JP2009103388A - Ice transfer system, and ice water conveyance system using it - Google Patents

Ice transfer system, and ice water conveyance system using it Download PDF

Info

Publication number
JP2009103388A
JP2009103388A JP2007277301A JP2007277301A JP2009103388A JP 2009103388 A JP2009103388 A JP 2009103388A JP 2007277301 A JP2007277301 A JP 2007277301A JP 2007277301 A JP2007277301 A JP 2007277301A JP 2009103388 A JP2009103388 A JP 2009103388A
Authority
JP
Japan
Prior art keywords
ice
heat storage
tank
storage tanks
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007277301A
Other languages
Japanese (ja)
Other versions
JP5198828B2 (en
Inventor
Tadahiko Ibamoto
忠彦 射場本
Masashi Momota
真史 百田
Takumo Miyanaga
拓百 宮良
Michio Shimazu
路郎 島津
Hiroshi Murakami
浩 村上
Makio Aikawa
槙夫 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Denki University
Toyo Netsu Kogyo Kaisha Ltd
Original Assignee
Tokyo Denki University
Toyo Netsu Kogyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Denki University, Toyo Netsu Kogyo Kaisha Ltd filed Critical Tokyo Denki University
Priority to JP2007277301A priority Critical patent/JP5198828B2/en
Publication of JP2009103388A publication Critical patent/JP2009103388A/en
Application granted granted Critical
Publication of JP5198828B2 publication Critical patent/JP5198828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ice transfer system capable of efficiently carrying out the ice storage of a large volume for a plurality of heat storage tanks, and an ice water conveyance system using it. <P>SOLUTION: The ice transfer system includes the plurality of heat storage tanks A-D, and communication pipes 1-4, the heat storage tanks A-D are made to sequentially communicate with each other, and ice water is sequentially transferred to the heat storage tanks A-D. The plurality of heat storage tanks A-D includes input tanks A supplied with ice from an icemaker, and end tanks D serially communicating from the input tank A being the last heat storage tank. The system is formed so that water levels of ice water stored in the heat storage tanks become sequentially lower from the input tank A toward the end tank D. The communication pipes between the end tank D and the input tank A are provided with transfer pumps 5 for conveying the ice water from the end tank D toward the input tank A, suction openings of the communication pipes 1-4 are formed in water surface neighborhoods of the heat storage tanks A-D, and delivery openings of the communication pipes 1-4 are formed in lower parts of the heat storage tanks A-D. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、冷熱源機の氷蓄熱システムに用いる移氷システム及びこれを用いた氷水搬送システムに関するものである。なお、以下では氷蓄熱空調システムを例にして説明している。   The present invention relates to an ice transfer system used for an ice heat storage system of a cold heat source machine and an ice water transport system using the ice transfer system. In the following description, an ice heat storage air conditioning system is described as an example.

ビルの冷房用熱源として夜間電力を利用した蓄熱式熱源システムが採用される傾向にある。なかでも、コンパクト性、夜間稼働率の高さ、低水温を利用した大温度差によるポンプ・ファン等の搬送動力の低減といった利点から、氷蓄熱空調システムが有効な方法として考えられている。これと同時に空調システムにも高密度冷熱搬送が求められており、氷の潜熱を付加する氷水搬送システムの実現が望まれる。氷水搬送システムは、水の顕熱のみを利用する水搬送方式と比べて、主配管系の縮小と搬送熱量当たりの動力縮減を図ることが可能と考えられ、システム導入及び運用時のCO排出量の削減が期待できる。 There is a tendency to adopt a heat storage heat source system that uses nighttime power as a heat source for cooling the building. Among these, the ice thermal storage air conditioning system is considered as an effective method because of its advantages such as compactness, high nighttime operation rate, and reduction of transport power such as pumps and fans due to large temperature difference using low water temperature. At the same time, the air conditioning system is also required to be transported with high-density cold heat, and it is desired to realize an ice water transport system that adds latent heat of ice. Compared to the water transfer system that uses only sensible heat of water, the ice water transfer system is considered to be able to reduce the main piping system and reduce the power per transfer heat amount, and CO 2 emissions during system introduction and operation A reduction in volume can be expected.

このような氷蓄熱空調システムにおいては、氷蓄熱槽として単一のものを用いる場合と、複数個用いる場合がある。ビル等の建築物においては、建物最下階の床スラブと基礎スラブの間の空間である二重スラブを複数個の蓄熱槽として利用している。このように、蓄熱槽として既設ビル地下の二重スラブを利用することは、省スペースや工事期間の短縮等のメリットが大きく、また既設ビルに適用することができるため、好ましい。   In such an ice storage air conditioning system, a single ice storage tank may be used or a plurality of ice storage tanks may be used. In a building such as a building, a double slab, which is a space between a floor slab and a foundation slab on the lowest floor of the building, is used as a plurality of heat storage tanks. As described above, it is preferable to use a double slab underground in an existing building as a heat storage tank because there are great merits such as space saving and shortening of a construction period, and it can be applied to an existing building.

