JP2009108374A - Method for producing noble metal particulate, photocatalyst used for the method and method for recovering noble metal from waste - Google Patents

Method for producing noble metal particulate, photocatalyst used for the method and method for recovering noble metal from waste Download PDF

Info

Publication number
JP2009108374A
JP2009108374A JP2007282447A JP2007282447A JP2009108374A JP 2009108374 A JP2009108374 A JP 2009108374A JP 2007282447 A JP2007282447 A JP 2007282447A JP 2007282447 A JP2007282447 A JP 2007282447A JP 2009108374 A JP2009108374 A JP 2009108374A
Authority
JP
Japan
Prior art keywords
noble metal
fine particles
acid
organic solvent
metal fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007282447A
Other languages
Japanese (ja)
Other versions
JP5128238B2 (en
Inventor
Tetsuya Kida
徹也 木田
Kazuhiko Jinnai
和彦 陣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga University NUC
Patent Technology Development Inc
Original Assignee
Saga University NUC
Patent Technology Development Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga University NUC, Patent Technology Development Inc filed Critical Saga University NUC
Priority to JP2007282447A priority Critical patent/JP5128238B2/en
Publication of JP2009108374A publication Critical patent/JP2009108374A/en
Application granted granted Critical
Publication of JP5128238B2 publication Critical patent/JP5128238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Catalysts (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a noble metal particulate by which separation and recovery of the noble metal particulate can be efficiently performed by a simple operation without requiring an expensive reducing agent compared with the conventional method for producing a noble metal particulate. <P>SOLUTION: A aqueous solution containing noble metal ions is mixed with a water immiscible organic solvent containing an amphiphilic photocatalyst composed of a composite body of a polyoxo acid and a cationic surfactant, and the mixture is irradiated with light, thus, a noble metal particulate is precipitated on the boundary between the water and organic solvent into a sheet shape, so that the noble metal particulate can be produced. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光触媒を用いた光反応による貴金属微粒子の製造方法、その方法に用いられる光触媒及びその方法を利用して廃棄物から貴金属を回収する方法に関するものである。   The present invention relates to a method for producing noble metal fine particles by photoreaction using a photocatalyst, a photocatalyst used in the method, and a method for recovering noble metal from waste using the method.

金、白金、銀、パラジウムなどの貴金属は、電子デバイスの電極材料、プリント配線材料や、導電性フィラー、触媒材料、各種センサー部材などとして広く用いられていることから、加工しやすい微粒子状又は薄膜状で得るための製造方法が種々提案されている。   Precious metals such as gold, platinum, silver and palladium are widely used as electrode materials for electronic devices, printed wiring materials, conductive fillers, catalyst materials, various sensor members, etc. Various manufacturing methods have been proposed for obtaining the product.

例えば、微粒子状で得る方法としては、有機溶媒中に金含有化合物を溶解させ、これにロジンを添加し、加熱することにより単分散した金微粒子を得る方法(特許文献1参照)、銀−パラジウムコロイドを結晶核として微小な板状結晶を形成させる方法(特許文献2参照)、塩化金酸水溶液に水素化ホウ素ナトリウム溶液を添加したのち、水と相溶しない有機溶媒中に分散させた1‐オクタンチオールヘキサン溶液を添加し、かきまぜることにより金微粒子を形成させる方法(特許文献3参照)、塩化金酸水溶液にトルエンと界面活性剤を加えてかきまぜ、塩化金酸をトルエン中に抽出し、水素化ホウ素ナトリウム溶液を加えて固形分を析出させ、これを加熱処理したのち、トルエンに再溶解し、全微粒子を沈殿させる方法(特許文献4参照)、金イオン溶液に還元剤溶液を混合して金微粒子を製造する際に、アルカリ域で作用する還元剤溶液と金イオン溶液とを、あらかじめ混合した後に、この混合溶液にアルカリ溶液を混合して金イオンを還元して平均粒子径3nm以下の金微粒子を製造する方法(特許文献5参照)、高分子化合物、還元剤及び銀塩を溶解した溶液を、25℃以上、60℃以下の温度でかきまぜることにより銀微粒子を製造する方法(特許文献6参照)などが、これまでに提案されている。   For example, as a method for obtaining fine particles, a method of obtaining monodispersed gold fine particles by dissolving a gold-containing compound in an organic solvent, adding rosin thereto, and heating (see Patent Document 1), silver-palladium A method of forming a fine plate-like crystal using a colloid as a crystal nucleus (see Patent Document 2). After adding a sodium borohydride solution to a chloroauric acid aqueous solution, it is dispersed in an organic solvent incompatible with water. A method of forming gold fine particles by adding an octanethiol hexane solution and stirring (see Patent Document 3), adding toluene and a surfactant to a chloroauric acid aqueous solution, stirring, extracting chloroauric acid into toluene, and hydrogen A method in which a sodium borohydride solution is added to precipitate a solid, which is heat-treated, and then redissolved in toluene to precipitate all fine particles (see Patent Document 4) When the gold ion solution is mixed with the reducing agent solution to produce the gold fine particles, the reducing agent solution acting in the alkaline region and the gold ion solution are mixed in advance, and the mixed solution is then mixed with the alkaline solution. A method for producing gold fine particles having an average particle diameter of 3 nm or less by reducing gold ions (see Patent Document 5), a solution in which a polymer compound, a reducing agent and a silver salt are dissolved, at a temperature of 25 ° C. or more and 60 ° C. or less. A method for producing silver fine particles by stirring (see Patent Document 6) has been proposed so far.

また、貴金属薄膜を得る方法としては、貴金属の電解質溶液とその電解質溶液よりも比重の大きい非電解質の有機液体によって形成した2液相界面にカソードを設置して電解を行い、このカソード先端に析出し、成長した貴金属薄膜とアノードとの距離を制御して貴金属薄膜を連続的に析出させる方法(特許文献7参照)、貴金属塩水溶液の液面を有機液体で覆い、この2液相界面にカソードを静置して電解を行い、このカソード先端に析出し成長する貴金属薄膜とアノードとの距離を制御して貴金属の薄膜を連続的に析出させる方法(特許文献8参照)などが、これまでに提案されている。   As a method for obtaining a noble metal thin film, electrolysis is performed by installing a cathode at a two-liquid phase interface formed by a noble metal electrolyte solution and a non-electrolyte organic liquid having a specific gravity larger than that of the electrolyte solution, and is deposited on the tip of the cathode. Then, a method of continuously depositing the noble metal thin film by controlling the distance between the grown noble metal thin film and the anode (see Patent Document 7), the liquid surface of the noble metal salt aqueous solution is covered with an organic liquid, and the cathode is formed at the two liquid phase interface. The method of depositing a noble metal thin film continuously by controlling the distance between the anode and the noble metal thin film that deposits and grows on the tip of the cathode (see Patent Document 8), etc. Proposed.

