JP2009108590A - Method of treating inflow water in rainy weather - Google Patents

Method of treating inflow water in rainy weather Download PDF

Info

Publication number
JP2009108590A
JP2009108590A JP2007281811A JP2007281811A JP2009108590A JP 2009108590 A JP2009108590 A JP 2009108590A JP 2007281811 A JP2007281811 A JP 2007281811A JP 2007281811 A JP2007281811 A JP 2007281811A JP 2009108590 A JP2009108590 A JP 2009108590A
Authority
JP
Japan
Prior art keywords
water
buffer tank
filtration
rainy weather
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007281811A
Other languages
Japanese (ja)
Inventor
Mikako Takenaka
美佳子 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2007281811A priority Critical patent/JP2009108590A/en
Publication of JP2009108590A publication Critical patent/JP2009108590A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treating method using filtration in a combined sewerage that can reduce the capacity of a reservoir to a half or less to reduce the number of times of untreated discharge by half. <P>SOLUTION: This method for treating inflow water in rainy weather is carried out by performing filtration treatment of inflow water not subjected to high grade treatment, out of inflow water in rainy weather and then discharging the inflow water as primary treated water in the combined sewerage, wherein the reservoir is used as a buffer tank to carry out continuous filtration treatment of the inflow water increased in rainy weather. The capacity of the reservoir required to store the inflow water is thereby reduced to a half or less, and the treated water is discharged as primary treated water to the outside of a system. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、汚水と雨水が同一の管渠で遮集される合流式下水道における雨天時の流入下水を処理するろ過を用いた処理方法に関するものである。   The present invention relates to a treatment method using filtration for treating inflow sewage in rainy weather in a combined sewer where sewage and rainwater are collected by the same pipe.

下水処理施設では、晴天時に流入する計画1日最大汚水量により処理場の施設設計を行っている。通常、下水処理場では流入下水は最初沈殿池→生物反応槽→最終沈殿池を経て順次処理され、消毒した後放流される。   In the sewage treatment facility, the facility is designed based on the maximum daily sewage amount that flows in on a clear day. Usually, in the sewage treatment plant, the inflow sewage is treated in order through the first sedimentation basin → biological reaction tank → final sedimentation basin.

合流式下水道では、雨天時に雨水と汚水とを遮集して大量の下水を処理している。雨天時には、晴天時の計画時間最大汚水量を1Qshとしたとき、通常3Qshまでの下水を遮集して処理場に受け入れ、遮集量を超える分は未処理で水域に放流する。また、雨天時に処理場へ受け入れられた下水は、1Qsh分は晴天時と同様に通常処理され、消毒した後放流される。一方、1Qshを超え3Qshまでの下水は、最初沈殿池で処理された後、消毒して放流する簡易処理が行われている。   In the combined sewerage system, a large amount of sewage is treated by intercepting rainwater and sewage during rainy weather. In rainy weather, when the maximum sewage amount is 1Qsh, the sewage is normally intercepted up to 3Qsh and received in the treatment plant, and the amount exceeding the interception amount is untreated and discharged into the water area. In addition, the sewage accepted into the treatment plant during rainy weather is normally treated for 1Qsh as in fine weather, and discharged after being disinfected. On the other hand, sewage exceeding 1 Qsh and up to 3 Qsh is first treated in a settling basin, and then a simple treatment is performed to disinfect and discharge.

合流式下水道における雨天時の現状を各気象観測所データによる年間降水量により簡易シミュレーションを行うと、全国の平均値で越流量約700mm、未処理放流回数71回、越流時間212時間という報告がある。(例えば、非特許文献1参照)
近年、これら合流式下水道の改善のための対策が義務付けられ、平成26年度から雨天時水質基準40mg/l以下、地域によっては分流並みを満たすことが要求される。また、未処理放流回数を現在の半分に削減せよ、という指導もある。(例えば、非特許文献2参照)
そこで、これら合流式下水道の改善のための対策として、滞水池の設置や雨水貯留管の設置、ポンプ場での堰のかさ上げ等により送水量を増加するなど遮集倍率を上げる、処理場やポンプ場で高速雨水処理を行う、といったものが挙げられる。
A simple simulation of the current situation during rain in the combined sewer system based on the annual precipitation from each weather station data shows that the national average value is about 700 mm overflow, 71 untreated discharges, and 212 hours overflow time. is there. (For example, see Non-Patent Document 1)
In recent years, measures to improve these combined sewers have been mandated. From 2014, water quality standards of 40 mg / l or less in rainy weather are required, and depending on the region, it is required to meet the level of diversion. There is also guidance to reduce the number of untreated discharges by half. (For example, see Non-Patent Document 2)
Therefore, as measures to improve these combined sewers, increase the interception ratio by increasing the water supply volume by installing a reservoir, installing rainwater storage pipes, raising the weir at the pumping station, etc. For example, high-speed stormwater treatment at a pumping station.

