JP2009103470A - Method for inspecting scanning accuracy of scanning irradiation device - Google Patents

Method for inspecting scanning accuracy of scanning irradiation device Download PDF

Info

Publication number
JP2009103470A
JP2009103470A JP2007273050A JP2007273050A JP2009103470A JP 2009103470 A JP2009103470 A JP 2009103470A JP 2007273050 A JP2007273050 A JP 2007273050A JP 2007273050 A JP2007273050 A JP 2007273050A JP 2009103470 A JP2009103470 A JP 2009103470A
Authority
JP
Japan
Prior art keywords
scanning
grid
moire
laser
microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007273050A
Other languages
Japanese (ja)
Inventor
Satoru Kishimoto
哲 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007273050A priority Critical patent/JP2009103470A/en
Publication of JP2009103470A publication Critical patent/JP2009103470A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily inspecting the scanning accuracy of a scanning irradiation device by using a moire method for enlarging a slight difference in interval and showing it, especially an electron beam moire method excellent in measurement in a minute region. <P>SOLUTION: An image is obtained by making a board and a material for grids different in permeability, or reflection characteristics, or electron/ion generating characteristics to a particle beam or an energy beam, and emitting the particle beam or energy beam in parallel or with an acute angle to a reference board as an inspection sample acquired by forming grids on the board, in such a way as to perform scanning. A grid to be a reference is manufactured so as to be proportionate to the capability of a device to calibrate the grid so as to perform inspection of a wide range of magnification, and by using the grid, moire fringes are generated. By the shape of these moire fringes, ununiformity and inaccuracy of a scanning width are inspected and calibrated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、走査照射装置の走査精度検定方法に関する。   The present invention relates to a scanning accuracy verification method for a scanning irradiation apparatus.

照射線の走査精度を検定する方法として、従来より以下のものが知られていた。
走査型電子顕微鏡の倍率の検定には「倍率標準試料」という、一定の大きさあるいはピッチを持った、倍率の基準となる試料を用いる。メッシュ、ラテックス球、などがあるが、最近ではリソグラフィー技術を応用した数百nm〜数十μmピッチのパターンが使われるようになっている。検定するためにはある倍率でこの標準試料を観察し基準物の長さを測定し倍率を補正、またこの観察により像のゆがみや縦横比の違いにより走査位置や幅の精度を調査していた。
特許公報2535787においては、自然界に存在する原子分子を用いてプローブの高さの情報を輝度の情報に変えて、モアレ縞を観察させ、走査型プローブ顕微鏡の直線性の校正に用いていることが記述されている。自然物を用いるために自然界に存在する領域の格子しか用いることができず、そのため校正する領域が限られていた。また、この方法では、走査線間隔の分布が緩やかに変化した場合は検知が難しかった。
モアレ縞を利用して変形量を求める手法をモアレ法と呼び、特に光学的モアレ法は昔から周知されている手法であり、二つの格子(モデル格子とマスター格子)を重ね合わせ、重なり合った部分と重なり合わない部分とでできる濃淡の縞(モアレ縞)より変形量を求める方法である。さらに発明者らによって電子線モアレ法(1875579)も開発された。電子線モアレ法においては、モデル格子を試料とは二次電子発生量が異なる物質を用いて作製し、マスター格子の代わりに格子状に照射される電子線を用い、電子線をモデル格子上に照射したときに生成する二次電子や反射電子量の違いによりモアレ縞を生成する方法である。従来の光学的モアレ法に比べ微小な領域での変形量計測が可能である。
特許第2535787号公報 特許第1875579号公報 http://www.jeol.co.jp/cgi-bin/searchDB.pl?query=Φ&searchWhat=semTerms
Conventionally, the following methods have been known as methods for verifying the scanning accuracy of irradiation rays.
In order to verify the magnification of the scanning electron microscope, a “magnification standard sample”, which is a standard for magnification, having a certain size or pitch is used. There are meshes, latex spheres, etc. Recently, patterns with a pitch of several hundred nm to several tens of μm using a lithography technique have been used. In order to verify, the standard sample was observed at a certain magnification, the length of the reference object was measured, the magnification was corrected, and this observation was used to investigate the accuracy of the scanning position and width based on image distortion and aspect ratio differences. .
In Japanese Patent Publication No. 2535787, information on the height of the probe is changed to information on luminance using atomic molecules existing in the natural world, and moire fringes are observed, which is used for calibration of linearity of the scanning probe microscope. is described. Since a natural object is used, only a lattice of a region existing in the natural world can be used, so that a region to be calibrated is limited. Also, with this method, it is difficult to detect when the distribution of scanning line intervals changes gently.
The method of obtaining the amount of deformation using moiré fringes is called the moire method, and the optical moire method is a well-known method for a long time, where two lattices (model lattice and master lattice) are overlapped and overlapped. And the amount of deformation is determined from light and dark stripes (moire stripes) formed by portions that do not overlap. Furthermore, the inventors have also developed an electron beam moire method (18775579). In the electron beam moire method, a model lattice is prepared using a material having a different amount of secondary electrons from that of the sample, and an electron beam irradiated in a lattice shape is used instead of the master lattice, and the electron beam is placed on the model lattice. In this method, moire fringes are generated based on the difference in the amount of secondary electrons and reflected electrons generated upon irradiation. Compared to the conventional optical moire method, it is possible to measure the amount of deformation in a minute region.
Japanese Patent No. 2535787 Japanese Patent No. 1875579 http://www.jeol.co.jp/cgi-bin/searchDB.pl?query=Φ&searchWhat=semTerms

上述したように、走査照射装置の走査精度を検定する方法は、倍率の基準となる試料を用い、標準試料を装置を用いて観察し、基準物の長さを測定し倍率を補正、像のゆがみや縦横の比の違いにより走査位置や幅の精度を調査していたため、調整と観察を繰り返すために時間を要し、また軽度の狂いの場合は見逃す可能性があった。   As described above, the method for verifying the scanning accuracy of the scanning irradiation apparatus uses a sample as a reference for magnification, observes the standard sample using the apparatus, measures the length of the reference object, corrects the magnification, Since the accuracy of the scanning position and width was investigated by the difference in distortion and aspect ratio, it took time to repeat the adjustment and observation, and there was a possibility that it would be overlooked in the case of minor deviations.