そのほか、金ナノプレートの製造方法としては、直鎖状ポリエチレンイミン骨格を有する親水性ポリマーを溶媒に溶解し、水を加えて析出させ、直鎖状ポリエチレンイミン骨格を有する親水性ポリマーのヒドロゲルを形成させ、このヒドロゲルと塩化金イオンとを混合して金をプレート状とする金ナノプレートの製造方法(特許文献9参照)、HAuCl4・3H2O水溶液をかきまぜながら加熱する工程、このHAuCl4・3H2O水溶液に分散安定剤を添加する工程、次いでこの分散安定剤を添加した水溶液に還元剤を添加する工程、この混合物を加熱、次いで冷却して金ナノプレートを形成させる工程からなる金ナノプレートの製造方法(特許文献10参照)などが知られている。 In addition, as a method for producing gold nanoplates, a hydrophilic polymer having a linear polyethyleneimine skeleton is dissolved in a solvent and precipitated by adding water to form a hydrogel of the hydrophilic polymer having a linear polyethyleneimine skeleton. A method of producing a gold nanoplate in which the hydrogel and gold chloride ions are mixed to form a gold plate (see Patent Document 9), a step of heating a HAuCl 4 .3H 2 O aqueous solution while stirring, the HAuCl 4. A step of adding a dispersion stabilizer to a 3H 2 O aqueous solution, a step of adding a reducing agent to the aqueous solution to which the dispersion stabilizer has been added, and a step of heating and then cooling the mixture to form a gold nanoplate. A plate manufacturing method (see Patent Document 10) is known.

このように、従来、貴金属微粒子は、貴金属イオンを含む水溶液に還元剤を添加して貴金属イオンを還元する液相還元法か、電解質溶液と非電解質溶液との界面で電気分解を行い、カソードの先端に貴金属薄膜を析出させる電解法により主として製造されている。
しかしながら、上記の液相還元法は、高価な還元剤を用いなければならない上に、還元剤の濃度や貴金属微粒子の粒径を制御するために保護剤の添加が不可欠であるし、製造条件の制御がむずかしいという欠点がある。
Thus, conventionally, noble metal fine particles are electrolyzed at the interface between the electrolyte solution and the non-electrolyte solution by adding a reducing agent to an aqueous solution containing noble metal ions to reduce the noble metal ions, or by performing electrolysis at the cathode. It is mainly manufactured by an electrolytic method in which a noble metal thin film is deposited at the tip.
However, in the above liquid phase reduction method, an expensive reducing agent must be used, and addition of a protective agent is indispensable for controlling the concentration of the reducing agent and the particle diameter of the noble metal fine particles. There is a drawback that it is difficult to control.

このような液相還元法のもつ欠点を改善する方法として、酸化チタンを光触媒として用い、光照射により光触媒上に発生する励起電子によって貴金属イオンを還元して貴金属微粒子を製造する方法が提案されている(非特許文献1参照)。
この方法は、イオン化傾向が低い金属が優先的に還元されるため、カドミニウムやニッケルのようなイオン化傾向の高い金属が共存しても析出しにくいという利点や、ppmオーダーの微量な貴金属イオンも回収できるという利点を有するが、酸化チタンのような不均一系の触媒では、貴金属が触媒表面に析出するため、反応が進行するに従って、活性点が減少し、繰り返し使用が不可能になるという欠点がある。
As a method for improving the disadvantages of such a liquid phase reduction method, a method has been proposed in which titanium oxide is used as a photocatalyst and noble metal ions are reduced by excited electrons generated on the photocatalyst by light irradiation to produce noble metal fine particles. (See Non-Patent Document 1).
This method preferentially reduces metals that have a low tendency to ionize, so that even if metals with a high tendency to ionize such as cadmium and nickel coexist, it also collects precious metal ions in the order of ppm. However, in the case of a heterogeneous catalyst such as titanium oxide, the noble metal precipitates on the surface of the catalyst, so that the active site decreases as the reaction proceeds, and the repeated use becomes impossible. is there.

このような欠点を克服するために均一系の光触媒としてポリオキソ酸イオンを用いて、貴金属イオンを還元して貴金属微粒子を製造する方法が提案されたが(非特許文献2、3参照)、この方法では、ポリオキソ酸触媒を水溶液として使用するので、使用済みの後で原料の貴金属イオン含有水溶液に再度使用すると、前回で生じた副生物や不純物が混入し、汚染されるのを免れない。   In order to overcome such drawbacks, there has been proposed a method for producing noble metal fine particles by reducing noble metal ions using polyoxoacid ions as a homogeneous photocatalyst (see Non-Patent Documents 2 and 3). Then, since the polyoxo acid catalyst is used as an aqueous solution, if it is used again as a raw material containing noble metal ions after being used, it is inevitable that by-products and impurities generated in the previous time will be mixed and contaminated.

一方、貴金属については、近年需要の増加とともに採掘量が増大し、もともと埋蔵量の少ない天然資源として、その枯渇が懸念されるため、廃棄物や廃液から回収する技術が注目されている。
例えば、廃液からの回収方法としては、電解法やキレート系イオン交換樹脂を用いる吸着法などが以前から知られており、最近では、酸性溶液中に溶存する白金族金属イオンを、トリエチルアミンのようなアミノ化合物やこのアミノ化合物とケイモリブデン酸のようなヘテロポリ酸からなる沈殿剤を用いて選択的に回収する方法(特許文献11参照)が提案されている。
On the other hand, with regard to precious metals, the mining volume has increased in recent years as demand has increased, and since there is a concern about the depletion of natural resources that are originally low in reserves, techniques for recovering from waste and waste liquid have attracted attention.
For example, as a method for recovering from a waste liquid, an electrolytic method or an adsorption method using a chelate ion exchange resin has been known for some time, and recently, a platinum group metal ion dissolved in an acidic solution is converted to a triethylamine or the like. A method of selectively recovering using an amino compound or a precipitating agent composed of this amino compound and a heteropolyacid such as silicomolybdic acid has been proposed (see Patent Document 11).

しかしながら、これまで知られている貴金属微粒子の製造方法及び回収方法では、いずれも貴金属微粒子が媒質中に分散状態で生成されるため、それを分離、回収するために煩雑な操作を行わなければならず、実用化しうる方法としては、不適当であり、より効率的な貴金属微粒子の製造方法が望まれていた。   However, in all known methods for producing and collecting noble metal fine particles, noble metal fine particles are produced in a dispersed state in a medium, and therefore, complicated operations must be performed to separate and collect them. However, it is inappropriate as a method that can be put into practical use, and a more efficient method for producing noble metal fine particles has been desired.

