JP2009108004A - Beta-nodavirus infection inhibitor for fish - Google Patents

Beta-nodavirus infection inhibitor for fish Download PDF

Info

Publication number
JP2009108004A
JP2009108004A JP2007284455A JP2007284455A JP2009108004A JP 2009108004 A JP2009108004 A JP 2009108004A JP 2007284455 A JP2007284455 A JP 2007284455A JP 2007284455 A JP2007284455 A JP 2007284455A JP 2009108004 A JP2009108004 A JP 2009108004A
Authority
JP
Japan
Prior art keywords
virus
cells
fish
infection
chloroquine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007284455A
Other languages
Japanese (ja)
Inventor
Nobuyuki Kobayashi
信之 小林
Kei Adachi
圭 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVSS CO Ltd
Original Assignee
AVSS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVSS CO Ltd filed Critical AVSS CO Ltd
Priority to JP2007284455A priority Critical patent/JP2009108004A/en
Publication of JP2009108004A publication Critical patent/JP2009108004A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drug effective for beta-nodavirus infection of useful fishes like farmed fishes. <P>SOLUTION: The beta-nodavirus infection inhibitor for fishes contains an endosome acidification inhibitor such as NH<SB>4</SB>Cl, chloroquine, bafilomycin A1, and monensin as the active ingredients. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本願発明は、魚類生物のベータノダウイルス感染を阻害する技術に関するものである。   The present invention relates to a technique for inhibiting the beta nodavirus infection of fish organisms.

ノダウイルス科は、それぞれ昆虫および魚類に主に感染するアルファノダウイルス属およびベータノダウイルス属から成る。ベータノダウイルス属に属するウイルスは、ウイルス性神経壊死症(VNN)とも呼ばれるウイルス性の脳症および網膜症の病原体である。ノダウイルスは小さく(直径25〜30 nm)、球形であり、エンベロープを持たないウイルスであり、そのゲノムは2本の一本鎖プラスセンスのRNA分子から成る(非特許文献1)。大きい方のゲノム分節であるRNA1(3.1 Kb)はRNA依存性RNAポリメラーゼ(RdRp)をコードし(非特許文献2-4)、小さい方のゲノム分節であるRNA2(1.4 Kb)はウイルス粒子を構成するカプシド蛋白質をコードする(非特許文献5)。最近、RNA1から合成されるサブゲノムRNA(RNA3と呼ぶ)がB2蛋白質をコードすることが判明している。この蛋白質はベータノダウイルスで高度に保存されているRNAiアンタゴニストである(非特許文献6-8)。   The Nodaviridae family consists of the genera Alphanodavirus and Betanodavirus that mainly infect insects and fish, respectively. A virus belonging to the genus Betanodavirus is a pathogen of viral encephalopathy and retinopathy, also called viral neuronecrosis (VNN). Nodaviruses are small (25-30 nm in diameter), spherical, and non-enveloped viruses whose genome consists of two single-stranded plus-sense RNA molecules (Non-patent Document 1). RNA1 (3.1 Kb), the larger genome segment, encodes RNA-dependent RNA polymerase (RdRp) (Non-Patent Documents 2-4), and RNA2 (1.4 Kb), the smaller genome segment, constitutes the virion. It encodes the capsid protein (Non-patent Document 5). Recently, a subgenomic RNA (called RNA3) synthesized from RNA1 has been found to encode the B2 protein. This protein is an RNAi antagonist highly conserved in betanodavirus (Non-patent Documents 6-8).

VNNは世界中で多くの種の海洋養殖を壊滅している(非特許文献9)。ベータノダウイルスは14の科の30種を越える海洋魚から分離されており、カプシド蛋白質配列の系統発生分析に基づき4つの遺伝子型、すなわち、Striped Jack Nervous Necrosis Virus(SJNNV)、Barfin Flounder Nervous Necrosis Virus(BFNNV)、Tiger Puffer Nervous Necrosis Virus(TPNNV)、およびRedspotted Grouper Nervous Necrosis Virus(RGNNV)に分類されている(非特許文献5、10、11)。水産養殖業においてウイルスによって引き起こされる著しい経済的損失を減らすため、ベータノダウイルス感染の有効な制御法が早急に必要とされている。VNNを予防できるワクチンの開発が行われており、E. coliで発現する組換え型ベータノダウイルスカプシド蛋白質の一部を使用した免疫が試みられている(非特許文献12、13)。また、ベータノダウイルスのウイルス様粒子(VLP)による免疫法が、VNNに対する防御免疫反応を誘発することが報告されている(非特許文献14)。しかし、主として、体が小さいため容易にワクチン投与できない稚魚でVNNが発生する。従って、ベータノダウイルス感染を阻害する薬物の開発は極めて重要である。ベータノダウイルス感染の機序は未だに不明であるが、ベータノダウイルス感染細胞の電子顕微鏡検査により、ベータノダウイルスの魚類細胞株への侵入はエンドサイトーシス経路に依存することが示唆されている(非特許文献15)。   VNN has destroyed many species of marine aquaculture around the world (Non-Patent Document 9). Betanodaviruses have been isolated from over 30 species of marine fish from 14 families, and based on phylogenetic analysis of capsid protein sequences, there are four genotypes: Striped Jack Nervous Necrosis Virus (SJNNV), Barfin Flounder Nervous Necrosis Virus (BFNNV), Tiger Puffer Nervous Necrosis Virus (TPNNV), and Redspotted Grouper Nervous Necrosis Virus (RGNNV) (Non-Patent Documents 5, 10, and 11). In order to reduce the significant economic losses caused by viruses in the aquaculture industry, there is an urgent need for effective control methods for betanodavirus infection. A vaccine capable of preventing VNN has been developed, and immunization using a part of the recombinant betanodavirus capsid protein expressed in E. coli has been attempted (Non-patent Documents 12 and 13). In addition, it has been reported that immunization with betanodavirus virus-like particles (VLP) induces a protective immune response against VNN (Non-patent Document 14). However, VNN occurs mainly in juvenile fish that cannot be easily vaccinated due to their small body. Therefore, the development of drugs that inhibit betanodavirus infection is extremely important. The mechanism of betanodavirus infection is still unclear, but electron microscopy of betanodavirus-infected cells suggests that betanodavirus entry into fish cell lines depends on the endocytotic pathway ( Non-patent document 15).