そこで、わずかな間隔の違いを拡大して表現するモアレ法を、特に微細は領域での測定を得意とする電子線モアレ法を用い、容易に走査照射装置の走査精度を検定する方法の開発を試みた。ここでは広範囲における倍率を検定できるよう、特許公報2535787に示す様な自然に存在するグリッドではなく、基準となるグリッドを校正すべき装置の能力に見合うグリッドを正確に(高精度で)作製し、これを用いてモアレ縞を発生させ、このモアレ縞の形状より、走査幅の不均一や不正確さを検定校正する。
つまり、本発明は、検定試料として、グリッドを形成する材料と基板とが粒子線又はエネルギー線に対する透過性又は反射特性又は電子やイオンの発生特性が異なるようにして、前記基板にグリッドが形成された基準板に対して、平行にあるいは鋭角な角度を持って前記粒子線又はエネルギー線を走査状に照射して画像を得ることを特徴とする。
Therefore, we developed a method for easily verifying the scanning accuracy of a scanning irradiation device by using the moire method that expresses a slight difference in spacing, especially the electron moire method that excels at measurement in a fine area. Tried. Here, in order to be able to test the magnification in a wide range, instead of a naturally existing grid as shown in Japanese Patent Publication No. 2535787, a grid that accurately matches the ability of the device to calibrate the reference grid (with high accuracy) Moire fringes are generated using this, and the non-uniformity or inaccuracy of the scanning width is verified and calibrated from the shape of the moire fringes.
That is, according to the present invention, as a test sample, the grid is formed on the substrate such that the material forming the grid and the substrate have different transmission or reflection characteristics with respect to particle beams or energy beams, or generation characteristics of electrons and ions. An image is obtained by irradiating the particle beam or energy beam in a scanning manner in parallel or with an acute angle to the reference plate.

本手法により、粒子線やエネルギー線を走査・照射する装置の走査精度検定を容易に行うことができ、今まで見過ごしてきたほどの微小な誤差も検出することができる。また、図13に示すように平行格子群のずれも拡大して表示できるので、ビームを走査する装置内でのステージの位置合わせなどにも用いることができる。モアレ縞が一致すれば平行直線群がぴたりと合っていることを示し、容易に位置あわせを行うことができる。   By this method, it is possible to easily perform a scanning accuracy test of an apparatus that scans and irradiates particle beams and energy beams, and it is possible to detect a minute error that has been overlooked so far. Further, since the shift of the parallel grating group can be enlarged and displayed as shown in FIG. 13, it can be used for alignment of the stage in the apparatus for scanning the beam. If the moiré fringes match, it indicates that the parallel straight line group is perfectly aligned and can be easily aligned.

本発明では基準となるマスターグリッドを人工的に正確に作製するため、広範囲の(ミクロンオーダーからミリオーダーまで)領域で走査幅を検定することができる。
グリッド作製に際してはフォトリソグラフィー、電子線リソグラフィー、X線リソグラフィー、高精度のX-Yステージを有するレーザー加工機等を用いて作製する。校正すべき装置の能力に見合うグリッドを正確に(高精度で)作製し、これを用いてモアレ縞を発生させることにより走査幅の不均一や不正確さを検定校正する。グリッドの間隔は装置が本来有するべき走査間隔とほぼ同じか若干異なる間隔がよい。装置が本来有するべき走査間隔とほぼ同じグリッドの場合はモアレ縞が画面内に0から1本観察され、若干異なる間隔の場合は数本から十数本観察されるくらいが判断しやすい。モアレ縞の間隔が異なれば粒子線の走査間隔が異なることを意味している。
モアレ縞の発生原理を図4に示す。モアレ縞は二つの相似形のパターンを有する図形が重なり合うことによりできる縞のことである。
図4左図に示すように、グリッドの間隔が異なることにより発生するモアレ縞をミスマッチによるモアレ縞、右図に示す2つのグリッドがある角度をもっている時に現れるモアレ縞をミスアライメントによるモアレ縞という。
In the present invention, since the master grid serving as a reference is artificially and accurately manufactured, the scanning width can be verified in a wide range (from micron order to millimeter order).
The grid is manufactured using photolithography, electron beam lithography, X-ray lithography, a laser processing machine having a high-precision XY stage, or the like. A grid suitable for the capability of the apparatus to be calibrated is produced accurately (with high accuracy), and moiré fringes are generated using this grid to calibrate the nonuniformity and inaccuracy of the scanning width. The grid interval is preferably the same as or slightly different from the scan interval that the apparatus should originally have. In the case of a grid that is substantially the same as the scanning interval that the apparatus should originally have, moiré fringes are observed from 0 to 1 on the screen, and in the case of slightly different intervals, it is easy to judge whether several to a dozen or so are observed. Different moiré fringe intervals mean different particle beam scanning intervals.
Fig. 4 shows the principle of moiré fringe generation. Moire fringes are fringes formed by overlapping figures with two similar patterns.
As shown in the left diagram of FIG. 4, moire fringes generated when the grid intervals are different are referred to as mismatched moire fringes, and moire fringes that appear when the two grids shown in the right diagram have a certain angle are referred to as misaligned moire fringes.