特開平5−117726号公報(特許請求の範囲その他)JP-A-5-117726 (Claims and others) 特開平11−106806号公報(特許請求の範囲その他)JP-A-11-106806 (Claims and others) 特開2003−193118号公報(特許請求の範囲その他)JP 2003-193118 A (Claims and others) 特開2003−49205号公報(特許請求の範囲その他)JP 2003-49205 A (Claims and others) 特開2006−152438号公報(特許請求の範囲その他)JP 2006-152438 A (Claims and others) 特開2005−105376号公報(特許請求の範囲その他)JP 2005-105376 A (Claims and others) 特開平5−339780号公報(特許請求の範囲その他)JP-A-5-339780 (Claims and others) 特開平6−158379号公報(特許請求の範囲その他)JP-A-6-158379 (Claims and others) 特開2006−233290号公報(特許請求の範囲その他)JP 2006-233290 A (Claims and others) 特開2006−37221号公報(特許請求の範囲その他)JP 2006-37221 A (Claims and others) 特開2005−194546号公報(特許請求の範囲その他)JP 2005-194546 A (Claims and others) 「エンバイロンメンタル サイエンス アンド テクノロジー(Environmental Science and Technology)」、1993年、第27巻、p.1776−1782“Environmental Science and Technology”, 1993, Vol. 27, p. 1776-1782 「アンゲバンテ ケミ インターナショナル エディション(Angewandte Chemi International Edition)」、2002年、第41巻,p.1911−1914“Angevante Chemi International Edition”, 2002, vol. 41, p. 1911-1914 「ニュー ジャーナル オブ ケミストリー(New Journal of Chemistry)」、2001年、第25巻、p.361−363“New Journal of Chemistry”, 2001, Vol. 25, p. 361-363

本発明は、従来の貴金属微粒子の製造方法に比べ、より簡単な操作で、高価な還元剤を必要とせず、しかも効率よく分離、回収しうる貴金属微粒子の製造方法及びその方法に用いる新規な光触媒を提供することを目的としてなされたものである。   The present invention relates to a method for producing noble metal fine particles that can be separated and recovered efficiently and more easily by a simpler operation than conventional methods for producing noble metal fine particles, and a novel photocatalyst used in the method. It was made for the purpose of providing.

本発明者らは、貴金属微粒子を効率よく製造する方法を開発するために鋭意研究を重ねた結果、媒質として水と有機溶媒の2種を用いるとともに、光触媒としてポリオキソ酸とカチオン性界面活性剤との複合体からなる両親媒性のものを用いて、貴金属イオンを光還元させることにより、水と有機溶媒との界面に貴金属微粒子がシート状で形成されること及びこれを利用すれば、廃棄物中の貴金属微粒子を効率よく回収しうることを見出し、この知見に基づいて本発明をなすに至った。   As a result of intensive research to develop a method for efficiently producing noble metal fine particles, the present inventors have used two types of water and an organic solvent as a medium, a polyoxoacid and a cationic surfactant as a photocatalyst. By using an amphiphilic material composed of a composite of the above, photoreduction of noble metal ions, noble metal fine particles are formed in the form of a sheet at the interface between water and an organic solvent, and if this is utilized, waste It has been found that the precious metal fine particles therein can be efficiently recovered, and the present invention has been made based on this finding.

すなわち、本発明は、貴金属イオンを含む水溶液と、ポリオキソ酸とカチオン性界面活性剤との複合体からなる両親媒性光触媒を含む水不混和性有機溶媒とを混合し、光照射することによって水と有機溶媒との界面に貴金属微粒子をシート状に析出させることを特徴とする貴金属微粒子の製造方法、ポリオキソ酸とカチオン性界面活性剤との複合体からなる光触媒、及び貴金属を含む産業廃棄物から貴金属を溶出して貴金属イオンを含む水溶液を調製し、これに電子供与性試薬を添加したのち、ポリオキソ酸とカチオン性界面活性剤との複合体からなる両親媒性光触媒の水不混和性有機溶媒溶液と混合し、光照射したのち、水と有機溶媒との界面にシート状に析出した貴金属微粒子を分離回収することを特徴とする廃棄物からの貴金属の回収方法を提供するものである。   That is, the present invention mixes an aqueous solution containing noble metal ions with a water-immiscible organic solvent containing an amphiphilic photocatalyst composed of a complex of a polyoxoacid and a cationic surfactant, and irradiates with water. From a noble metal fine particle production method characterized by precipitating noble metal fine particles in the form of a sheet at the interface between an organic solvent and an organic solvent, a photocatalyst comprising a complex of a polyoxoacid and a cationic surfactant, and industrial waste containing noble metals A water-immiscible organic solvent of an amphiphilic photocatalyst consisting of a complex of polyoxoacid and cationic surfactant after eluting the noble metal to prepare an aqueous solution containing noble metal ions and adding an electron donating reagent thereto Recovery of precious metal from waste characterized by separating and recovering precious metal fine particles deposited in a sheet form at the interface between water and an organic solvent after mixing with a solution and irradiating light It is intended to provide the law.

本発明方法においては、アニオン性のポリオキソ酸とカチオン性界面活性剤とを複合化させて得られる両親媒性の新規な光触媒が用いられるが、これは水に不溶で有機溶媒に可溶なため、これを水不混和性有機溶媒に溶解して使用すると、親水性の大きいポリオキソ酸イオンが水相と有機溶媒相との界面に集合する。
したがって、この状態で、紫外線照射すると、貴金属イオンを含む水溶液と、触媒を含む有機溶媒との界面で貴金属イオンが還元して貴金属微粒子がシート状で析出する。
In the method of the present invention, a novel amphiphilic photocatalyst obtained by complexing an anionic polyoxoacid and a cationic surfactant is used, but this is insoluble in water and soluble in an organic solvent. When this is dissolved in a water-immiscible organic solvent and used, polyoxoacid ions having high hydrophilicity gather at the interface between the aqueous phase and the organic solvent phase.
Accordingly, when ultraviolet rays are irradiated in this state, the noble metal ions are reduced at the interface between the aqueous solution containing the noble metal ions and the organic solvent containing the catalyst, and the noble metal fine particles are deposited in a sheet form.

