JP2009106013A - Electrolytic capacitor circuit - Google Patents

Electrolytic capacitor circuit Download PDF

Info

Publication number
JP2009106013A
JP2009106013A JP2007273301A JP2007273301A JP2009106013A JP 2009106013 A JP2009106013 A JP 2009106013A JP 2007273301 A JP2007273301 A JP 2007273301A JP 2007273301 A JP2007273301 A JP 2007273301A JP 2009106013 A JP2009106013 A JP 2009106013A
Authority
JP
Japan
Prior art keywords
arm
charge
electrolytic capacitor
discharge
forward conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007273301A
Other languages
Japanese (ja)
Inventor
Makoto Ono
誠 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2007273301A priority Critical patent/JP2009106013A/en
Publication of JP2009106013A publication Critical patent/JP2009106013A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Rectifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To satisfy the requirement that, in an electrolytic capacitor circuit having an electrolytic capacitor in a DC circuit such as an inverter device and a DC power supply device, a circuit component should be effectively utilized (the number of the circuit components should be reduced as much as possible), and electric charges accumulated in the electrolytic capacitor should be discharged at the stop of the device or the release of a power supply. <P>SOLUTION: The electric charges accumulated in the electrolytic capacitor 8 are discharged by a charging/discharging load 6B by effectively utilizing the circuit component (the charging/discharging load 6B, in particular), and by constituting a closed circuit R including the electrolytic capacitor 8 and the charging/discharging load 6B. Due to the discharge of the electric charges accumulated in the electrolytic capacitor 8 by the charging/discharging load 6B, there is no necessity for preparing a discharging load, and then cost reduction becomes possible. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、インバータ装置,直流電源装置などの直流回路部に電解コンデンサを有する回路に関する。   The present invention relates to a circuit having an electrolytic capacitor in a DC circuit section such as an inverter device or a DC power supply device.

インバータ装置,直流電源装置などの直流回路部に電解コンデンサを備えた電解コンデンサ回路では、電源投入時に電解コンデンサに対して過電流が流れるのを防止するために、予備充電負荷を備えたものや、また、電解コンデンサに蓄積された電荷を装置停止時,電源開放時に速やかに放電するために放電負荷を備えたものが適用されている(例えば、特許文献1)。   In an electrolytic capacitor circuit having an electrolytic capacitor in a DC circuit section such as an inverter device or a DC power supply device, a precharge load is provided to prevent an overcurrent from flowing to the electrolytic capacitor when the power is turned on. In addition, a battery equipped with a discharge load is applied in order to quickly discharge the charge accumulated in the electrolytic capacitor when the apparatus is stopped or when the power supply is opened (for example, Patent Document 1).

図7は、上記従来の電解コンデンサ回路の一例を示す概略説明図であり、例えば電源側への回生を可能にしたり、高調波抑制するために、順変換部に自己消弧素子を備えたものである。図7において、符号1は、三相交流電源と順変換部2との間に介挿された遮断器を示し、通常は投入された状態となっており、三相交流電力の供給電力を必要に応じて遮断するものである。該遮断器1を介して三相交流電源に接続された順変換部2は、整流素子3(例えば、ダイオード等)と、該整流素子3に対し逆並列に接続された自己消弧能力を有するスイッチング素子(例えば、IGBT等;以下、自己消弧素子と称する)4と、で構成されている。なお、この順変換部2の整流素子3により交流電力から直流電力に変換される回路部において、正極側(図中では上側)をPアーム、負極側(図中では下側)をNアームと示し、Pアームに備えられた順変換部の集合をPアーム順変換部群2P,Nアームに備えられた順変換部の集合をNアーム順変換部群2Nと示す。   FIG. 7 is a schematic explanatory diagram showing an example of the above-described conventional electrolytic capacitor circuit. For example, in order to enable regeneration to the power supply side or to suppress harmonics, the forward conversion unit includes a self-extinguishing element. It is. In FIG. 7, the code | symbol 1 shows the circuit breaker inserted between the three-phase alternating current power supply and the forward conversion part 2, and is in the state normally turned on, and the supply power of three-phase alternating current power is required It shuts off according to. The forward conversion unit 2 connected to the three-phase AC power source via the circuit breaker 1 has a rectifying element 3 (for example, a diode) and a self-extinguishing capability connected in antiparallel to the rectifying element 3. And a switching element (for example, IGBT or the like; hereinafter referred to as a self-extinguishing element) 4. In the circuit unit in which the AC power is converted from DC power by the rectifying element 3 of the forward conversion unit 2, the positive electrode side (upper side in the figure) is the P arm and the negative electrode side (lower side in the figure) is the N arm. A set of forward conversion units provided in the P arm is referred to as a P arm forward conversion unit group 2P, and a set of forward conversion units provided in the N arm is referred to as an N arm forward conversion unit group 2N.

符号7Aは、予備充電開閉器5Aと予備充電負荷6Aとの並列接続によって構成され、前記Pアーム順変換部群2PまたはNアーム順変換部群2Nの直流出力側に少なくとも一つ接続された予備充電回路を示すものであり、該予備充電開閉器5Aの投入時には前記予備充電負荷6Aの両端が短絡される(すなわち、予備充電負荷6Aに電流が流れないようになる)。   Reference numeral 7A is constituted by a parallel connection of a precharge switch 5A and a precharge load 6A, and at least one spare connected to the DC output side of the P arm forward converter group 2P or the N arm forward converter group 2N. A charging circuit is shown, and both ends of the preliminary charging load 6A are short-circuited when the preliminary charging switch 5A is turned on (that is, no current flows through the preliminary charging load 6A).

符号8は、前記順変換部2の直流出力電圧に含まれる脈流波形を平滑化するための電解コンデンサを示すものである。この電解コンデンサ8においては、電源投入時(予備充電開閉器5Aが投入される前)に充電開始され、その際に発生し得る突入電流(瞬時に流れ込む急峻かつ巨大な突入電流)は、前記予備充電負荷6Aにより抑制される。また、前記電解コンデンサ8に蓄積された電荷は、放電開閉器10と直列に接続されている放電負荷9により、装置停止時,電源開放時に放出される。   Reference numeral 8 denotes an electrolytic capacitor for smoothing a pulsating current waveform included in the DC output voltage of the forward conversion unit 2. In this electrolytic capacitor 8, charging is started when the power is turned on (before the preliminary charging switch 5 </ b> A is turned on), and an inrush current (a steep and enormous inrush current that flows instantaneously) generated at that time is It is suppressed by the charging load 6A. The electric charge accumulated in the electrolytic capacitor 8 is discharged by the discharge load 9 connected in series with the discharge switch 10 when the apparatus is stopped or when the power supply is opened.

符号11は、順変換部2の自己消弧素子4,逆変換部(図示せず)等を制御するための制御回路を示し、該制御回路11は三相交流電源ラインのうち任意の二相ラインから電力が供給される。   Reference numeral 11 denotes a control circuit for controlling the self-extinguishing element 4, the reverse conversion unit (not shown), etc. of the forward conversion unit 2, and the control circuit 11 is an arbitrary two-phase of the three-phase AC power supply line. Power is supplied from the line.

前記の順変換部2のように、整流素子3に対し逆並列に自己消弧素子4を接続した構成により、電動機(図示せず)において発生した電圧は逆変換部(図示せず)の整流素子3を通して一旦直流に変換され、且つ電解コンデンサ8によって平滑された後、Pアーム順変換部群2PおよびNアーム順変換部群2Nに備えられた自己消弧素子4によって三相交流に逆変換されて交流電源側に回生される。   Due to the configuration in which the self-extinguishing element 4 is connected in antiparallel with the rectifying element 3 as in the forward converting part 2, the voltage generated in the electric motor (not shown) is rectified by the reverse converting part (not shown). After being converted into direct current through the element 3 and smoothed by the electrolytic capacitor 8, it is converted back to three-phase alternating current by the self-extinguishing element 4 provided in the P arm forward conversion unit group 2P and the N arm forward conversion unit group 2N. And regenerated on the AC power supply side.

ここで、図7に示した電解コンデンサ回路における各運転の各開閉器,各順変換部等の状態および電解コンデンサ回路の動作を表1に基づいて説明する。   Here, the state of each switch, each forward conversion unit, etc. in each operation in the electrolytic capacitor circuit shown in FIG. 7 and the operation of the electrolytic capacitor circuit will be described based on Table 1.

Figure 2009106013
Figure 2009106013

表1に示すように、予備充電時は、遮断器1を投入,予備充電開閉器5Aを開放,放電開閉器10を開放,Pアーム順変換部群2P(に備えられた自己消弧素子4)およびNアーム順変換部群2N(に備えられた自己消弧素子4)をオフ制御にする。その結果、順変換部2の整流素子3によって交流から直流に変換された電流は、前記予備充電負荷6Aによって抑制され、前記電解コンデンサ8に蓄積される。通常運転時は、遮断器1を投入,予備充電開閉器5Aを投入,放電開閉器10を開放,Pアーム順変換部群2P(に備えられた自己消弧素子4)およびNアーム順変換部群2N(に備えられた自己消弧素子4)をオンオフ制御にする。その結果、順変換部2の整流素子3によって交流電力から直流電力に変換され、直流出力電圧に含まれる脈流波形が電解コンデンサ8を介して平滑化され、例えば逆変換部(図示せず)等に出力される。放電時(装置停止時および電源開放時)は、遮断器1を開放,予備充電開閉器5Aを開放,放電開閉器10を投入,Pアーム順変換部群2P(に備えられた自己消弧素子4)およびNアーム順変換部群2N(に備えられた自己消弧素子4)をオフ制御にする。その結果、直流回路部のPアームとNアーム間とが短絡されることによって、前記電解コンデンサ8と放電負荷9を含む閉回路Rが構成され、前記電解コンデンサ8に蓄積された電荷が前記放電負荷9によって放出される。   As shown in Table 1, during precharge, the circuit breaker 1 is turned on, the precharge switch 5A is opened, the discharge switch 10 is opened, and the self-extinguishing element 4 provided in the P arm forward conversion unit group 2P ( ) And the N-arm forward conversion unit group 2N (the self-extinguishing element 4 provided in) is turned off. As a result, the current converted from alternating current to direct current by the rectifying element 3 of the forward converter 2 is suppressed by the precharge load 6 </ b> A and accumulated in the electrolytic capacitor 8. During normal operation, the circuit breaker 1 is turned on, the precharge switch 5A is turned on, the discharge switch 10 is opened, the P-arm forward conversion unit group 2P (the self-extinguishing element 4 provided) and the N-arm forward conversion unit The group 2N (the self-extinguishing element 4 provided in) is turned on / off. As a result, the AC power is converted from DC power by the rectifying element 3 of the forward conversion unit 2, and the pulsating waveform included in the DC output voltage is smoothed via the electrolytic capacitor 8, for example, an inverse conversion unit (not shown). Etc. At the time of discharging (when the apparatus is stopped and when the power supply is opened), the circuit breaker 1 is opened, the precharge switch 5A is opened, the discharge switch 10 is turned on, and the self-extinguishing element provided in the P arm forward conversion unit group 2P 4) and the N-arm forward conversion unit group 2N (the self-extinguishing element 4 provided in the same) are turned off. As a result, a short circuit is formed between the P arm and the N arm of the DC circuit unit, thereby forming a closed circuit R including the electrolytic capacitor 8 and the discharge load 9, and the electric charge accumulated in the electrolytic capacitor 8 is discharged into the discharge. Released by the load 9.

