JP2009103140A - Manufacturing method for impact energy absorption member, and impact energy absorption member - Google Patents

Manufacturing method for impact energy absorption member, and impact energy absorption member Download PDF

Info

Publication number
JP2009103140A
JP2009103140A JP2007272794A JP2007272794A JP2009103140A JP 2009103140 A JP2009103140 A JP 2009103140A JP 2007272794 A JP2007272794 A JP 2007272794A JP 2007272794 A JP2007272794 A JP 2007272794A JP 2009103140 A JP2009103140 A JP 2009103140A
Authority
JP
Japan
Prior art keywords
metal
cylindrical body
impact energy
press
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007272794A
Other languages
Japanese (ja)
Inventor
Hidekatsu Kanehashi
秀豪 金橋
Takeshi Hamada
猛 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007272794A priority Critical patent/JP2009103140A/en
Priority to KR1020080098889A priority patent/KR20090040218A/en
Priority to CN2008101701605A priority patent/CN101412408B/en
Publication of JP2009103140A publication Critical patent/JP2009103140A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Body Structure For Vehicles (AREA)
  • Vibration Dampers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for an impact energy absorption member capable of certainly fixing a foamed metal body into a cylindrical hollow part in a conventional process in which the foamed metal body is filled in the cylindrical hollow part, and an impact energy absorption member. <P>SOLUTION: The foamed metal body 3 having a slightly larger cross section dimension than a cross section dimension of the hollow part 2 is press-fitted from an opening part side of the hollow part 2 of the cylindrical body 1 made of metal having a closed cross section while plastically deforming a surface layer part 4 of the foamed metal body 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、自動車、鉄道車両、船舶などの構造部材などに用いられ、衝突時に圧縮の衝撃荷重を受けた際に、変形して衝撃エネルギーを吸収する衝撃エネルギー吸収部材の製造方法と、その製造方法によって製造される衝撃エネルギー吸収部材に関するものである。   The present invention is used, for example, in structural members such as automobiles, railway vehicles, ships, etc., and when receiving a compression impact load at the time of collision, a method for producing an impact energy absorbing member that deforms and absorbs impact energy; The present invention relates to an impact energy absorbing member manufactured by the manufacturing method.

自動車の衝突時等の衝撃エネルギーを吸収する衝撃エネルギー吸収部材(クラッシュボックス)としては、従来から閉断面を有する鋼製の中空部材が汎用されている。この鋼製の中空部材は、軸方向や断面方向の圧縮の衝撃エネルギーを受けると潰れ変形して、その衝撃エネルギーを吸収する。この際、限られた変形量で、より大きなエネルギーを吸収するためには、部材の寸法や肉厚を大きくすることが有効である。しかし、これらを大きくすると鋼製中空部材の体積や重量の増加を招いてしまい、燃費が悪化したり、衝突時における衝突相手方に与えるダメージが大きくなってしまったりして好ましくはない。   As an impact energy absorbing member (crash box) that absorbs impact energy at the time of a car collision or the like, a steel hollow member having a closed cross section has been conventionally used. When this hollow steel member is subjected to compressive impact energy in the axial direction or the cross-sectional direction, it collapses and absorbs the impact energy. At this time, in order to absorb larger energy with a limited amount of deformation, it is effective to increase the size and thickness of the member. However, when these are increased, the volume and weight of the steel hollow member are increased, which is not preferable because the fuel efficiency is deteriorated and the damage to the collision partner at the time of collision is increased.

また、軟鋼板に代えて高強度軟鋼板(ハイテン)を用いることで、鋼製中空部材の体積や重量の増加を抑制することも行われているが、高強度軟鋼板は成形性が劣るため、部材形状が制約を受けることや、成形工程が増加するといった不都合もある。   In addition, by using a high-strength mild steel sheet (HITEN) instead of a mild steel sheet, an increase in the volume and weight of the steel hollow member is also suppressed, but the high-strength mild steel sheet has poor formability. There are also inconveniences such that the shape of the member is restricted and the molding process is increased.