滞水池や雨水貯留管を設置することにより、降雨初期の負荷の高い雨水を貯めて降雨終了後に通常処理を行うことができ、未処理放流量と放流負荷量が削減される。また、遮集倍率を上げることは降雨初期汚濁の流出防止対策として、多くの都市で実施されている。また、処理場やポンプ場での高速雨水ろ過処理では、降雨中一定量の流入水を常時ろ過し、処理水を放流することで雨天時の未処理放流水量および放流負荷を削減できる。   By installing a stagnation pond and rainwater storage pipe, it is possible to store rainwater with a high load at the beginning of rainfall and perform normal treatment after the end of the rain, thereby reducing the untreated discharge flow rate and discharge load amount. Increasing the interception factor has been implemented in many cities as a measure to prevent the outflow of early-stage pollution. Moreover, in the high-speed rainwater filtration process in a treatment plant or a pumping station, the amount of untreated effluent water and the effluent load at the time of rain can be reduced by always filtering a certain amount of inflow water during rainfall and discharging the treated water.

さらに、上記技術の組み合わせによって未処理放流水量および放流負荷量のより効率的な削減が期待できる。   Furthermore, a more efficient reduction of the amount of untreated effluent water and effluent load can be expected by a combination of the above technologies.

しかし、このような技術はそのときの降雨状況により効果が大きく左右される。滞水池や貯留管は、負荷が低く降雨量の多い長い雨の場合では効果が低く、一定量貯留した残りは未処理放流となる。また、未処理放流水を減らすためには大きな滞水池が必要となり、土地の確保や建設費などが問題である。さらに、滞水池内の水を抜くには2日程かかる場合が多く、4時間以上の間隔のあいた独立降雨に対しても、間隔の狭い降雨には滞水池内の貯留水を処理しきれず、次の降雨に対応することができない。   However, the effect of such technology is greatly affected by the rainfall conditions at that time. Reservoir ponds and storage pipes are less effective in the case of long rains with a low load and a large amount of rainfall. In order to reduce the amount of untreated effluent, a large reservoir is required, and securing land and construction costs are problems. In addition, it often takes about 2 days to drain the water in the reservoir, and even for independent rainfall with an interval of 4 hours or more, the stored water in the reservoir cannot be treated for rainfall with a narrow interval. Can not cope with the rain.

遮集量の増加は、ある程度までは効果があるが一定量以上に遮集量を上げても簡易処理水が増え、かえって負荷削減率が低くなる。またろ過は短時間に大量の雨が降り流入水量および負荷が大きい場合に効果が低く、一定量以上は処理しきれずに未処理放流水として排出されることになる。   The increase in the amount of interception is effective to a certain extent, but even if the amount of interception is increased above a certain amount, the amount of simple treated water increases, and the load reduction rate decreases. Moreover, the filtration is less effective when a large amount of rain falls in a short time and the inflow water amount and load are large, and a certain amount or more cannot be treated and is discharged as untreated effluent water.