次に、従来の電解コンデンサ回路の他例(三相交流電力側(Pアーム順変換部群2PおよびNアーム順変換部群2Nの入力側)に予備充電回路を配置した電解コンデンサ回路)を概略図に基づいて説明する。図7と同一なものについては、同一符号を用いて詳細な説明は省略する。図8において、符号12は、遮断器1を介して三相交流電源に接続された主開閉器を示し、Pアーム順変換部群2PおよびNアーム順変換部群2Nの交流入力側に接続される。予備充電負荷6Aと予備充電開閉器5Bとを直列に接続して構成された予備充電回路7Bは、前記主開閉器12と並列に接続される。   Next, another example of a conventional electrolytic capacitor circuit (an electrolytic capacitor circuit in which a precharging circuit is arranged on the three-phase AC power side (input side of the P arm forward conversion unit group 2P and the N arm forward conversion unit group 2N)) is schematically illustrated. This will be described with reference to the drawings. About the same thing as FIG. 7, detailed description is abbreviate | omitted using the same code | symbol. In FIG. 8, the code | symbol 12 shows the main switch connected to the three-phase alternating current power supply via the circuit breaker 1, and is connected to the alternating current input side of P arm forward conversion part group 2P and N arm forward conversion part group 2N. The A precharge circuit 7B configured by connecting a precharge load 6A and a precharge switch 5B in series is connected in parallel with the main switch 12.

ここで、図8に示した電解コンデンサ回路における各運転の開閉器,各順変換部等の状態および電解コンデンサ回路の動作を表2に基づいて説明する。   Here, the operation of each operation switch, each forward conversion unit, etc. in the electrolytic capacitor circuit shown in FIG. 8 and the operation of the electrolytic capacitor circuit will be described with reference to Table 2.

Figure 2009106013
Figure 2009106013

表2に示すように、予備充電時は、遮断器1を投入,主開閉器12を開放,予備充電開閉器5Bを投入,放電開閉器10を開放,Pアーム順変換部群2P(に備えられた自己消弧素子4)およびNアーム順変換部群2N(に備えられた自己消弧素子4)をオフ制御にする。その結果、順変換部2の整流素子3によって交流から直流に変換された電流は、前記予備充電負荷6Aによって抑制され、前記電解コンデンサ8に蓄積される。通常運転時は、遮断器1を投入,主開閉器12を投入,予備充電開閉器5Bを開放,放電開閉器10を開放,Pアーム順変換部群2P(に備えられた自己消弧素子4)およびNアーム順変換部群2N(に備えられた自己消弧素子4)をオンオフ制御にする。その結果、順変換部2の整流素子3によって交流電力から直流電力に変換され、直流出力電圧に含まれる脈流波形が電解コンデンサ8を介して平滑化され、例えば逆変換部(図示せず)等に出力される。放電時(装置停止時および電源開放時)は、遮断器1を開放,主開閉器12を開放,予備充電開閉器5Bを開放,放電開閉器10を投入,Pアーム順変換部群2P(に備えられた自己消弧素子4)およびNアーム順変換部群2N(に備えられた自己消弧素子4)をオフ制御にする。その結果、直流回路部のPアームとNアーム間とが短絡されることによって、前記電解コンデンサ8と放電負荷9を含む閉回路Rが構成され、前記電解コンデンサ8に蓄積された電荷が前記放電負荷9によって放出される。
特開2002−78353号公報(第4−5頁、第1図) 特開平7−7807号公報(第2−3頁、第1図)
As shown in Table 2, at the time of preliminary charging, the circuit breaker 1 is turned on, the main switch 12 is opened, the preliminary charging switch 5B is turned on, the discharge switch 10 is opened, and the P-arm forward conversion unit group 2P is prepared. The self-extinguishing element 4) and the N-arm forward conversion unit group 2N (the self-extinguishing element 4 provided) are turned off. As a result, the current converted from alternating current to direct current by the rectifying element 3 of the forward converter 2 is suppressed by the precharge load 6 </ b> A and accumulated in the electrolytic capacitor 8. During normal operation, the circuit breaker 1 is turned on, the main switch 12 is turned on, the precharge switch 5B is opened, the discharge switch 10 is opened, and the self-extinguishing element 4 provided in the P-arm forward conversion unit group 2P ( ) And the N-arm forward conversion unit group 2N (the self-extinguishing element 4 provided) is turned on / off. As a result, the AC power is converted from DC power by the rectifying element 3 of the forward conversion unit 2, and the pulsating waveform included in the DC output voltage is smoothed via the electrolytic capacitor 8, for example, an inverse conversion unit (not shown). Etc. At the time of discharging (when the apparatus is stopped and when the power is opened), the circuit breaker 1 is opened, the main switch 12 is opened, the precharge switch 5B is opened, the discharge switch 10 is turned on, and the P-arm forward conversion unit group 2P The self-extinguishing element 4) and the N-arm forward conversion unit group 2N (provided with the self-extinguishing element 4) are turned off. As a result, a short circuit is formed between the P arm and the N arm of the DC circuit unit, thereby forming a closed circuit R including the electrolytic capacitor 8 and the discharge load 9, and the electric charge accumulated in the electrolytic capacitor 8 is discharged into the discharge. Released by the load 9.
Japanese Patent Laid-Open No. 2002-78353 (page 4-5, FIG. 1) Japanese Patent Laid-Open No. 7-7807 (page 2-3, FIG. 1)

上記のように従来においては、電解コンデンサ回路に放電負荷を備え、装置停止時や電源開放時は、電源遮断後に放電開閉器を投入し、電解コンデンサに蓄積された電荷を前記放電負荷によって速やかに放電できるようにしていた。   Conventionally, as described above, the electrolytic capacitor circuit is provided with a discharge load, and when the apparatus is stopped or the power supply is opened, the discharge switch is turned on after the power supply is shut off, and the electric charge accumulated in the electrolytic capacitor is quickly transferred by the discharge load. I was able to discharge.

しかしながら、予備充電負荷6A、放電負荷9は、単に電解コンデンサの充電、放電のみに利用されるものであり、通常運転時に利用されることがなく、それらが同時に機能することもない。すなわち、回路部品(2種類もの抵抗)が有効利用されていなかった。   However, the preliminary charging load 6A and the discharging load 9 are used only for charging and discharging the electrolytic capacitor, and are not used during normal operation, and they do not function simultaneously. That is, circuit components (two types of resistors) have not been effectively used.

以上示したようなことから、インバータ装置,直流電源装置などの直流回路部に電解コンデンサを有する電解コンデンサ回路においては、回路部品をより有効利用(可能な限り回路部品数を減少)し、装置停止時または電源開放時に、電解コンデンサに蓄積された電荷を放出できることが要求される。   As described above, in electrolytic capacitor circuits that have electrolytic capacitors in DC circuit parts such as inverter devices and DC power supply devices, circuit components are used more effectively (the number of circuit components is reduced as much as possible), and the device is stopped. It is required that the electric charge accumulated in the electrolytic capacitor can be discharged at times or when the power supply is opened.

本発明は、前記従来の問題に鑑み、案出されたもので、インバータ装置,直流電源装置などの直流回路部に電解コンデンサを有する電解コンデンサ回路において、放電負荷を備えていなくとも、装置停止時または電源開放時に、電解コンデンサに蓄積された電荷を放出できるようにしたものである。   The present invention has been devised in view of the above-described conventional problems, and in an electrolytic capacitor circuit having an electrolytic capacitor in a DC circuit section such as an inverter device or a DC power supply device, even when the discharge load is not provided, the device is stopped. Alternatively, the electric charge accumulated in the electrolytic capacitor can be discharged when the power supply is opened.

具体的に、請求項1記載の発明は、直流電源からの直流電力を蓄積する電解コンデンサと、充放電負荷および充放電切替開閉器を並列接続して成り、前記直流電源と前記電解コンデンサとの間に介挿され、投入時に前記充放電負荷の両端が短絡する充放電切替回路と、を具備した電解コンデンサ回路であって、前記直流電源と前記充放電切替回路との間に、投入時にPアームとNアーム間を短絡する放電開閉器を備え、装置停止時または電源開放時に前記放電開閉器を投入することにより、前記電解コンデンサと前記充放電負荷を含む閉回路が構成され、前記電解コンデンサに蓄積された電荷が前記充放電負荷によって放出されることを特徴とする。   Specifically, the invention according to claim 1 is formed by connecting an electrolytic capacitor for accumulating DC power from a DC power source, a charge / discharge load and a charge / discharge switching switch in parallel, and the DC power source and the electrolytic capacitor An electrolytic capacitor circuit having a charge / discharge switching circuit interposed between the DC power supply and the charge / discharge switching circuit. A discharge switch that short-circuits between the arm and the N arm, and a closed circuit including the electrolytic capacitor and the charge / discharge load is configured by turning on the discharge switch when the apparatus is stopped or when the power supply is opened. The charge accumulated in the battery is discharged by the charge / discharge load.

請求項2記載の発明は、整流素子および自己消弧素子を逆並列に接続して成る順変換部をPアーム側に複数個備え、それら各順変換部が交流電源に接続されたPアーム順変換部群と、前記順変換部をNアーム側に複数個備え、それら各順変換部が前記交流電源に接続されたNアーム順変換部群と、前記Pアーム順変換部群およびNアーム順変換部群の直流出力側に接続された電解コンデンサと、充放電負荷および充放電切替開閉器を並列接続して成り、前記Pアーム順変換部群またはNアーム順変換部群と前記電解コンデンサとの間に少なくとも一つ介挿され、投入時に前記充放電負荷の両端が短絡する充放電切替回路と、を具備した電解コンデンサ回路であって、装置停止時または電源開放時においてPアーム順変換部群とNアーム順変換部群のうち、同相の順変換部を少なくとも一つずつオン制御することにより、前記電解コンデンサと前記充放電負荷を含む閉回路が構成され、前記電解コンデンサに蓄積された電荷が前記充放電負荷によって放出されることを特徴とする。   The invention according to claim 2 is provided with a plurality of forward converters on the P-arm side formed by connecting rectifying elements and self-extinguishing elements in antiparallel, and each forward converter is connected to an AC power source. A plurality of conversion units, and a plurality of the forward conversion units on the N-arm side, each of the forward conversion units connected to the AC power supply, an N-arm forward conversion unit group, the P-arm forward conversion unit group, and the N-arm order An electrolytic capacitor connected to the DC output side of the conversion unit group, a charge / discharge load and a charge / discharge switching switch are connected in parallel, and the P arm forward conversion unit group or the N arm forward conversion unit group and the electrolytic capacitor An electrolytic capacitor circuit comprising a charge / discharge switching circuit that is short-circuited at both ends of the charge / discharge load at the time of turning on, when the apparatus is stopped or when the power is opened. Group and N-arm forward transformation A closed circuit including the electrolytic capacitor and the charge / discharge load is configured by on-controlling at least one in-phase forward conversion unit of the group, and the charge accumulated in the electrolytic capacitor is generated by the charge / discharge load. It is characterized by being released.