次に添付図面に従って、本発明を詳細に説明する。図1は本発明方法における反応機構を説明するための模式図であり、ビーカー1の中に、貴金属イオンM+を含む水3及びポリオキソ酸とカチオン性界面活性剤複合体からなる光触媒5を含む有機溶媒4を装入する。このような状態の下で紫外線ランプ2から紫外線を照射すると、界面に存在する両親媒性の光触媒5により、貴金属イオンが還元され、界面に貴金属微粒子がシート状に析出する。 Next, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic diagram for explaining a reaction mechanism in the method of the present invention. A beaker 1 includes water 3 containing a noble metal ion M + and a photocatalyst 5 composed of a polyoxoacid and a cationic surfactant complex. An organic solvent 4 is charged. When ultraviolet rays are irradiated from the ultraviolet lamp 2 in such a state, the noble metal ions are reduced by the amphiphilic photocatalyst 5 present at the interface, and the noble metal fine particles are deposited in the form of a sheet at the interface.

したがって、この貴金属微粒子のシートを、分離し、乾燥することにより、容易に貴金属微粒子を回収することができる。
また、貴金属微粒子を回収したのちの液体相は、水相と有機溶媒相との2相からなっているが、使用後の触媒は有機溶媒相中に溶解して残るので、有機溶媒相を水相から分離することにより、繰り返し使用することができる。
Therefore, the noble metal fine particles can be easily recovered by separating and drying the noble metal fine particle sheet.
The liquid phase after collecting the noble metal fine particles consists of two phases, an aqueous phase and an organic solvent phase, but the used catalyst remains dissolved in the organic solvent phase. By separating from the phase, it can be used repeatedly.

このように、従来のポリオキソ酸を触媒として用いる方法においては、前述したように、これを繰り返し利用することは困難であったが、本発明方法においては、ポリオキソ酸をカチオン性界面活性剤と複合化することによって、有機溶媒に可溶とし、原料を含む水相から容易に分離しうるので、触媒を繰り返し使用することができるようになった。
また、上記のようにして得られるシート状の貴金属微粒子は、シート状のままで、あるいは所望に応じ粉砕して粉末状として使用に供される。
Thus, in the conventional method using polyoxoacid as a catalyst, as described above, it was difficult to repeatedly use this, but in the method of the present invention, polyoxoacid was combined with a cationic surfactant. As a result, the catalyst can be used repeatedly because it is soluble in an organic solvent and can be easily separated from the aqueous phase containing the raw material.
Further, the sheet-like noble metal fine particles obtained as described above are used in the form of a powder in the form of a sheet or after being pulverized as desired.

本発明の光触媒を構成する一方の成分のポリオキソ酸としては、例えばポリタングステン酸、ポリモリブデン酸、ポリバナジウム酸のようなイソポリオキソ酸や、タングストケイ酸、タングストリン酸、モリブドケイ酸、モリブドリン酸、バナドリン酸、バナドケイ酸のようなヘテロポリ酸が用いられる。これらは、水溶性塩例えばナトリウム塩、カリウム塩、アンモニウム塩などとして用いられる。   Examples of the polyoxoacid constituting the photocatalyst of the present invention include isopolyoxoacids such as polytungstic acid, polymolybdic acid, and polyvanadate, tungstosilicic acid, tungstophosphoric acid, molybdosilicic acid, molybdophosphoric acid, and vanadolinic acid. , Heteropolyacids such as vanadosilicate are used. These are used as water-soluble salts such as sodium salts, potassium salts, ammonium salts and the like.

また、もう一方の成分であるカチオン性界面活性剤としては、例えば親水部が第四級アンモニウムイオン、イミダゾリウムイオン、ピリジニウムイオン、キノリニウムイオン、イソキノリミウムイオンなどのカチオンで構成され、疎水部が炭素数10〜20の長鎖アルキル基、例えばデシル基、セチル基、オクダデシル基、パルミチル基、オレイル基など又はベンジル基で構成されているものを挙げることができるが、ジメチルジオクタデシルアンモニウムクロリド、セチルトリメチルアンモニウムブロミド、ステアリルトリメチルアンモニウムクロリド、セチルジメチルエチルアンモニウムブロミド、オクタデシルジメチルエチルアンモニウムブロミド、メチルドデシルベンジルトリメチルアンモニウムクロリド、ドデシルピリジニウムブロミド、セチルピリジニウムクロリド、オクタデシルピリジニウムブロミド、2‐ドデシルイソキノリニウムブロミドなどが好ましい。   As the other component, the cationic surfactant, for example, the hydrophilic portion is composed of a cation such as a quaternary ammonium ion, an imidazolium ion, a pyridinium ion, a quinolinium ion, or an isoquinolinium ion, and is hydrophobic. Examples thereof include a long chain alkyl group having 10 to 20 carbon atoms, for example, a decyl group, a cetyl group, an okdadecyl group, a palmityl group, an oleyl group, or a benzyl group, but dimethyldioctadecyl ammonium chloride. Cetyltrimethylammonium bromide, stearyltrimethylammonium chloride, cetyldimethylethylammonium bromide, octadecyldimethylethylammonium bromide, methyldodecylbenzyltrimethylammonium chloride, dodecylpyridinium bromide Bromide, cetyl pyridinium chloride, octadecyl pyridinium bromide, 2-dodecyl isoquinolinium bromide is preferred.

ポリオキソ酸とカチオン性界面活性剤との複合体は、それぞれを溶解させた水溶液同士を混合することにより、容易に製造することができる。この場合の混合比は、それぞれの電荷に応じたモル比で選ばれる。例えば、四価のポリオキソ酸と、一価のカチオン性界面活性剤イオンを反応させて複合体を製造する場合には、1:4のモル比が選ばれる。この反応により沈殿が生成するので、これをろ別し、十分に水洗したのち、乾燥して使用する。   A complex of a polyoxo acid and a cationic surfactant can be easily produced by mixing aqueous solutions in which each is dissolved. The mixing ratio in this case is selected at a molar ratio corresponding to each charge. For example, when a complex is produced by reacting a tetravalent polyoxoacid with a monovalent cationic surfactant ion, a molar ratio of 1: 4 is selected. Since a precipitate is formed by this reaction, this is filtered off, washed thoroughly with water, and dried before use.