これらの複数個の蓄熱槽に対して氷蓄熱を行う場合、各蓄熱槽を連通管で連結し、氷を移動させる必要がある。このように複数個の蓄熱槽に対して氷を移動させて蓄氷を行う氷蓄熱装置が特許文献1に開示されている。この氷蓄熱装置は、複数の蓄熱水槽、各水槽の水を熱負荷に移送するポンプ及び配管、製氷装置からなる氷蓄熱装置において、製氷装置から隔たった水槽の水を、ポンプで製氷装置に直結した水槽に送ることにより、製氷装置に直結した水槽に発生した氷を、水槽のオーバーフロー水とともに他の水槽に移送するものである。   When performing ice heat storage with respect to the plurality of heat storage tanks, it is necessary to move the ice by connecting the heat storage tanks with a communication pipe. As described above, Patent Document 1 discloses an ice heat storage device that stores ice by moving ice to a plurality of heat storage tanks. This ice heat storage device is an ice heat storage device consisting of a plurality of heat storage water tanks, pumps and piping for transferring water from each water tank to a heat load, and an ice making device, and the water in the water tank separated from the ice making device is directly connected to the ice making device by a pump. The ice generated in the water tank directly connected to the ice making device is transferred to another water tank together with the overflow water of the water tank by sending it to the water tank.

特開平5−340567号公報Japanese Patent Laid-Open No. 5-340567

しかしながら、特許文献1の氷蓄熱装置は、オーバーフロー水とともに他の水槽に氷ごと移動させるものである。氷は水よりも比重が小さいため、水槽の上側から氷を供給したのでは、効率よく水槽内に氷を溜めることができない。すなわち、複数個の蓄熱槽は、蓄熱槽下部まで氷で満たされていることが蓄熱効率及び蓄熱容量の観点から好ましい。   However, the ice heat storage device of Patent Document 1 moves the ice together with the overflow water to another water tank. Since ice has a specific gravity smaller than that of water, if ice is supplied from the upper side of the water tank, the ice cannot be efficiently stored in the water tank. That is, it is preferable from the viewpoint of heat storage efficiency and heat storage capacity that the plurality of heat storage tanks are filled with ice up to the lower part of the heat storage tank.

本発明は、上記従来技術を考慮したものであって、複数個の蓄熱槽に対し、効率よく大容量の蓄氷を行うことができる氷水搬送システムの提供を目的とするものである。   This invention considers the said prior art, Comprising: It aims at provision of the ice water conveyance system which can perform large-capacity ice storage efficiently with respect to several thermal storage tanks.

前記目的を達成するため、請求項1の発明では、複数個の蓄熱槽と、当該各蓄熱槽を連通させる連通管とを備え、当該連通管により、前記各蓄熱槽は一連に連通し、前記各蓄熱槽に対して順番に氷水を移動させる移氷システムにおいて、前記複数個の蓄熱槽は、製氷機からの氷が供給される投入槽と、当該投入槽から一連に連通して最終の蓄熱槽に当たる末端槽とを備え、前記投入槽から前記末端槽に向けて、前記各蓄熱槽内に溜められた氷水の水位が順番に低くなるように形成され、前記末端槽と前記投入槽の間の連通管には、前記末端槽から前記投入槽に向けて前記氷水を搬送するための搬送ポンプが備わり、前記連通管の吸込口は前記蓄熱槽の水面近傍に備わり、前記連通管の吐出口は前記蓄熱槽の下部に備わることを特徴とする移氷システムを提供する。   In order to achieve the object, the invention of claim 1 includes a plurality of heat storage tanks and a communication pipe for communicating the heat storage tanks, and the heat storage tanks communicate with each other in series by the communication pipe. In the ice transfer system that sequentially moves ice water to each heat storage tank, the plurality of heat storage tanks are connected to a series of input tanks that are supplied with ice from an ice making machine, and the final heat storage through the input tanks. A terminal tank corresponding to the tank, and formed so that the water level of the ice water stored in each of the heat storage tanks decreases in order from the charging tank to the terminal tank, between the terminal tank and the charging tank The communication pipe is provided with a transport pump for transporting the ice water from the terminal tank toward the charging tank, the suction pipe of the communication pipe is provided near the water surface of the heat storage tank, and the discharge port of the communication pipe Is provided at the bottom of the heat storage tank. To provide a stem.