ひずみなどを測る場合は等間隔で平行な直線群や直行格子を用いる。基準となるグリッドのマスターグリッドの間隔をaとしモデルグリッド(変形するグリッド)の間隔をa’とすると、モデルグリッドのマスターグリッドに対する変化の割合(ひずみ)εは式1で表される。
(式1)


モアレ法はノギスのバーニアのように何本かの直線を用いてひずみを求めるため、空間分解能を犠牲にし、平均的なひずみの測定精度を向上させる手法であり、走査型レーザー顕微鏡のように粒子線(光子,電子,イオンビーム)を平行線状に照射する装置の走査幅や方向を、モアレ縞の変化(間隔および角度)より求めることができる。この事象により、あらゆる粒子線やエネルギー線を規則的に走査する装置の走査幅や角度の検定に用いられる。
When measuring strain or the like, a straight line group or a perpendicular grid parallel at equal intervals is used. When the interval of the master grid of the reference grid is a and the interval of the model grid (deformable grid) is a ′, the change rate (strain) ε of the model grid with respect to the master grid is expressed by Equation 1.
(Formula 1)


The Moire method is a technique that uses several straight lines to obtain strain as in Vernier calipers, and is a technique that improves the average strain measurement accuracy at the expense of spatial resolution. The scanning width and direction of the apparatus that irradiates lines (photons, electrons, ion beams) in parallel lines can be obtained from the change (interval and angle) of moire fringes. This phenomenon is used to test the scan width and angle of an apparatus that regularly scans all particle beams and energy beams.

本発明は粒子線やエネルギー線を試験片上に等間隔で照射する(走査する)顕微鏡類の走査幅の検定法であるのでマスターグリッドを正確に作製したグリッドを用い、走査する光や電子線をモデルグリッドとする。レーザーや光を用いる場合はマスターグリッドとしては光の反射を基板とは異なるようにしたグッリドを用い(図5)、電子線を照射する場合は二次電子発生量が基板とは異なる様に作製したグリッドを用いる(図6)。
走査型音響顕微鏡のように高周波の超音波(100MHz〜3GHz)を音響レンズなどを用いて集束し、焦点面に置いた試料を機械的に走査し、試料の部分的な超音波反射率または透過率の変化を検出し、画像としてCRT上に表示する装置の場合は超音波伝播速度が異なる弾性率や密度の異なる物質を用いて作製したマスターグリッドを用いる。
Since the present invention is a test method for the scanning width of microscopes that irradiates (scans) particle beams and energy beams at equal intervals on a test piece, a grid in which a master grid is accurately prepared is used, and scanning light and electron beams are used. Model grid. When a laser or light is used, a grid that reflects light differently from the substrate is used as the master grid (Fig. 5), and when the electron beam is irradiated, the amount of secondary electrons generated is different from that of the substrate. Use the grid (Fig. 6).
Like a scanning acoustic microscope, high-frequency ultrasonic waves (100 MHz to 3 GHz) are focused using an acoustic lens, etc., and the sample placed on the focal plane is mechanically scanned, and the partial ultrasonic reflectance or transmission of the sample is obtained. In the case of a device that detects a change in the rate and displays it as an image on a CRT, a master grid manufactured using materials having different elastic moduli and different densities is used.

あらかじめ正しい走査幅と同じ格子(マスターグリッド)を作製しておき、このグリッドを粒子ビームの走査幅と平行に設置して観察したときに全くモアレ縞が観察できない状態に走査幅に設定すると、これが正しい倍率の走査幅である。意識的に格子(マスターグリッド)と異なる間隔で粒子線やエネルギー線(光子,電子,イオンビーム)を平行線状に照射して、モアレ縞が等間隔の場合はほぼ等間隔で走査されているがモアレ縞間隔に違いがある場合は走査幅が等間隔ではないことを示している。   When a grid (master grid) having the same scanning width as that of the correct scanning width is prepared in advance, and when this grid is set parallel to the scanning width of the particle beam and observed, the moiré fringes cannot be observed at all. The scan width is the correct magnification. Consciously irradiating particle beams and energy beams (photons, electrons, ion beams) in parallel lines at intervals different from the grid (master grid), and when the moire fringes are equally spaced, they are scanned at approximately equal intervals. However, if there is a difference in the moire fringe interval, it indicates that the scanning width is not equal.

レーザー加工機のように表示部を持たない装置で照射したあとを試料上に残せる場合は、グリッドを有する試料上に照射し、照射したあととグリッドの間に生ずるモアレ縞を用いても良い。また、格子(マスターグリッド)と粒子線やエネルギー線群との角度であるが、お互いに平行にあるいは鋭角な角度を持って走査した方がモアレ縞の間隔が広くなるので間隔や角度の相違は検知しやすい。角度は30度を超えると、モアレ縞はほとんど変化しなくなるので30度以下が好ましい。   When it is possible to leave the sample after irradiation with an apparatus having no display unit such as a laser processing machine, moiré fringes generated between the grid after irradiation with a sample having a grid may be used. Also, the angle between the grid (master grid) and the particle beam or energy beam group, but the distance between the moire fringes becomes wider when scanned parallel to each other or at an acute angle. Easy to detect. When the angle exceeds 30 degrees, the moire fringes hardly change, so 30 degrees or less is preferable.