これに対し、近年では衝撃エネルギー吸収部材(クラッシュボックス)として、リサイクル性の良好な発泡アルミニウムなどの発泡金属が注目され実際に使用されている。このクラッシュボックスは、発泡アルミニウムなどの発泡金属を角柱状や円柱状等の形状としたものである。また、この衝撃エネルギー吸収部材は、その軸芯方向を衝突方向に一致させるように配置し、衝突時に圧縮応力を受けて潰れることにより衝突エネルギーを吸収し、乗員や構造体、衝突相手への衝撃を減少させるようにしたものである。   On the other hand, in recent years, foam metal such as foam aluminum having good recyclability has attracted attention and is actually used as an impact energy absorbing member (crash box). This crush box is made of a foam metal such as aluminum foam in a prismatic or cylindrical shape. In addition, this impact energy absorbing member is arranged so that its axial direction coincides with the collision direction, absorbs the collision energy by being crushed by the compressive stress at the time of collision, and impacts on the occupant, the structure, and the collision partner Is intended to decrease.

しかしながら、このような発泡アルミニウムなどの発泡金属を用いるだけでは、衝撃エネルギー吸収部材としての強度に問題があることも懸念されるため、断面形状が円形や矩形をなす金属製の筒状体の中空部に、発泡金属を充填したものが、特許文献1、2、3、4等として提案されている。   However, there is a concern that there is a problem in strength as an impact energy absorbing member only by using such a foam metal such as foam aluminum, so that a hollow cylindrical metal body having a circular or rectangular cross-sectional shape is used. Patent Documents 1, 2, 3, 4 and the like have been proposed in which the part is filled with foam metal.

これら特許文献のうち、特許文献1に記載された衝撃エネルギー吸収部材は、中空状の構造部材の内部に発泡アルミニウムなどの多孔質金属(発泡金属)から成る成形体を充填したものであって、構造部材と多孔質金属を確実に結合するため、その構造部材と多孔質金属の隙間に発泡樹脂が充填され、発泡樹脂層が形成されている。   Among these patent documents, the impact energy absorbing member described in Patent Document 1 is a hollow structural member filled with a molded body made of a porous metal (foam metal) such as foam aluminum, In order to securely bond the structural member and the porous metal, a foamed resin is filled in a gap between the structural member and the porous metal to form a foamed resin layer.

このように、発泡樹脂層を用いれば、中空状の構造部材の内部に発泡アルミニウムなどの多孔質金属から成る成形体を、確実に充填固定できると思われる。しかしながら、隙間の広狭による表面張力の差異や、中空状の構造部材の内部の温度分布の不均一によって、全ての部位で発泡率が必ずしも同じでない発泡樹脂層が形成されてしまう可能性がある。また、発泡率の差異により、構造部材と多孔質金属の軸芯がずれてしまう可能性もある。従って、衝撃エネルギー吸収部材として想定した性能を発揮できない可能性もあることが懸念される。更には、発泡樹脂という金属とは異なる材料を準備する必要があり、製造作業までの準備、製造自体に余計なプロセスを必要とし、製造に手間を要するという問題もある。   Thus, it seems that the use of the foamed resin layer makes it possible to reliably fill and fix the molded body made of a porous metal such as foamed aluminum inside the hollow structural member. However, there is a possibility that a foamed resin layer in which the foaming rate is not necessarily the same in all parts may be formed due to the difference in surface tension due to the wide and narrow gaps and the uneven temperature distribution inside the hollow structural member. Moreover, there is a possibility that the axial center of the structural member and the porous metal may be shifted due to the difference in the foaming rate. Therefore, there is a concern that the performance assumed as the impact energy absorbing member may not be exhibited. Furthermore, it is necessary to prepare a material different from a metal called foamed resin, and there is a problem that an extra process is required for preparation up to the manufacturing operation and manufacturing itself, which requires labor.

また、特許文献2に記載された衝撃エネルギー吸収部材は、断面形状が略円形あるいは多角形状をなす管体と、その管体の中空部に充填された発泡金属より構成されており、発泡金属に、管体が受ける軸方向圧縮力と垂直をなす面で互いに直交する2つの方向の圧縮力を加えることによる事前の圧縮成形を施したことを特徴とするものである。   In addition, the impact energy absorbing member described in Patent Document 2 includes a tubular body having a substantially circular or polygonal cross-sectional shape, and a foam metal filled in a hollow portion of the tubular body. The compression molding is performed in advance by applying compressive forces in two directions orthogonal to each other on a plane perpendicular to the axial compressive force received by the tubular body.