また、請求項2の発明では、前記吸込口の開口端は、上側を向いて開口していることを特徴としている。   Further, the invention according to claim 2 is characterized in that the opening end of the suction port is open upward.

また、請求項3の発明では、請求項1又は2の移氷システムを用いて、前記投入槽は、ループを形成した主配管を介して二次側設備と連通し、前記投入槽と前記主配管は、供給管及び排出管で接続され、前記供給管を通じて前記投入槽内の氷水を前記主配管内に供給し、前記排出管を通じて前記主配管内の水を前記投入槽に排出することを特徴とする氷水搬送システムを提供する。   According to a third aspect of the present invention, using the ice transfer system according to the first or second aspect, the charging tank communicates with a secondary side facility via a main pipe having a loop, and the charging tank and the main tank The pipe is connected by a supply pipe and a discharge pipe, supplies ice water in the charging tank to the main pipe through the supply pipe, and discharges water in the main pipe to the charging tank through the discharge pipe. An ice water transport system is provided.

請求項1の発明によれば、連通管の吸込口は蓄熱槽の水面近傍に備わり、連通管の吐出口は蓄熱槽の下部に備わるため、水面付近に溜まった氷を効率よく連通管に吸い込むことができ、これを蓄熱槽の下部から吐出することにより、蓄熱槽内に効率よく氷を溜めることができる。すなわち、氷は蓄熱槽内を上昇するため、下部から氷を吐出することにより、吐出口付近に氷の流通を妨げるものがないので、氷の移動をスムーズに行うことができる。これにより、蓄熱槽全体における大容量の氷蓄熱が可能となる。   According to the invention of claim 1, since the suction port of the communication pipe is provided in the vicinity of the water surface of the heat storage tank and the discharge port of the communication pipe is provided in the lower part of the heat storage tank, the ice accumulated near the water surface is efficiently sucked into the communication pipe. By discharging this from the lower part of the heat storage tank, ice can be efficiently stored in the heat storage tank. That is, since the ice rises in the heat storage tank, there is nothing that hinders the circulation of ice in the vicinity of the discharge port by discharging the ice from the lower part, so that the ice can be moved smoothly. Thereby, large-capacity ice heat storage in the entire heat storage tank becomes possible.

また、搬送ポンプを用いて末端槽から投入槽に向けて氷水を搬送するため、そのポンプ動力により各蓄熱槽に水位差が生じる。この水位差を利用して氷を移動させるため、さらに効率よく氷を移動させることができる。また、搬送ポンプにより氷水が各蓄熱槽を循環するので、流動性を保ったままの蓄氷が可能となり、二次側への氷の搬送が可能となる。また、蓄熱槽内に可動部を設けることなく氷の移動が可能となるので、装置が複雑となることはない。したがって、簡単に設置可能となるため、既存の二重スラブを利用した複数個の蓄熱槽に対して容易に適用できる。   Moreover, since ice water is conveyed toward a charging tank from a terminal tank using a conveyance pump, a water level difference arises in each thermal storage tank with the pump power. Since ice is moved using this water level difference, ice can be moved more efficiently. Moreover, since ice water circulates through each heat storage tank by a conveyance pump, it becomes possible to store ice while maintaining fluidity, and it is possible to convey ice to the secondary side. Further, since the ice can be moved without providing a movable part in the heat storage tank, the apparatus is not complicated. Therefore, since it can be easily installed, it can be easily applied to a plurality of heat storage tanks using existing double slabs.

請求項2の発明によれば、吸込口の開口端は、上側を向いて開口しているため、水面に集まる氷を一様に連通管を通して移動させることができる。したがって、効率よく迅速に氷を移動(移氷)させることができる。   According to the second aspect of the present invention, since the opening end of the suction port opens upward, the ice that collects on the water surface can be moved uniformly through the communication pipe. Therefore, ice can be moved (transfer ice) efficiently and quickly.

請求項3の発明によれば、二次側設備と連通する環状にループした主配管に対し、氷水を供給し、これとともに水を排出するため、主配管内の氷充填率(IPF(Ice Packing Factor))を高めることができ、更なる高密度冷熱搬送が可能となる。これにより、主配管のポンプ流量、すなわちポンプ動力の低減を図ることができ、システム全体としての運転効率を高めることができる。   According to the third aspect of the present invention, ice water is supplied to the annularly looped main pipe communicating with the secondary side equipment, and the water is discharged together with this, so that the ice filling rate (IPF (Ice Packing Factor)) can be increased, and further high-density cold transfer is possible. Thereby, the pump flow rate of the main pipe, that is, the pump power can be reduced, and the operation efficiency of the entire system can be increased.