図1は、フェムト秒レーザー照射装置を用いて作製した3μm間隔の直交格子を示す。
基板は304ステンレス鋼と炭素鋼の積層板である。格子はフェムト秒レーザー照射装置の3軸稼働ステージ上に基板を置き、レーザーと照射しながらステージを3μm間隔で平行に移動することにより作製した。レーザー光源はサイバーレーザー製IFRITを用い、その波長は780nmである。レーザーを照射するパルス幅は170フェムト秒である。このレーザーが照射された部分は高温に熱せられるため基板表面が溶発し、細かい凹凸が生じる。この凹凸により光は乱反射して暗く観察される。この図は100倍の対物レンズを用いた走査型レーザー顕微鏡(レーザーテック社製 走査型レーザー顕微鏡1LM15W)による観察結果である。
図2は、前記顕微鏡による20倍の対物レンズを用いた時のモアレ縞観察結果を示す。本顕微鏡のレーザー(ヘリウムネオンレーザー、波長633nm)は出力が弱く表面の観察のみに使用できる。図2においては、倍率、観察面積、走査線の数より、照射レーザーの間隔を算出すると、約2.2μmの間隔で平行に照射したことになる。
FIG. 1 shows an orthogonal lattice with a spacing of 3 μm fabricated using a femtosecond laser irradiation apparatus.
The substrate is a laminate of 304 stainless steel and carbon steel. The grating was fabricated by placing the substrate on a 3-axis operation stage of a femtosecond laser irradiation apparatus and moving the stage in parallel at intervals of 3 μm while irradiating with the laser. The laser light source is IFRIT manufactured by Cyber Laser, and its wavelength is 780 nm. The pulse width for laser irradiation is 170 femtoseconds. Since the portion irradiated with this laser is heated to a high temperature, the substrate surface is ablated and fine irregularities are generated. Due to this unevenness, light is diffusely reflected and observed dark. This figure shows the results of observation with a scanning laser microscope (scanning laser microscope 1LM15W manufactured by Lasertec Corporation) using a 100 × objective lens.
FIG. 2 shows the results of moiré fringe observation using a 20 × objective lens with the microscope. The laser of this microscope (helium neon laser, wavelength 633 nm) is weak in output and can be used only for surface observation. In FIG. 2, when the interval of the irradiation laser is calculated from the magnification, the observation area, and the number of scanning lines, the irradiation is performed in parallel at an interval of about 2.2 μm.

図2のモアレ縞は、直線を示しているが、縞の間隔が上の方が狭く中央やや下の方が大きい。さらに下方へ行くとまた狭くなっている。このことは、本来は等間隔であるはずの走査間隔は中央部が上部下部に比べて広く、上部および下部の方が中央部に比べて狭くなっていることがわかる。これは、レーザーを照射する角度を変えるためのガルバノミラーが正常に作動していないためである。   The moire fringes in FIG. 2 show straight lines, but the interval between the fringes is narrower at the top and slightly smaller at the center. If you go further down, it becomes narrower again. This indicates that the scanning interval, which should be at regular intervals, is wider in the central part than in the upper and lower parts, and narrower in the upper and lower parts than in the central part. This is because the galvanometer mirror for changing the laser irradiation angle is not operating normally.

比較のため、10μm間隔の直線をひいた光学顕微鏡用のマイクロマーカを同じ走査レーザー顕微鏡を用い20倍の対物レンズで観察した(図3)が、著しい間隔の変化は見られなかった。このようにモアレ縞の変化を用いると直接マーカーを観察するよりも、はるかに敏感に間隔の違いを検出することができる。   For comparison, a micromarker for an optical microscope having straight lines spaced at 10 μm was observed with a 20 × objective lens using the same scanning laser microscope (FIG. 3), but no significant change in the distance was observed. In this way, using the change in moire fringes makes it possible to detect the difference in distance much more sensitively than directly observing the marker.

基板上に格子を作成する方法としては表1に示すように他に電子線リソグラフィーやフォトリソグラフィーを用い、蒸着やエッチングによって作製する手法、イオン研磨によって溝を作成する方法、走査型プローブ顕微鏡やX-Yステージを用いて試料を引っかいて作製する方法、イオンアシストガスデポジションによってイオンビームが照射された所に金属を蒸着して作成する方法がある。   As shown in Table 1, other methods for creating a lattice on the substrate include electron beam lithography and photolithography, a method of creating by vapor deposition and etching, a method of creating grooves by ion polishing, a scanning probe microscope and an XY There are a method of making a sample by scratching it using a stage, and a method of making a metal by vapor deposition at a place irradiated with an ion beam by ion-assisted gas deposition.