請求項3記載の発明は、請求項1記載の発明において、前記Pアーム順変換部群,前記Nアーム順変換部群と前記充放電切替回路との間に、投入時にPアームとNアーム間を短絡する放電開閉器を備え、装置停止時または電源開放時に前記放電開閉器を投入することにより、前記電解コンデンサと前記充放電負荷を含む閉回路が構成され、前記電解コンデンサに蓄積された電荷が前記充放電負荷によって放出されることを特徴とする。   According to a third aspect of the present invention, in the first aspect of the present invention, between the P arm forward conversion unit group, the N arm forward conversion unit group, and the charge / discharge switching circuit, between the P arm and the N arm when being turned on. A closed circuit including the electrolytic capacitor and the charging / discharging load is configured by turning on the discharge switch when the apparatus is stopped or when the power supply is opened, and the electric charge accumulated in the electrolytic capacitor is provided. Is discharged by the charge / discharge load.

請求項4記載の発明は、整流素子および自己消弧素子を逆並列に接続して成る順変換部をPアーム側に複数個備え、それら各順変換部が交流電源に接続されたPアーム順変換部群と、前記の順変換部をNアームに複数個備え、それら各順変換部が前記交流電源に接続されたNアーム順変換部群と、前記Pアーム順変換部群およびNアーム順変換部群の直流出力側に接続された電解コンデンサと、充放電負荷によって構成され、前記Pアーム順変換部群およびNアーム順変換部群と交流電源との間に介挿された充放電切替回路と、を具備した電解コンデンサ回路であって、前記充放電切替回路における充放電回路の入力側に一端が接続され、他端が三相短絡された放電開閉器を備え、装置停止時または電源開放時に前記放電開閉器を投入し、PアームとNアーム間が短絡しないように、Pアーム順変換部群とNアーム順変換部群において、それぞれ一つずつ順変換部をオン制御することにより、電解コンデンサと充放電負荷とを含む閉回路が構成され、前記電解コンデンサに蓄積された電荷が前記充放電負荷によって放出されることを特徴とする。   According to a fourth aspect of the present invention, there are provided a plurality of forward converters on the P-arm side, each of which includes a rectifier element and a self-extinguishing element connected in reverse parallel, and each forward converter is connected to an AC power source. A conversion unit group, and a plurality of the forward conversion units provided in the N arm, each of the forward conversion units connected to the AC power source, an N arm forward conversion unit group, the P arm forward conversion unit group, and the N arm order Charging / discharging switching composed of an electrolytic capacitor connected to the DC output side of the conversion unit group and a charge / discharge load, and interposed between the P arm forward conversion unit group and the N arm forward conversion unit group and the AC power supply An electrolytic capacitor circuit comprising: a discharge switch having one end connected to the input side of the charge / discharge circuit in the charge / discharge switching circuit and the other end short-circuited by three phases; Turn on the discharge switch when opening, P In order to prevent a short circuit between the N-arm and the N-arm, each of the P-arm forward conversion unit group and the N-arm forward conversion unit group includes an electrolytic capacitor and a charge / discharge load by turning on the forward conversion unit one by one. A closed circuit is configured, and the charge accumulated in the electrolytic capacitor is discharged by the charge / discharge load.

請求項5記載の発明は、請求項4記載の発明において、装置停止時または電源開放時に前記放電開閉器を投入し、PアームとNアームとの間が短絡しないように、Pアーム順変換部群とNアーム順変換部群とをオンオフ制御することによって、電解コンデンサと充放電負荷とを含む閉回路が構成され、前記電解コンデンサに蓄積された電荷が前記充放電負荷によって放出されることを特徴とする。   According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the P arm forward conversion unit is configured so that the discharge switch is turned on when the apparatus is stopped or the power source is opened to prevent a short circuit between the P arm and the N arm. A closed circuit including an electrolytic capacitor and a charge / discharge load is configured by controlling on / off of the group and the N-arm forward conversion unit group, and the charge accumulated in the electrolytic capacitor is discharged by the charge / discharge load. Features.

請求項6記載の発明は、整流素子および自己消弧素子を逆並列に接続して成る順変換部をPアーム側に複数個備え、それら各順変換部が交流電源に接続されたPアーム順変換部群と、前記の順変換部をNアームに複数個備え、それら各順変換部が前記交流電源に接続されたNアーム順変換部群と、前記Pアーム順変換部群およびNアーム順変換部群の直流出力側に接続された電解コンデンサと、充放電負荷によって構成され、前記Pアーム順変換部群およびNアーム順変換部群と交流電源との間に介挿された充放電切替回路と、を具備した電解コンデンサ回路であって、前記充放電切替回路における充放電回路の入力側に一端が接続され、他端がPアームに接続された放電開閉器を備え、装置停止時または電源開放時に前記放電開閉器を投入し、Nアーム順変換部群において少なくとも一つの順変換部をオン制御することにより、電解コンデンサと充放電負荷とを含む閉回路が構成され、前記電解コンデンサに蓄積された電荷が前記充放電負荷によって放出されることを特徴とする。   The invention according to claim 6 is provided with a plurality of forward converters on the P-arm side formed by connecting rectifying elements and self-extinguishing elements in anti-parallel, and each forward converter is connected to an AC power source. A conversion unit group, and a plurality of the forward conversion units provided in the N arm, each of the forward conversion units connected to the AC power source, an N arm forward conversion unit group, the P arm forward conversion unit group, and the N arm order Charging / discharging switching composed of an electrolytic capacitor connected to the DC output side of the conversion unit group and a charge / discharge load, and interposed between the P arm forward conversion unit group and the N arm forward conversion unit group and the AC power supply And a discharge switch having one end connected to the input side of the charge / discharge circuit in the charge / discharge switching circuit and the other end connected to the P arm, when the apparatus is stopped or Turn on the discharge switch when power is released , By turning on at least one forward converter in the N-arm forward converter group, a closed circuit including an electrolytic capacitor and a charge / discharge load is configured, and the charge accumulated in the electrolytic capacitor is caused by the charge / discharge load. It is characterized by being released.

請求項7記載の発明は、整流素子および自己消弧素子を逆並列に接続して成る順変換部をPアーム側に複数個備え、それら各順変換部が交流電源に接続されたPアーム順変換部群と、前記の順変換部をNアームに複数個備え、それら各順変換部が前記交流電源に接続されたNアーム順変換部群と、前記Pアーム順変換部群およびNアーム順変換部群の直流出力側に接続された電解コンデンサと、充放電負荷によって構成され、前記Pアーム順変換部群およびNアーム順変換部群と交流電源との間に介挿された充放電切替回路と、を具備した電解コンデンサ回路であって、前記充放電切替回路における充放電回路の入力側に一端が接続され、他端がNアームに接続された放電開閉器を備え、装置停止時または電源開放時に前記放電開閉器を投入し、Pアーム順変換部群において少なくとも一つの順変換部をオン制御することにより、電解コンデンサと充放電負荷とを含む閉回路が構成され、前記電解コンデンサに蓄積された電荷が前記充放電負荷によって放出されることを特徴とする。   The invention according to claim 7 is provided with a plurality of forward converters on the P-arm side formed by connecting rectifier elements and self-extinguishing elements in anti-parallel, and each forward converter is connected to an AC power source. A conversion unit group, and a plurality of the forward conversion units provided in the N arm, each of the forward conversion units connected to the AC power source, an N arm forward conversion unit group, the P arm forward conversion unit group, and the N arm order Charging / discharging switching composed of an electrolytic capacitor connected to the DC output side of the conversion unit group and a charge / discharge load, and interposed between the P arm forward conversion unit group and the N arm forward conversion unit group and the AC power supply And a discharge switch having one end connected to the input side of the charge / discharge circuit in the charge / discharge switching circuit and the other end connected to the N arm, when the apparatus is stopped or Turn on the discharge switch when power is released , By turning on at least one forward converter in the P-arm forward converter group, a closed circuit including an electrolytic capacitor and a charge / discharge load is configured, and the electric charge accumulated in the electrolytic capacitor is caused by the charge / discharge load. It is characterized by being released.

請求項1または3記載の発明のような構成によれば、放電負荷を設置しなくとも、放電開閉器を投入することによって、予備充電負荷と電解コンデンサとを含む閉回路が構成される。   According to the configuration of the first or third aspect of the invention, a closed circuit including the precharge load and the electrolytic capacitor is configured by turning on the discharge switch without installing the discharge load.

請求項2または3記載の発明のような構成によれば、放電負荷を設置しなくとも、Pアーム順変換部群およびNアーム順変換部群のうち同相の順変換部(に備えられた自己消弧素子)を少なくとも一つずつオン制御することによって、予備充電負荷と電解コンデンサとを含む閉回路が構成される。   According to the configuration of the second or third aspect of the invention, the self-phase forward converter provided in the in-phase forward converter of the P-arm forward converter group and the N-arm forward converter group without installing a discharge load. By turning on at least one arc extinguishing element), a closed circuit including a precharging load and an electrolytic capacitor is formed.

請求項4記載の発明のような構成によれば、放電負荷を設置しなくとも、放電開閉器を投入し、PアームとNアーム間が短絡しないように、Pアーム順変換部群とNアーム順変換部群においてそれぞれ少なくとも一つずつ順変換部(に備えられた自己消弧素子)をオン制御することにより、電解コンデンサと充放電負荷とを含む閉回路が構成される。   According to the configuration of the fourth aspect of the present invention, the P arm forward conversion unit group and the N arm are arranged so that the discharge switch is turned on and the P arm and the N arm are not short-circuited without installing a discharge load. A closed circuit including an electrolytic capacitor and a charge / discharge load is configured by turning on at least one forward converter (the self-extinguishing element provided therein) in each forward converter group.

請求項5記載の発明のような構成によれば、放電負荷を設置しなくとも、放電開閉器を投入し、PアームとNアーム間が短絡しないように、Pアーム順変換部群(に備えられた自己消弧素子)とNアーム順変換部群(に備えられた自己消弧素子)とをオンオフ制御することによって、電解コンデンサと充放電負荷とを含む閉回路が構成される。   According to the configuration of the fifth aspect of the present invention, the P-arm forward conversion unit group is provided so that the discharge switch is turned on and the P-arm and the N-arm are not short-circuited without installing a discharge load. The closed circuit including the electrolytic capacitor and the charging / discharging load is configured by controlling on / off of the self-extinguishing element) and the N-arm forward conversion unit group (the self-extinguishing element provided in).