本発明は、複数個の蓄熱槽と、当該各蓄熱槽を連通させる連通管とを備え、当該連通管により、前記各蓄熱槽は一連に連通し、前記各蓄熱槽に対して順番に氷水を移動させる移氷システムにおいて、前記複数個の蓄熱槽は、製氷機からの氷が供給される投入槽と、当該投入槽から一連に連通して最終の蓄熱槽に当たる末端槽とを備え、前記投入槽から前記末端槽に向けて、前記各蓄熱槽内に溜められた氷水の水位が順番に低くなるように形成され、前記末端槽と前記投入槽の間の連通管には、前記末端槽から前記投入槽に向けて前記氷水を搬送するための搬送ポンプが備わり、前記連通管の吸込口は前記蓄熱槽の水面近傍に備わり、前記連通管の吐出口は前記蓄熱槽の下部に備わり、氷の移動をスムーズに行うことができる移氷システムである。   The present invention includes a plurality of heat storage tanks and a communication pipe that communicates each of the heat storage tanks, the heat storage tanks communicated in series with the communication pipe, and ice water is sequentially supplied to the heat storage tanks. In the ice transfer system to be moved, the plurality of heat storage tanks include an input tank to which ice from an ice making machine is supplied, and a terminal tank that communicates with the final heat storage tank in series from the input tank. From the tank toward the terminal tank, the water level of the ice water stored in each of the heat storage tanks is formed so as to decrease in order, and the communication pipe between the terminal tank and the charging tank is connected to the terminal tank from the terminal tank. A transport pump for transporting the ice water toward the charging tank is provided, the suction port of the communication pipe is provided in the vicinity of the water surface of the heat storage tank, the discharge port of the communication pipe is provided at the lower part of the heat storage tank, This is an ice transfer system that can move smoothly. .

図1は本発明に係る移氷システムに用いる複数個の蓄熱槽の概略平面図である。   FIG. 1 is a schematic plan view of a plurality of heat storage tanks used in the ice transfer system according to the present invention.

図では4個の蓄熱槽A,B,C,Dを示す。各蓄熱槽A〜Dは、それぞれ連通管1〜4により連通される。この連通管1〜4により、各蓄熱槽A〜D内は一連に連通し、循環することになる。蓄熱槽(末端槽)Dと蓄熱槽(投入槽)Aを連通する連通管4には搬送ポンプ(スラリーポンプ)5が備わる。各蓄熱槽A〜D内には、氷水が溜められている。氷水は、連通管1〜4を通って蓄熱槽A〜Dを流動的に循環する。   In the figure, four heat storage tanks A, B, C, and D are shown. Each heat storage tank A-D is connected by the communication pipes 1-4, respectively. Through the communication pipes 1 to 4, the heat storage tanks A to D are continuously communicated and circulated. The communication pipe 4 that connects the heat storage tank (terminal tank) D and the heat storage tank (input tank) A is provided with a transport pump (slurry pump) 5. Ice water is stored in each of the heat storage tanks A to D. The ice water circulates fluidly in the heat storage tanks A to D through the communication pipes 1 to 4.

図2は図1の各蓄熱槽を横に並べて展開した状態を示す概略断面図である。   FIG. 2 is a schematic cross-sectional view showing a state where the heat storage tanks of FIG. 1 are deployed side by side.

図示したように、各蓄熱槽A〜D内には、氷6を含む氷水が溜められる。搬送ポンプ5を駆動させることにより、蓄熱槽D内の氷水が蓄熱槽Aに搬送される。したがって、蓄熱槽Dの水位が下がり、蓄熱槽Aの水位が上がる。これに伴い、蓄熱槽AからDに向かって順番に水位が下がる。このとき、各蓄熱槽A〜D内の氷水も連通管1〜4を通って各蓄熱槽A〜D内を循環して流通する。したがって、各蓄熱槽A〜Dを有効に利用して、高密度で蓄熱することが可能となる。   As illustrated, ice water including ice 6 is stored in each of the heat storage tanks A to D. The ice water in the heat storage tank D is conveyed to the heat storage tank A by driving the transfer pump 5. Therefore, the water level of the heat storage tank D is lowered and the water level of the heat storage tank A is raised. Along with this, the water level decreases in order from the heat storage tanks A to D. At this time, ice water in each of the heat storage tanks A to D also circulates and circulates in each of the heat storage tanks A to D through the communication pipes 1 to 4. Therefore, it is possible to store heat at high density by effectively using each of the heat storage tanks A to D.