基板は304ステンレス鋼と炭素鋼の積層板である。格子はフェムト秒レーザー照射装置の3軸稼働ステージ上に基板を置き、レーザーと照射しながらステージを10μm間隔でx方向とy方向に平行に移動することにより作製した。レーザー光源はサイバーレーザー製IFRITを用い、その波長は780nmである。レーザーを照射するパルス幅は170フェムト秒である。このレーザーが照射された部分は高温に熱せられ基板表面が溶発し、細かい凹凸が生じる。この凹凸により光は乱反射して暗く観察される。作製した直交格子を図7に示す。この格子に走査レーザー顕微鏡(レーザーテック社製 走査型レーザー顕微鏡1LM15W)を用い、5倍の対物レンズを用いて、さらに若干走査線間隔を調節してモアレ縞を観察した結果を図8に示す。倍率、観察面積、走査線の数取り算出すると約9μmの間隔で平行に照射したことになる。モアレ縞は直線を示しているが、縞の間隔が上の方が狭く下の方が大きい。このことは、本来は等間隔でならない走査間隔が写真上の方が狭く、下の方が広いことを示している。この現象はレーザーを照射する角度を変えるためのガルバノミラーが正常に作動していないためである。
比較のため、10μm間隔の直線をひいた光学顕微鏡用のマイクロマーカーを同じ走査レーザー顕微鏡を用い5倍の対物レンズで観察した(図9)が、著しい間隔の変化は見られなかった。このようにモアレ縞の変化を用いると直接マーカーを観察するよりも、はるかに敏感に走査するレーザー光の間隔の違いを検出することができる。
The substrate is a laminate of 304 stainless steel and carbon steel. The grating was prepared by placing the substrate on a 3-axis operation stage of a femtosecond laser irradiation apparatus and moving the stage parallel to the x and y directions at 10 μm intervals while irradiating with the laser. The laser light source is IFRIT manufactured by Cyber Laser, and its wavelength is 780 nm. The pulse width for laser irradiation is 170 femtoseconds. The portion irradiated with this laser is heated to a high temperature, the substrate surface is ablated, and fine irregularities are generated. Due to this unevenness, light is diffusely reflected and observed dark. The produced orthogonal lattice is shown in FIG. FIG. 8 shows the results of observing moire fringes using a scanning laser microscope (scanning laser microscope 1LM15W manufactured by Lasertec Co., Ltd.) on this lattice, using a 5 × objective lens, and further adjusting the scanning line interval. When the magnification, observation area, and number of scanning lines are calculated, irradiation is performed in parallel at intervals of about 9 μm. Moire fringes show a straight line, but the spacing between the stripes is narrower at the top and larger at the bottom. This indicates that the scanning interval, which is originally not equal, is narrower on the photograph and wider on the bottom. This phenomenon is because the galvanometer mirror for changing the laser irradiation angle is not operating normally.
For comparison, a micromarker for an optical microscope in which straight lines with intervals of 10 μm were drawn was observed with a 5 × objective lens using the same scanning laser microscope (FIG. 9), but no significant interval change was observed. In this way, using the change in the moire fringes makes it possible to detect the difference in the interval between the laser beams scanned much more sensitively than when directly observing the marker.

図10は、フェムト秒レーザー照射装置を用いて作製した20μm間隔の平行格子を走査型電子顕微鏡で観察した結果である。基板は304ステンレス鋼と炭素鋼の積層板を用いた。格子はフェムト秒レーザー照射装置の3軸稼働ステージ上に基板を置き、レーザーを照射しながらステージを20μm間隔で平行に移動することにより作製した。レーザー光源はサイバーレーザー製IFRITを用い、その波長は780nmである。レーザーを照射するパルス幅は170フェムト秒である。このレーザーが照射された部分は高温に熱せられ基板表面が溶発し、細かい凹凸が生じる。この凹凸により2次電子発生量増大し、明るく観察される。図11はこの格子に走査型電子顕微鏡を用い、電子線を約22μm間隔で格子に平行に照射して観察した電子線モアレ縞である。電子線モアレ縞間隔は中央部付近で狭く、両端および上下方で広くなっている。モアレ縞自体も湾曲している。このことは、本来は等間隔であるはずの電子線走査間隔が上部左右端近傍で狭く、中央付近では広いことを示している。これは、電子線を角度でコントロールしている走査型電子顕微鏡においては、低倍では角度と走査幅が一致しないために像がゆがむという現象によるためである。比較のため、走査型電子顕微鏡校正用パターンを用いて当倍率で観察した結果を図12に示す。本来正方形である同心正方形が写真上下の部分で線が若干湾曲しているのが観察できるが、モアレ縞ほどの著しい変化は見られなかった。このようにモアレ縞の変化を用いると直接マーカーを観察するよりも、はるかに敏感に間隔の違いを検出することができる。   FIG. 10 shows the results of observation with a scanning electron microscope of 20 μm-interval parallel gratings produced using a femtosecond laser irradiation apparatus. The substrate was a laminate of 304 stainless steel and carbon steel. The grating was prepared by placing the substrate on a 3-axis operation stage of a femtosecond laser irradiation apparatus and moving the stage in parallel at 20 μm intervals while irradiating the laser. The laser light source is IFRIT manufactured by Cyber Laser, and its wavelength is 780 nm. The pulse width for laser irradiation is 170 femtoseconds. The portion irradiated with this laser is heated to a high temperature, the substrate surface is ablated, and fine irregularities are generated. Due to the unevenness, the amount of secondary electrons generated is increased and brightly observed. FIG. 11 shows an electron beam moire fringe observed by using a scanning electron microscope for the lattice and irradiating the electron beam parallel to the lattice at intervals of about 22 μm. The electron beam moire fringe spacing is narrow near the center and wide at both ends and up and down. Moire stripes are also curved. This indicates that the electron beam scanning interval, which should be at regular intervals, is narrow near the upper left and right ends and wide near the center. This is because in a scanning electron microscope in which the electron beam is controlled by an angle, the image is distorted because the angle and the scanning width do not match at low magnification. For comparison, FIG. 12 shows the results of observation at this magnification using a scanning electron microscope calibration pattern. Although concentric squares, which are originally squares, can be observed in the upper and lower portions of the photograph, the lines are slightly curved, but no significant change was observed as with moire fringes. In this way, using the change in moire fringes makes it possible to detect the difference in distance much more sensitively than directly observing the marker.