請求項6記載の発明のような構成によれば、放電負荷を設置しなくとも、放電開閉器を投入し、Nアーム順変換部群のうち少なくとも一つの順変換部(に備えられた自己消弧素子)をオン制御することによって、電解コンデンサと充放電負荷とを含む閉回路が構成される。   According to the configuration of the sixth aspect of the present invention, even if no discharge load is installed, the discharge switch is turned on, and the self-extinguishing unit included in at least one of the N-arm forward converters (of the N-arm forward converter group). By turning on the arc element), a closed circuit including an electrolytic capacitor and a charge / discharge load is configured.

請求項7記載の発明のような構成によれば、放電負荷を設置しなくとも、放電開閉器を投入し、Pアーム順変換部群のうち少なくとも一つの順変換部(に備えられた自己消弧素子)をオン制御することによって、電解コンデンサと充放電負荷とを含む閉回路が構成される。   According to the configuration of the seventh aspect of the present invention, even if no discharge load is installed, the discharge switch is turned on, and the self-extinguishing unit provided in at least one of the P-arm forward converters (in the P-arm forward converter group). By turning on the arc element), a closed circuit including an electrolytic capacitor and a charge / discharge load is configured.

以上述べたように、請求項1乃至7記載の発明によれば、回路部品(特に充放電負荷)を有効利用(可能な限り回路部品数を減少)し、装置停止時または電源開放時に電解コンデンサに蓄えられた電荷を充放電負荷によって放出することができる。その結果、放電抵抗を備える必要がなくなり、コストの低減が可能となる。   As described above, according to the first to seventh aspects of the present invention, the circuit component (especially charge / discharge load) is effectively used (the number of circuit components is reduced as much as possible), and the electrolytic capacitor is stopped when the apparatus is stopped or the power supply is opened. The electric charge stored in can be discharged by the charge / discharge load. As a result, it is not necessary to provide a discharge resistor, and the cost can be reduced.

以下、本発明の実施形態における電解コンデンサ回路を実施例1乃至6等に基づいて詳細に説明する。   Hereinafter, an electrolytic capacitor circuit according to an embodiment of the present invention will be described in detail based on Examples 1 to 6 and the like.

本実施形態における、インバータ装置や直流電源装置の直流回路部に電解コンデンサを有する電解コンデンサ回路は、装置停止時または電源開放時において、前記電解コンデンサと充放電負荷を含む閉回路を構成することによって、前記電解コンデンサに蓄積された電荷を前記充放電負荷によって放出させることを特徴とする電解コンデンサ回路である。充放電負荷によって電解コンデンサに蓄積された電荷が放出されることにより、放電負荷を備える必要がなくなる。   In the present embodiment, the electrolytic capacitor circuit having an electrolytic capacitor in the DC circuit portion of the inverter device or the DC power supply device constitutes a closed circuit including the electrolytic capacitor and the charge / discharge load when the device is stopped or when the power supply is opened. The electrolytic capacitor circuit is characterized in that the electric charge accumulated in the electrolytic capacitor is discharged by the charge / discharge load. Since the charge accumulated in the electrolytic capacitor is discharged by the charge / discharge load, it is not necessary to provide the discharge load.

[実施例1]
図1は、本発明の第1の実施例を示した電解コンデンサ回路の回路図を示し、図7と同様なものについては、同一符号を用いて詳細な説明を省略する。実施例1は単相直流電源を用いた電解コンデンサ回路であり、符号1は前記単相直流電源に接続された遮断器を示す。充放電切替開閉器5Cと充放電負荷6Bとを並列に接続して構成された充放電切替回路7Cは、電解コンデンサ8の入力側に接続され、該充放電切替開閉器5Cの投入時には前記充放電負荷6Bの両端が短絡される(即ち、充放電負荷6Bに電流が流れないようになる)。前記電解コンデンサ8は、前記充放電切替回路7Cの出力側に並列に接続されている。符号10は、遮断器1と予備充電回路7Aとの間に並列に介挿された放電開閉器を示し、投入時にはPアーム,Nアーム間が短絡される。符号11は、直流電源から電力が供給された制御回路を示す。
[Example 1]
FIG. 1 is a circuit diagram of an electrolytic capacitor circuit showing a first embodiment of the present invention. The same components as those in FIG. Example 1 is an electrolytic capacitor circuit using a single-phase DC power source. Reference numeral 1 denotes a circuit breaker connected to the single-phase DC power source. A charging / discharging switching circuit 7C configured by connecting the charging / discharging switching switch 5C and the charging / discharging load 6B in parallel is connected to the input side of the electrolytic capacitor 8, and the charging / discharging switching switch 5C is turned on when the charging / discharging switching switch 5C is turned on. Both ends of the discharge load 6B are short-circuited (that is, no current flows through the charge / discharge load 6B). The electrolytic capacitor 8 is connected in parallel to the output side of the charge / discharge switching circuit 7C. Reference numeral 10 denotes a discharge switch inserted in parallel between the circuit breaker 1 and the precharge circuit 7A, and the P arm and the N arm are short-circuited when turned on. Reference numeral 11 denotes a control circuit to which power is supplied from a DC power source.

次に実施例1においての各運転における各開閉器の状態および電解コンデンサ回路の動作を表3に基づいて説明する。   Next, the state of each switch and the operation of the electrolytic capacitor circuit in each operation in Example 1 will be described based on Table 3.

Figure 2009106013
Figure 2009106013

表3に示すように、予備充電時は、遮断器1を投入,充放電切替開閉器5Cを開放,放電開閉器10を開放にする。その結果、充放電負荷6Bによって抑制された電流が電解コンデンサ8に蓄積される。通常運転時は、遮断器1を投入,充放電切替開閉器5Cを投入,放電開閉器10を開放にする。その結果、電解コンデンサ8を介して、直流電力が例えば逆変換部等(図示せず)に出力される。放電時(装置停止時および電源開放時)は、遮断器1を開放,充放電切替開閉器5Cを開放,放電開閉器10を投入にする。その結果、PアームとNアームとの間が短絡され、前記電解コンデンサ8と前記充放電負荷6Bを含む閉回路Rが構成され、電解コンデンサ8に蓄積された電荷が充放電負荷6Bによって放出される。   As shown in Table 3, at the time of preliminary charging, the circuit breaker 1 is turned on, the charge / discharge switching switch 5C is opened, and the discharge switch 10 is opened. As a result, the current suppressed by the charge / discharge load 6B is accumulated in the electrolytic capacitor 8. During normal operation, the circuit breaker 1 is turned on, the charge / discharge switching switch 5C is turned on, and the discharge switch 10 is opened. As a result, direct-current power is output to, for example, an inverse conversion unit (not shown) via the electrolytic capacitor 8. At the time of discharging (when the apparatus is stopped and the power supply is opened), the circuit breaker 1 is opened, the charge / discharge switching switch 5C is opened, and the discharge switch 10 is turned on. As a result, the P arm and the N arm are short-circuited to form a closed circuit R including the electrolytic capacitor 8 and the charge / discharge load 6B, and the charge accumulated in the electrolytic capacitor 8 is released by the charge / discharge load 6B. The

上記に示したように、本実施例1のような構成によれば、放電負荷を設置しなくとも、電解コンデンサに蓄積された電荷を充放電負荷6Bによって放出することができる。すなわち、充放電負荷6Bを有効利用することにより、例えば図7,図8の電解コンデンサ回路と比較して、回路部品点数を減少することができ、コストの低減が可能となる。   As described above, according to the configuration of the first embodiment, the charge accumulated in the electrolytic capacitor can be discharged by the charge / discharge load 6B without installing a discharge load. In other words, by effectively using the charge / discharge load 6B, the number of circuit components can be reduced, for example, compared with the electrolytic capacitor circuit of FIGS. 7 and 8, and the cost can be reduced.

[実施例2]
図2は、本発明の第2の実施例を示した電解コンデンサ回路の回路構成図を示し、図7と同様なものについては、同一符号を用いて詳細な説明を省略する。図2において、遮断器1は三相交流電源に接続され、順変換部2は該遮断器1を介して三相交流電源に接続される。この順変換部2は、整流素子3と該整流素子3に対し逆並列に接続された自己消弧素子4とで構成される。なお、この順変換部2の整流素子3によって交流電力から直流電力に変換される回路部において、正極側(図中では上側)をPアーム、負極側(図中では下側)をNアームと示し、Pアームに備えられた順変換部2の集合をPアーム順変換部群2Pと示し、Nアームに備えられた順変換部の集合をNアーム順変換部群2Nと示す。
[Example 2]
FIG. 2 shows a circuit configuration diagram of an electrolytic capacitor circuit showing a second embodiment of the present invention, and the same components as those in FIG. In FIG. 2, the circuit breaker 1 is connected to a three-phase AC power source, and the forward converter 2 is connected to the three-phase AC power source via the circuit breaker 1. The forward conversion unit 2 includes a rectifying element 3 and a self-extinguishing element 4 connected in antiparallel to the rectifying element 3. In the circuit unit in which AC power is converted from DC power by the rectifying element 3 of the forward conversion unit 2, the positive electrode side (upper side in the figure) is the P arm and the negative electrode side (lower side in the figure) is the N arm. A set of forward conversion units 2 provided in the P arm is referred to as a P arm forward conversion unit group 2P, and a set of forward conversion units provided in the N arm is referred to as an N arm forward conversion unit group 2N.

充放電切替開閉器5Cと充放電負荷6Bとを並列に接続して構成された充放電切替回路7Cは、前記Pアーム順変換部群2PまたはNアーム順変換部群2Nの直流出力側に少なくとも一つ接続され、該充放電切替開閉器5Cの投入時には前記充放電負荷6Bの両端が短絡される(即ち、充放電負荷6Bに電流が流れないようになる)。   The charge / discharge switching circuit 7C configured by connecting the charge / discharge switching switch 5C and the charge / discharge load 6B in parallel is provided at least on the DC output side of the P arm forward conversion unit group 2P or the N arm forward conversion unit group 2N. When the charge / discharge switching switch 5C is turned on, both ends of the charge / discharge load 6B are short-circuited (that is, no current flows through the charge / discharge load 6B).

電解コンデンサ8は、充放電切替回路7Cを介して順変換部2の出力側に接続され、前記Pアーム順変換部群2PおよびNアーム順変換部群2Nの直流出力電圧に含まれる脈流波形を平滑化する。符号11は、順変換部2や逆変換部(図示せず)等の自己消弧素子4を制御するためのゲート信号を出力する制御回路を示し、該制御回路11は三相交流電源ラインのうち任意の二相ラインから電力が供給されている。   The electrolytic capacitor 8 is connected to the output side of the forward conversion unit 2 through the charge / discharge switching circuit 7C, and the pulsating waveform included in the DC output voltages of the P arm forward conversion unit group 2P and the N arm forward conversion unit group 2N. Is smoothed. Reference numeral 11 denotes a control circuit that outputs a gate signal for controlling the self-extinguishing element 4 such as the forward conversion unit 2 and the reverse conversion unit (not shown). The control circuit 11 is a three-phase AC power supply line. Power is supplied from any two-phase line.