次に、このようにして得た光触媒は、水不混和性有機溶媒に溶解して用いられる。この有機溶媒としては、例えばクロロホルム、四塩化炭素、ベンゼン、エチルベンゼン、トルエン、キシレン、n‐ヘキサン、n‐ペンタン、n‐ヘプタン、シクロヘキサン、メチルイソブチルケトンなどが用いられる。この際、有機溶媒と水との比重差により貴金属シートの生成状態が異なってくる。例えば水よりも比重の大きいクロロホルムを使用して反応させれば、有機溶媒相の上面の水相に貴金属シートが生成するし、水より比重の小さいn‐へキサンを使用して反応させれば、有機溶媒相の下面の水相に貴金属シートが生成する。   Next, the photocatalyst thus obtained is used after being dissolved in a water-immiscible organic solvent. As this organic solvent, for example, chloroform, carbon tetrachloride, benzene, ethylbenzene, toluene, xylene, n-hexane, n-pentane, n-heptane, cyclohexane, methyl isobutyl ketone and the like are used. At this time, the generation state of the noble metal sheet varies depending on the specific gravity difference between the organic solvent and water. For example, if the reaction is performed using chloroform having a specific gravity greater than that of water, a noble metal sheet is generated in the aqueous phase on the upper surface of the organic solvent phase, and if the reaction is performed using n-hexane having a specific gravity smaller than that of water. A noble metal sheet is formed in the aqueous phase under the organic solvent phase.

次に、貴金属イオンの供給源としては、貴金属の塩化物、硫酸塩、硝酸塩などが用いられる。この際の濃度としては、1〜100mM、好ましくは5〜50mMの範囲が選ばれるが、さらに低濃度の水溶液を用いることができる。この場合の水素イオン濃度としてはpH3〜9が好ましい。これよりも高いpHではポリオキソ酸が不安定になるし、またこれよりも低いpHでは、生成する貴金属微粒子が再溶解するおそれがある。   Next, a noble metal chloride, sulfate, nitrate, or the like is used as a source of noble metal ions. As the concentration at this time, a range of 1 to 100 mM, preferably 5 to 50 mM is selected, but a lower concentration aqueous solution can be used. The hydrogen ion concentration in this case is preferably pH 3-9. If the pH is higher than this, the polyoxoacid becomes unstable, and if the pH is lower than this, the produced noble metal fine particles may be redissolved.

一般に、光触媒によって還元反応を行わせる場合には、それに対応する酸化反応が必要となるため、電子供与性の試薬すなわち電子ドナーを加える必要があるが、本発明方法においては、有機溶媒が電子ドナーとしての役割を果すので、特に電子ドナーを添加しなくても貴金属微粒子を得ることができる。   In general, when a reduction reaction is performed using a photocatalyst, an oxidation reaction corresponding to the reduction reaction is required. Therefore, it is necessary to add an electron-donating reagent, that is, an electron donor. In the method of the present invention, an organic solvent is an electron donor. Therefore, noble metal fine particles can be obtained without adding an electron donor.

しかしながら、電子ドナーを添加することにより、ポリオキソ酸イオンの光還元速度が大きく向上し、貴金属微粒子の生成率が上昇する。この際の電子ドナーの添加量としては、使用される貴金属イオンのモル数と同じ程度にするのが好ましい。   However, by adding an electron donor, the photoreduction rate of polyoxoacid ions is greatly improved, and the generation rate of noble metal fine particles is increased. The amount of electron donor added at this time is preferably about the same as the number of moles of noble metal ions used.

上記の電子ドナーとしては、第一級又は第二級アルコール、有機酸又はその塩が用いられる。好ましい電子ドナーは、メタノール、エタノール、2‐プロパノール、シュウ酸、サリチル酸のナトリウムなどである。また、有機物を含む廃液を利用することもできる。   As the electron donor, a primary or secondary alcohol, an organic acid or a salt thereof is used. Preferred electron donors are methanol, ethanol, 2-propanol, oxalic acid, sodium salicylic acid, and the like. In addition, waste liquid containing organic substances can be used.

本発明方法においては、上記のようにして調製した光触媒を含む有機溶媒溶液と貴金属イオンを含む水溶液とをゆっくり混合しながら、紫外線を照射する。この際の紫外線としては、光触媒のバンドギャップ以上のエネルギーをもつ波長域を選択する必要がある。この波長域としては400nm以下が好ましい。   In the method of the present invention, ultraviolet rays are irradiated while slowly mixing the organic solvent solution containing the photocatalyst prepared as described above and the aqueous solution containing the noble metal ions. As the ultraviolet rays at this time, it is necessary to select a wavelength region having energy higher than the band gap of the photocatalyst. This wavelength region is preferably 400 nm or less.

この紫外線の照射により、有機相と水相との界面に形成された貴金属微粒子のシートは、例えばろ紙上に捕集して分離し、室温又は加温しながら乾燥する。このようにして、粒子径0.1〜5μm程度の貴金属微粒子が得られる。   The sheet of noble metal fine particles formed at the interface between the organic phase and the aqueous phase by this ultraviolet irradiation is collected and separated on a filter paper, for example, and dried at room temperature or while heating. In this way, noble metal fine particles having a particle diameter of about 0.1 to 5 μm are obtained.

次に、本発明方法により貴金属例えば銀、金、白金などを含む産業廃棄物から、貴金属を回収するには、先ず、これらの貴金属を酸で溶解して酸溶液を調製し、これに前述した電子供与性試薬を添加したのち、ポリオキソ酸とカチオン性界面活性剤との複合体からなる両親媒性光触媒を水不混和性有機溶媒に溶解した溶液をゆっくり加えて混合し、光照射する。この処理により貴金属微粒子が水相と有機相の界面に膜状になって析出する。
したがって、この膜を分離し、水洗後乾燥すれば、所望の貴金属を回収することができる。
Next, in order to recover noble metals from industrial waste containing noble metals such as silver, gold, platinum, etc. by the method of the present invention, first, these noble metals are dissolved with an acid to prepare an acid solution. After adding the electron donating reagent, a solution prepared by dissolving an amphiphilic photocatalyst composed of a complex of polyoxoacid and a cationic surfactant in a water-immiscible organic solvent is slowly added, mixed, and irradiated with light. By this treatment, noble metal fine particles are deposited in the form of a film at the interface between the aqueous phase and the organic phase.
Therefore, if this membrane is separated, washed with water and dried, the desired noble metal can be recovered.

本発明によれば、新規な光触媒を用いることにより、微量の貴金属イオンを含む水溶液からも簡単な操作により、効率よく貴金属を回収することができる。また、この際使用する光触媒は顕著な効力低下なしに繰り返し使用することができるという利点がある。   According to the present invention, by using a novel photocatalyst, a noble metal can be efficiently recovered from an aqueous solution containing a small amount of noble metal ions by a simple operation. In addition, the photocatalyst used at this time has an advantage that it can be used repeatedly without a significant decrease in efficacy.

次に、実施例により本発明を実施するための最良の形態を説明するが、本発明は、これらの例によりなんら限定されるものではない。   Next, the best mode for carrying out the present invention will be described by way of examples, but the present invention is not limited to these examples.