なお、塩化アンモニウム(NH4Cl)およびクロロキンなどのエンドソーム酸性化阻害剤は、多くのウイルスに対して適用されている(非特許文献16、17)。最初に抗マラリア薬として合成されたクロロキンは、ヒト免疫不全ウイルス(HIV)(非特許文献18、19)、インフルエンザウイルス(非特許文献20)、およびSARSコロナウイルス(SARS-CoV)(非特許文献21)を含む幅広いウイルスに対して抗ウイルス作用があることが示されている。エンベロープを持つウイルスについて、クロロキンおよびNH4Clは、ウイルス膜蛋白質の糖鎖付加(非特許文献22)、糖蛋白質の原形質膜への移動(非特許文献23、24)、およびウイルスヌクレオカプシド形成(非特許文献16)を阻害した。また、SARS-CoVの機能的受容体であるアンジオテンシン変換酵素-2(ACE-2)の末端糖鎖付加がクロロキンおよびNH4Clによって阻害される(非特許文献22)ことも示唆された。
Mori K, Nakai T, Muroga K, Arimoto M, Mushiake K, Furusawa I (1992) Properties of a new virus belonging to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology 187: 368-71 Guo YX, Chan SW, Kwang J (2004) Membrane association of greasy grouper nervous necrosis virus protein A and characterization of its mitochondrial localization targeting signal. J Virol 78: 6498-6508 Nagai T, Nishizawa T (1999) Sequence of the non-structural protein gene encoded by RNA1 of striped jack nervous necrosis virus. J Gen Virol 80: 3019-22 Tan C, Huang B, Chang SF, Ngoh GH, Munday B, Chen SC, Kwang J (2001) Determination of the complete nucleotide sequences of RNA1 and RNA2 from greasy grouper (Epinephelus tauvina) nervous necrosis virus, Singapore strain. J Gen Virol 82: 647-53 Nishizawa T, Mori K, Furuhashi M, Nakai T, Furusawa I, Muroga K (1995) Comparison of the coat protein genes of five fish nodaviruses, the causative agents of viral nervous necrosis in marine fish. J Gen Virol 76: 1563-9 Fenner BJ, Goh W, Kwang J (2006) Sequestration and protection of double-stranded RNA by the betanodavirus b2 protein. J Virol 80: 6822-33 Fenner BJ, Thiagarajan R, Chua HK, Kwang J (2006) Betanodavirus B2 is an RNA interference antagonist that facilitates intracellular viral RNA accumulation. J Virol 80: 85-94 Iwamoto T, Mise K, Takeda A, Okinaka Y, Mori K, Arimoto M, Okuno T, Nakai T (2005) Characterization of Striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. J Gen Virol 86: 2807-16 Ikenaga T, Tatecho Y, Nakai T, Uematsu K (2002) Betanodavirus as a novel transneuronal tracer for fish. Neurosci Lett 331: 55-9 Mori K, , Mangyoku T, Iwamoto T, Arimoto M, Tanaka S, Nakai T (2003) Serological relationships among genotypic variants of betanodavirus. Dis Aquat Organ 57: 19-26 Nishizawa T, Furuhashi M, Nakai T, Muroga K (1997) Genomic Classification of Fish Nodaviruses by Molecular Phylogenetic Analysis of the Coat Protein Gene. Appl Environ Microbiol 63: 1633-1636 Husgag S, Grotmol S, Hjeltnes BK, Rodseth OM, Biering E (2001) Immune response to a recombinant capsid protein of striped jack nervous necrosis virus (SJNNV) in turbot Scophthalmus maximus and Atlantic halibut Hippoglossus hippoglossus, and evaluation of a vaccine against SJNNV. Dis Aquat Organ 45: 33-44 Tanaka S, Mori K, Arimoto M, Iwamoto I, Nakai T (2001) Protective immunity of sevenband grouper, Epinephelus septemfasciatus Thunberg, against experimental viral nervous necrosis. J Fish Dis 24: 15-22 Thiery R, Cozien J, Cabon J, Lamour F, Baud M, Schneemann A (2006) Induction of a protective immune response against viral nervous necrosis in the European sea bass Dicentrarchus labrax by using betanodavirus virus-like particles. J Virol 80: 10201-7 Liu W, Hsu CH, Hong YR, Wu SC, Wang CH, Wu YM, Chao CB, Lin CS (2005) Early endocytosis pathways in SSN-1 cells infected by dragon grouper nervous necrosis virus. J Gen Virol 86: 2553-2561 Koyama AH, Uchida T (1989) The effect of ammonium chloride on the multiplication of herpes simplex virus type 1 in Vero cells. Virus Res 13: 271-81 Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R (2003) Effects of chloroquine on viral infections: an old drug against today's diseases? Lancet Infect Dis 3: 722-7 Savarino A, Gennero L, Sperber K, Boelaert JR (2001) The anti-HIV-1 activity of chloroquine. J Clin Virol 20: 131-5 Savarino A, Lucia MB, Rastrelli E, Rutella S, Golotta C, Morra E, Tamburrini E, Perno CF, Boelaert JR, Sperber K, Cauda R (2004) Anti-HIV effects of chloroquine: inhibition of viral particle glycosylation and synergism with protease inhibitors. J Acquir Immune Defic Syndr 35: 223-32 Ooi EE, Chew JS, Loh JP, Chua RC (2006) In vitro inhibition of human influenza A virus replication by chloroquine. Virol J 3: 39 De Clercq E (2006) Potential antivirals and antiviral strategies against SARS coronavirus infections. Expert Rev Anti Infect Ther 4: 291-302 Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG, Nichol ST (2005) Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2: 69 Dille BJ, Johnson TC (1982) Inhibition of vesicular stomatitis virus glycoprotein expression by chloroquine. J Gen Virol 62: 91-103 Ferreira DF, Santo MP, Rebello MA, Rebello MC (2000) Weak bases affect late stages of Mayaro virus replication cycle in vertebrate cells. J Med Microbiol 49: 313-8
In addition, endosome acidification inhibitors such as ammonium chloride (NH 4 Cl) and chloroquine have been applied to many viruses (Non-patent Documents 16 and 17). Chloroquine first synthesized as an antimalarial drug is human immunodeficiency virus (HIV) (Non-Patent Documents 18 and 19), influenza virus (Non-Patent Document 20), and SARS coronavirus (SARS-CoV) It has been shown to have antiviral activity against a wide range of viruses including 21). For enveloped viruses, chloroquine and NH 4 Cl can be used for glycosylation of viral membrane proteins (Non-patent Document 22), translocation of glycoproteins to the plasma membrane (Non-patent Documents 23 and 24), and viral nucleocapsid formation ( Non-patent document 16) was inhibited. It was also suggested that terminal glycosylation of angiotensin converting enzyme-2 (ACE-2), which is a functional receptor for SARS-CoV, is inhibited by chloroquine and NH 4 Cl (Non-patent Document 22).
Mori K, Nakai T, Muroga K, Arimoto M, Mushiake K, Furusawa I (1992) Properties of a new virus belonging to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology 187: 368-71 Guo YX, Chan SW, Kwang J (2004) Membrane association of greasy grouper nervous necrosis virus protein A and characterization of its mitochondrial localization targeting signal.J Virol 78: 6498-6508 Nagai T, Nishizawa T (1999) Sequence of the non-structural protein gene encoded by RNA1 of striped jack nervous necrosis virus.J Gen Virol 80: 3019-22 Tan C, Huang B, Chang SF, Ngoh GH, Munday B, Chen SC, Kwang J (2001) Determination of the complete nucleotide sequences of RNA1 and RNA2 from greasy grouper (Epinephelus tauvina) nervous necrosis virus, Singapore strain.J Gen Virol 82: 647-53 Nishizawa T, Mori K, Furuhashi M, Nakai T, Furusawa I, Muroga K (1995) Comparison of the coat protein genes of five fish nodaviruses, the causative agents of viral nervous necrosis in marine fish.J Gen Virol 76: 1563-9 Fenner BJ, Goh W, Kwang J (2006) Sequestration and protection of double-stranded RNA by the betanodavirus b2 protein.J Virol 80: 6822-33 Fenner BJ, Thiagarajan R, Chua HK, Kwang J (2006) Betanodavirus B2 is an RNA interference antagonist that facilitates intracellular viral RNA accumulation.J Virol 80: 85-94 Iwamoto T, Mise K, Takeda A, Okinaka Y, Mori K, Arimoto M, Okuno T, Nakai T (2005) Characterization of Striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. J Gen Virol 86: 2807 -16 Ikenaga T, Tatecho Y, Nakai T, Uematsu K (2002) Betanodavirus as a novel transneuronal tracer for fish.Neurosci Lett 331: 55-9 Mori K,, Mangyoku T, Iwamoto T, Arimoto M, Tanaka S, Nakai T (2003) Serological relationships among genotypic variants of betanodavirus.Dis Aquat Organ 57: 19-26 Nishizawa T, Furuhashi M, Nakai T, Muroga K (1997) Genomic Classification of Fish Nodaviruses by Molecular Phylogenetic Analysis of the Coat Protein Gene.Appl Environ Microbiol 63: 1633-1636 Husgag S, Grotmol S, Hjeltnes BK, Rodseth OM, Biering E (2001) Immune response to a recombinant capsid protein of striped jack nervous necrosis virus (SJNNV) in turbot Scophthalmus maximus and Atlantic halibut Hippoglossus hippoglossus, and evaluation of a vaccine against SJNNV Dis Aquat Organ 45: 33-44 Tanaka S, Mori K, Arimoto M, Iwamoto I, Nakai T (2001) Protective immunity of sevenband grouper, Epinephelus septemfasciatus Thunberg, against experimental viral nervous necrosis. J Fish Dis 24: 15-22 Thiery R, Cozien J, Cabon J, Lamour F, Baud M, Schneemann A (2006) Induction of a protective immune response against viral nervous necrosis in the European sea bass Dicentrarchus labrax by using betanodavirus virus-like particles.J Virol 80: 10201 -7 Liu W, Hsu CH, Hong YR, Wu SC, Wang CH, Wu YM, Chao CB, Lin CS (2005) Early endocytosis pathways in SSN-1 cells infected by dragon grouper nervous necrosis virus.J Gen Virol 86: 2553-2561 Koyama AH, Uchida T (1989) The effect of ammonium chloride on the multiplication of herpes simplex virus type 1 in Vero cells.Virus Res 13: 271-81 Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R (2003) Effects of chloroquine on viral infections: an old drug against today's diseases? Lancet Infect Dis 3: 722-7 Savarino A, Gennero L, Sperber K, Boelaert JR (2001) The anti-HIV-1 activity of chloroquine. J Clin Virol 20: 131-5 Savarino A, Lucia MB, Rastrelli E, Rutella S, Golotta C, Morra E, Tamburrini E, Perno CF, Boelaert JR, Sperber K, Cauda R (2004) Anti-HIV effects of chloroquine: inhibition of viral particle glycosylation and synergism with protease inhibitors. J Acquir Immune Defic Syndr 35: 223-32 Ooi EE, Chew JS, Loh JP, Chua RC (2006) In vitro inhibition of human influenza A virus replication by chloroquine.Virol J 3: 39 De Clercq E (2006) Potential antivirals and antiviral strategies against SARS coronavirus infections. Expert Rev Anti Infect Ther 4: 291-302 Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG, Nichol ST (2005) Chloroquine is a potent inhibitor of SARS coronavirus infection and spread.Virol J 2: 69 Dille BJ, Johnson TC (1982) Inhibition of vesicular stomatitis virus glycoprotein expression by chloroquine. J Gen Virol 62: 91-103 Ferreira DF, Santo MP, Rebello MA, Rebello MC (2000) Weak bases affect late stages of Mayaro virus replication cycle in vertebrate cells.J Med Microbiol 49: 313-8