次に実施例2の電解コンデンサ回路においての各運転における各開閉器,各順変換部等の状態および電解コンデンサ回路の動作を表4に基づいて説明する。   Next, the state of each switch, each forward conversion unit and the like in each operation in the electrolytic capacitor circuit of Example 2 and the operation of the electrolytic capacitor circuit will be described based on Table 4.

Figure 2009106013
Figure 2009106013

表4に示すように、予備充電時は、遮断器1を投入,充放電切替開閉器5Cを開放,Pアーム順変換部群2P(に備えられた自己消弧素子4)およびNアーム順変換部群2N(に備えられた自己消弧素子4)をオフ制御にする。その結果、順変換部2の整流素子3によって整流された電力が充放電負荷6Bによって抑制されて電解コンデンサ8に蓄積される。通常運転時は、遮断器1を投入,充放電切替開閉器5Cを投入,Pアーム順変換部群2P(に備えられた自己消弧素子4)およびNアーム順変換部群2N(に備えられた自己消弧素子4)をオンオフ制御にする。その結果、順変換部2の整流素子3によって交流電力から直流電力に変換され、直流出力電圧に含まれる脈流波形が電解コンデンサ8を介して平滑化され、例えば逆変換部(図示せず)等に出力される。放電時(装置停止時および電源開放時)は、遮断器1を開放,充放電切替開閉器5Cを開放,Pアーム順変換部群2P(に備えられた自己消弧素子4)およびNアーム順変換部群2N(に備えられた自己消弧素子4)のうち同相の順変換部2(に備えられた自己消弧素子4)を少なくとも一つずつをオン制御にする。その結果、自己消弧素子4はオン時に導通可能となるため、直流回路部のPアームとNアーム間とが短絡され、前記電解コンデンサ8と前記充放電負荷6Bを含む閉回路Rが構成され、前記電解コンデンサ8に蓄積された電荷が前記充放電負荷6Bによって放出される。   As shown in Table 4, at the time of preliminary charging, the circuit breaker 1 is turned on, the charge / discharge switching switch 5C is opened, the P-arm forward conversion unit group 2P (the self-extinguishing element 4 provided) and the N-arm forward conversion The subgroup 2N (the self-extinguishing element 4 provided in) is turned off. As a result, the power rectified by the rectifying element 3 of the forward conversion unit 2 is suppressed by the charge / discharge load 6B and accumulated in the electrolytic capacitor 8. During normal operation, the circuit breaker 1 is turned on, the charge / discharge switching switch 5C is turned on, and the P-arm forward conversion unit group 2P (the self-extinguishing element 4 provided in) and the N-arm forward conversion unit group 2N (provided). The self-extinguishing element 4) is turned on / off. As a result, the AC power is converted from DC power by the rectifying element 3 of the forward conversion unit 2, and the pulsating waveform included in the DC output voltage is smoothed via the electrolytic capacitor 8, for example, an inverse conversion unit (not shown). Etc. At the time of discharging (when the apparatus is stopped and the power supply is opened), the circuit breaker 1 is opened, the charge / discharge switching switch 5C is opened, the P-arm forward conversion unit group 2P (the self-extinguishing element 4 provided) and the N-arm order At least one of the in-phase forward conversion units 2 (the self-extinguishing element 4 provided) in the conversion unit group 2N (the self-extinguishing element 4 provided) is turned on. As a result, the self-extinguishing element 4 becomes conductive when turned on, so that the P arm and the N arm of the DC circuit section are short-circuited, and a closed circuit R including the electrolytic capacitor 8 and the charge / discharge load 6B is configured. The charge accumulated in the electrolytic capacitor 8 is released by the charge / discharge load 6B.

上記に示したように、本実施例2のような構成によれば、放電負荷と放電開閉器を設置しなくとも、電解コンデンサに蓄積された電荷を充放電負荷によって放出することができる。すなわち、本実施例2のような構成において、前述の実施例1と同様の作用効果を奏する。   As described above, according to the configuration of the second embodiment, the charge accumulated in the electrolytic capacitor can be discharged by the charge / discharge load without installing a discharge load and a discharge switch. That is, in the configuration as in the second embodiment, the same operational effects as those in the first embodiment are obtained.

[実施例3]
図3は、本発明の第3の実施例に係る電解コンデンサ回路構成図を示し、図2,図7と同様なものについては、同一符号を用いて詳細な説明を省略する。本実施例3と実施例2との相違点は、本実施例3においては、Pアーム順変換部群2PおよびNアーム順変換部群2Nと充放電切替回路7Cとの間に放電開閉器を並列に介挿し、該放電開閉器を投入することによってPアームとNアームとの間を短絡できるようにした点である。
[Example 3]
FIG. 3 shows an electrolytic capacitor circuit configuration diagram according to the third embodiment of the present invention, and the same components as those in FIGS. 2 and 7 are denoted by the same reference numerals and detailed description thereof is omitted. The difference between the third embodiment and the second embodiment is that, in the third embodiment, a discharge switch is provided between the P arm forward conversion section group 2P and the N arm forward conversion section group 2N and the charge / discharge switching circuit 7C. This is the point that the P arm and the N arm can be short-circuited by inserting in parallel and turning on the discharge switch.

ここで、実施例3の電解コンデンサ回路における各運転の各開閉器,各順変換部等の状態および電解コンデンサ回路の動作を表5に基づいて説明する。   Here, the state of each switch, each forward conversion unit, etc. in each operation in the electrolytic capacitor circuit of Example 3 and the operation of the electrolytic capacitor circuit will be described based on Table 5.

Figure 2009106013
Figure 2009106013

表5に示すように、予備充電時は、遮断器1を投入,充放電切替開閉器5Cを開放,放電開閉器10を開放,Pアーム順変換部群2P(に備えられた自己消弧素子4)およびNアーム順変換部群2N(に備えられた自己消弧素子4)をオフ制御にする。その結果、順変換部2の整流素子3によって整流された直流電力が充放電負荷6Bによって抑制されて電解コンデンサ8に蓄積される。通常運転時は、遮断器1を投入,充放電切替開閉器5Cを投入,放電開閉器10を開放,Pアーム順変換部群2P(に備えられた自己消弧素子4)およびNアーム順変換部群2N(に備えられた自己消弧素子4)をオンオフ制御にする。その結果、順変換部2の整流素子3によって交流電力から直流電力に変換され、直流出力電圧に含まれる脈流波形が電解コンデンサ8を介して平滑化され、例えば逆変換部(図示せず)等に出力される。放電時(装置停止時または電源開放時)は、遮断器1を開放,充放電切替開閉器5Cを開放,放電開閉器10を投入,Pアーム順変換部群2P(に備えられた自己消弧素子4)およびNアーム順変換部群2N(に備えられた自己消弧素子4)をオフ制御にする。その結果、直流回路部のPアームとNアーム間とが短絡されることによって、前記電解コンデンサ8と前記充放電負荷6Bを含む閉回路Rが構成され、前記電解コンデンサ8に蓄積された電荷が前記充放電負荷6によって放出される。   As shown in Table 5, at the time of preliminary charging, the circuit breaker 1 is turned on, the charge / discharge switching switch 5C is opened, the discharge switch 10 is opened, and the self-extinguishing element provided in the P arm forward conversion unit group 2P 4) and the N-arm forward conversion unit group 2N (the self-extinguishing element 4 provided in the same) are turned off. As a result, the DC power rectified by the rectifying element 3 of the forward conversion unit 2 is suppressed by the charge / discharge load 6B and accumulated in the electrolytic capacitor 8. During normal operation, the circuit breaker 1 is turned on, the charge / discharge switching switch 5C is turned on, the discharge switch 10 is opened, the P-arm forward conversion unit group 2P (the self-extinguishing element 4 provided) and the N-arm forward conversion. The subgroup 2N (the self-extinguishing element 4 provided) is turned on / off. As a result, the AC power is converted from DC power by the rectifying element 3 of the forward conversion unit 2, and the pulsating waveform included in the DC output voltage is smoothed via the electrolytic capacitor 8, for example, an inverse conversion unit (not shown). Etc. At the time of discharging (when the apparatus is stopped or when the power supply is opened), the circuit breaker 1 is opened, the charge / discharge switching switch 5C is opened, the discharge switch 10 is turned on, and the self-extinguishing unit provided in the P arm forward conversion unit group 2P The element 4) and the N-arm forward conversion unit group 2N (the self-extinguishing element 4 provided in the element 4) are turned off. As a result, a short circuit is formed between the P arm and the N arm of the DC circuit unit, so that a closed circuit R including the electrolytic capacitor 8 and the charge / discharge load 6B is formed, and the electric charge accumulated in the electrolytic capacitor 8 is reduced. It is discharged by the charge / discharge load 6.

上記に示したように、本実施例3のような構成によれば、放電負荷を設置しなくとも、電解コンデンサ8に蓄積された電荷を充放電負荷6Bによって放出することができる。すなわち、本実施例3のような構成において、前述の実施例1または実施例2と同様の作用効果を奏する。   As described above, according to the configuration of the third embodiment, the charge accumulated in the electrolytic capacitor 8 can be discharged by the charge / discharge load 6B without installing a discharge load. That is, in the configuration as in the third embodiment, the same function and effect as those of the first embodiment or the second embodiment described above are achieved.

[実施例4]
図4は、本発明の第4の実施例を示した電解コンデンサ回路の回路図を示し、図1,8と同様なものについては、同一符号を用いて詳細な説明を省略する。図4において、符号12は、主開閉器を示し、遮断器1とPアーム順変換部群2PおよびNアーム順変換部群2Nとの間に介挿される。充放電切替開閉器5Dと充放電負荷6Bとを直列に接続して構成された充放電切替回路7Dは、前記主開閉器12に対して並列に接続される。交流回路部に設けられた放電開閉器10は、一端を充放電切替開閉器5Dと充放電負荷6Bとの間に接続され、他端は三相短絡される。
[Example 4]
FIG. 4 is a circuit diagram of an electrolytic capacitor circuit showing a fourth embodiment of the present invention. The same components as those in FIGS. In FIG. 4, the code | symbol 12 shows the main switch, and is inserted between the circuit breaker 1, P arm forward conversion part group 2P, and N arm forward conversion part group 2N. A charge / discharge switching circuit 7D configured by connecting the charge / discharge switching switch 5D and the charge / discharge load 6B in series is connected in parallel to the main switch 12. The discharge switch 10 provided in the AC circuit unit has one end connected between the charge / discharge switching switch 5D and the charge / discharge load 6B and the other end short-circuited by three phases.

次に実施例4の電解コンデンサ回路においての各運転における各開閉器,各順変換部等の状態および電解コンデンサ回路の動作を表5に基づいて説明する。   Next, the state of each switch, each forward conversion unit and the like in each operation in the electrolytic capacitor circuit of Example 4 and the operation of the electrolytic capacitor circuit will be described based on Table 5.