この特許文献2の請求項9には、管体の中空部に発泡金属を充填した後、管体が受ける軸方向圧縮力と垂直をなす面で互いに直交する2つの方向の圧縮力を管体を介して加えて発泡金属に圧縮成形を施すとの記載があり、この構成であれば、管体の中空部に発泡金属を確実に充填固定できると思われる。しかしながら、管体の中空部に発泡金属を圧入した際の発泡金属は、管体の中空部内で不安定な状態であり、発泡金属は管体の中空部内で仮支持した状態で圧縮成形作業を行わねばならず、作業に非常に手間を要するという問題がある。   According to claim 9 of this Patent Document 2, after filling the hollow portion of the tube with foam metal, the compressive force in two directions orthogonal to each other on the plane perpendicular to the axial compressive force received by the tube is obtained. In addition, there is a description that compression molding is applied to the foam metal, and with this configuration, it seems that the foam metal can be reliably filled and fixed in the hollow portion of the tubular body. However, the foam metal when the foam metal is press-fitted into the hollow portion of the tube body is in an unstable state in the hollow portion of the tube body, and the foam metal is subjected to compression molding in a state of being temporarily supported in the hollow portion of the tube body. There is a problem that it has to be done and requires a lot of work.

また、特許文献3、4にも、金属製の筒状体の中空部に、発泡金属体を充填して成る衝撃エネルギー吸収部材が記載されているが、発泡金属体の、金属製の筒状体の中空部への固定には特に注意が払われたものではなかった。   Further, Patent Documents 3 and 4 also describe an impact energy absorbing member formed by filling a hollow portion of a metal cylindrical body with a foam metal body, but the metal cylinder of the foam metal body is described. No particular attention was paid to fixing the body to the hollow part.

特開2003−28224号公報JP 2003-28224 A 特開2005−199737号公報Japanese Patent Laid-Open No. 2005-199737 特開平8−164869号公報JP-A-8-164869 特開平11−59298号公報JP-A-11-59298

本発明は、上記従来の問題を解消せんとしてなされたもので、発泡金属体を金属製の筒状体の中空部へ充填するという従来の製造プロセスのままで、金属製の筒状体の中空部内へ発泡金属体を確実に固定することができる衝撃エネルギー吸収部材の製造方法を提供することを課題とするものである。また、金属製の筒状体の中空部内へ発泡金属体を確実に固定することができ、想定した性能を確実に発揮することができる衝撃エネルギー吸収部材を提供することを課題とするものである。   The present invention has been made in order to solve the above-described conventional problems, and the hollow of the metal cylindrical body is maintained in the conventional manufacturing process in which the foamed metal body is filled into the hollow portion of the metal cylindrical body. It is an object of the present invention to provide a manufacturing method of an impact energy absorbing member capable of reliably fixing a foam metal body into a part. It is another object of the present invention to provide an impact energy absorbing member capable of reliably fixing a foam metal body into a hollow portion of a metallic cylindrical body and capable of reliably exhibiting assumed performance. .

請求項1記載の発明は、閉断面を有する金属製の筒状体の中空部に、発泡金属体を充填して成る衝撃エネルギー吸収部材の製造方法であって、前記筒状体の中空部の開口部側から、その中空部の断面寸法より、その断面寸法が僅かに大きな前記発泡金属体を、その発泡金属体の表層部のみを塑性変形させながら、圧入させることを特徴とする衝撃エネルギー吸収部材の製造方法である。   The invention according to claim 1 is a method of manufacturing an impact energy absorbing member in which a hollow metal metal body having a closed cross section is filled with a foam metal body. Impact energy absorption, characterized in that, from the opening side, the foam metal body having a cross-sectional dimension slightly larger than the cross-sectional dimension of the hollow part is press-fitted while only the surface layer portion of the foam metal body is plastically deformed. It is a manufacturing method of a member.