ジメチルジオクタデシルアンモニウムクロリド(以下DODAと略す)0.1mmolを水10mlに溶解し、別に、12‐タングストケイ酸ナトリウム[(SiW1240)Na4]0.045mmolを塩酸によりpH2に調整した水10mlに溶解して2種の水溶液を調製した。
次いで、これらの2種の水溶液を、室温下混合し、10分間かきまぜたところ、沈殿が生成した。この沈殿をろ別し、副生した塩化ナトリウムが完全に除去されるまで水洗したのち、ろ過し、真空下、30℃で60分間乾燥することにより、SiW1240 4-/DODA複合体光触媒200mgを白色粉末として得た。
Dissolve 0.1 mmol of dimethyldioctadecyl ammonium chloride (hereinafter abbreviated as DODA) in 10 ml of water, and separately add 10 ml of water adjusted to pH 2 with 0.045 mmol of sodium 12-tungstosilicate [(SiW 12 O 40 ) Na 4 ]. Two types of aqueous solutions were prepared by dissolving in 2%.
Next, when these two aqueous solutions were mixed at room temperature and stirred for 10 minutes, a precipitate was formed. The precipitate was filtered off, washed with water until the by-product sodium chloride was completely removed, filtered, and dried under vacuum at 30 ° C. for 60 minutes to obtain a SiW 12 O 40 4− / DODA complex photocatalyst. 200 mg was obtained as a white powder.

0.1M濃度のタングステン酸ナトリウム(Na2WO4)水溶液に塩酸を加えてpH2に調整することにより、デカタングステン酸(W10324)水溶液を調製した。
次に、ジメチルジオクタデシルアンモニウムクロリド0.8mmolを、塩酸でpH2に調整した水100mlに溶解し、上記のようにして調製したデカタングステン酸水溶液を濃度2mMに希釈した水溶液100mlと室温下で混合した。生成した沈殿を水で十分に洗浄したのち、真空下、50℃において乾燥することにより、W1032 4-/DODA複合体光触媒500mgを白色粉末として得た。
Decathungstic acid (W 10 O 32 H 4 ) aqueous solution was prepared by adding hydrochloric acid to 0.1 M sodium tungstate (Na 2 WO 4 ) aqueous solution and adjusting the pH to 2.
Next, 0.8 mmol of dimethyl dioctadecyl ammonium chloride was dissolved in 100 ml of water adjusted to pH 2 with hydrochloric acid, and mixed with 100 ml of an aqueous solution of decatungstic acid prepared as described above to a concentration of 2 mM at room temperature. . The produced precipitate was sufficiently washed with water and then dried at 50 ° C. under vacuum to obtain 500 mg of W 10 O 32 4− / DODA complex photocatalyst as a white powder.

実施例1及び2で製造した複合体光触媒のXRDパターンを図2に示す。これらのパターンには2θ=2°付近の低角度側に鋭いピークが認められ、この複合体光触媒は、DODAと無機層が交互に配列した層状構造を有していることが確認された。
次に、実施例1及び2で複合体光触媒の吸光度を図3に示す。この図3より、吸光度が360〜400nm付近から上昇しており、これらの複合体光触媒は、これより短い波長の光を利用できることが分かる。
The XRD pattern of the composite photocatalyst produced in Examples 1 and 2 is shown in FIG. In these patterns, a sharp peak was observed on the low angle side near 2θ = 2 °, and this composite photocatalyst was confirmed to have a layered structure in which DODA and inorganic layers were alternately arranged.
Next, the absorbance of the composite photocatalyst in Examples 1 and 2 is shown in FIG. As can be seen from FIG. 3, the absorbance increased from around 360 to 400 nm, and these composite photocatalysts can utilize light having a shorter wavelength.

100ml体積ビーカー中で、実施例1と同様にして製造した複合体光触媒0.01gをクロロホルム20mlに溶解し、その溶液の上面に7.5mM−塩化金酸水溶液20mlを徐々に加えた。次いで、大気中、室温下で、このビーカー上から混合物に対して100W高圧水銀ランプを用いて、紫外線を5時間照射した。
反応終了後、金色のシート状の生成物が有機相と水相の界面に認められた。この生成物の走査型電子顕微鏡写真を図4に、透過型電子顕微鏡写真を図5に示す。
電子線回折パターンより、この生成物は<111>方向に配向した金であることが確認された。
In a 100 ml volume beaker, 0.01 g of the composite photocatalyst produced in the same manner as in Example 1 was dissolved in 20 ml of chloroform, and 20 ml of a 7.5 mM chloroauric acid aqueous solution was gradually added to the upper surface of the solution. Subsequently, the mixture was irradiated with ultraviolet rays for 5 hours from above the beaker using a 100 W high pressure mercury lamp in the atmosphere at room temperature.
After completion of the reaction, a golden sheet-like product was observed at the interface between the organic phase and the aqueous phase. A scanning electron micrograph of this product is shown in FIG. 4, and a transmission electron micrograph is shown in FIG.
From the electron diffraction pattern, this product was confirmed to be gold oriented in the <111> direction.

100ml体積ビーカー中で、実施例2と同様にして製造した複合体光触媒0.01gをクロロホルム20mlに溶解し、その溶液の上面に7.5mM濃度の塩化金酸と同濃度のシュウ酸ナトリウムを含む水溶液20mlを徐々に加えた。次いで100W高圧水銀ランプを用いて、ビーカー上部より混合物に、大気中、室温下で紫外線を5時間照射した。
反応終了後、有機相と水相の界面に粒子がシート状に生成した。生成物の走査型電子顕微鏡写真を図6に示す。これにより、この生成物は、粒子径約1μmの金粒子からなることが確認された。
In a 100 ml volume beaker, 0.01 g of the composite photocatalyst produced in the same manner as in Example 2 was dissolved in 20 ml of chloroform, and 7.5 mM chloroauric acid and sodium oxalate at the same concentration were contained on the upper surface of the solution. 20 ml of an aqueous solution was gradually added. Next, using a 100 W high-pressure mercury lamp, the mixture was irradiated with ultraviolet rays for 5 hours at room temperature in the atmosphere from the top of the beaker.
After completion of the reaction, particles were formed in a sheet form at the interface between the organic phase and the aqueous phase. A scanning electron micrograph of the product is shown in FIG. This confirmed that the product was composed of gold particles having a particle diameter of about 1 μm.