それに対し滞水池とろ過を組み合わせると、滞水地の容量を小さくする、滞水池で貯めきれなかった分をろ過により処理する、といった効果が期待できる(例えば、非特許文献3参照)。例えば、負荷の高い初期汚濁負荷(ファーストフラッシュ)は滞水池で貯留し、その後薄くなり降り続ける雨水はろ過により処理を行うという形で処理することができる。
国土交通省都市・地域整備局下水道部 財団法人下水道新技術推進機構、「合流式下水道の改善対策に関する調査報告書」第5部4章合流式下水道改善対策の検討、H14年3月、合流式下水道改善対策検討委員会報告、p.II121〜II180 下水道法(H15年9月改正公布)、第6条 「既存施設の活用による雨天時高速ろ過施設の導入について」第42回下水道研究発表会講演集、社団法人日本下水道協会、平成17年6月20日、p.393−395
On the other hand, combining a water reservoir and filtration can be expected to reduce the capacity of the water reservoir and to process the amount that could not be stored in the water reservoir by filtration (for example, see Non-Patent Document 3). For example, the initial pollutant load (first flush) with a high load can be stored in a catchment basin, and rainwater that continues to fall afterwards can be processed by filtration.
Ministry of Land, Infrastructure, Transport and Tourism, Urban and Regional Development Bureau, Sewerage New Technology Promotion Organization, “Survey Report on Improvement Measures for Combined Sewerage”, Part 5, Chapter 4, Review of Combined Sewerage Improvement Measures, March 2014, Merger Type Report of the Sewerage Improvement Measures Review Committee, p. II121-II180 Sewerage Law (provision promulgated in September 2015), Article 6 "Introduction of high-speed filtration facility in rainy weather by utilizing existing facilities" The 42nd Sewerage Research Presentation Lecture Meeting, Japan Sewerage Association, June 20, 2005, p.393-395

しかし、滞水池とろ過を組み合わせた場合でも、これまで考えられていた組み合わせ方は降雨開始から滞水池が満水になるまでは滞水池に流入水を入れ、滞水地が満水になったらろ過に切り替えるというものであった。そのため、滞水池が満水になった後ろ過速度を超える流入があった場合、ろ過速度を超えた流入水は全て未処理放流水として放流されることになる。   However, even when the pond and filtration are combined, the combination method that has been considered so far is to put inflow water into the basin from the start of rainfall until the basin is full, and to filter when the basin is full. It was to switch. Therefore, when there is an inflow exceeding the filtration rate after the pond is full, all the inflow water exceeding the filtration rate will be discharged as untreated effluent.

さらに、処理場やポンプ場に設置されている既存のポンプの多くは容量が大きくON−OFF運転で動くため、一度に大量の水を送りしばらく休止する場合が多い。そのため、これら既存のポンプを利用してろ過機に送水する場合、常時一定量ろ過するというろ過の機能が効率よく働かず、ポンプの稼動時間と送水量の影響を大きく受けながらろ過することになってしまう。結果、ろ過装置はポンプで送水されたときだけ動き、ポンプの送水量のうちろ過速度を超えて送られた水量は未処理放流水として放流されてしまうという問題があった。   Furthermore, since many existing pumps installed in treatment plants and pump stations have large capacities and operate by ON-OFF operation, they often send a large amount of water at a time and pause for a while. Therefore, when using these existing pumps to send water to the filter, the filtration function of always filtering a constant amount does not work efficiently, and filtration is performed while being greatly affected by the operation time of the pump and the amount of water supplied. End up. As a result, there was a problem that the filtration device moved only when the water was fed by the pump, and the amount of water sent exceeding the filtration rate out of the amount of water delivered by the pump was discharged as untreated discharged water.

逆に、ポンプの送水量に合わせたろ過装置をつくる場合には、ポンプが稼動する短時間に送られる大きな水量に合わせなければならず、規模の大きなろ過装置が必要となる。   On the other hand, when making a filtration device that matches the amount of water sent by the pump, it must be matched to the large amount of water that is sent in a short time during which the pump operates, and a large-scale filtration device is required.

ゆえに、滞水池とろ過の組み合わせにおいても互いの性能を効果的に発揮できないケースもあり、特に現在の未処理放流回数を半減することは難しかった。   Therefore, there are cases in which the performance of each other cannot be effectively exhibited even in the combination of a reservoir and filtration, and in particular, it has been difficult to halve the current number of untreated discharges.

本発明は、合流式下水道において雨天時の未処理放流回数を半減するとした場合においても滞水池をバッファタンクとして使用することで、滞水池に必要な容量を大きくすることなく、しかもろ過装置の処理能力も小さいもので済ませることができる処理方法を提供することを目的する。   The present invention uses the stagnation pond as a buffer tank even in the case where the number of untreated discharges in rainy weather is halved in the combined sewer, and does not increase the capacity required for the stagnation pond, and the processing of the filtration device An object of the present invention is to provide a processing method that can be completed with a small capacity.