ベータノダウイルスの拡散を予防するため現在、ウイルスを持たないと推定される産卵魚の選択および消毒を行っているが、これらの手順は、同じ養殖場でのベータノダウイルス感染の再発生を予防するには十分ではない。また前記のとおり、ワクチンによる感染予防や治療も検討されているが、ベータノダウイルスの感染によりVNNを引き起こすのは主として体が小さい稚魚であることから、ワクチンの有効性、実効性には疑問がある。   Although selection and disinfection of spawning fish that are presumed to be free of viruses is currently being carried out to prevent the spread of betanodavirus, these procedures prevent the reoccurrence of betanodavirus infection on the same farm. Is not enough. In addition, as described above, the prevention and treatment of infection by vaccines are also being studied, but since VNN is caused by betanodavirus infection mainly in small juvenile fish, there are doubts about the effectiveness and effectiveness of vaccines. is there.

そこで、経口法や薬浴法によって稚魚にも投薬可能な新しい抗ベータノダウイルス薬が望まれている。   Therefore, a new anti-beta nodavirus drug that can be administered to fry by the oral method or the bath method is desired.

本発明は、以上のとおりの事情に鑑みてなされたものであって、養殖魚等の有用魚類生物へのベータノダウイルス感染に対する有効な薬剤を提供することを課題としている。   This invention is made | formed in view of the situation as mentioned above, Comprising: It aims at providing the effective chemical | medical agent with respect to beta nodavirus infection to useful fish organisms, such as a cultured fish.

本発明は、エンドソーム酸性化阻害剤を有効成分とすることを特徴とする魚類生物のベータノダウイルス感染阻害剤を提供する。   The present invention provides a betanodavirus infection inhibitor for fish organisms characterized by comprising an endosomal acidification inhibitor as an active ingredient.

また本発明は、エンドソーム酸性化阻害剤の有効量を魚類生物に投与することを特徴とする魚類生物のベータノダウイルス感染阻害方法を提供する。   In addition, the present invention provides a method for inhibiting betanodavirus infection in fish organisms, which comprises administering an effective amount of an endosomal acidification inhibitor to fish organisms.

これらの感染阻害剤および感染阻害方法においては、エンドソーム酸性化阻害剤が、塩化アンモニウム(NH4Cl)、クロロキン、バフィロマイシンA1およびモネンシンからなる群より選択される1種または2種以上であることを好ましい態様としている。 In these infection inhibitors and infection inhibition methods, the endosomal acidification inhibitor is one or more selected from the group consisting of ammonium chloride (NH 4 Cl), chloroquine, bafilomycin A1 and monensin. This is a preferred embodiment.

なお、以下の説明では、エンドソーム酸性化阻害剤を「リソソーム指向性物質」と記載することもある。また、塩化アンモニウムを単にNH4Clと記載することがある。 In the following description, an endosome acidification inhibitor may be described as a “lysosome-directing substance”. In addition, ammonium chloride may be simply referred to as NH 4 Cl.

本発明によって、養殖稚魚等のへのベータノダウイルス感染を効果的に予防することが可能となる。   According to the present invention, it is possible to effectively prevent betanodavirus infection in cultured larvae and the like.