請求項2記載の発明は、圧入する前の前記発泡金属体の断面の厚み寸法が、前記筒状体の中空部の断面の厚み寸法と比較して、0.1%〜3.0%大きいことを特徴とする請求項1記載の衝撃エネルギー吸収部材の製造方法である。   In the invention according to claim 2, the thickness dimension of the cross section of the foam metal body before press-fitting is 0.1% to 3.0% larger than the thickness dimension of the cross section of the hollow portion of the cylindrical body. The impact energy absorbing member manufacturing method according to claim 1.

請求項3記載の発明は、圧入する前の前記発泡金属体の厚み寸法と、前記筒状体の中空部の厚み寸法の差は、全周において略同一であることを特徴とする請求項2記載の衝撃エネルギー吸収部材の製造方法である。   The invention described in claim 3 is characterized in that the difference between the thickness dimension of the foam metal body before press-fitting and the thickness dimension of the hollow portion of the cylindrical body are substantially the same in the entire circumference. It is a manufacturing method of the described impact energy absorption member.

請求項4記載の発明は、前記発泡金属体を前記筒状体の中空部に圧入する際に、その発泡金属体の表層部のみを圧縮・せん断変形させることを特徴とする請求項1乃至請求項3のいずれかに記載の衝撃エネルギー吸収部材の製造方法である。   According to a fourth aspect of the present invention, when the metal foam body is press-fitted into the hollow portion of the cylindrical body, only the surface layer portion of the metal foam body is compressed and sheared. It is a manufacturing method of the impact energy absorption member in any one of claim | item 3.

請求項5記載の発明は、圧入した後の前記発泡金属体の平均密度は、塑性変形した表層部を除き0.1g/cm〜0.7g/cmであることを特徴とする請求項1乃至請求項4のいずれかに記載の衝撃エネルギー吸収部材の製造方法である。 Claim invention of claim 5, wherein the average density of the metal foam body after the press-fitting, which is a 0.1g / cm 3 ~0.7g / cm 3 except the surface layer portion which is plastically deformed It is a manufacturing method of the impact energy absorption member in any one of Claim 1 thru | or 4.

請求項6記載の発明は、前記発泡金属体をその融点以下に加熱後、前記筒状体の中空部に圧入し、その後冷却する焼ばめを実施することを特徴とする請求項1乃至請求項5のいずれかに記載の衝撃エネルギー吸収部材の製造方法である。   According to a sixth aspect of the present invention, the metal foam body is heated to a temperature equal to or lower than its melting point, and then press fit into the hollow portion of the cylindrical body, followed by a shrink fit to cool. Item 6. A method for producing an impact energy absorbing member according to Item 5.

請求項7記載の発明は、前記発泡金属体を前記筒状体の中空部に圧入した後、極低温まで冷却する冷やしばめを実施することを特徴とする請求項1乃至請求項5のいずれかに記載の衝撃エネルギー吸収部材の製造方法である。   The invention according to claim 7 is characterized in that after the metal foam body is press-fitted into the hollow portion of the cylindrical body, a cold fit is performed to cool to a cryogenic temperature. It is a manufacturing method of the impact energy absorption member as described above.

請求項8記載の発明は、前記筒状体の内表面を凹凸状に形成し、その筒状体の内表面と、その筒状体の中空部に圧入した前記発泡金属体の外表面を、接着剤で固着することを特徴とする請求項1乃至請求項7のいずれかに記載の衝撃エネルギー吸収部材の製造方法である。   The invention according to claim 8 is characterized in that the inner surface of the cylindrical body is formed in an uneven shape, the inner surface of the cylindrical body and the outer surface of the metal foam body press-fitted into the hollow portion of the cylindrical body, The impact energy absorbing member manufacturing method according to any one of claims 1 to 7, wherein the impact energy absorbing member is fixed with an adhesive.