本発明者らは、滞水池をバッファタンクとして使用し、バッファタンク及びろ過装置を効率的に組み合わせて利用し、雨天時の大量な流入下水をバッファタンクに貯留しながらその貯留水を連続的にろ過処理することにより上記問題を解決できるという事実を見出し、本発明に到達した。   The inventors of the present invention have used the reservoir basin as a buffer tank, and efficiently combined the buffer tank and the filtration device to continuously store the stored water while storing a large amount of inflow sewage in the rain in the buffer tank. The present inventors have found the fact that the above problem can be solved by filtration, and have reached the present invention.

すなわち、本発明は、合流式下水道において雨天時流入水のうち高級処理がなされない流入水をろ過処理した後に簡易処理水として放流する処理方法において、ろ過装置の前段に設けた滞水池をバッファタンクとして使用し、バッファタンクに該流入水を導入して貯留するとともに、並行してバッファタンク内の該流入水をろ過装置に導入してろ過処理を行うことを特徴とする雨天時流入水の処理方法を要旨とするものである。   That is, the present invention relates to a treatment method in which inflow water that is not subjected to high-level treatment among inflow water in the rain in a combined sewer system is filtered and discharged as simple treated water. Inflowing water in rainy weather, characterized in that the inflowing water is introduced into the buffer tank and stored, and in parallel, the inflowing water in the buffer tank is introduced into the filtration device and subjected to filtration The summary of the method is as follows.

本発明によれば、合流式下水道における雨天時の流入水を効率的にろ過処理し、未処理放流回数の半減に必要とされる滞水池の容量を半分以下にし、さらに元の容量の滞水池以上の未処理放流水削減効果を出すことが可能となる。   According to the present invention, the influent water in the rainwater in the combined sewer system is efficiently filtered, and the capacity of the basin required for halving the number of untreated discharges is reduced to less than half, and the basin with the original capacity is further reduced. The above-mentioned untreated discharged water reduction effect can be produced.

また、ろ過装置にバッファタンクを設けることにより流入下水の供給速度および水量がろ過装置の処理能力へ与える影響を小さくすることができ、例えば流入水がON−OFF運転で動く大容量ポンプでろ過装置へ供給される場合にもろ過装置の処理能力を従来必要とされるものより小さくすることが可能となる。   In addition, by providing a buffer tank in the filtration device, it is possible to reduce the influence of the supply rate and amount of incoming sewage on the processing capacity of the filtration device. For example, the filtration device is a large-capacity pump in which the incoming water moves by ON-OFF operation. Even when the filter is supplied to the filter, the processing capacity of the filtration device can be made smaller than that conventionally required.

また、滞水池をバッファタンクとして使用することで、滞水池内部の貯留水をろ過し続けて貯留水の後始末ができ、降雨終了後に一般処理系へ送る滞水池内部の貯留水を無くすことが可能となる。   In addition, by using the reservoir as a buffer tank, the stored water inside the reservoir can be continuously filtered to clean up the stored water. It becomes possible.

以下、本発明を詳細に説明する。図1および図2は、本発明の一実施例を示す処理フローの概略図である。図1において流入下水は沈砂池1に入り、沈砂池1からポンプ4によりバッファタンク2に送られ、バッファタンク2に貯留されると同時にポンプ5によりろ過装置3へ送られ、ろ過処理された後放流される。   Hereinafter, the present invention will be described in detail. 1 and 2 are schematic views of a processing flow showing an embodiment of the present invention. In FIG. 1, the inflow sewage enters the settling basin 1 and is sent from the settling basin 1 to the buffer tank 2 by the pump 4 and stored in the buffer tank 2, and at the same time sent to the filtration device 3 by the pump 5 and filtered. It is released.

また図2は、流入下水が沈砂池1に入り、ポンプ4でバッファタンク2へ送られる。ろ過池の上にバッファタンク2が設けられており、自然流下で水はろ過装置3へ流入し、ろ過処理された後放流される。   In FIG. 2, the inflowing sewage enters the sand basin 1 and is sent to the buffer tank 2 by the pump 4. A buffer tank 2 is provided on the filtration pond, and water flows into the filtration device 3 under natural flow, and is discharged after being filtered.