本発明はベータノダウイルス感染阻害剤は、エンドソーム酸性化阻害剤(具体的にはNH4Cl、クロロキン、バフィロマイシンA1およびモネンシン)を有効成分として含有するものであり、これらの有効成分単独であってもよく、あるいは他の魚類用の薬剤成分(例えば薬剤形態をペレットやペースト状とするための賦形剤等)と混合してもよい。 In the present invention, the beta-nodavirus infection inhibitor contains an endosomal acidification inhibitor (specifically, NH 4 Cl, chloroquine, bafilomycin A1 and monensin) as active ingredients. It may be present, or may be mixed with other fish drug components (for example, excipients for making the drug form into pellets or pastes).

本発明の感染阻害剤の投与方法としては、経口法、薬浴法、あるいは両法の併用のいずれを用いてもよく、対象となる魚類生物の状態や養殖環境に併せて適宜選択すればよい。例えば、特に開口前のふ化仔魚であれば、薬浴法を選択すればよく、開口後、特に開口直後の稚魚であれば経口法と薬浴法を併用させることが好ましい。また、感染または未感染の親魚に経口投与して、親魚を治療・感染防御するだけでなく、卵への垂直感染を防ぐと言う方法も有効である。   As an administration method of the infection inhibitor of the present invention, any of the oral method, the drug bath method, or a combination of both methods may be used, and it may be appropriately selected according to the state of the target fish organism and the culture environment. . For example, in the case of hatched larvae before opening, a medicinal bath method may be selected. In the case of fry after opening, particularly immediately after opening, it is preferable to use the oral method and the medicinal bath method in combination. It is also effective to administer orally to infected or uninfected parent fish to treat and protect the parent fish, as well as prevent vertical infection of eggs.

また経口投与の場合は、本発明の感染阻害剤を飼料と混合せて魚類生物に経口接種させることもできる。この場合、エンドソーム酸性化阻害剤を混合した飼料には、さらにビタミン、ミネラル、抗酸化剤、抗生物質、抗菌剤などを添加することもできる。本発明の感染阻害剤を含有する飼料の給餌量は、1日に魚体重の3質量%程度が良い。   In addition, in the case of oral administration, the infection inhibitor of the present invention can be mixed with feed and orally inoculated into fish organisms. In this case, vitamins, minerals, antioxidants, antibiotics, antibacterial agents and the like can be further added to the feed mixed with the endosome acidification inhibitor. The feed amount of the feed containing the infection inhibitor of the present invention is preferably about 3% by mass of the fish body weight per day.

エンドソーム酸性化阻害剤の配合量も魚類生物の種類等にあわせて適宜決定すればよく、例えば経口法であれば飼料中に1mg/kg〜10mg/kg程度配合するのが好ましい。また、薬浴法であれば、水槽の水量に対し1mg/トン〜50mg/トン程度配合するのが好ましい。   The blending amount of the endosome acidification inhibitor may be appropriately determined according to the type of fish organisms and the like. For example, in the case of the oral method, it is preferable to blend approximately 1 mg / kg to 10 mg / kg in the feed. Moreover, in the case of a chemical bath method, it is preferable to mix about 1 mg / ton to 50 mg / ton with respect to the amount of water in the water tank.

本発明の感染阻害剤を適用し得る魚類生物としては、特に限定されず、海水魚、特にシマアジ、ブリ、タイ、ギンザケ、マアジ、ヒラメ、キジハタ、マツカワ、クエ、マハタ、カレイ、クロソイ、トラフグ、カンパチ等が挙げられる。   The fish organisms to which the infection inhibitor of the present invention can be applied are not particularly limited, and saltwater fish, particularly striped mackerel, yellowtail, thailand, coho salmon, mackerel, flounder, pheasant grouper, matsukawa, kue, mahata, flounder, blackfish, trough puffer, Amberjack etc. are mentioned.

以下、実施例を示して本発明の作用効果等を具体的に説明する。   Hereinafter, the effects and the like of the present invention will be specifically described with reference to examples.

(1)材料と方法
(1-1)細胞、ウイルス、薬品
E-11細胞は、5%ウシ胎仔血清(FBS)を加えたLeibovitzのL-15培地(Invitrogen、Carlsbad、CA)で25℃で維持した。魚類ノダウイルスは、2001年に長崎でマハタから分離された株を使用した。このウイルスは、RNA2ヌクレオチド配列分析によってRGNNVの遺伝子型に属することが確認されている。E-11細胞にベータノダウイルスを接種し、単層にあるこれら細胞のほぼすべてが細胞変性効果(CPE)を示したときにウイルスを採取した。NH4Cl、クロロキン、バフィロマイシンA1、およびクロルプロマジンはSigma社(St. Louis、Mo.)より購入、モネンシンは和光(大阪)より購入した。
(1-2)ウイルス感染と力価測定
E-11細胞に、薬剤添加あるいは非添加にて28℃で1時間ウイルスを接種した。次に、2% FBSを含有する成長培地で28℃で維持した。特に記載がない限り、細胞に対し、ある1つの物質によって28℃で1時間の前処理を行い、感染多重度(M.O.I.)を1にしてウイルスを接種した。ウイルス力価は、E-11細胞を使用する50%細胞変性終末点(TCID50)測定法として表した。
(1-3)RT-PCRによるウイルスRNAの検出
全RNAを、Trizol試薬(Invitrogen)を使用してRGNNV感染細胞(5×105)から調製した。M-MLV逆転写酵素(Invitrogen)によってRNA試料から、(+)RNA1、(-)RNA1、および18S rRNAを逆転写した。このとき、(+)RNA1にはRGRNA1-2490R(5’-gtcagtgtagtctgcatactg-3’:SEQ ID NO: 1)、(-)RNA1にはRGRNA1-1868F(5’-tgcgtgagttcgtcgagttt-3’:SEQ ID NO: 2)、18S rRNAには18S rRNA-R(5’-gctggaattaccgcggct-3’:SEQ ID NO: 3)を使用した。PCR増幅の際に使用したプライマー対は、RNA1の場合ではRGRNA1-1868FとRGRNA1-2490R、18S rRNAの場合では18S rRNA-F(5’-cggctaccacatccaaggaa-3’:SEQ ID NO: 4)と18S rRNA-Rであった。PCR産物をアガロースゲル電気泳動で泳動し、臭化エチジウム染色によって視覚化した。バンド強度は、Image Jソフトウェア(NIH)を使用して定量した。