本手法は基板上に正確に作製した格子を用いて、粒子線又はエネルギー線等の照射線を走査状にターゲットに照射する走査照射装置の走査精度検定方法である。この種の粒子線又はエネルギー線等の照射線を走査状にターゲットに照射する走査照射装置は、実施例にある走査型電子顕微鏡や走査型レーザー顕微鏡や走査型走査型音響顕微鏡等の微視的領域での観察装置の画像精度の検定を行えるばかりでなく、精密加工行う収束イオンビームやレーザー加工機、電子部品を作製するフォトマスクを作製するための電子線描画装置の描画の正確さを向上することができこの分野の発展に寄与する。また、図13に示すように、平行格子群のずれも拡大して表示できるので、ビームを走査する装置内でのステージの位置合わせなどにも用いることができる。ステージの端に平行線を描き位置合わせするもう片方にも同じ幅の平行線を描いておき、粒子線やエネルギー線を平行線状に照射してモアレ縞を出し、モアレ縞が一致すれば平行直線群がぴたりと合っていることを示すので、容易に位置あわせを行うことができる。本手法を用いることにより粒子線又はエネルギー線等の照射精度が向上し、位置あわせも容易になるため、電子部品製造分野や精密加工分野において歩留まりを向上などに多大な貢献をするものと思われる。   This method is a scanning accuracy verification method for a scanning irradiation apparatus that irradiates a target with irradiation beams such as particle beams or energy beams in a scanning manner by using a lattice produced on a substrate accurately. A scanning irradiation apparatus that irradiates a target with irradiation beams such as particle beams or energy beams of this type is a microscopic device such as a scanning electron microscope, a scanning laser microscope, or a scanning scanning acoustic microscope in the embodiment. Not only can the image accuracy of the observation device in the area be verified, but also improve the accuracy of the drawing of the focused ion beam and laser processing machine for precision processing and the electron beam drawing device for making photomasks for making electronic components. Can contribute to the development of this field. Further, as shown in FIG. 13, since the shift of the parallel grating group can be enlarged and displayed, it can also be used for alignment of the stage in the apparatus for scanning the beam. Draw a parallel line at the end of the stage and draw a parallel line on the other side, draw parallel lines of the same width, irradiate particle lines and energy rays in parallel lines to generate moire fringes, and parallel if the moire fringes match Since it shows that the straight line group fits perfectly, it is possible to easily align. By using this method, the irradiation accuracy of particle beam or energy beam is improved and the positioning becomes easy, so it seems to contribute greatly to improving the yield in the field of electronic component manufacturing and precision processing. .

なお、本発明の内容を理解する助けとして、以下に各用語の一般的な意味を記載する。
ガルバノミラー
高速にレーザーを走査するために光軸を動かすためのユニット。一般的には2枚のミラーをモーターで動かし、試料上のx,y方向を走査する。その動作はコンピュータを使って電気的に制御する。
In addition, the general meaning of each term is described below as an aid for understanding the contents of the present invention.
Galvano mirror A unit for moving the optical axis to scan the laser at high speed. In general, two mirrors are moved by a motor, and the x and y directions on the sample are scanned. The operation is electrically controlled using a computer.

走査型電子顕微鏡
対象とする試料を電子線で走査し、反射電子や二次電子を検出器で検出してその強度をブラウン管上に映像として表示し、対象物の拡大像などを得る装置。反射法(SEM)が表面形状、組織の観察に広く用いられている。分解能は2〜3mm程度。透過電子像を観察する方式を走査透過電子顕微鏡(STEM)という。
Scanning electron microscope A device that scans a target sample with an electron beam, detects reflected electrons and secondary electrons with a detector, displays the intensity as an image on a cathode ray tube, and obtains an enlarged image of the object. The reflection method (SEM) is widely used for observing surface shapes and tissues. Resolution is about 2-3mm. A method for observing a transmission electron image is called a scanning transmission electron microscope (STEM).

走査プローブ顕微鏡
電圧をかけることにより、非常に小さな変形を起こす圧電体で、XYZ方向に移動可能なステージを構成し、非常に小さなプローブを走査してデータを取り込み、画像化することを原理とする顕微鏡でSPMと呼ばれている。現在では非常に多くの種類のものが考案されている。たとえば、すでに市販されているものでは、STM(走査トンネル顕微鏡)、AFM(原子間力顕微鏡)以外に表面の摩擦力を測るLMFFM(Lateral Force Modulation Friction Force Microscope)、表面の粘弾性を測るVE−AFM(Visco-elasticity Atomic Force Microscope)、表面の電位分布を測るKFM(Kelvin Force Microscope)などがある。また、SPMの大きな特徴としては、真空中から水溶液中にいたるまで、非常に広い環境中で使用できることと、観察だけでなく種々の加工ができることが挙げられる。このようにSPMは非常に多目的に使用できるのが特徴である。
Scanning probe microscope A piezoelectric body that generates a very small deformation by applying a voltage to form a stage that can move in the X, Y, and Z directions, and scans a very small probe to capture data and image it. It is called SPM in the microscope. At present, a great many types have been devised. For example, among those already on the market, in addition to STM (scanning tunneling microscope) and AFM (atomic force microscope), LMFFM (Lateral Force Modulation Friction Force Microscope) that measures surface friction force, VE- that measures surface viscoelasticity There are AFM (Visco-elasticity Atomic Force Microscope), KFM (Kelvin Force Microscope) that measures surface potential distribution, and the like. In addition, as a major feature of SPM, it can be used in a very wide environment from vacuum to aqueous solution, and various processing as well as observation can be mentioned. As described above, SPM is very versatile.