本発明で用いるバッファタンク2は、雨天時流入下水を一時貯留することができるものであれば特に限定されるものではなく、滞水池や雨水貯留管など、ろ過装置のバッファタンクとして利用することができるものであればよい。容量としては、50m3〜10,000m3が効果的ではあるが、降雨状況や下水の流入状況とろ過速度の間で緩衝能力を持てばよく、特に限定されるものではない。形状としては、矩形、円形、円柱形等が一般的に考えられるが、流入下水を一時貯留でき、降雨状況や下水の流入状況とろ過速度の間で緩衝能力を持てばよく、その形状は特に限定されるものではない。   The buffer tank 2 used in the present invention is not particularly limited as long as it can temporarily store the inflowing sewage during rainy weather, and can be used as a buffer tank of a filtration device such as a reservoir or a rainwater storage pipe. Anything is possible. As the capacity, 50 m3 to 10,000 m3 is effective, but it is not particularly limited as long as it has a buffer capacity between the rainfall condition and the inflow condition of sewage and the filtration speed. As the shape, rectangular, circular, cylindrical, etc. are generally considered, but it is only necessary to temporarily store inflow sewage and to have a buffering capacity between the rainfall situation and the inflow situation of sewage and the filtration speed. It is not limited.

また、沈砂池からバッファタンクへの導入、バッファタンクからろ過装置への導入における送水方法は自然流下によるもの、ポンプによるものなどが考えられるが、水を送ることができれば良く、特に限定されるものではない。バッファタンクへの下水の供給は沈砂池やポンプ場等に既設のポンプ、例えば雨天時汚水ポンプあるいは雨水ポンプ等を利用でき、バッファタンクへの流入速度は該既設ポンプの容量によることができる。また、バッファタンクからろ過装置への下水の供給速度は、設置場所の状況に合わせ、バッファタンクとろ過装置の組み合わせの中で、目標放流BOD濃度と越流回数半減をクリアできる最小コストとなるものから決定することができる。さらには、ライフサイクルコストが最小となる組み合わせから決定する。   In addition, the water feeding method in the introduction from the sand basin to the buffer tank and the introduction from the buffer tank to the filtration device may be by natural flow or by a pump. is not. The supply of sewage to the buffer tank can use an existing pump such as a sedimentation basin or a pump station, such as a sewage pump in rainy weather or a rainwater pump, and the inflow speed to the buffer tank can depend on the capacity of the existing pump. In addition, the sewage supply speed from the buffer tank to the filtration device is the minimum cost that can clear the target discharge BOD concentration and the overflow frequency by half in the combination of the buffer tank and the filtration device according to the situation of the installation location. Can be determined from Further, it is determined from the combination that minimizes the life cycle cost.

沈砂池、ろ過装置は従来からの様々な形式のものを使用することができ、特に限定されるものではない。   Various types of conventional sand basins and filtration devices can be used and are not particularly limited.

以下、本発明を実施例により具体的に説明する。
実施例1
下水処理場およびポンプ場において、雨天時の未処理放流回数72回/年、そのうち最悪の「雨天時処理水水質」であった降雨(降雨1とする)において流入原水水質は原水BOD濃度範囲25〜160mg/l、未処理放流水量116,760m3、処理水BOD濃度45.8mg/lであった処理区域での実施例を示す。ここで「雨天時処理水質」とは、処理場での高級処理水・降雨終了後の滞水池貯留水の処理水・ろ過処理水・未処理放流水の総負荷量を総水量で割ったものとした。本実施例の処理区域での分流並み処理水BOD濃度は38.5mg/lである。
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
In the sewage treatment plant and pumping station, the number of untreated discharges during rainy weather was 72 times / year, of which the worst "rainy water quality during rainy weather" was the worst rainwater quality (rainfall is 1). An example is shown in a treatment area in which the amount of untreated effluent water was 116,760 m3 and the concentration of treated water BOD was 45.8 mg / l. Here, “treatment quality during rainy weather” is the total load of the treated water, filtered treated water, untreated effluent water of high-quality treated water at the treatment plant, retained water after the end of rainfall, and untreated effluent. It was. The concentration of the BOD treated water BOD in the treatment area of this example is 38.5 mg / l.

