control step; and a calculation step for calculating the capacitance of the measurement object by using control information from the first control step. 接近している物体の電圧の変化を検出する電荷量測定方法であって、前記接近物体の電圧の変化を電荷量に変換する受信電極と、前記受信電極からの電荷を入力するとともに蓄積している電荷量を電圧に変換する蓄電手段と、前記蓄電手段が蓄電する電荷量を増減させる電荷入出力手段と、前記蓄電手段の電圧を測定する電圧測定手段と、前記電圧測定手段の測定結果により前記電荷入出力手段を用いて前記蓄電手段の電圧が一定の電圧に収まるように制御する第一の制御工程と、前記第一の制御工程からの制御情報を用いて前記接近物体の電圧の変化を演算により求める演算工程とを有することを特徴とする電荷量測定方法。 A charge amount measuring method for detecting a change in voltage of an approaching object, a receiving electrode that converts the change in voltage of the approaching object into a charge amount, and a charge from the receiving electrode is input and accumulated. Storage means for converting the amount of charge stored into voltage, charge input / output means for increasing or decreasing the amount of charge stored in the storage means, voltage measurement means for measuring the voltage of the storage means, and the measurement result of the voltage measurement means A first control step of controlling the voltage of the power storage means to be a constant voltage using the charge input / output means, and a change in the voltage of the approaching object using control information from the first control step A charge amount measuring method, comprising: a calculation step for calculating the charge amount by calculation. 前記第一の演算工程は、測定対象の電荷を入力しない場合の前記第一の制御工程の動作により、測定対象の電荷量の演算に補正を加えることを特徴とする請求項13ないし16のいずれか1項に記載の電荷量測定方法。 17. The method according to claim 13, wherein the first calculation step adds correction to the calculation of the charge amount of the measurement target by the operation of the first control step when the charge of the measurement target is not input. 2. The method for measuring a charge amount according to item 1. 前記第一の制御工程は、前記電圧測定手段の測定結果が特定の変化をする同一の条件で、前記測定対象の静電容量の測定の開始及び終了を行うことを特徴とする請求項13ないし16のいずれか1項に記載の電荷量測定方法。 14. The first control step starts and ends the measurement of the capacitance of the measurement target under the same conditions in which the measurement result of the voltage measuring unit changes in a specific manner. 17. The charge amount measuring method according to any one of 16 above. 前記電圧測定手段の測定結果が特定の変化をする同一の条件は、前記電荷入出力手段を構成する複数のスイッチの中でオンした場合の前記蓄電手段の電圧変化が最も小さいスイッチをオンしたことによる変化によるものであることを特徴とする請求項18に記載の電荷量測定方法。 The same condition under which the measurement result of the voltage measuring means changes in particular is that the switch with the smallest voltage change of the power storage means when turned on among the plurality of switches constituting the charge input / output means is turned on. The charge amount measuring method according to claim 18, wherein the charge amount measuring method is due to a change caused by the above.
JP2007278569A 2007-10-26 2007-10-26 Charge quantity measuring circuit and charge quantity measuring method Withdrawn JP2009109205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007278569A JP2009109205A (en) 2007-10-26 2007-10-26 Charge quantity measuring circuit and charge quantity measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007278569A JP2009109205A (en) 2007-10-26 2007-10-26 Charge quantity measuring circuit and charge quantity measuring method

Publications (1)

Publication Number Publication Date
JP2009109205A true JP2009109205A (en) 2009-05-21

Family

ID=40777851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007278569A Withdrawn JP2009109205A (en) 2007-10-26 2007-10-26 Charge quantity measuring circuit and charge quantity measuring method

Country Status (1)

Country Link
JP (1) JP2009109205A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168893A (en) * 2000-11-30 2002-06-14 Agilent Technologies Japan Ltd High accuracy capacity measurement device and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168893A (en) * 2000-11-30 2002-06-14 Agilent Technologies Japan Ltd High accuracy capacity measurement device and method

Similar Documents

Publication Publication Date Title
EP2279470B1 (en) Capacitive voltage divider touch sensor
US9075486B2 (en) Circuit and method for sensing a capacitance
US7724000B2 (en) Method of automatically testing an electronic circuit with a capacitive sensor and electronic circuit for the implementation of the same
WO2006132960B1 (en) Methods and systems for detecting a capacitance using sigma-delta measurement techniques
JP2010152876A (en) Electrostatic capacitance detection device, electrostatic capacitance detection circuit, electrostatic capacitance detection method and initialization method
Mohan et al. A novel dual-slope resistance-to-digital converter
US10572058B2 (en) Integrator circuit device and operating method thereof
WO2006002301A1 (en) Measuring the capacitance of a capacitive sensor with a microprocessor
CN101943712A (en) The resistance bridge architecture and method
JPH0718900B2 (en) Method and apparatus for measuring resistance ratio in resistance half bridge
JP6270403B2 (en) Semiconductor device and electronic control device
WO2015011916A1 (en) Current measurement device
JP2004340916A (en) Battery charge/discharge monitoring circuit and battery charge/discharge monitoring method
JP2010025667A (en) Parallel resistance measuring method and device therefor
JP7204447B2 (en) Integral type current-voltage conversion circuit, current measuring device and resistance measuring device
JP2009109205A (en) Charge quantity measuring circuit and charge quantity measuring method
US6717393B2 (en) System for difference calculation using a quad slope converter
US11281314B2 (en) Methods and apparatus for variable capacitance detection
CN111650441B (en) Capacitance detection circuit, capacitance detection method and electronic equipment
Mohan et al. Dual slope resistance to digital converter
US10712360B2 (en) Differential charge transfer based accelerometer
JP2913395B2 (en) Capacitive sensor
JP2008198063A (en) Coordinate position detector
Nagarajan et al. A direct-digital converter for resistive sensor elements in bridge configuration
KR102175055B1 (en) Method for measuring the difference between capacitances formed with two different electrodes and detecting a touch input on the electrodes using the measured result

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A621 Written request for application examination

Effective date: 20100810

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120813

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130405