走査型音響顕微鏡
(超音波顕微鏡)
高周波の超音波(100MHz〜3GHz)を音響レンズなどを用いて集束し、焦点面に置いた試料を機械的に走査し、試料の部分的な超音波反射率または透過率の変化を検出し、画像としてCRT上に表示する装置。金属、セラミックスなどの組織や微小欠陥の観察に用いる。=SAM
走査型レーザー顕微鏡
レーザー光を平行線状に走査させて反射光の輝度をブラウン管上に写し出して観察する顕微鏡
Scanning acoustic microscope (ultrasonic microscope)
Focusing high-frequency ultrasonic waves (100MHz to 3GHz) using an acoustic lens, etc., mechanically scanning the sample placed on the focal plane, detecting changes in the partial ultrasonic reflectance or transmittance of the sample, A device that displays images on a CRT. Used for observing microstructures and minute defects of metals and ceramics. = SAM
Scanning laser microscope A microscope that scans laser light in parallel lines and displays the brightness of reflected light on a cathode ray tube for observation.

倍率標準試料
走査型電子顕微鏡の倍率や性能を確認するためには倍率標準試料(一定の大きさあるいはピッチを持った、倍率の基準となる試料。倍率精度を上げるためには大きさの基準となる試料を使って一定条件で計測する必要がある。メッシュ、ラテックス球、などがあるが、最近ではリソグラフィー技術を応用した数百nmピッチのパターンが使われるようになり、ISOのトレーサビリティーを満足するものもある。)を用いる。
Magnification standard sample To confirm the magnification and performance of a scanning electron microscope, a magnification standard sample (a sample with a fixed size or pitch, which serves as a reference for magnification. To increase magnification accuracy, There are meshes, latex spheres, etc., but recently, patterns with a pitch of several hundreds of nanometers using lithography technology have been used to satisfy ISO traceability. Some use.)

実施例1で用いるグリッドを100倍の対物レンズを用いた走査レーザー顕微鏡による観察結果を示す写真。FIG. 3 is a photograph showing the results of observation with a scanning laser microscope using a 100-times objective lens for the grid used in Example 1. 図1のグリッドの20倍の対物レンズを用いた走査レーザー顕微鏡によるモアレ縞の観察結果を示す写真。FIG. 2 is a photograph showing an observation result of moire fringes by a scanning laser microscope using an objective lens 20 times the grid of FIG. 光学顕微鏡用ミクロンマーカー(最小間隔10μm)を、20倍の対物レンズを用いた走査型レーザー顕微鏡による観察結果を示す写真。The photograph which shows the observation result by the scanning laser microscope which used the micron marker for optical microscopes (minimum space | interval 10 micrometers) using a 20 times objective lens. モアレ縞の発生原理を示す模式図。 左図:格子の間隔が異なること(ミスマッチ)によるモアレ縞。右図:格子が平行でないこと(ミスアラインメント)によるモアレ縞をそれぞれ例示。The schematic diagram which shows the generation principle of a moire fringe. Left figure: Moire fringes due to different lattice spacing (mismatch). Right figure: Moire fringes due to non-parallel lattices (misalignment). レーザーや光を走査する顕微鏡用のグリッドの作用を示す模式図。The schematic diagram which shows the effect | action of the grid for microscopes which scans a laser or light. 電子線やイオンを走査する顕微鏡用のグリッドの作用を示す模式図。The schematic diagram which shows the effect | action of the grid for microscopes which scans an electron beam or ion. 実施例2で用いるグリッドを20倍の対物レンズを用いた走査型レーザー顕微鏡による観察結果示す写真。6 is a photograph showing the results of observation with a scanning laser microscope using a 20 × objective lens for the grid used in Example 2. FIG. 図7のグリッドを5倍の対物レンズを用いた走査型レーザー顕微鏡によりモアレ縞の観察結果を示す写真。The photograph which shows the observation result of a moire fringe with the scanning laser microscope which used the objective lens of 5 times for the grid of FIG. 光学顕微鏡用ミクロンマーカー観察結果を示す写真。The photograph which shows the micron marker observation result for optical microscopes. 実施例3で用いた20μm間隔の平行グリッドの走査電子顕微鏡写真。6 is a scanning electron micrograph of a parallel grid with 20 μm intervals used in Example 3. FIG. 図10のグリッドを走査型電子顕微鏡を用いて電子線を22μm間隔で照射して観察した電子線モアレ縞を示す写真Photograph showing electron moire fringes observed by irradiating the grid of FIG. 10 with an electron beam at 22 μm intervals using a scanning electron microscope 図10と同じ倍率で観察した走査型電子顕微鏡用倍率校正用パターンを示す写真。11 is a photograph showing a magnification calibration pattern for a scanning electron microscope observed at the same magnification as in FIG. 平行格子群のずれによるモアレ縞生成の概念図。わずかなずれもモアレ縞の大きなずれとなって拡大して表示できる。モアレ縞が一致することは2つの平行直線群がぴたりと一致していることになる。The conceptual diagram of the moire fringe production | generation by the shift | offset | difference of a parallel lattice group. A slight shift can be enlarged and displayed as a large shift of moire fringes. The coincidence of moiré fringes means that two parallel straight line groups are exactly coincident.