Figure 2009106013
Figure 2009106013

表7に示すように、予備充電時は、遮断器1を投入,主開閉器12を開放,充放電切替開閉器5Dを投入,放電開閉器10を開放,Pアーム順変換部群2P(に備えられた自己消弧素子4)およびNアーム順変換部群2N(に備えられた自己消弧素子4)をオフ制御にする。その結果、充放電負荷6Bによって抑制された電力が、順変換部2の整流素子3によって交流電力から直流電力に変換され、電解コンデンサ8に蓄積される。通常運転時は、遮断器1を投入,主開閉器12を投入,充放電切替開閉器5Dを開放,放電開閉器10を開放,Pアーム順変換部群2P(に備えられた自己消弧素子4)およびNアーム順変換部群2N(に備えられた自己消弧素子4)はオンオフ制御にする。その結果、順変換部2の整流素子3によって交流電力から直流電力に変換され、直流出力電圧に含まれる脈流波形が平滑コンデンサ8を介して平滑化され、例えば逆変換部(図示せず)等に出力される。放電時(装置停止時および電源開放時)は、遮断器1を開放,主開閉器12を開放,充放電切替開閉器5Dを開放,放電開閉器10を投入,Pアーム順変換部群2P(に備えられた自己消弧素子4)およびNアーム順変換部群2N(に備えられた自己消弧素子4)を放電用のスイッチング制御(Pアーム順変換部群2PとNアーム順変換部群2Nとの間で短絡してしまうと充放電負荷6Bで放電することができないため、同相であるPアーム順変換部群2PとNアーム順変換部群2Nが同時にオン制御にならないようにスイッチングする制御)にする。その結果、自己消弧素子4はオン時に導通可能となるため、前記電解コンデンサ8と前記充放電負荷6Bを含む閉回路Rが構成され、前記電解コンデンサ8に蓄積された電荷が前記充放電負荷6Bによって放出される。   As shown in Table 7, at the time of preliminary charging, the circuit breaker 1 is turned on, the main switch 12 is opened, the charge / discharge switching switch 5D is turned on, the discharge switch 10 is opened, and the P arm forward conversion unit group 2P The self-extinguishing element 4) and the N-arm forward conversion unit group 2N (provided with the self-extinguishing element 4) are turned off. As a result, the power suppressed by the charge / discharge load 6 </ b> B is converted from AC power to DC power by the rectifying element 3 of the forward conversion unit 2 and accumulated in the electrolytic capacitor 8. During normal operation, the circuit breaker 1 is turned on, the main switch 12 is turned on, the charge / discharge switching switch 5D is opened, the discharge switch 10 is opened, and the self-extinguishing element provided in the P-arm forward conversion unit group 2P 4) and the self-extinguishing element 4 provided in the N-arm forward conversion unit group 2N (on / off control). As a result, the AC power is converted into DC power by the rectifying element 3 of the forward conversion unit 2, and the pulsating waveform included in the DC output voltage is smoothed via the smoothing capacitor 8, for example, an inverse conversion unit (not shown). Etc. At the time of discharging (when the apparatus is stopped and the power supply is opened), the circuit breaker 1 is opened, the main switch 12 is opened, the charge / discharge switching switch 5D is opened, the discharge switch 10 is turned on, and the P arm forward conversion unit group 2P ( Switching control (P-arm forward conversion unit group 2P and N-arm forward conversion unit group) for discharging self-extinguishing element 4) and N-arm forward conversion unit group 2N Since the charge / discharge load 6B cannot be discharged if short-circuited with 2N, switching is performed so that the P-arm forward conversion unit group 2P and the N-arm forward conversion unit group 2N that are in phase are not simultaneously turned on. Control). As a result, since the self-extinguishing element 4 becomes conductive when turned on, a closed circuit R including the electrolytic capacitor 8 and the charging / discharging load 6B is formed, and the charge accumulated in the electrolytic capacitor 8 is transferred to the charging / discharging load. Released by 6B.

上記に示したように、本実施例5のような構成によれば、放電負荷を設置しなくとも、電解コンデンサ8に蓄積された電荷を充放電負荷6Bによって放出することができる。すなわち、本実施例4のような構成において、前述の実施例1乃至3と同様の作用効果を奏する。   As described above, according to the configuration of the fifth embodiment, the charge accumulated in the electrolytic capacitor 8 can be discharged by the charge / discharge load 6B without installing a discharge load. That is, in the configuration as in the fourth embodiment, the same operational effects as those in the first to third embodiments are obtained.

[実施例5]
図5は、本実施例の第5の実施例を示した電解コンデンサ回路の回路構成図を示し、図4,図7と同様なものについては、同一符号を用いて詳細な説明を省略する。本実施例5と実施例4との相違点は、一端側が充放電切替開閉器5Dと充放電負荷6Bとの間に接続された放電開閉器10において、実施例4では他端側が三相短絡されたが、本実施例5においては、該他端側が三相短絡されると共にPアームに接続された点である。
[Example 5]
FIG. 5 is a circuit configuration diagram of an electrolytic capacitor circuit showing a fifth embodiment of the present embodiment, and the same components as those in FIGS. 4 and 7 are denoted by the same reference numerals and detailed description thereof is omitted. The difference between the fifth embodiment and the fourth embodiment is that in the discharge switch 10 having one end connected between the charge / discharge switching switch 5D and the charge / discharge load 6B, in the fourth embodiment, the other end is a three-phase short circuit. However, in the fifth embodiment, the other end side is short-circuited for three phases and connected to the P arm.

Figure 2009106013
Figure 2009106013

表7に示すように、予備充電時は、遮断器1を投入,主開閉器12を開放,充放電切替開閉器5Dを投入,放電開閉器10を開放,Pアーム順変換部群2P(に備えられた自己消弧素子4)およびNアーム順変換部群2N(に備えられた自己消弧素子4)をオフ制御にする。その結果、充放電負荷6Bによって抑制された電力が、順変換部2の整流素子3によって交流電力から直流電力に変換され、電解コンデンサ8に蓄積される。通常運転時は、遮断器1を投入,主開閉器12を投入,充放電切替開閉器5を開放,放電開閉器10を開放,Pアーム順変換部群2P(に備えられた自己消弧素子4)およびNアーム順変換部群2N(に備えられた自己消弧素子4)をオンオフ制御にする。その結果、順変換部2の整流素子3によって交流電力から直流電力に変換され、直流出力電圧に含まれる脈流波形が電解コンデンサ8を介して平滑化され、例えば逆変換部(図示せず)等に出力される。放電時(装置停止時および電源開放時)は、遮断器1を開放,主開閉器12を開放,充放電切替開閉器5を開放,放電開閉器10を投入,Pアーム順変換部群2P(に備えられた自己消弧素子4)をオフ制御,Nアーム順変換部群2Nのうち少なくとも一つの順変換部2(に備えられた自己消弧素子4)をオン制御にする。その結果、自己消弧素子4はオン時に導通可能となるため、前記電解コンデンサ8と前記充放電負荷6Bとを含む閉回路Rが構成され、前記電解コンデンサ8に蓄積された電荷が前記充放電負荷6bによって放出される。   As shown in Table 7, at the time of preliminary charging, the circuit breaker 1 is turned on, the main switch 12 is opened, the charge / discharge switching switch 5D is turned on, the discharge switch 10 is opened, and the P arm forward conversion unit group 2P The self-extinguishing element 4) and the N-arm forward conversion unit group 2N (provided with the self-extinguishing element 4) are turned off. As a result, the power suppressed by the charge / discharge load 6 </ b> B is converted from AC power to DC power by the rectifying element 3 of the forward conversion unit 2 and accumulated in the electrolytic capacitor 8. During normal operation, the circuit breaker 1 is turned on, the main switch 12 is turned on, the charge / discharge switching switch 5 is opened, the discharge switch 10 is opened, and the self-extinguishing element provided in the P arm forward conversion unit group 2P ( 4) and the N-arm forward conversion unit group 2N (the self-extinguishing element 4 provided in) is turned on / off. As a result, the AC power is converted from DC power by the rectifying element 3 of the forward conversion unit 2, and the pulsating waveform included in the DC output voltage is smoothed via the electrolytic capacitor 8, for example, an inverse conversion unit (not shown). Etc. At the time of discharging (when the apparatus is stopped and the power supply is opened), the circuit breaker 1 is opened, the main switch 12 is opened, the charge / discharge switching switch 5 is opened, the discharge switch 10 is turned on, and the P-arm forward conversion unit group 2P ( Is turned off, and at least one of the N-arm forward conversion unit groups 2N is turned on (the self-extinguishing element 4). As a result, since the self-extinguishing element 4 becomes conductive when turned on, a closed circuit R including the electrolytic capacitor 8 and the charge / discharge load 6B is formed, and the charge accumulated in the electrolytic capacitor 8 is charged / discharged. Released by the load 6b.

上記に示したように、本実施例5のような構成によれば、放電負荷を設置しなくとも、電解コンデンサに蓄積された電荷を充放電負荷6Bによって放出することができる。すなわち、本実施例5のような構成において、前述の実施例1乃至4と同様の作用効果を奏する。   As described above, according to the configuration of the fifth embodiment, the charge accumulated in the electrolytic capacitor can be discharged by the charge / discharge load 6B without installing a discharge load. That is, in the configuration as in the fifth embodiment, the same operational effects as those in the first to fourth embodiments described above are obtained.

[実施例6]
図6は、本発明の第6の実施例を示した電解コンデンサ回路の回路図を示し、図5,図8と同様なものについては、同一符号を用いて詳細な説明を省略する。本実施例6と実施例5との相違点は、一端側が充放電切替開閉器5Dと充放電負荷6Bとの間に接続された放電開閉器10において、実施例5では、他端側が三相短絡されて直流回路部のPアームに接続されたが、本実施例6では、該他端側が三相短絡されると共に直流回路部のNアームに接続された点である。
[Example 6]
FIG. 6 is a circuit diagram of an electrolytic capacitor circuit showing a sixth embodiment of the present invention. The same components as those in FIGS. 5 and 8 are denoted by the same reference numerals, and detailed description thereof is omitted. The difference between the sixth embodiment and the fifth embodiment is that in the discharge switch 10 in which one end side is connected between the charge / discharge switching switch 5D and the charge / discharge load 6B, in the fifth embodiment, the other end side is a three-phase. Although short-circuited and connected to the P-arm of the DC circuit unit, in the sixth embodiment, the other end is short-circuited three-phase and connected to the N-arm of the DC circuit unit.

次に実施例4においての各運転における各開閉器,各順変換部等の状態および電解コンデンサ回路の動作を表6に基づいて説明する。   Next, the state of each switch, each forward conversion unit, etc. and the operation of the electrolytic capacitor circuit in each operation in Example 4 will be described based on Table 6.