図1に示した処理フローに従って実施した。雨天時に沈砂池1に流入した流入下水をポンプ4でバッファタンクとして使用する滞水池2に送り、貯留すると同時にポンプ5でろ過装置3に供給し、ろ過処理して放流した。バッファタンク2の容量8,500m3、ろ過装置3のろ過速度80m3/minとし、上記降雨1に本設備を適用した。本設備を適用した結果、未処理放流水は発生せず、滞水池内の貯留水はろ過により全量処理され、処理水BOD濃度は29.5mg/lであった。目標処理水BOD濃度40mg/l以下をクリアし、分流並み処理水BOD濃度38.5mg/lよりも低い値になった。   It implemented according to the processing flow shown in FIG. The inflowing sewage that flowed into the sand basin 1 during rainy weather was sent to the reservoir 2 used as a buffer tank by the pump 4 and stored. At the same time, the sewage was supplied to the filtration device 3 by the pump 5, filtered and discharged. The capacity of the buffer tank 2 was 8,500 m3 and the filtration speed of the filtration device 3 was 80 m3 / min. As a result of applying this facility, untreated effluent was not generated, the entire amount of the stored water in the reservoir was treated by filtration, and the treated water BOD concentration was 29.5 mg / l. The target treated water BOD concentration of 40 mg / l or less was cleared, and the value was lower than that of the separated-stream treated water BOD concentration of 38.5 mg / l.

また、本設備を適用した結果、未処理放流回数は33回/年まで削減され、年間全降雨において雨天時処理水BOD濃度は38.5mg/l以下であった。   In addition, as a result of applying this facility, the number of untreated discharges was reduced to 33 times / year, and the BOD concentration in rainy treated water was 38.5 mg / l or less in all annual rainfall.

比較例1
実施例1と同様の処理区に17,000m3の滞水池を設置した。沈砂池に流入した流入下水をポンプで滞水池へ送り、17,000m3までは滞水池に貯留し、17,000m3を越えた分は未処理放流水として放流した。滞水池内に貯留された貯留水は降雨終了後に下水処理場に送り通常処理された。
Comparative Example 1
In the same treatment area as in Example 1, a 17,000 m3 reservoir was installed. The inflow sewage that flowed into the sand basin was pumped to the spill pond, stored up to 17,000m3 in the spill pond, and the part exceeding 17,000m3 was discharged as untreated effluent. The stored water stored in the reservoir was sent to the sewage treatment plant for normal processing after the rain.

実施例1と同様に上記降雨1に本設備を適用した結果、未処理放流水量99,760.5m3、処理水BOD濃度は42.04mg/lとなった。   As a result of applying this facility to the rain 1 as in Example 1, the amount of untreated discharged water was 99,760.5 m3 and the BOD concentration of treated water was 42.04 mg / l.

また、本設備を適用した結果、未処理放流回数は38回/年となった。   As a result of applying this equipment, the number of untreated discharges was 38 times / year.

実施例1では、8,500m3の滞水池をバッファタンクとして利用し、流入下水をバッファタンクに貯留すると同時にろ過装置にも送水し、80m3/minでろ過処理することにより、未処理放流回数約半減の17,000m3の滞水池を設置した比較例1より年間の未処理放流回数削減量が多く、年間未処理放流回数を72回の半分の36回以下にすることができ、放流水質レベルでも良好に処理することができた。   In Example 1, an 8,500m3 reservoir is used as a buffer tank, and inflow sewage is stored in the buffer tank and simultaneously sent to the filtration device, and filtered at 80m3 / min. Compared with Comparative Example 1 where a 17,000m3 reservoir is installed, the annual number of untreated discharges can be reduced, and the number of untreated discharges can be reduced to 36 or less, half of 72 times a year. We were able to.