このように、水位差を利用して氷6を移動(移氷)させるため、効率よく氷を移動させることができる。また、搬送ポンプ5により氷水が各蓄熱槽A〜Dを循環するので、流動性を保ったままの蓄氷が可能となり、二次側への氷6の搬送が可能となる。また、蓄熱槽A〜D内に可動部を設けることなく氷6の移動が可能となるので、装置が複雑となることはない。したがって、簡単に設置可能となるため、既存の二重スラブを利用した複数個の蓄熱槽に対して容易に適用できる。   Thus, since the ice 6 is moved (ice transfer) using the water level difference, the ice can be moved efficiently. Moreover, since ice water circulates through each heat storage tank AD by the conveyance pump 5, it becomes possible to store ice while maintaining fluidity, and the ice 6 can be conveyed to the secondary side. In addition, since the ice 6 can be moved without providing a movable part in the heat storage tanks A to D, the apparatus is not complicated. Therefore, since it can be easily installed, it can be easily applied to a plurality of heat storage tanks using existing double slabs.

連通管1〜4の吸込口1a〜4aは水面近傍に設置される。これにより、水面付近に溜まった氷を効率よく連通管に吸い込むことができ、氷6の移動効率が向上する。また、連通管1〜4の吐出口1b〜4bは蓄熱槽A〜Dの下部に設置される。これにより、氷6は水面側に上昇するという氷の比重を考慮し、氷6の流通を妨げるものがない場所に吐出口1b〜4bを設置することになる。したがって、氷6の移動をスムーズに行うことができる。このため、蓄熱槽A〜D全体における大容量の氷蓄熱が可能となる。   The suction ports 1a to 4a of the communication pipes 1 to 4 are installed near the water surface. Thereby, the ice accumulated near the water surface can be sucked into the communication pipe efficiently, and the movement efficiency of the ice 6 is improved. Moreover, the discharge ports 1b-4b of the communication pipes 1-4 are installed in the lower part of heat storage tank AD. Accordingly, the discharge ports 1b to 4b are installed in a place where there is nothing to prevent the ice 6 from flowing in consideration of the specific gravity of the ice 6 that the ice 6 rises to the water surface side. Therefore, the ice 6 can be moved smoothly. For this reason, large-capacity ice heat storage in the entire heat storage tanks A to D becomes possible.

連通管1〜4の吸込口1a〜4aの開口端は、上側を向いて開口している。これにより、水面に集まる氷6を一様に連通管1〜4を通して移動させることができる。したがって、効率よく迅速に氷6を移動(移氷)させることができる。吸込口1a〜4aの開口端を横向きにした場合は、開口端よりも上側に存在する氷6を移動させることができないため、上側を向けたほうが一様に吸い込めるため好ましいといえる。このとき、連通管の径が大きくなるにつれ、移動される氷6の量が増加するので、さらに迅速に移氷を行うことができる。   The open ends of the suction ports 1a to 4a of the communication pipes 1 to 4 are open toward the upper side. Thereby, the ice 6 which gathers on the water surface can be moved uniformly through the communication pipes 1-4. Therefore, the ice 6 can be moved (ice transfer) efficiently and quickly. When the opening ends of the suction ports 1a to 4a are turned sideways, the ice 6 existing above the opening end cannot be moved. At this time, since the amount of the ice 6 to be moved increases as the diameter of the communication pipe increases, the ice can be transferred more rapidly.

なお、吸込口1a〜4aの開口端と水面との距離は、氷6の比重や大きさ、各蓄熱槽A〜Dの槽内氷充填率を考慮して設定する。この設定は、搬送ポンプ5の流量を調整することにより行うことができる。したがって、ポンプ5により生じた各蓄熱槽A〜Dの水位を考慮した位置になるように、各連通管1〜4の開口端の高さにも段差が形成される。例えば、10mm角の氷6を移動させるときに、流速を0.1m/sとした場合に、連通管の径が50mmでは、開口端と水面との距離は9.2mmあれば十分である。20mm角の氷6を移動させるのであれば、18.4mm以上設けることが好ましい。   In addition, the distance between the open ends of the suction ports 1a to 4a and the water surface is set in consideration of the specific gravity and size of the ice 6 and the ice filling rate in each of the heat storage tanks A to D. This setting can be performed by adjusting the flow rate of the transport pump 5. Therefore, a step is also formed in the height of the open ends of the communication pipes 1 to 4 so that the water levels of the heat storage tanks A to D generated by the pump 5 are taken into consideration. For example, when a 10 mm square ice 6 is moved and the flow rate is 0.1 m / s and the diameter of the communication pipe is 50 mm, the distance between the open end and the water surface is sufficient. If the 20 mm square ice 6 is moved, it is preferable to provide 18.4 mm or more.