Figure 2009106013
Figure 2009106013

表8に示すように、予備充電時は、遮断器1を投入,主開閉器12を開放,充放電切替開閉器5Dを投入,放電開閉器10を開放,Pアーム順変換部群2P(に備えられた自己消弧素子4)およびNアーム順変換部群2Nをオフ制御(に備えられた自己消弧素子4)にする。その結果、充放電負荷6Bによって抑制された電力が、順変換部2の整流素子3によって交流電力から直流電力に変換され、電解コンデンサ8に蓄積される。通常運転時は、遮断器1を投入,主開閉器12を投入,充放電切替開閉器5Dを開放,放電開閉器10を開放,Pアーム順変換部群2P(に備えられた自己消弧素子4)およびNアーム順変換部群2N(に備えられた自己消弧素子4)をオンオフ制御にする。その結果、順変換部2の整流素子3によって交流電力から直流電力に変換され、直流出力電圧に含まれる脈流波形が電解コンデンサ8を介して平滑化され、例えば逆変換部(図示せず)等に出力される。放電時(装置停止時および電源開放時)は、遮断器1を開放,主開閉器12を開放,充放電切替開閉器5Dを開放,放電開閉器10を投入,Pアーム順変換部群2Pのうち少なくとも一つの順変換部2(に備えられた自己消弧素子4)をオン制御,Nアーム順変換部群2N(に備えられた自己消弧素子4)をオフ制御にする。その結果、自己消弧素子4はオン時に導通が可能となるため、前記電解コンデンサ8と前記充放電負荷6Bを含む閉回路Rが構成され、前記電解コンデンサ8に蓄積された電荷が前記充放電負荷6Bによって放出される。   As shown in Table 8, at the time of preliminary charging, the circuit breaker 1 is turned on, the main switch 12 is opened, the charge / discharge switching switch 5D is turned on, the discharge switch 10 is opened, and the P arm forward conversion unit group 2P The provided self-extinguishing element 4) and the N-arm forward conversion unit group 2N are turned off (the self-extinguishing element 4 provided). As a result, the power suppressed by the charge / discharge load 6 </ b> B is converted from AC power to DC power by the rectifying element 3 of the forward conversion unit 2 and accumulated in the electrolytic capacitor 8. During normal operation, the circuit breaker 1 is turned on, the main switch 12 is turned on, the charge / discharge switching switch 5D is opened, the discharge switch 10 is opened, and the self-extinguishing element provided in the P-arm forward conversion unit group 2P 4) and the N-arm forward conversion unit group 2N (the self-extinguishing element 4 provided in) is turned on / off. As a result, the AC power is converted from DC power by the rectifying element 3 of the forward conversion unit 2, and the pulsating waveform included in the DC output voltage is smoothed via the electrolytic capacitor 8, for example, an inverse conversion unit (not shown). Etc. At the time of discharging (when the device is stopped and when the power is opened), the circuit breaker 1 is opened, the main switch 12 is opened, the charge / discharge switching switch 5D is opened, the discharge switch 10 is turned on, and the P arm forward conversion unit group 2P Among them, at least one forward conversion unit 2 (the self-extinguishing element 4 provided) is turned on, and the N-arm forward conversion unit group 2N (the self-extinguishing element 4 provided) is turned off. As a result, since the self-extinguishing element 4 can conduct when turned on, a closed circuit R including the electrolytic capacitor 8 and the charging / discharging load 6B is formed, and the charge accumulated in the electrolytic capacitor 8 is charged / discharged. Released by the load 6B.

上記に示したように、本実施例6のような構成によれば、放電負荷を設置しなくとも、電解コンデンサに蓄積された電荷を充放電負荷6Bによって放出することができる。すなわち、本実施例6のような構成において、前述の実施例1乃至5と同様の作用効果を奏する。   As described above, according to the configuration of the sixth embodiment, the charge accumulated in the electrolytic capacitor can be discharged by the charge / discharge load 6B without installing a discharge load. That is, in the configuration as in the sixth embodiment, the same operational effects as those in the first to fifth embodiments described above can be obtained.

以上本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形及び修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail with respect to the specific examples described above, it is obvious that various modifications and corrections belong to the scope of the claims within the scope of the technical idea of the present invention.

例えば本発明の実施例2乃至6の電解コンデンサ回路では、三相交流電源の回路について説明しているが、単相もしくは多相交流の電源の回路でも適用が可能である。また、実施例4乃至6の電解コンデンサ回路において、遮断器1または充放電切替開閉器5Dをどちらか片方は省略しても適用可能であり、さらに遮断器1を省略した場合において、充放電負荷6Bは少なくとも二相に装備することで適用が可能となる。さらに、実施例4では放電時に、三相全ての順変換部2を放電用のスイッチング制御にしていたが、PアームおよびNアームそれぞれ一つずつ順変換部2(に備えられた自己消弧素子4)をオン制御することによって、電解コンデンサ8に蓄積された電荷が充放電負荷6Bによって放電される(ただし、PアームとNアームとの間で短絡しないようにオンにする順変換部2(に備えられた自己消弧素子4)を選定する必要がある)。   For example, in the electrolytic capacitor circuits according to Embodiments 2 to 6 of the present invention, a three-phase AC power supply circuit has been described. However, a single-phase or multiphase AC power supply circuit can also be applied. In the electrolytic capacitor circuits of Examples 4 to 6, the circuit breaker 1 or the charge / discharge switching switch 5D can be applied even if either one is omitted. 6B can be applied by installing at least two phases. Further, in the fourth embodiment, during the discharge, all the three-phase forward converters 2 are set to the switching control for discharge. However, the self-extinguishing element provided in the forward converters 2 (one each for the P arm and the N arm). 4), the charge accumulated in the electrolytic capacitor 8 is discharged by the charge / discharge load 6B (however, the forward conversion unit 2 that turns on so as not to be short-circuited between the P arm and the N arm) It is necessary to select the self-extinguishing element 4) provided in the above.

本発明の実施例1における電解コンデンサ回路の回路構成図。The circuit block diagram of the electrolytic capacitor circuit in Example 1 of this invention. 本発明の実施例2における電解コンデンサ回路の回路構成図。The circuit block diagram of the electrolytic capacitor circuit in Example 2 of this invention. 本発明の実施例3における電解コンデンサ回路の回路構成図。The circuit block diagram of the electrolytic capacitor circuit in Example 3 of this invention. 本発明の実施例4における電解コンデンサ回路の回路構成図。The circuit block diagram of the electrolytic capacitor circuit in Example 4 of this invention. 本発明の実施例5における電解コンデンサ回路の回路構成図。The circuit block diagram of the electrolytic capacitor circuit in Example 5 of this invention. 本発明の実施例6における電解コンデンサ回路の回路構成図。The circuit block diagram of the electrolytic capacitor circuit in Example 6 of this invention. 従来の電解コンデンサ回路の一例を示す回路構成図。The circuit block diagram which shows an example of the conventional electrolytic capacitor circuit. 従来の電解コンデンサ回路の他例を示す回路構成図。The circuit block diagram which shows the other example of the conventional electrolytic capacitor circuit.

符号の説明Explanation of symbols

2…順変換部
2P…Pアーム順変換部群
2N…Nアーム順変換部群
3…整流素子
4…自己消弧素子
5A,5B…予備充電開閉器
5C,5D…充放電切替開閉器
6A…予備充電負荷
6B…充放電負荷
7A,7B…予備充電回路
7C,7D…充放電切替回路
8…電解コンデンサ
9…放電負荷
10…放電開閉器
R…閉回路
DESCRIPTION OF SYMBOLS 2 ... Forward conversion part 2P ... P arm forward conversion part group 2N ... N arm forward conversion part group 3 ... Rectifier element 4 ... Self-extinguishing element 5A, 5B ... Precharge switch 5C, 5D ... Charge-discharge switching switch 6A ... Pre-charging load 6B ... Charging / discharging load 7A, 7B ... Pre-charging circuit 7C, 7D ... Charging / discharging switching circuit 8 ... Electrolytic capacitor 9 ... Discharging load 10 ... Discharge switch R ... Closed circuit

Claims (7)