実施例2
実施例1と同様の処理区で図2に示した処理フローに従って実施した。雨天時に沈砂池1に流入した流入下水をポンプ4でバッファタンク2に送り自然流下でろ過装置3に供給し、ろ過処理して放流した。また、バッファタンクの容量を超えて流入した流入下水は未処理放流水として直接放流された。ポンプ4は沈砂池にあった既設のポンプを利用して送水量115m3/min、バッファタンク2の容量150m3、ろ過装置3のろ過速度35m3/minとし、上記降雨1に本設備を適用した。本設備を適用した結果、115m3/minの既設のポンプを利用してもバッファタンクを設けることによりろ過装置規模を35m3/minまで小さくすることができた。さらに処理水BOD濃度は38.3mg/lとなり、目標処理水BOD濃度40mg/l以下をクリアし、分流並み処理水BOD濃度38.5mg/lよりも低い値となった。
Example 2
In the same processing section as Example 1, it implemented according to the processing flow shown in FIG. The inflowing sewage that flowed into the sand basin 1 during rainy weather was sent to the buffer tank 2 by the pump 4 and supplied to the filtration device 3 under natural flow, filtered and discharged. Inflow sewage that flowed in beyond the capacity of the buffer tank was directly discharged as untreated effluent. The existing pump in the sand basin was used for the pump 4 with a water supply rate of 115 m3 / min, a capacity of the buffer tank 2 of 150 m3, and a filtration speed of the filtration device 3 of 35 m3 / min. As a result of applying this equipment, it was possible to reduce the scale of the filtration device to 35 m3 / min by providing a buffer tank even if an existing pump of 115 m3 / min was used. Furthermore, the treated water BOD concentration was 38.3 mg / l, which cleared the target treated water BOD concentration of 40 mg / l or less, and was a value lower than the shunted treated water BOD concentration of 38.5 mg / l.

比較例2
実施例1と同様の処理区で図3に示した処理フローに従って8,500m3の滞水池2と55m3/minのろ過装置で実施した。沈砂池に流入した流入下水をポンプ4で滞水池2へ送り、8,500m3までは滞水池2に貯留、8,500m3を越えた分はろ過装置へ送りろ過処理し、ろ過速度を越えて流入した分は未処理放流水として直接放流した。また、滞水池2内部に貯留された貯留水は降雨終了後に下水処理場に送り通常処理された。本設備を適用した結果、処理水水質は38.5mg/lであった。
Comparative Example 2
In the same treatment section as in Example 1, the process was carried out with the 8,500 m3 reservoir 2 and the 55 m3 / min filtration device according to the process flow shown in FIG. The inflow sewage that has flowed into the sand basin is sent to the lagoon 2 by the pump 4 and is stored in the lagoon 2 up to 8,500m3. Was discharged directly as untreated discharge water. In addition, the stored water stored in the reservoir 2 was sent to a sewage treatment plant for normal processing after the end of rainfall. As a result of applying this equipment, the quality of treated water was 38.5mg / l.

実施例2では、バッファタンクを設けることにより沈砂池に既設の115m3/minの容量の大きいポンプをそのまま利用することができ、また、ろ過装置の規模を比較例2の55m3/minと比べ35m3/minまで小さくすることができた。また、滞水池をバッファタンクとして使用することで、滞水池規模も比較例2の8500m3に比べ150m3まで小さくすることができた。さらに、処理水水質も分流並みの38.5mg/l以下となる、良好な結果が得られた。   In Example 2, by providing a buffer tank, the existing large pump of 115 m3 / min in the sand basin can be used as it is, and the scale of the filtration device is 35 m3 / min compared with 55 m3 / min in Comparative Example 2. We were able to reduce it to min. Moreover, by using the stagnation pond as a buffer tank, the scale of the stagnation pond could be reduced to 150 m3 compared to 8500 m3 in Comparative Example 2. Furthermore, the quality of the treated water was 38.5 mg / l or less, which was the same as that of the diversion, and good results were obtained.

本発明の合流式下水道における流入下水のろ過を用いた処理方法の一実施例を示す処理フローの概略図である。It is the schematic of the processing flow which shows one Example of the processing method using the filtration of the inflow sewage in the combined sewer of this invention. 本発明の合流式下水道における流入下水のろ過を用いた処理方法の他の実施例を示す処理フローの概略図である。It is the schematic of the processing flow which shows the other Example of the processing method using the filtration of the inflow sewage in the combined sewer of this invention. 本発明の合流式下水道における流入下水のろ過を用いた処理方法に関して、比較例2で挙げた従来の処理方法の一例を示す処理フロー図である。It is a processing flow figure showing an example of the conventional processing method given in comparative example 2 about the processing method using filtration of inflow sewage in the combined sewer of the present invention.