Claims (1)

粒子線又はエネルギー線等の照射線を走査状にターゲットに照射する走査照射装置の走査精度検定方法であって、その検定試料として、グリッドと基板とが粒子線又はエネルギー線に対する透過性又は反射特性又は電子やイオンの発生特性が異なるようにして、前記基板にグリッドが形成された基準板に対して、平行にあるいは鋭角な角度を持って前記粒子線又はエネルギー線を格子状に照射して画像を得ることを特徴とする   A scanning accuracy verification method for a scanning irradiation apparatus that irradiates a target with irradiation beams such as particle beams or energy beams, and the grid and the substrate as the verification sample are transparent or reflective to particle beams or energy beams. Alternatively, the particle beam or the energy beam is irradiated in a lattice shape in parallel or at an acute angle with respect to the reference plate on which the grid is formed on the substrate so that the generation characteristics of electrons and ions are different. Characterized by
JP2007273050A 2007-10-19 2007-10-19 Method for inspecting scanning accuracy of scanning irradiation device Pending JP2009103470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007273050A JP2009103470A (en) 2007-10-19 2007-10-19 Method for inspecting scanning accuracy of scanning irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007273050A JP2009103470A (en) 2007-10-19 2007-10-19 Method for inspecting scanning accuracy of scanning irradiation device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012153162A Division JP5429908B2 (en) 2012-07-09 2012-07-09 Stage alignment method for scanning irradiation apparatus

Publications (1)

Publication Number Publication Date
JP2009103470A true JP2009103470A (en) 2009-05-14

Family

ID=40705287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007273050A Pending JP2009103470A (en) 2007-10-19 2007-10-19 Method for inspecting scanning accuracy of scanning irradiation device

Country Status (1)

Country Link
JP (1) JP2009103470A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922910A (en) * 2010-07-26 2010-12-22 清华大学 Method for calibrating distance between scan lines of scanning electron microscope by utilizing moires
CN104991396A (en) * 2015-08-10 2015-10-21 京东方科技集团股份有限公司 Grating, display device and driving method of display device
CN105739212A (en) * 2016-05-09 2016-07-06 京东方科技集团股份有限公司 Optical grating, display device and drive method thereof
JP2019200180A (en) * 2018-05-18 2019-11-21 国立研究開発法人物質・材料研究機構 Method for measuring crack opening width

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351819A (en) * 1998-06-11 1999-12-24 Lasertec Corp Optical scanning device with scanning position detecting function
JP2006318831A (en) * 2005-05-16 2006-11-24 Hitachi High-Technologies Corp Electron beam calibration method and electron beam device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351819A (en) * 1998-06-11 1999-12-24 Lasertec Corp Optical scanning device with scanning position detecting function
JP2006318831A (en) * 2005-05-16 2006-11-24 Hitachi High-Technologies Corp Electron beam calibration method and electron beam device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922910A (en) * 2010-07-26 2010-12-22 清华大学 Method for calibrating distance between scan lines of scanning electron microscope by utilizing moires
CN104991396A (en) * 2015-08-10 2015-10-21 京东方科技集团股份有限公司 Grating, display device and driving method of display device
CN105739212A (en) * 2016-05-09 2016-07-06 京东方科技集团股份有限公司 Optical grating, display device and drive method thereof
JP2019200180A (en) * 2018-05-18 2019-11-21 国立研究開発法人物質・材料研究機構 Method for measuring crack opening width
JP7146188B2 (en) 2018-05-18 2022-10-04 国立研究開発法人物質・材料研究機構 Crack opening width measurement method

Similar Documents

Publication Publication Date Title
TWI806285B (en) Metrology systems and methods
CN107924118B (en) Measuring method, radiation source, measuring equipment and device manufacturing method
Marinello et al. Critical factors in SEM 3D stereo microscopy
Dai et al. Comparison of line width calibration using critical dimension atomic force microscopes between PTB and NIST
Dai et al. Reference nano-dimensional metrology by scanning transmission electron microscopy
TWI765214B (en) Apparatus and method for determining a position of an element on a photolithographic mask and computer program
TW201104361A (en) Charged particle beam drawing method, position detecting method for reference mark for charged particle beam drawing, and charged particle beam drawing device
US20110001816A1 (en) Microstructure inspection method, microstructure inspection apparatus, and microstructure inspection program
TW201917492A (en) Inspection tool, lithographic apparatus, lithographic system, inspection method and device manufacturing method
JP5560246B2 (en) Standard sample used for charged particle beam apparatus and method for producing standard sample used for charged particle beam apparatus
JP4150440B2 (en) Calibration standard sample for optical inspection apparatus and sensitivity calibration method of optical inspection apparatus using the same
JP2009103470A (en) Method for inspecting scanning accuracy of scanning irradiation device
JP6088337B2 (en) Pattern inspection method and pattern inspection apparatus
JP2007047060A (en) Apparatus and method for inspection
JP5429908B2 (en) Stage alignment method for scanning irradiation apparatus
JP2007328038A (en) Dimension calibration sample for microscope
Huebner et al. A nanoscale linewidth/pitch standard for high-resolution optical microscopy and other microscopic techniques
JP6021764B2 (en) Inspection apparatus and inspection method
US10605826B2 (en) Calibrating tip-enhanced Raman microscopes
JP2010232434A (en) Level difference measuring method, level difference measuring device, and scanning electron microscope device
JP6174188B2 (en) Cylindrical original plate inspection apparatus and cylindrical original plate inspection method
JP6605276B2 (en) Measuring device, measuring device calibration method and calibration member
JP2013183017A (en) Drawing apparatus, reference element, and article manufacturing method
Bergmann et al. Photomask linewidth comparison by PTB and NIST
JPH11338124A (en) Method and device for detecting defect shape, and method and device for correcting defect by using them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Effective date: 20121206

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20130122

Free format text: JAPANESE INTERMEDIATE CODE: A02