直流電源からの直流電力を蓄積する電解コンデンサと、
充放電負荷および充放電切替開閉器を並列接続して成り、前記直流電源と前記電解コンデンサとの間に介挿され、投入時に前記充放電負荷の両端が短絡する充放電切替回路と、を具備した電解コンデンサ回路であって、
前記直流電源と前記充放電切替回路との間に、投入時にPアームとNアーム間を短絡する放電開閉器を備え、
装置停止時または電源開放時に前記放電開閉器を投入することにより、前記電解コンデンサと前記充放電負荷を含む閉回路が構成され、前記電解コンデンサに蓄積された電荷が前記充放電負荷によって放出されることを特徴とする電解コンデンサ回路。
An electrolytic capacitor that stores DC power from a DC power supply;
A charge / discharge switching circuit comprising a charge / discharge load and a charge / discharge switching switch connected in parallel, inserted between the DC power supply and the electrolytic capacitor, and short-circuiting both ends of the charge / discharge load when turned on; Electrolytic capacitor circuit,
Between the DC power supply and the charge / discharge switching circuit, a discharge switch that short-circuits between the P arm and the N arm when being turned on,
A closed circuit including the electrolytic capacitor and the charge / discharge load is configured by turning on the discharge switch when the apparatus is stopped or the power is opened, and the charge accumulated in the electrolytic capacitor is released by the charge / discharge load. An electrolytic capacitor circuit characterized by that.
整流素子および自己消弧素子を逆並列に接続して成る順変換部をPアーム側に複数個備え、それら各順変換部が交流電源に接続されたPアーム順変換部群と、
前記順変換部をNアーム側に複数個備え、それら各順変換部が前記交流電源に接続されたNアーム順変換部群と、
前記Pアーム順変換部群およびNアーム順変換部群の直流出力側に接続された電解コンデンサと、
充放電負荷および充放電切替開閉器を並列接続して成り、前記Pアーム順変換部群またはNアーム順変換部群と前記電解コンデンサとの間に少なくとも一つ介挿され、投入時に前記充放電負荷の両端が短絡する充放電切替回路と、を具備した電解コンデンサ回路であって、
装置停止時または電源開放時においてPアーム順変換部群とNアーム順変換部群のうち、同相の順変換部を少なくとも一つずつオン制御することにより、前記電解コンデンサと前記充放電負荷を含む閉回路が構成され、前記電解コンデンサに蓄積された電荷が前記充放電負荷によって放出されることを特徴とする電解コンデンサ回路。
A P-arm forward conversion unit group including a plurality of forward conversion units formed by connecting rectifying elements and self-extinguishing elements in reverse parallel on the P-arm side, and each of the forward conversion units connected to an AC power source;
A plurality of the forward conversion units on the N arm side, each of the forward conversion units connected to the AC power supply, an N arm forward conversion unit group;
An electrolytic capacitor connected to the DC output side of the P arm forward converter group and the N arm forward converter group;
A charge / discharge load and a charge / discharge switching switch are connected in parallel, and at least one is inserted between the P-arm forward converter group or the N-arm forward converter group and the electrolytic capacitor, A charge / discharge switching circuit in which both ends of the load are short-circuited, and an electrolytic capacitor circuit comprising:
By turning on at least one in-phase forward conversion unit among the P-arm forward conversion unit group and the N-arm forward conversion unit group when the apparatus is stopped or when the power is released, the electrolytic capacitor and the charge / discharge load are included. An electrolytic capacitor circuit, wherein a closed circuit is configured, and the electric charge accumulated in the electrolytic capacitor is discharged by the charge / discharge load.
前記Pアーム順変換部群,前記Nアーム順変換部群と前記充放電切替回路との間に、投入時にPアームとNアーム間を短絡する放電開閉器を備え、
装置停止時または電源開放時に前記放電開閉器を投入することにより、前記電解コンデンサと前記充放電負荷を含む閉回路が構成され、前記電解コンデンサに蓄積された電荷が前記充放電負荷によって放出されることを特徴とする請求項2記載の電解コンデンサ回路。
A discharge switch that short-circuits between the P arm and the N arm when being turned on between the P arm forward conversion unit group, the N arm forward conversion unit group, and the charge / discharge switching circuit,
A closed circuit including the electrolytic capacitor and the charge / discharge load is configured by turning on the discharge switch when the apparatus is stopped or the power is opened, and the charge accumulated in the electrolytic capacitor is released by the charge / discharge load. The electrolytic capacitor circuit according to claim 2.
整流素子および自己消弧素子を逆並列に接続して成る順変換部をPアーム側に複数個備え、それら各順変換部が交流電源に接続されたPアーム順変換部群と、
前記の順変換部をNアーム側に複数個備え、それら各順変換部が前記交流電源に接続されたNアーム順変換部群と、
前記Pアーム順変換部群およびNアーム順変換部群の直流出力側に接続された電解コンデンサと、
充放電負荷によって構成され、前記Pアーム順変換部群およびNアーム順変換部群と交流電源との間に介挿された充放電切替回路と、を具備した電解コンデンサ回路であって、
前記充放電切替回路における充放電回路の入力側に一端が接続され、他端が三相短絡された放電開閉器を備え、
装置停止時または電源開放時に前記放電開閉器を投入し、PアームとNアーム間が短絡しないように、Pアーム順変換部群とNアーム順変換部群においてそれぞれ一つずつ順変換部をオン制御することにより、電解コンデンサと充放電負荷とを含む閉回路が構成され、前記電解コンデンサに蓄積された電荷が前記充放電負荷によって放出されることを特徴とする電解コンデンサ回路。
A P-arm forward conversion unit group including a plurality of forward conversion units formed by connecting rectifying elements and self-extinguishing elements in reverse parallel on the P-arm side, and each of the forward conversion units connected to an AC power source;
A plurality of the forward conversion units on the N-arm side, each of the forward conversion units connected to the AC power supply, an N-arm forward conversion unit group;
An electrolytic capacitor connected to the DC output side of the P arm forward converter group and the N arm forward converter group;
A charge / discharge switching circuit configured by a charge / discharge load and interposed between the P arm forward conversion unit group and the N arm forward conversion unit group and an AC power source,
One end is connected to the input side of the charge / discharge circuit in the charge / discharge switching circuit, and the other end is provided with a discharge switch having a three-phase short circuit,
Turn on the forward converter in the P-arm forward converter group and the N-arm forward converter group one by one so that the discharge switch is turned on when the device is stopped or the power is turned off, so that the P arm and the N arm are not short-circuited. A closed circuit including an electrolytic capacitor and a charge / discharge load is configured by controlling, and the electric charge accumulated in the electrolytic capacitor is discharged by the charge / discharge load.
装置停止時または電源開放時に前記放電開閉器を投入し、PアームとNアームとの間が短絡しないように、Pアーム順変換部群とNアーム順変換部群とをオンオフ制御することによって、電解コンデンサと充放電負荷とを含む閉回路が構成され、前記電解コンデンサに蓄積された電荷が前記充放電負荷によって放出されることを特徴とする請求項4記載の電解コンデンサ回路。   By turning on and off the P arm forward conversion unit group and the N arm forward conversion unit group so as to prevent short circuit between the P arm and the N arm by turning on the discharge switch when the apparatus is stopped or when the power is opened, 5. The electrolytic capacitor circuit according to claim 4, wherein a closed circuit including an electrolytic capacitor and a charge / discharge load is configured, and the electric charge accumulated in the electrolytic capacitor is discharged by the charge / discharge load. 整流素子および自己消弧素子を逆並列に接続して成る順変換部をPアーム側に複数個備え、それら各順変換部が交流電源に接続されたPアーム順変換部群と、
前記の順変換部をNアーム側に複数個備え、それら各順変換部が前記交流電源に接続されたNアーム順変換部群と、
前記Pアーム順変換部群およびNアーム順変換部群の直流出力側に接続された電解コンデンサと、
充放電負荷によって構成され、前記Pアーム順変換部群およびNアーム順変換部群と交流電源との間に介挿された充放電切替回路と、を具備した電解コンデンサ回路であって、
前記充放電切替回路における充放電回路の入力側に一端が接続され、他端がPアームに接続された放電開閉器を備え、
装置停止時または電源開放時に前記放電開閉器を投入し、Nアーム順変換部群において少なくとも一つの順変換部をオン制御することにより、電解コンデンサと充放電負荷とを含む閉回路が構成され、前記電解コンデンサに蓄積された電荷が前記充放電負荷によって放出されることを特徴とする電解コンデンサ回路。
A P-arm forward conversion unit group including a plurality of forward conversion units formed by connecting rectifying elements and self-extinguishing elements in reverse parallel on the P-arm side, and each of the forward conversion units connected to an AC power source;
A plurality of the forward conversion units on the N-arm side, each of the forward conversion units connected to the AC power supply, an N-arm forward conversion unit group;
An electrolytic capacitor connected to the DC output side of the P arm forward converter group and the N arm forward converter group;
A charge / discharge switching circuit configured by a charge / discharge load and interposed between the P arm forward conversion unit group and the N arm forward conversion unit group and an AC power source,
A discharge switch having one end connected to the input side of the charge / discharge circuit in the charge / discharge switching circuit and the other end connected to the P arm;
A closed circuit including an electrolytic capacitor and a charge / discharge load is configured by turning on the discharge switch when the apparatus is stopped or when the power is opened, and turning on at least one forward converter in the N-arm forward converter group. The electrolytic capacitor circuit, wherein the electric charge accumulated in the electrolytic capacitor is discharged by the charge / discharge load.
整流素子および自己消弧素子を逆並列に接続して成る順変換部をPアーム側に複数個備え、それら各順変換部が交流電源に接続されたPアーム順変換部群と、
前記の順変換部をNアーム側に複数個備え、それら各順変換部が前記交流電源に接続されたNアーム順変換部群と、
前記Pアーム順変換部群およびNアーム順変換部群の直流出力側に接続された電解コンデンサと、
充放電負荷によって構成され、前記Pアーム順変換部群およびNアーム順変換部群と交流電源との間に介挿された充放電切替回路と、を具備した電解コンデンサ回路であって、
前記充放電切替回路における充放電回路の入力側に一端が接続され、他端がNアームに接続された放電開閉器を備え、
装置停止時または電源開放時に前記放電開閉器を投入し、Pアーム順変換部群において少なくとも一つの順変換部をオン制御することにより、電解コンデンサと充放電負荷とを含む閉回路が構成され、前記電解コンデンサに蓄積された電荷が前記充放電負荷によって放出されることを特徴とする電解コンデンサ回路。
A P-arm forward conversion unit group including a plurality of forward conversion units formed by connecting rectifying elements and self-extinguishing elements in reverse parallel on the P-arm side, and each of the forward conversion units connected to an AC power source;
A plurality of the forward conversion units on the N-arm side, each of the forward conversion units connected to the AC power supply, an N-arm forward conversion unit group;
An electrolytic capacitor connected to the DC output side of the P arm forward converter group and the N arm forward converter group;
A charge / discharge switching circuit configured by a charge / discharge load and interposed between the P arm forward conversion unit group and the N arm forward conversion unit group and an AC power source,
A discharge switch having one end connected to the input side of the charge / discharge circuit in the charge / discharge switching circuit and the other end connected to the N arm;
A closed circuit including an electrolytic capacitor and a charge / discharge load is configured by turning on the discharge switch when the apparatus is stopped or when the power is opened, and turning on at least one forward converter in the P arm forward converter group, The electrolytic capacitor circuit, wherein the electric charge accumulated in the electrolytic capacitor is discharged by the charge / discharge load.
JP2007273301A 2007-10-22 2007-10-22 Electrolytic capacitor circuit Pending JP2009106013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007273301A JP2009106013A (en) 2007-10-22 2007-10-22 Electrolytic capacitor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007273301A JP2009106013A (en) 2007-10-22 2007-10-22 Electrolytic capacitor circuit

Publications (1)

Publication Number Publication Date
JP2009106013A true JP2009106013A (en) 2009-05-14

Family

ID=40707180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007273301A Pending JP2009106013A (en) 2007-10-22 2007-10-22 Electrolytic capacitor circuit

Country Status (1)

Country Link
JP (1) JP2009106013A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016144338A (en) * 2015-02-03 2016-08-08 日本リライアンス株式会社 Power supply device
JP2021040467A (en) * 2019-09-05 2021-03-11 ファナック株式会社 Power conversion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016144338A (en) * 2015-02-03 2016-08-08 日本リライアンス株式会社 Power supply device
JP2021040467A (en) * 2019-09-05 2021-03-11 ファナック株式会社 Power conversion device

Similar Documents

Publication Publication Date Title
US20140003099A1 (en) Frequency converter with dc link capacitor and method for pre-charging the dc link capacitor
US10128741B2 (en) Power conversion device
JP5523511B2 (en) Power converter
JP5903628B2 (en) Power converter
TW201818633A (en) Uninterruptible power supply device
JP5429316B2 (en) Indirect matrix converter
US11472305B2 (en) Charging circuit for a vehicle-side electrical energy store
US9270192B2 (en) Variable speed drive provided with a supercapacitor module
JP2014200169A (en) High voltage inverter system
JP2012205492A (en) Power conversion apparatus
US11760218B2 (en) Charging circuit for a vehicle-side electrical energy store
JP5805118B2 (en) Power converter
JP5971685B2 (en) Power converter
JP2012034451A (en) Protective device of power conversion device
JP2004274906A (en) Direct ac-ac power converter
JP5963197B2 (en) AC / AC bidirectional power converter
JP2009106013A (en) Electrolytic capacitor circuit
JP2010004728A (en) Power conversion apparatus
JP2009284560A (en) Charging method of motor driven system
CN113165540A (en) Vehicle side charging device
JP4000719B2 (en) Charge / discharge device for battery or electric double layer capacitor
JP2011109790A (en) Power conversion device
JP5445036B2 (en) Power converter
JP2002320390A (en) Power storage apparatus
JP2016127782A (en) Power conversion device