100ml体積ビーカー中で、実施例2で得た複合体光触媒10mgをクロロホルム20mlに溶解し、その溶液の上面に7.5mM濃度の硝酸銀と同程度のシュウ酸ナトリウムを含む水溶液20mlを除々に加えた。
次いで、100Wの高圧水銀ランプを用いて、ビーカー上部よりこの混合液に、大気中、室温下で5時間紫外線を照射した。
反応終了後、有機相と水相の界面に銀粒子がシート状に生成した。このようにして得た生成物の走査型電子顕微鏡写真を図7に示す。
In a 100 ml volume beaker, 10 mg of the composite photocatalyst obtained in Example 2 was dissolved in 20 ml of chloroform, and 20 ml of an aqueous solution containing sodium oxalate equivalent to 7.5 mM silver nitrate was gradually added to the upper surface of the solution. .
Next, using a 100 W high-pressure mercury lamp, the mixture was irradiated with ultraviolet rays for 5 hours at room temperature in the atmosphere from the top of the beaker.
After the reaction was completed, silver particles were formed in a sheet shape at the interface between the organic phase and the aqueous phase. A scanning electron micrograph of the product thus obtained is shown in FIG.

水溶液中に微量に含まれている貴金属を、簡単な操作で、効率よく分離しうるので、産業廃液中からの貴金属の回収手段として好適である。   Since the noble metal contained in a trace amount in the aqueous solution can be efficiently separated by a simple operation, it is suitable as a means for recovering the noble metal from the industrial waste liquid.

本発明方法における反応機構を説明するための模式図。The schematic diagram for demonstrating the reaction mechanism in this invention method. 実施例1及び2で得た複合体光触媒のXRDパターン。The XRD pattern of the composite photocatalyst obtained in Examples 1 and 2. 実施例1及び2で得た複合体光触媒の照射光波長と吸光度の関係を示すグラフ。The graph which shows the relationship between the irradiation light wavelength of the composite photocatalyst obtained in Example 1 and 2, and a light absorbency. 実施例3で得た金粒子の走査型電子顕微鏡写真。4 is a scanning electron micrograph of gold particles obtained in Example 3. FIG. 実施例3で得た金粒子の透過型電子顕微鏡写真。4 is a transmission electron micrograph of gold particles obtained in Example 3. FIG. 実施例4で得た金粒子の走査型電子顕微鏡写真。4 is a scanning electron micrograph of gold particles obtained in Example 4. FIG. 実施例5で得た銀粒子の走査型電子顕微鏡写真。6 is a scanning electron micrograph of silver particles obtained in Example 5. FIG.

符号の説明Explanation of symbols

1 ビーカー
2 紫外線ランプ
3 水
4 有機溶媒
5 光触媒
1 Beaker 2 UV lamp 3 Water 4 Organic solvent 5 Photocatalyst

Claims (7)

貴金属イオンを含む水溶液と、ポリオキソ酸とカチオン性界面活性剤との複合体からなる両親媒性光触媒を含む水不混和性有機溶媒とを混合し、光照射することによって水と有機溶媒との界面に貴金属微粒子をシート状に析出させることを特徴とする貴金属微粒子の製造方法。   Mixing an aqueous solution containing noble metal ions with a water-immiscible organic solvent containing an amphiphilic photocatalyst composed of a complex of polyoxoacid and cationic surfactant, and irradiating with light, the interface between water and the organic solvent A method for producing noble metal fine particles, comprising depositing noble metal fine particles in a sheet form. 貴金属イオンが、金、銀、白金、パラジウム、ロジウム、イリジウム及びルテニウムの中から選ばれた少なくとも1種の貴金属のイオンである請求項1記載の貴金属微粒子の製造方法。   2. The method for producing noble metal fine particles according to claim 1, wherein the noble metal ion is an ion of at least one kind of noble metal selected from gold, silver, platinum, palladium, rhodium, iridium and ruthenium. ポリオキソ酸が、ポリタングステン酸、ポリモリブデン酸、ポリバナジウム酸、タングストケイ酸塩、タングストリン酸、モリブドケイ酸、モリブドリン酸、バナドリン酸、バナドケイ酸の中の少なくとも1種である請求項1又は2記載の貴金属微粒子の製造方法。   The polyoxoacid is at least one of polytungstic acid, polymolybdic acid, polyvanadate, tungstosilicate, tungstophosphoric acid, molybdosilicic acid, molybdophosphoric acid, vanadolinic acid, and vanadosilicic acid. Method for producing noble metal fine particles. 貴金属イオンを含む水溶液がさらに電子供与性試薬を含む請求項1、2又は3記載の貴金属微粒子の製造方法。   The method for producing noble metal fine particles according to claim 1, 2 or 3, wherein the aqueous solution containing the noble metal ions further contains an electron donating reagent. 電子供与性試薬が、第一級又は第二級アルコール、有機酸及びその塩の中から選ばれた少なくとも1種である請求項4記載の貴金属微粒子の製造方法。   The method for producing noble metal fine particles according to claim 4, wherein the electron donating reagent is at least one selected from primary or secondary alcohols, organic acids and salts thereof. ポリオキソ酸とカチオン性界面活性剤との複合体からなる光触媒。   A photocatalyst comprising a complex of a polyoxoacid and a cationic surfactant. 貴金属を含む産業廃棄物から貴金属を溶出して貴金属イオンを含む水溶液を調製し、これに電子供与性試薬を添加したのち、ポリオキソ酸とカチオン性界面活性剤との複合体からなる両親媒性光触媒の水不混和性有機溶媒溶液と混合し、光照射したのち、水と有機溶媒との界面にシート状に析出した貴金属微粒子を分離回収することを特徴とする廃棄物からの貴金属の回収方法。   An amphiphilic photocatalyst consisting of a complex of polyoxoacid and cationic surfactant after eluting precious metal from industrial waste containing precious metal to prepare aqueous solution containing precious metal ions, adding electron donating reagent to it A method for recovering noble metal from waste, comprising: mixing with a water-immiscible organic solvent solution, and irradiating with light; and separating and recovering noble metal fine particles deposited in a sheet form at the interface between water and the organic solvent.
JP2007282447A 2007-10-30 2007-10-30 Method for producing noble metal fine particles, photocatalyst used in the method, and method for recovering noble metal from waste Active JP5128238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007282447A JP5128238B2 (en) 2007-10-30 2007-10-30 Method for producing noble metal fine particles, photocatalyst used in the method, and method for recovering noble metal from waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007282447A JP5128238B2 (en) 2007-10-30 2007-10-30 Method for producing noble metal fine particles, photocatalyst used in the method, and method for recovering noble metal from waste

Publications (2)

Publication Number Publication Date
JP2009108374A true JP2009108374A (en) 2009-05-21
JP5128238B2 JP5128238B2 (en) 2013-01-23

Family

ID=40777179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007282447A Active JP5128238B2 (en) 2007-10-30 2007-10-30 Method for producing noble metal fine particles, photocatalyst used in the method, and method for recovering noble metal from waste

Country Status (1)