請求項9記載の発明は、前記発泡金属体を前記筒状体の中空部に圧入した後、その筒状体の外表面側から熱源を照射して、前記筒状体の内表面と前記発泡金属体の外表面を溶接することを特徴とする請求項1乃至請求項7のいずれかに記載の衝撃エネルギー吸収部材の製造方法である。   According to the ninth aspect of the present invention, after the metal foam body is press-fitted into the hollow portion of the cylindrical body, a heat source is irradiated from the outer surface side of the cylindrical body, and the inner surface of the cylindrical body and the foamed body The method for manufacturing an impact energy absorbing member according to any one of claims 1 to 7, wherein an outer surface of the metal body is welded.

請求項10記載の発明は、前記発泡金属体を前記筒状体の中空部に圧入した後、前記筒状体の中空部の断面積を減少させることを特徴とする請求項1乃至請求項9のいずれかに記載の衝撃エネルギー吸収部材の製造方法である。   The invention according to claim 10 is characterized in that after the metal foam body is press-fitted into the hollow portion of the cylindrical body, the cross-sectional area of the hollow portion of the cylindrical body is reduced. It is a manufacturing method of the impact energy absorption member in any one of.

請求項11記載の発明は、閉断面を有する金属製の筒状体の中空部に、発泡金属体を充填して成る衝撃吸収部材であって、前記発泡金属体は、その表層部の密度が、その表層部より内方の密度より大きいことを特徴とする衝撃エネルギー吸収部材である。   The invention according to claim 11 is an impact absorbing member formed by filling a hollow portion of a metal cylindrical body having a closed section with a foam metal body, and the foam metal body has a density of a surface layer portion thereof. The impact energy absorbing member is characterized in that the density is larger than the inner density of the surface layer portion.

本発明の請求項1記載の衝撃エネルギー吸収部材の製造方法によると、発泡金属体を金属製の筒状体の中空部へ充填するという従来の製造プロセスのままで、金属製の筒状体の中空部内へ発泡金属体を確実に固定することができる。また、発泡金属体を、その軸芯を維持しながら確実に充填できるため、製造される衝撃エネルギー吸収部材が、想定した性能を確実に発揮することができる。   According to the manufacturing method of the impact energy absorbing member according to claim 1 of the present invention, the metal cylindrical body of the metal cylindrical body remains in the conventional manufacturing process in which the metal foam is filled into the hollow portion of the metal cylindrical body. The foam metal body can be reliably fixed in the hollow portion. In addition, since the foam metal body can be reliably filled while maintaining its axis, the manufactured impact energy absorbing member can reliably exhibit the assumed performance.

本発明の請求項2記載の衝撃エネルギー吸収部材の製造方法によると、金属製の筒状体の中空部内への発泡金属体への圧入を、大きな負荷を伴うことなく確実に行うことができる。また、金属製の筒状体の中空部内に確実に発泡金属体を充填固定することができる。   According to the manufacturing method of the impact energy absorbing member according to claim 2 of the present invention, the press-fitting into the metal foam body into the hollow portion of the metallic cylindrical body can be reliably performed without a large load. In addition, the foam metal body can be reliably filled and fixed in the hollow portion of the metal cylindrical body.

本発明の請求項3記載の衝撃エネルギー吸収部材の製造方法によると、発泡金属体を、その軸芯を維持しながら確実に圧入できるため、製造される衝撃エネルギー吸収部材が、想定した性能を確実に発揮することができる。   According to the method for manufacturing an impact energy absorbing member according to claim 3 of the present invention, since the foam metal body can be surely press-fitted while maintaining its axis, the manufactured impact energy absorbing member ensures the assumed performance. Can be demonstrated.

本発明の請求項4記載の衝撃エネルギー吸収部材の製造方法によると、圧縮・せん断変形を伴うことにより、金属製の筒状体の内面と発泡金属体の間に大きな摩擦抵抗が付与されるため、不安定な座屈モードを示すことなく、安定したエネルギー吸収特性を発現させることができる。   According to the method for manufacturing an impact energy absorbing member according to claim 4 of the present invention, a large frictional resistance is imparted between the inner surface of the metal cylindrical body and the metal foam body due to compression and shear deformation. Stable energy absorption characteristics can be exhibited without exhibiting an unstable buckling mode.