(2)結果
(2-1)NH4Clおよびクロロキンのベータノダウイルス誘発性CPE発症に対する作用
ウイルス誘発性CPEの出現を指標として、リソソーム指向性物質のベータノダウイルスに対する作用を検討した。NH4Clおよびクロロキンは、エンドソーム内に拡散してプロトンシンクとして働き、エンドソーム酸性化を阻害する(Ohkuma S, Poole B (1978) Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci USA 75: 3327-31)。E-11細胞には、これらの物質のさまざまな濃度の存在下にて、M.O.I. = 1でRGNNVを接種した(図1)。非感染のE-11細胞は平坦な付着性の形状を示し(図1a)、ウイルス感染細胞は典型的なCPE形状を示し、接種の6日後までにディッシュから分離した(図1b)。対照的に、NH4Cl(図1c〜e)またはクロロキン(図1f〜h)の存在下でRGNNVに感染したE-11細胞では、用量依存的にCPEの発症が抑制された。1 mM NH4Cl(図1e)および1 uMクロロキン(図1h)の濃度の場合でそれぞれ、CPEが完全に抑制された。ウイルス感染に対するNH4Clおよびクロロキンの作用は、自身の細胞毒性に起因する可能性も考えられる。そこで、これらの物質のE-11細胞に対する細胞毒性を、WST-1測定法を使用して検討した。NH4Clおよびクロロキンによる細胞増殖および形態学的変化の度合はそれぞれ、最大12.5 mMおよび25 uMまでの濃度では影響を受けなかった(データ図示なし)。
(2-2)リソソーム指向性物質処理によるベータノダウイルスの細胞への吸着に対する影響
被験物質によるベータノダウイルス感染に対する阻害作用の機序を検討するため、ベータノダウイルスのE-11細胞への吸着に対する阻害剤の作用について検討した。図2AおよびBに示すように、RGNNVを28℃で1時間接種された細胞で、(+)RNA1のバンドがウイルス量依存的に検出された。1 mM NH4Clおよび1 uMクロロキンの存在下でウイルスに感染したE-11細胞内では、ウイルスの(+)RNA1がなお検出されていた(図2C)。薬物の存在下で検出された(+)RNA1の強度は、対照細胞の場合とほぼ同様であった(図2D)。この結果から、いずれの薬物もベータノダウイルスの細胞への吸着を阻害しなかったことが示唆された。
(2-3)ベータノダウイルスの細胞内への侵入を阻害するNH4Cl
NH4Clおよびクロロキンの阻害効果の詳細な機序を検討するため、ウイルスゲノムである(+)RNA1およびテンプレートである(-)RNA1の感染細胞での蓄積について検討した。E-11細胞には、これらの物質の添加あるいは非添加においてウイルスを接種し、感染細胞を指定時間インキュベーションし、その後細胞より全RNAを調整した。(-)RNA1は(+)RNA1をテンプレートとして合成が行われるので、細胞内での(-)RNA1の存在をウイルスゲノム複製の指標とした。図3AおよびBに示すように、対照細胞での(+)RNA1バンドの検出が徐々に増加し、接種18時間後で最大量に達した。接種1時間後では細胞に有意な(-)RNA1バンドは検出されなかったが、それらバンドの強度は接種9時間後までに漸増して、接種9〜12時間後では有意に増加した。これらのデータにより、ベータノダウイルスは細胞膜への付着後に細胞に侵入してからすぐに(-)RNA1の合成が開始することが示唆された。1 mM NH4Clまたは1 uMクロロキンの存在下にて接種、培養された細胞では、有意な(-)RNA1バンドが検出されなかった。さらに、(+)RNA1のバンド強度はサンプリング期間中にわたって一定であった。
(1) Materials and methods (1-1) Cells, viruses, drugs
E-11 cells were maintained at 25 ° C. in Leibovitz L-15 medium (Invitrogen, Carlsbad, Calif.) Supplemented with 5% fetal calf serum (FBS). As a fish nodavirus, a strain isolated from Mahata in Nagasaki in 2001 was used. This virus has been confirmed to belong to the RGNNV genotype by RNA2 nucleotide sequence analysis. E-11 cells were inoculated with betanodavirus and the virus was harvested when almost all of these cells in the monolayer showed cytopathic effect (CPE). NH 4 Cl, chloroquine, bafilomycin A1, and chlorpromazine were purchased from Sigma (St. Louis, Mo.), and monensin was purchased from Wako (Osaka).
(1-2) Virus infection and titer measurement
E-11 cells were inoculated with virus for 1 hour at 28 ° C. with or without the addition of drugs. It was then maintained at 28 ° C. in growth medium containing 2% FBS. Unless otherwise stated, cells were pretreated with a single substance at 28 ° C. for 1 hour and inoculated with virus at a multiplicity of infection (MOI) of 1. Viral titer was expressed as a 50% cytopathic endpoint (TCID 50 ) assay using E-11 cells.
(1-3) Detection of viral RNA by RT-PCR Total RNA was prepared from RGNNV-infected cells (5 × 10 5 ) using Trizol reagent (Invitrogen). (+) RNA1, (-) RNA1, and 18S rRNA were reverse transcribed from RNA samples by M-MLV reverse transcriptase (Invitrogen). At this time, RGRNA1-2490R (5'-gtcagtgtagtctgcatactg-3 ': SEQ ID NO: 1) is included in (+) RNA1, and RGRNA1-1868F (5'-tgcgtgagttcgtcgagttt-3': SEQ ID NO: 2) 18S rRNA-R (5′-gctggaattaccgcggct-3 ′: SEQ ID NO: 3) was used as the 18S rRNA. The primer pairs used for PCR amplification were RGRNA1-1868F and RGRNA1-2490R for RNA1 and 18S rRNA-F (5'-cggctaccacatccaaggaa-3 ': SEQ ID NO: 4) and 18S rRNA for 18S rRNA. -R. PCR products were run on agarose gel electrophoresis and visualized by ethidium bromide staining. Band intensity was quantified using Image J software (NIH).

(2) Results (2-1) Effects of NH 4 Cl and chloroquine on the onset of betanodavirus-induced CPE Using the appearance of virus-induced CPE as an index, the effect of lysosome-directing substances on betanodavirus was examined. NH 4 Cl and chloroquine diffuse into endosomes and act as proton sinks to inhibit endosomal acidification (Ohkuma S, Poole B (1978) Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci USA 75: 3327-31). E-11 cells were inoculated with RGNNV at MOI = 1 in the presence of various concentrations of these substances (FIG. 1). Uninfected E-11 cells showed a flat adherent shape (FIG. 1a) and virus-infected cells showed a typical CPE shape and separated from the dish by 6 days after inoculation (FIG. 1b). In contrast, E-11 cells infected with RGNNV in the presence of NH 4 Cl (FIGS. 1c-e) or chloroquine (FIGS. 1f-h) suppressed the development of CPE in a dose-dependent manner. CPE was completely inhibited at concentrations of 1 mM NH 4 Cl (FIG. 1e) and 1 uM chloroquine (FIG. 1h), respectively. The effect of NH 4 Cl and chloroquine on viral infection may be due to its own cytotoxicity. Therefore, the cytotoxicity of these substances to E-11 cells was examined using the WST-1 assay. The degree of cell growth and morphological changes by NH 4 Cl and chloroquine were not affected at concentrations up to 12.5 mM and 25 uM, respectively (data not shown).
(2-2) Effect of lysosome-directed substance treatment on betanodavirus adsorption to cells To examine the mechanism of the inhibitory effect of test substances on betanodavirus infection, adsorption of betanodavirus to E-11 cells The effect of the inhibitor on the effect was investigated. As shown in FIGS. 2A and B, (+) RNA1 bands were detected in a viral load-dependent manner in cells inoculated with RGNNV at 28 ° C. for 1 hour. Viral (+) RNA1 was still detected in E-11 cells infected with the virus in the presence of 1 mM NH 4 Cl and 1 uM chloroquine (FIG. 2C). The intensity of (+) RNA1 detected in the presence of drug was almost similar to that of control cells (FIG. 2D). From these results, it was suggested that none of the drugs inhibited the adsorption of betanodavirus to cells.
(2-3) NH 4 Cl that inhibits betanodavirus entry into cells
In order to investigate the detailed mechanism of the inhibitory effect of NH 4 Cl and chloroquine, we investigated the accumulation of (+) RNA1 as the viral genome and (-) RNA1 as the template in infected cells. E-11 cells were inoculated with the virus with or without these substances, and the infected cells were incubated for a specified time, and then total RNA was prepared from the cells. Since (-) RNA1 is synthesized using (+) RNA1 as a template, the presence of (-) RNA1 in cells was used as an indicator of viral genome replication. As shown in FIGS. 3A and B, the detection of (+) RNA1 band in control cells gradually increased, reaching a maximum at 18 hours after inoculation. No significant (-) RNA1 bands were detected in the cells 1 hour after inoculation, but the intensity of these bands increased gradually by 9 hours after inoculation and increased significantly after 9-12 hours inoculation. These data suggest that beta-nodavirus begins synthesis of (-) RNA1 as soon as it enters the cell after attachment to the cell membrane. No significant (−) RNA1 band was detected in cells inoculated and cultured in the presence of 1 mM NH 4 Cl or 1 uM chloroquine. Furthermore, the band intensity of (+) RNA1 was constant over the sampling period.