また、氷6の吸込効率を高めるため、吸込口1a〜4aの開口端にホッパーを設けて開口端を広げてもよい。これにより、さらに迅速な移氷が可能となる。   Moreover, in order to raise the suction efficiency of the ice 6, you may provide a hopper in the opening end of the suction inlets 1a-4a, and may open an opening end. Thereby, quicker ice transfer is possible.

図3は複数個の蓄熱槽の他の例を示す概略平面図である。   FIG. 3 is a schematic plan view showing another example of a plurality of heat storage tanks.

図示したように、蓄熱槽A〜Dは、図1で示したような一方向の横並びではなく、蓄熱槽B,Cで折り返して投入槽Aと末端槽Dが隣り合わせとなるように形成してもよい。このようにすれば、末端槽Dから投入槽Aへの連通管の配設を容易に行うことができ、配管レイアウト上の制約をうけることもない。   As shown in the figure, the heat storage tanks A to D are not arranged side by side in one direction as shown in FIG. 1, but are folded back in the heat storage tanks B and C so that the input tank A and the terminal tank D are adjacent to each other. Also good. If it does in this way, arrangement | positioning of the communicating pipe from the terminal tank D to the input tank A can be performed easily, and the restriction | limiting on a piping layout will not be received.

なお、本発明に係る移氷システム及び氷水搬送システムにおいて、搬送対象物たる氷水に含まれる氷としては、いわゆるブロック状あるいはいわゆるシャーベット状のものを用いてもよいが、焼結現象を回避できる点でブロックアイスを用いるほうが好ましい。ブロックアイスは、密度が高く、流れやすい特性を有しているので、このような点でも好ましい。本発明は、このようなブロックアイスをも確実に搬送できるシステムである。   In the ice transfer system and the ice water transport system according to the present invention, the ice contained in the ice water that is the object to be transported may be a so-called block shape or a so-called sherbet shape, but can avoid the sintering phenomenon. It is preferable to use block ice. Block ice is preferable because of its high density and easy flow characteristics. The present invention is a system that can reliably convey such block ice.

図4は本発明に係る移氷システムを用いた氷水搬送システムの概略図である。   FIG. 4 is a schematic view of an ice water transport system using the ice transfer system according to the present invention.

図示したように、投入槽Aは、ループを形成した主配管7を介して空調機等の冷熱源機たる二次側設備8と連通する。投入槽Aと主配管7は、供給管9及び排出管10で接続される。投入槽Aには、製氷機11からの氷が投入されて充填される。製氷は、例えばポンプ15により投入槽A内の水を汲み上げて行われる。充填された氷は、上述したように、搬送ポンプ5により各蓄熱槽A〜Dに循環するように移動される。   As shown in the figure, the charging tank A communicates with the secondary side equipment 8 that is a cooling heat source machine such as an air conditioner via a main pipe 7 that forms a loop. The charging tank A and the main pipe 7 are connected by a supply pipe 9 and a discharge pipe 10. The charging tank A is filled with ice from the ice making machine 11. Ice making is performed, for example, by pumping water in the charging tank A by the pump 15. As described above, the filled ice is moved by the transfer pump 5 so as to be circulated to the heat storage tanks A to D.

各二次側設備8で用いられる冷熱は、投入槽Aから供給される。このとき、供給管9を通じて投入槽A内の氷水を主配管7内に供給し、これと同時に排出管10を通じて主配管7内の水のみを投入槽Aに排出する。これにより、主配管7内の氷充填率(IPF(Ice Packing Factor))を高めることができ、更なる高密度冷熱搬送が可能となる。具体的には、従来の氷充填率が約10%程度であったのに対し、50%近くまで高めることができる。したがって、主配管7に備わるポンプ12の流量、すなわちポンプ動力の低減を図ることができ、システム全体としての運転効率を高めることができる。   The cold heat used in each secondary-side facility 8 is supplied from the charging tank A. At this time, ice water in the charging tank A is supplied into the main pipe 7 through the supply pipe 9, and at the same time, only water in the main pipe 7 is discharged into the charging tank A through the discharge pipe 10. Thereby, the ice filling factor (IPF (Ice Packing Factor)) in the main pipe 7 can be increased, and further high-density cold transfer can be performed. Specifically, it can be increased to nearly 50% while the conventional ice filling rate is about 10%. Therefore, the flow rate of the pump 12 provided in the main pipe 7, that is, the pump power can be reduced, and the operation efficiency of the entire system can be increased.