Country Link
JP (1) JP5128238B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105346A (en) * 2012-11-26 2014-06-09 Toshiba Corp Method for recovering valuable metal and system for recovering valuable metal
CN104085872A (en) * 2014-07-08 2014-10-08 中国计量学院 Preparation method of diamond-shaped hollow silver phosphotungstate rod
JP2015048528A (en) * 2013-09-04 2015-03-16 株式会社東芝 Method for producing platinum fine particles and apparatus for producing the same
JP2015159064A (en) * 2014-02-25 2015-09-03 株式会社東芝 Recovery method and recovery system of precious metal
JP2020190022A (en) * 2019-05-23 2020-11-26 国立研究開発法人量子科学技術研究開発機構 Recovery device, recovery system, and recovery method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58502223A (en) * 1981-12-30 1983-12-22 エアコン インコ−ポレ−テツド Novel conductive composition and powder used in the composition
JPS5960818A (en) * 1982-09-29 1984-04-06 帝人株式会社 Electrode material
JPS59139337A (en) * 1983-01-28 1984-08-10 Konishiroku Photo Ind Co Ltd Hydration of acetylene and its derivative
JPS6261630A (en) * 1985-09-12 1987-03-18 Mitsubishi Electric Corp Method for forming metal colloid by photochemical reaction
JP2005194546A (en) * 2003-12-26 2005-07-21 National Institute Of Advanced Industrial & Technology Selective recovery agent and selective recovery method for platinum group metal ion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58502223A (en) * 1981-12-30 1983-12-22 エアコン インコ−ポレ−テツド Novel conductive composition and powder used in the composition
JPS5960818A (en) * 1982-09-29 1984-04-06 帝人株式会社 Electrode material
JPS59139337A (en) * 1983-01-28 1984-08-10 Konishiroku Photo Ind Co Ltd Hydration of acetylene and its derivative
JPS6261630A (en) * 1985-09-12 1987-03-18 Mitsubishi Electric Corp Method for forming metal colloid by photochemical reaction
JP2005194546A (en) * 2003-12-26 2005-07-21 National Institute Of Advanced Industrial & Technology Selective recovery agent and selective recovery method for platinum group metal ion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105346A (en) * 2012-11-26 2014-06-09 Toshiba Corp Method for recovering valuable metal and system for recovering valuable metal
JP2015048528A (en) * 2013-09-04 2015-03-16 株式会社東芝 Method for producing platinum fine particles and apparatus for producing the same
JP2015159064A (en) * 2014-02-25 2015-09-03 株式会社東芝 Recovery method and recovery system of precious metal
CN104085872A (en) * 2014-07-08 2014-10-08 中国计量学院 Preparation method of diamond-shaped hollow silver phosphotungstate rod
JP2020190022A (en) * 2019-05-23 2020-11-26 国立研究開発法人量子科学技術研究開発機構 Recovery device, recovery system, and recovery method
JP7307460B2 (en) 2019-05-23 2023-07-12 国立研究開発法人量子科学技術研究開発機構 Recovery device, recovery system, and recovery method

Also Published As

Publication number Publication date
JP5128238B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
Ansari et al. Highly visible light responsive, narrow band gap TiO2 nanoparticles modified by elemental red phosphorus for photocatalysis and photoelectrochemical applications
Challagulla et al. Acrylate-based polymerizable sol–gel synthesis of magnetically recoverable TiO2 supported Fe3O4 for Cr (VI) photoreduction in aerobic atmosphere
Ansari et al. Gold nanoparticles-sensitized wide and narrow band gap TiO 2 for visible light applications: a comparative study
Wang et al. Nanostructured hybrid shells of r-GO/AuNP/m-TiO2 as highly active photocatalysts
Li et al. A novel mesoporous single-crystal-like Bi2WO6 with enhanced photocatalytic activity for pollutants degradation and oxygen production
Han et al. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review
Gu et al. Photochemical synthesis of noble metal (Ag, Pd, Au, Pt) on graphene/ZnO multihybrid nanoarchitectures as electrocatalysis for H2O2 reduction
Wang et al. Rapid and efficient synthesis of platinum nanodendrites with high surface area by chemical reduction with formic acid
Pany et al. Plasmon induced nano Au particle decorated over S, N-modified TiO2 for exceptional photocatalytic hydrogen evolution under visible light
Fernando et al. Photocatalysis with Pt–Au–ZnO and Au–ZnO hybrids: effect of charge accumulation and discharge properties of metal nanoparticles
JP6362704B2 (en) Photocatalytic system promoted by constrained transition metals for efficient hydrogen release
Jeong et al. Shape-dependent charge transfers in crystalline ZnO photocatalysts: Rods versus plates
JP5128238B2 (en) Method for producing noble metal fine particles, photocatalyst used in the method, and method for recovering noble metal from waste
Shankar Naik et al. Dual-cation-coordinated CoFe-layered double-hydroxide nanosheets using the pulsed laser ablation technique for efficient electrochemical water splitting: mechanistic screening by in situ/operando Raman and density functional theory calculations
Dou et al. UV-improved removal of chloride ions from strongly acidic wastewater using Bi2O3: Efficiency enhancement and mechanisms
Hezam et al. Sunlight-driven combustion synthesis of defective metal oxide nanostructures with enhanced photocatalytic activity
Maswanganyi et al. Bismuth molybdate nanoplates supported on reduced graphene oxide: an effective nanocomposite for the removal of naphthalene via adsorption–photodegradation
Wan et al. Efficient Co@ CoO core-shell nanocrystals as catalysts for visible-light-driven water oxidation
Olagunju et al. Size-controlled SrTiO3 nanoparticles photodecorated with Pd cocatalysts for photocatalytic organic dye degradation
Bharath et al. Self-assembled Co3O4 nanospheres on N-doped reduced graphene oxide (Co3O4/N-RGO) bifunctional electrocatalysts for cathodic reduction of CO2 and anodic oxidation of organic pollutants
Badhe et al. One-pot synthesis of Pd-based ternary Pd@ CdS@ TiO2 nanoclusters via a solvothermal route and their catalytic reduction efficiency toward toxic hexavalent chromium
Ji et al. Application of titanate nanotubes for photocatalytic decontamination in water: challenges and prospects
Zhang et al. Co-N-doped MoO 2 modified carbon felt cathode for removal of EDTA-Ni in electro-Fenton process
Sun et al. Controllable fabrication of platinum nanospheres with a polyoxometalate-assisted process
Alikarami et al. Photocatalytic activity of the visible-light-driven spherical Ag2S modifying the CdS synthesized by the facile chemical methods for the degradation of methylene blue and rhodamine B

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5128238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250