本発明の請求項5記載の衝撃エネルギー吸収部材の製造方法によると、発泡金属体の圧入時に、表層部以外の発泡金属体のセル組織を無傷のまま圧入することができ、製造される衝撃エネルギー吸収部材が、想定した性能を確実に発揮することができる。   According to the method for producing an impact energy absorbing member according to claim 5 of the present invention, when the foam metal body is press-fitted, the cell structure of the foam metal body other than the surface layer portion can be press-fit without being damaged, and the produced impact energy. The absorbing member can reliably exhibit the assumed performance.

本発明の請求項6記載の衝撃エネルギー吸収部材の製造方法によると、焼ばめにより、金属製の筒状体がその熱膨張係数に伴い収縮するため、発泡金属体に収縮力を付与でき、金属製の筒状体の中空部内への発泡金属体の充填固定を、より確実とすることができる。   According to the method for producing an impact energy absorbing member according to claim 6 of the present invention, due to shrink fitting, the metallic cylindrical body contracts with its thermal expansion coefficient, so that a contracting force can be imparted to the foam metal body, Filling and fixing of the foam metal body into the hollow portion of the metallic cylindrical body can be made more reliable.

本発明の請求項7記載の衝撃エネルギー吸収部材の製造方法によると、冷やしばめにより、金属製の筒状体がその熱膨張係数に伴い収縮するため、発泡金属体に収縮力を付与でき、金属製の筒状体の中空部内への発泡金属体の充填固定を、より確実とすることができる。   According to the manufacturing method of the impact energy absorbing member according to claim 7 of the present invention, the metal cylindrical body contracts with its thermal expansion coefficient due to the cold fit, so that the contraction force can be applied to the foam metal body, Filling and fixing of the foam metal body into the hollow portion of the metallic cylindrical body can be made more reliable.

本発明の請求項8記載の衝撃エネルギー吸収部材の製造方法によると、接着剤により、金属製の筒状体の中空部内への発泡金属体の充填固定を、更に確実とすることができる。   According to the method for producing an impact energy absorbing member of claim 8 of the present invention, filling and fixing of the foam metal body into the hollow portion of the metal cylindrical body can be further ensured by the adhesive.

本発明の請求項9記載の衝撃エネルギー吸収部材の製造方法によると、溶接により、金属製の筒状体の中空部内への発泡金属体の充填固定を、更に確実とすることができる。   According to the manufacturing method of the impact energy absorbing member of claim 9 of the present invention, the filling and fixing of the metal foam body into the hollow portion of the metal cylindrical body can be further ensured by welding.

本発明の請求項10記載の衝撃エネルギー吸収部材の製造方法によると、筒状体の中空部の断面積の減少により、金属製の筒状体の中空部内への発泡金属体の充填固定を、更に確実とすることができる。   According to the method for manufacturing an impact energy absorbing member according to claim 10 of the present invention, filling and fixing of the foam metal body into the hollow portion of the metal cylindrical body by reducing the cross-sectional area of the hollow portion of the cylindrical body, Furthermore, it can be ensured.

本発明の請求項11記載の衝撃エネルギー吸収部材によると、金属製の筒状体の中空部内へ発泡金属体を確実に固定することができると共に、発泡体の密度は、その表層部のみを大きくすれば固定が確実にできるので、衝撃エネルギー吸収部材自体の想定した性能を確実に発揮することができる。   According to the impact energy absorbing member of the eleventh aspect of the present invention, the foam metal body can be reliably fixed in the hollow portion of the metal cylindrical body, and the density of the foam is increased only in the surface layer portion. In this case, since the fixing can be surely performed, the assumed performance of the impact energy absorbing member itself can be surely exhibited.

以下、本発明を実施形態及び図面に基づいて更に詳細に説明する。   Hereinafter, the present invention will be described in more detail based on embodiments and drawings.