供給管9に備わるポンプ13の吸込口は、投入槽Aの水面近くにあることが好ましい。これにより、水面に集まった氷を効率よく主配管に移動させることができる。なお、14は主配管7の下流側に高密度冷熱を搬送するためのバイパス管である。主配管7は、上述したように、独立した環状のループ形状である。したがって、蓄熱槽を含めた一環ループ形状に比べてより高密度の冷熱を搬送することができる。さらに、このように主配管7をクローズさせて形成することにより、主配管7内の負荷が供給管9のポンプ13にかかることはない。したがって、ポンプ13の動力の低減を図ることができる。   The suction port of the pump 13 provided in the supply pipe 9 is preferably near the water surface of the charging tank A. Thereby, the ice collected on the water surface can be efficiently moved to the main pipe. Reference numeral 14 denotes a bypass pipe for conveying high-density cold heat to the downstream side of the main pipe 7. As described above, the main pipe 7 has an independent annular loop shape. Therefore, it is possible to convey higher-density cold heat than the one-loop shape including the heat storage tank. Furthermore, by forming the main pipe 7 closed as described above, the load in the main pipe 7 is not applied to the pump 13 of the supply pipe 9. Therefore, the power of the pump 13 can be reduced.

本発明に係る移氷システムに用いる複数個の蓄熱槽の概略平面図である。It is a schematic plan view of the some thermal storage tank used for the ice transfer system which concerns on this invention. 図1の各蓄熱槽を横に並べて展開した状態を示す概略断面図である。It is a schematic sectional drawing which shows the state which arranged each heat storage tank of FIG. 1 side by side, and was expand | deployed. 複数個の蓄熱槽の他の例を示す概略平面図である。It is a schematic plan view which shows the other example of a some heat storage tank. 本発明に係る移氷システムを用いた氷水搬送システムの概略図である。It is the schematic of the ice water conveyance system using the ice transfer system which concerns on this invention.

符号の説明Explanation of symbols

1〜4:連通管、5:搬送ポンプ、6:氷、7:主配管、8:二次側設備、9:供給管、10:排出管、11:製氷機、12:ポンプ、13:ポンプ、14:バイパス管、15:ポンプ、A〜D:蓄熱槽 1-4: communication pipe, 5: transfer pump, 6: ice, 7: main pipe, 8: secondary side equipment, 9: supply pipe, 10: discharge pipe, 11: ice making machine, 12: pump, 13: pump , 14: bypass pipe, 15: pump, AD: heat storage tank

Claims (3)

複数個の蓄熱槽と、
当該各蓄熱槽を連通させる連通管とを備え、
当該連通管により、前記各蓄熱槽は一連に連通し、前記各蓄熱槽に対して順番に氷水を移動させる移氷システムにおいて、
前記複数個の蓄熱槽は、製氷機からの氷が供給される投入槽と、当該投入槽から一連に連通して最終の蓄熱槽に当たる末端槽とを備え、
前記投入槽から前記末端槽に向けて、前記各蓄熱槽内に溜められた氷水の水位が順番に低くなるように形成され、
前記末端槽と前記投入槽の間の連通管には、前記末端槽から前記投入槽に向けて前記氷水を搬送するための搬送ポンプが備わり、
前記連通管の吸込口は前記蓄熱槽の水面近傍に備わり、前記連通管の吐出口は前記蓄熱槽の下部に備わることを特徴とする移氷システム。
A plurality of heat storage tanks;
A communication pipe for communicating each heat storage tank;
With the communication pipe, the heat storage tanks communicate with each other in a series, and in the ice transfer system that moves ice water sequentially with respect to the heat storage tanks,
The plurality of heat storage tanks are provided with an input tank to which ice from an ice making machine is supplied, and a terminal tank that communicates with the final heat storage tank in series from the input tank,
From the charging tank to the terminal tank, the water level of the ice water stored in each of the heat storage tanks is formed so as to decrease in order,
The communication pipe between the terminal tank and the charging tank is equipped with a transport pump for transporting the ice water from the terminal tank toward the charging tank,
The ice transfer system according to claim 1, wherein a suction port of the communication pipe is provided near a water surface of the heat storage tank, and a discharge port of the communication pipe is provided at a lower portion of the heat storage tank.
前記吸込口の開口端は、上側を向いて開口していることを特徴とする請求項1に記載の移氷システム。   The ice transfer system according to claim 1, wherein an opening end of the suction port opens upward. 前記投入槽は、ループを形成した主配管を介して二次側設備と連通し、前記投入槽と前記主配管は、供給管及び排出管で接続され、前記供給管を通じて前記投入槽内の氷水を前記主配管内に供給し、前記排出管を通じて前記主配管内の水を前記投入槽に排出することを特徴とする請求項1又は2に記載の移氷システムを用いた氷水搬送システム。   The charging tank communicates with secondary equipment via a main pipe having a loop, and the charging tank and the main pipe are connected by a supply pipe and a discharge pipe, and ice water in the charging tank is connected through the supply pipe. The ice water transport system using the ice transfer system according to claim 1, wherein water in the main pipe is discharged to the charging tank through the discharge pipe.
JP2007277301A 2007-10-25 2007-10-25 Ice transfer system Active JP5198828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007277301A JP5198828B2 (en) 2007-10-25 2007-10-25 Ice transfer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007277301A JP5198828B2 (en) 2007-10-25 2007-10-25 Ice transfer system