次に、ウイルス感染後のいくつかの時間にて、ウイルス感染E-11細胞にNH4Clを添加した(図3C)。接種と同時に最終濃度が1mMとなるようにNH4Clを添加した場合には、パネルBに示すように細胞への吸着のみを測定した対照と比較して(+)RNA1の蓄積が検出されなかった。しかし、接種1時間後で細胞にNH4Clを添加した場合には、(+)RNA1の有意な蓄積が検出された。接種3時間後にNH4Clを添加した場合には、細胞に蓄積した(+)RNA1の量は、非感染細胞での(+)RNA1の量とほぼ同じであった。これらの結果を考慮すると、NH4Clはベータノダウイルスの細胞への早期侵入段階を阻害し、ベータノダウイルスゲノムが細胞に侵入した後のウイルス複製に対する作用はなかった。
(2-4)リソソーム指向性物質によるウイルス複製に対する阻害作用
リソソーム指向性物質の存在下においてベータノダウイルスの感染後に培養上澄み液内に放出された感染性ウイルスの量を測定した。図4Aに示すように、NH4Clの濃度が増えるほど感染性ウイルスが減少した。160 uM NH4Clの濃度では、感染性ウイルスの数は、対照の約90%まで減少した。630 uM NH4Clの濃度で処理した細胞では、ウイルス産生のほぼ完全な消失が認められた。クロロキンは、ウイルス産生に対してNH4Clと同じ作用であった(図4B)。200 nMクロロキンの存在下では、感染性ウイルスは対照の5%未満にまで減少した。液胞型H+-ATPアーゼの特異的阻害剤(Perez L, Carrasco L (1994) Involvement of the vacuolar H(+)-ATPase in animal virus entry. J Gen Virol 75: 2595-606)であるリソソーム指向性物質バフィロマイシンA1も、ウイルス産生に対する阻害作用を用量依存的に示した(図4C)。1 nMバフィロマイシンA1を接種後6日間処理した細胞では、ウイルス誘発性CPEを認めなかった(表1)。さらに、リソソーム指向性物質であるモネンシン、およびクロルプロマジンも、表1に示す濃度でウイルス誘発性CPEの発症を阻害した。これらの結果から、さまざまなリソソーム指向性物質が、ベータノダウイルス感染に対する阻害剤として利用できたことが強く示唆された。
Next, NH 4 Cl was added to virus-infected E-11 cells at some time after virus infection (FIG. 3C). When NH 4 Cl was added to a final concentration of 1 mM at the same time as inoculation, (+) RNA1 accumulation was not detected as compared to the control that only measured cell adsorption, as shown in Panel B. It was. However, significant addition of (+) RNA1 was detected when NH 4 Cl was added to the cells 1 hour after inoculation. When NH 4 Cl was added 3 hours after inoculation, the amount of (+) RNA1 accumulated in the cells was almost the same as the amount of (+) RNA1 in uninfected cells. Considering these results, NH 4 Cl inhibited the early entry stage of beta nodavirus into the cell and had no effect on viral replication after the beta noda virus genome entered the cell.
(2-4) Inhibitory effect on virus replication by lysosome-directing substance The amount of infectious virus released into the culture supernatant after betanodavirus infection in the presence of lysosome-directing substance was measured. As shown in FIG. 4A, infectious virus decreased as the concentration of NH 4 Cl increased. At a concentration of 160 uM NH 4 Cl, the number of infectious viruses was reduced to approximately 90% of the control. In cells treated with a concentration of 630 uM NH 4 Cl, almost complete loss of virus production was observed. Chloroquine had the same effect as NH 4 Cl on virus production (FIG. 4B). In the presence of 200 nM chloroquine, infectious virus was reduced to less than 5% of the control. A specific inhibitor of vacuolar H + -ATPase (Perez L, Carrasco L (1994) Involvement of the vacuolar H (+)-ATPase in animal virus entry. J Gen Virol 75: 2595-606) The sex substance bafilomycin A1 also showed an inhibitory effect on virus production in a dose-dependent manner (FIG. 4C). Virus-induced CPE was not observed in cells treated with 1 nM bafilomycin A1 for 6 days after inoculation (Table 1). In addition, the lysosome-directing substances monensin and chlorpromazine also inhibited the onset of virus-induced CPE at the concentrations shown in Table 1. These results strongly suggested that various lysosome-directing substances could be used as inhibitors against betanodavirus infection.