符号の説明Explanation of symbols

1 沈砂池
2 滞水池もしくはバッファタンク
3 ろ過装置
4 ポンプ
5 ポンプ
1 Sedimentation basin 2 Reservoir pond or buffer tank 3 Filtration device 4 Pump 5 Pump

Claims (1)

合流式下水道において雨天時流入水のうち高級処理がなされない流入水をろ過処理した後に簡易処理水として放流する処理方法において、ろ過装置の前段に設けた滞水池をバッファタンクとして使用し、バッファタンクに該流入水を導入して貯留するとともに、並行してバッファタンク内の該流入水をろ過装置に導入してろ過処理を行うことを特徴とする雨天時流入水の処理方法。
In the combined sewer system, the inflowing water that is not treated in high-quality in the rainy weather is filtered and discharged as simple treated water, and the buffer pond provided in the previous stage of the filtration device is used as the buffer tank. A method for treating rainwater inflowing water, wherein the inflowing water is introduced into and stored in the buffer tank, and the inflowing water in the buffer tank is introduced into a filtration device in parallel.
JP2007281811A 2007-10-30 2007-10-30 Method of treating inflow water in rainy weather Pending JP2009108590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007281811A JP2009108590A (en) 2007-10-30 2007-10-30 Method of treating inflow water in rainy weather

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007281811A JP2009108590A (en) 2007-10-30 2007-10-30 Method of treating inflow water in rainy weather

Publications (1)

Publication Number Publication Date
JP2009108590A true JP2009108590A (en) 2009-05-21

Family

ID=40777357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007281811A Pending JP2009108590A (en) 2007-10-30 2007-10-30 Method of treating inflow water in rainy weather

Country Status (1)

Country Link
JP (1) JP2009108590A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034827A1 (en) * 2012-08-31 2014-03-06 東レ株式会社 Fresh water generation method
JP2018110592A (en) * 2014-07-22 2018-07-19 株式会社日立ハイテクノロジーズ Cell dispersion device and automatic subculture system using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034827A1 (en) * 2012-08-31 2014-03-06 東レ株式会社 Fresh water generation method
JPWO2014034827A1 (en) * 2012-08-31 2016-08-08 東レ株式会社 Fresh water generation method
JP2018110592A (en) * 2014-07-22 2018-07-19 株式会社日立ハイテクノロジーズ Cell dispersion device and automatic subculture system using the same

Similar Documents

Publication Publication Date Title
KR101614687B1 (en) W-type screen device installed in rainwater purifying equipment
Ródenas et al. The River Segura: reclaimed water, recovered river
KR101736743B1 (en) Automatic backwashing system for non-point pollution abatement facilities with automatic backwash and stagnation water treatment
US10730760B2 (en) Natural pipeline water conveyance system and method
CN105254065A (en) Multi-path low-energy-consumption recycling system for steel wastewater
KR101272619B1 (en) Apparatus for rainwater treatment
CN104193095A (en) Sectional-type comprehensive treatment method for urban river course sewage
Hsu et al. Reclamation of car washing wastewater by a hybrid system combining bio-carriers and non-woven membranes filtration
JP2009108590A (en) Method of treating inflow water in rainy weather
KR20150049738A (en) Water-quality management system and water-quality management method for retarding basin
CN208280275U (en) A kind of road rain water shunting processing system
KR101795144B1 (en) A system, installed in the terrace land on the river, for treating first flush of stormwater to improve water quality
CN102583599B (en) Sewage treatment system
KR101140722B1 (en) Heavy water reusing device external recycling membrane using rainwater
JP2005218991A (en) Filtration treatment method in combined sewer system
CN107265615A (en) One kind interflow, mixed flow rain sewage water treatment method and system
JP2008000705A (en) Sewage treatment apparatus of satellite treatment plant
KR101431649B1 (en) Apparatus for treating simultaneously wastewater and first flush and method thereof
CN102951775B (en) Integral sewage treatment method and device thereof
Lee et al. Prevention of water pollution through combined sewer overflow using high-speed biofiltration in urban watershed
KR101737211B1 (en) A tubular underground storage for treating first flush of stormwater to improve water quality
CN204058131U (en) A kind of concrete-agitating system wastewater treatment equipment
KR101644966B1 (en) Controlling System and method for versatile ecological water storage and linked treatment system
RU2608225C2 (en) Method of centralized water supply with creation of artificial water circulation system in regions with arid climate
CN202529950U (en) Rainwater filtering system