Publications (2)

Publication Number Publication Date
JP2009103388A true JP2009103388A (en) 2009-05-14
JP5198828B2 JP5198828B2 (en) 2013-05-15

Family

ID=40705223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007277301A Active JP5198828B2 (en) 2007-10-25 2007-10-25 Ice transfer system

Country Status (1)

Country Link
JP (1) JP5198828B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008748A (en) * 2014-06-23 2016-01-18 東洋熱工業株式会社 Massive ice filling rate control device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256977U (en) * 1985-09-27 1987-04-08
JPS63118545A (en) * 1987-10-09 1988-05-23 Kajima Corp Heat storage tank
JPH0285642A (en) * 1988-09-20 1990-03-27 Kajima Corp Heat storage tank
JPH05340567A (en) * 1992-06-11 1993-12-21 Toshiba Corp Ice heat accumulating device
JPH0727378A (en) * 1993-07-12 1995-01-27 Mitsui Eng & Shipbuild Co Ltd Heat storage vessel in cooler/heater
JPH08121821A (en) * 1994-10-20 1996-05-17 Hokuriku Electric Power Co Inc:The Water circulation device for heat storing tank
JPH11337133A (en) * 1998-05-28 1999-12-10 Mitsubishi Heavy Ind Ltd Dynamic ice heat storage device
JP2004212008A (en) * 2003-01-08 2004-07-29 Nishimatsu Constr Co Ltd Heat storage system and structure having the heat storage system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256977U (en) * 1985-09-27 1987-04-08
JPS63118545A (en) * 1987-10-09 1988-05-23 Kajima Corp Heat storage tank
JPH0285642A (en) * 1988-09-20 1990-03-27 Kajima Corp Heat storage tank
JPH05340567A (en) * 1992-06-11 1993-12-21 Toshiba Corp Ice heat accumulating device
JPH0727378A (en) * 1993-07-12 1995-01-27 Mitsui Eng & Shipbuild Co Ltd Heat storage vessel in cooler/heater
JPH08121821A (en) * 1994-10-20 1996-05-17 Hokuriku Electric Power Co Inc:The Water circulation device for heat storing tank
JPH11337133A (en) * 1998-05-28 1999-12-10 Mitsubishi Heavy Ind Ltd Dynamic ice heat storage device
JP2004212008A (en) * 2003-01-08 2004-07-29 Nishimatsu Constr Co Ltd Heat storage system and structure having the heat storage system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008748A (en) * 2014-06-23 2016-01-18 東洋熱工業株式会社 Massive ice filling rate control device

Also Published As

Publication number Publication date
JP5198828B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
US20120168126A1 (en) Heat-storage device
JP5198828B2 (en) Ice transfer system
CN112567186A (en) Geothermal heat utilization system and method for operating geothermal heat utilization system
JP2006242487A (en) Method and device for filling ice slurry in cooling panel
CN210152587U (en) A mud circulation system for bored pile construction
CN107764102A (en) A kind of high temperature coke powder cooling device
CN115854450B (en) Exhaust method and system for open type transmission and distribution system of building ice or water cold accumulation air conditioner
KR101714680B1 (en) Engine cooling system of a marine structure and engine cooling method using the same
CN203319043U (en) Large fluidized reservoir
JP6066803B2 (en) Cooling system for superconducting cable
KR20110058066A (en) Ice slurry delivery system with mixing tank
JP4444084B2 (en) Gas hydrate pellet transfer device and transfer method
JP2003240280A (en) Cooling and heating facility
JP6432900B2 (en) Heat exchange system using massive ice
JPH0755209A (en) Ice water slurry-supply apparatus
CN103333986A (en) Converter coal gas dry dedusting and cinder pneumatic transmission system
JPH03144235A (en) Submerged ice storing and thermal accumulating device with ice pieces and water mixing and transporting means
CN103287858B (en) Floor type powdery material storehouse
JP2013224156A (en) Cement silo
CN217252780U (en) Negative pressure cooling chute device
KR100586878B1 (en) Method for controlling apparatus of cold heat transportation system using ice slurry
CN213975893U (en) Unload grain structure and unload grain system
CN109119722A (en) Power battery heat-exchange system and its liquid storage device and new-energy automobile
CN219328345U (en) Hot water tank and hot water recovery system thereof
JP6388261B2 (en) Bulk ice filling rate controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5198828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250