(3)考察
本実施例では、魚類細胞培養でのベータノダウイルス感染に対する有効な抗ウイルス物質としてのリソソーム指向性物質について検討した。これらの物質を使用した理由は、ベータノダウイルスが細胞内小胞中に存在することがLiuらの電子顕微鏡検査によって観察されている(非特許文献15)ためであった。最初に、NH4Clおよびクロロキンがベータノダウイルス感染後にCPEの発症を阻害できるかどうかを検討するため、これらの物質を使用した。どちらの物質ともに、非細胞毒性の濃度でウイルス誘発性CPEを完全に阻害した(図1)。NH4Clおよびクロロキンは、ウイルスの細胞への付着に対する作用はなかった(図2CおよびD)。さらに、接種1時間後でNH4Clを培地に添加した場合に(+)RNA1蓄積量が影響を受けなかったために、NH4Clはポリメラーゼ活性を阻害したのではなく非常に早期な段階で感染を阻害したことが示された(図3C)。本実施例におけるNH4Clの有効量(1 mM)およびクロロキンの有効量(1 uM)は、別のウイルスで使用した有効量(Brindley MA, Maury W (2005) Endocytosis and a low-pH step are required for productive entry of equine infectious anemia virus. J Virol 79: 14482-8; Chu VC, McElroy LJ, Chu V, Bauman BE, Whittaker GR (2006) The avian coronavirus infectious bronchitis virus undergoes direct low-pH-dependent fusion activation during entry into host cells. J Virol 80: 3180-3188; Lecot S, Belouzard S, Dubuisson J, Rouille Y (2005) Bovine viral diarrhea virus entry is dependent on clathrin-mediated endocytosis. J Virol 79: 10826-9; Stuart AD, Brown TD (2006) Entry of feline calicivirus is dependent on clathrin-mediated endocytosis and acidification in endosomes. J Virol 80: 7500-9)よりも濃度が10倍以上低かった。ベータノダウイルスの感染は、バフィロマイシンA1およびモネンシンによっても阻害された(図4および表1)ため、リソソーム指向性物質はベータノダウイルス感染の予防に有用であることが確認された。
(3) Discussion In this example, a lysosome-directing substance as an effective antiviral substance against betanodavirus infection in fish cell culture was examined. The reason for using these substances was that the presence of betanodavirus in intracellular vesicles was observed by electron microscopy of Liu et al. (Non-patent Document 15). Initially, these substances were used to investigate whether NH 4 Cl and chloroquine could inhibit the development of CPE after beta nodavirus infection. Both substances completely inhibited virus-induced CPE at non-cytotoxic concentrations (Figure 1). NH 4 Cl and chloroquine had no effect on virus attachment to cells (FIGS. 2C and D). Furthermore, when NH 4 Cl was added to the medium 1 hour after inoculation, (+) RNA1 accumulation was not affected, so NH 4 Cl did not inhibit polymerase activity but was infected at a very early stage. Was shown to be inhibited (FIG. 3C). In this example, the effective amount of NH 4 Cl (1 mM) and the effective amount of chloroquine (1 uM) are the effective amounts used in another virus (Brindley MA, Maury W (2005) Endocytosis and a low-pH step are required for productive entry of equine infectious anemia virus.J Virol 79: 14482-8; Chu VC, McElroy LJ, Chu V, Bauman BE, Whittaker GR (2006) The avian coronavirus infectious bronchitis virus undergoes direct low-pH-dependent fusion activation J Virol 80: 3180-3188; Lecot S, Belouzard S, Dubuisson J, Rouille Y (2005) Bovine viral diarrhea virus entry is dependent on clathrin-mediated endocytosis. J Virol 79: 10826-9; Stuart AD, Brown TD (2006) Entry of feline calicivirus is dependent on clathrin-mediated endocytosis and acidification in endosomes. J Virol 80: 7500-9). Betanodavirus infection was also inhibited by bafilomycin A1 and monensin (FIG. 4 and Table 1), confirming that lysosome-directing substances are useful in preventing betanodavirus infection.

NH4Clまたはクロロキンによるベータノダウイルス感染細胞でのCPE阻害を確認した結果。細胞に、図に示した濃度のNH4Cl(c〜e)またはクロロキン(f〜h)の存在下でRGNNVを接種した。接種6日後に細胞の形態を撮影した。対照細胞は、図に示したM.O.I.で感染させ、物質なしでインキュベーションした(a-b)。NH 4 Cl or a result of the check the CPE inhibition of beta nodavirus infected cells by chloroquine. Cells were inoculated with RGNNV in the presence of the indicated concentrations of NH 4 Cl (ce) or chloroquine (f to h). Cell morphology was photographed 6 days after inoculation. Control cells were infected with the indicated MOI and incubated without substance (ab). NH4ClおよびクロロキンがベータノダウイルスのE-11細胞への吸着に影響しないことを確認した結果。(A)RGNNVを図に示したM.O.I.で細胞(3〜4×105)に接種し、非結合のウイルスを除去するため細胞を4回洗浄した。全RNAを調整し、(+)RNA1および18S rRNAをRT-PCRによって増幅してからアガロースゲル電気泳動を行った。(B)(+)RNA1のバンド強度は、細胞の18S rRNAを基準に正規化し、M.O.I. = 1での細胞のバンド強度と比較した(+)RNA1の比として示した。データは、3つの独立した実験からの平均および標準偏差として表した。(C)1 mM NH4Clまたは1 uMクロロキンの存在下で1時間ウイルスを接種した細胞をそれぞれ、1 mM NH4Clまたは1 uMクロロキンを含有する培地で洗浄した。次に、全RNAを調整してRT-PCRを行った。対照細胞は物質なしの状態で、M.O.I. = 0.1または1で接種した。(D)(+)RNA1のバンド強度はパネルBで示した正規化を行い、M.O.I. = 1での対照のバンド強度と比較した(+)RNA1の比として計算した。データは、3つの独立した実験からの平均および標準偏差として表した。Results of confirming that NH 4 Cl and chloroquine do not affect the adsorption of betanodavirus to E-11 cells. (A) Cells (3-4 × 10 5 ) were inoculated with RGNNV at the indicated MOI and the cells were washed 4 times to remove unbound virus. Total RNA was prepared, (+) RNA1 and 18S rRNA were amplified by RT-PCR, and then agarose gel electrophoresis was performed. (B) The band intensity of (+) RNA1 was normalized with respect to the 18S rRNA of the cells and expressed as the ratio of (+) RNA1 compared to the cell band intensity at MOI = 1. Data were expressed as mean and standard deviation from 3 independent experiments. (C) 1 mM NH 4 Cl or 1 uM chloroquine cells inoculated with 1 hour virus in the presence, respectively, were washed in media containing 1 mM NH 4 Cl or 1 uM chloroquine. Next, total RNA was prepared and RT-PCR was performed. Control cells were inoculated with MOI = 0.1 or 1 without substance. (D) The band intensity of (+) RNA1 was calculated as the ratio of (+) RNA1 compared to the band intensity of the control with the normalization shown in panel B and MOI = 1. Data were expressed as mean and standard deviation from 3 independent experiments. NH4Clおよびクロロキンがベータノダウイルス感染の早期段階を阻害することを確認した結果。(A)1 mM NH4Cl(中段パネル)および1 uMクロロキン(下段パネル)の存在下で、細胞にRGNNVを接種した。対照細胞は物質なしの状態で接種、インキュベーションした(上段パネル)。接種後の指定時間にて、全RNAを抽出し、(+)RNA1、(-)RNA1および18S rRNAをRT-PCRによって検出した。(B)RNA1のバンド強度は、接種1時間後にて認められた(+)RNA1のバンド強度に対する(+)RNA1の相対値(黒丸)および(-)RNA1の相対値(白丸)として正規化、計算した。データは、2つの独立した実験からの平均として表した。(C)細胞にウイルスを接種し、実験の間中1 mM NH4Clがある場合(灰色のバー)またはない場合(白色のバー)にてインキュベーションした。接種後の指定時間にて、NH4Clを最終濃度1 mMになるまでウイルス感染細胞に添加した(黒色のバー)。接種12時間後に、全RNAを抽出してRT-PCRを行った。(+)RNA1のバンド強度は、ウイルス感染のみを行った細胞(吸収のみ)のバンド強度と比較した(+)RNA1の比として正規化、表示した。データは、3つの独立した実験からの平均および標準偏差として表した。Results of confirming that NH 4 Cl and chloroquine inhibit early stages of beta-nodavirus infection. (A) Cells were inoculated with RGNNV in the presence of 1 mM NH 4 Cl (middle panel) and 1 uM chloroquine (lower panel). Control cells were inoculated and incubated without substance (upper panel). At the specified time after inoculation, total RNA was extracted, and (+) RNA1, (−) RNA1 and 18S rRNA were detected by RT-PCR. (B) RNA1 band intensities were normalized as (+) RNA1 relative values (black circles) and (-) RNA1 relative values (white circles), which were observed 1 hour after inoculation. Calculated. Data were expressed as the average from two independent experiments. (C) Cells were inoculated with virus and incubated throughout the experiment with or without 1 mM NH 4 Cl (grey bar) or not (white bar). At the specified time after inoculation, NH 4 Cl was added to the virus-infected cells to a final concentration of 1 mM (black bar). 12 hours after inoculation, total RNA was extracted and RT-PCR was performed. The band intensity of (+) RNA1 was normalized and displayed as the ratio of (+) RNA1 compared to the band intensity of cells infected only with virus (absorption only). Data were expressed as mean and standard deviation from 3 independent experiments. 図に示す様々な濃度のNH4Cl(A)、クロロキン(B)、およびバフィロマイシンA1(C)の存在下でE-11細胞にRGNNVを接種した。接種4日後に培養上澄み液を採取し、TCID50測定法によって感染力価を測定した。相対的ウイルス産生は、物質がない場合で感染した細胞の上澄み液のウイルス力価に対するウイルス力価の百分率として計算した。データは、正副で行った2つの独立した実験からの平均として表した。E-11 cells were inoculated with RGNNV in the presence of various concentrations of NH 4 Cl (A), chloroquine (B), and bafilomycin A1 (C) as shown. The culture supernatant was collected 4 days after the inoculation, and the infectious titer was measured by the TCID 50 measurement method. Relative virus production was calculated as the percentage of virus titer relative to the virus titer of the supernatant of infected cells in the absence of material. Data were expressed as the average from two independent experiments performed in primary and secondary.

Claims (4)

エンドソーム酸性化阻害剤を有効成分とすることを特徴とする魚類生物のベータノダウイルス感染阻害剤。 A betanodavirus infection inhibitor for fish organisms, characterized by comprising an endosomal acidification inhibitor as an active ingredient. エンドソーム酸性化阻害剤が、塩化アンモニウム(NH4Cl)、クロロキン、バフィロマイシンA1およびモネンシンからなる群より選択される1種または2種以上である請求項1の感染阻害剤。 The infection inhibitor according to claim 1, wherein the endosomal acidification inhibitor is one or more selected from the group consisting of ammonium chloride (NH 4 Cl), chloroquine, bafilomycin A1 and monensin. エンドソーム酸性化阻害剤の有効量を魚類生物に投与することを特徴とする魚類のベータノダウイルス感染阻害方法。 A method for inhibiting fish betanodavirus infection, which comprises administering an effective amount of an endosomal acidification inhibitor to a fish organism. エンドソーム酸性化阻害剤が、塩化アンモニウム(NH4Cl)、クロロキン、バフィロマイシンA1およびモネンシンからなる群より選択される1種または2種以上である請求項3の感染阻害方法。 The infection inhibition method according to claim 3, wherein the endosomal acidification inhibitor is one or more selected from the group consisting of ammonium chloride (NH 4 Cl), chloroquine, bafilomycin A1 and monensin.
JP2007284455A 2007-10-31 2007-10-31 Beta-nodavirus infection inhibitor for fish Pending JP2009108004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007284455A JP2009108004A (en) 2007-10-31 2007-10-31 Beta-nodavirus infection inhibitor for fish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007284455A JP2009108004A (en) 2007-10-31 2007-10-31 Beta-nodavirus infection inhibitor for fish

Publications (1)

Publication Number Publication Date
JP2009108004A true JP2009108004A (en) 2009-05-21

Family

ID=40776920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007284455A Pending JP2009108004A (en) 2007-10-31 2007-10-31 Beta-nodavirus infection inhibitor for fish

Country Status (1)

Country Link
JP (1) JP2009108004A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153103A (en) * 2010-01-28 2011-08-11 Univ Of Tokyo Agent for preventing and treating ichthyophthiriasis of marine fish
WO2012147933A1 (en) * 2011-04-28 2012-11-01 国立大学法人大阪大学 Pharmaceutical composition for treating lysosomal storage disease

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153103A (en) * 2010-01-28 2011-08-11 Univ Of Tokyo Agent for preventing and treating ichthyophthiriasis of marine fish
WO2012147933A1 (en) * 2011-04-28 2012-11-01 国立大学法人大阪大学 Pharmaceutical composition for treating lysosomal storage disease
US9138465B2 (en) 2011-04-28 2015-09-22 Osaka University Pharmaceutical composition for treating lysosomal storage disease

Similar Documents

Publication Publication Date Title
Bandín et al. Host range, host specificity and hypothesized host shift events among viruses of lower vertebrates
Khandelwal et al. Emetine inhibits replication of RNA and DNA viruses without generating drug-resistant virus variants
Wang et al. Antiviral activity by fish antimicrobial peptides of epinecidin-1 and hepcidin 1–5 against nervous necrosis virus in medaka
Kibenge et al. Aquaculture virology
Yu et al. Moroxydine hydrochloride inhibits grass carp reovirus replication and suppresses apoptosis in Ctenopharyngodon idella kidney cells
EP3792354A1 (en) Hepatitis b virus-derived polypeptide and anti-viral use thereof
Yu et al. The inhibitory activities and antiviral mechanism of Viola philippica aqueous extracts against grouper iridovirus infection in vitro and in vivo
Corteel et al. Effect of dose and challenge routes of Vibrio spp. on co-infection with white spot syndrome virus in Penaeus vannamei
Saint-Jean et al. Interferon mediated antiviral activity against salmonid fish viruses in BF-2 and other cell lines
Alvarez-Torres et al. Role of the IFN I system against the VHSV infection in juvenile Senegalese sole (Solea senegalensis)
Morick et al. Inhibition of nervous necrosis virus by ribavirin in a zebrafish larvae model
Avunje et al. Poly (I: C) and imiquimod induced immune responses and their effects on the survival of olive flounder (Paralichthys olivaceus) from viral haemorrhagic septicaemia
Adachi et al. Inhibition of betanodavirus infection by inhibitors of endosomal acidification
Liu et al. Herbal active small molecule as an immunomodulator for potential application on resistance of common carp against SVCV infection
NO335129B1 (en) Use of neomycin for the manufacture of a medicament for treating or preventing infection with infectious pancreatic necrosis virus (IPNV) in aquatic animals
US20210161933A1 (en) Kits for preventing and treating ebola
JP2009108004A (en) Beta-nodavirus infection inhibitor for fish
Fouad et al. Control of spring viremia of carp in common carp using RNA interference
CN113440527B (en) Application of naphthoquine or naphthoquine-containing combined preparation in resisting coronavirus
WO2022069684A1 (en) Treatment for viral infection
EP3003364B1 (en) Interactions of betanodaviruses in infection
JP2023517536A (en) Compounds for use in inflammatory conditions
Leong Fish viruses
Li et al. MK-0608 inhibits in vitro and in vivo RNA replication of infectious pancreatic necrosis virus
Nerland et al. Viruses of fish