図1に示す1は、金属製の筒状体である。この筒状体1は、例えば、アルミニウム合金、鋼材等で形成された断面円形の閉断面部材であって、その内部が中空部2となっている。また、3は均一なセル組織を有する発泡金属体であり、純アルミニウム、或いは、Zn、Mg等を含有するアルミニウム合金等を発泡させて形成した円柱状の部材である。衝撃エネルギー吸収部材Aは、この発泡金属体3を、筒状体1の中空部2に圧入することにより作製される。   1 shown in FIG. 1 is a metal cylindrical body. The cylindrical body 1 is a closed cross-section member having a circular cross section formed of, for example, an aluminum alloy, steel, or the like, and the inside thereof is a hollow portion 2. Reference numeral 3 denotes a foam metal body having a uniform cell structure, which is a columnar member formed by foaming pure aluminum or an aluminum alloy containing Zn, Mg or the like. The impact energy absorbing member A is manufactured by press-fitting the foam metal body 3 into the hollow portion 2 of the cylindrical body 1.

上記のように、衝撃エネルギー吸収部材Aは、発泡金属体3を、筒状体1の中空部2に圧入することにより作製されるが、圧入される発泡金属体3は均一なセル組織によって形成されているため、その圧入は、特に大きな力をかけることなく容易に行うことができる。その発泡金属体3の圧入は、以下に説明するようにして行われる。   As described above, the impact energy absorbing member A is manufactured by press-fitting the foam metal body 3 into the hollow portion 2 of the cylindrical body 1, but the press-fitted foam metal body 3 is formed by a uniform cell structure. Therefore, the press-fitting can be easily performed without applying a particularly large force. The press-fitting of the metal foam body 3 is performed as described below.

まず、筒状体1と発泡金属体3を準備する。筒状体1の中空部2に圧入する前の発泡金属体3の外径は、その筒状体1の内径、即ち中空部2の直径よりも、0.1%〜3.0%大きいものとする。勿論、筒状体1の中空部2の断面形状と、発泡金属体3の断面形状は、共に円形であるので、それらの径(厚み寸法)の差は、全周において略同一である。   First, the cylindrical body 1 and the metal foam body 3 are prepared. The outer diameter of the metal foam body 3 before being press-fitted into the hollow portion 2 of the cylindrical body 1 is 0.1% to 3.0% larger than the inner diameter of the cylindrical body 1, that is, the diameter of the hollow portion 2. And Of course, since the cross-sectional shape of the hollow part 2 of the cylindrical body 1 and the cross-sectional shape of the metal foam body 3 are both circular, the difference in diameter (thickness dimension) is substantially the same over the entire circumference.

この発泡金属体3を、筒状体1の中空部3の一方の開口部側から圧入するが、発泡金属体3の表層部4は、圧入の際に塑性変形しながら圧入されることとなる。図2にその詳細を示すが、発泡金属体3の外表面は、筒状体1によって押圧されることになり、その表層部4のみが、圧縮・せん断変形によって潰される。その際、発泡金属体3の表層部4より内方のセル組織は潰されることなく無傷のまま圧入されることとなる。なお、図2に、5として、圧縮・せん断変形領域を示す。   The foam metal body 3 is press-fitted from one opening side of the hollow portion 3 of the cylindrical body 1, but the surface layer portion 4 of the foam metal body 3 is press-fit while being plastically deformed during press-fitting. . Although the detail is shown in FIG. 2, the outer surface of the metal foam body 3 will be pressed by the cylindrical body 1, and only the surface layer part 4 will be crushed by compression and shear deformation. At that time, the cell structure inside the surface layer portion 4 of the metal foam body 3 is press-fitted without being crushed. In FIG. 2, a compression / shear deformation region is shown as 5.

圧入する前の発泡金属体3の平均密度が、0.1g/cm〜0.7g/cmであれば、圧入した後の発泡金属体3の表層部4を除く部位の平均密度を、圧入する前と同じ0.1g/cm〜0.7g/cmとすることができる。発泡金属体3をこの平均密度とすることで、自動車の衝突時等の衝撃エネルギーを確実に吸収することができる衝撃エネルギー吸収部材Aを作製することができる。なお、発泡金属体3の平均密度が、0.1g/cm未満であれば、衝撃エネルギー吸収部材Aとして意味をなさないものとなり、0.7g/cm超であれば、発泡金属体3の筒状体1への圧入が非常に行い難いものとなる。 The average density of the metal foam body 3 before the press fit, if 0.1g / cm 3 ~0.7g / cm 3 , an average density of the portion excluding the surface layer portion 4 of the metal foam body 3 after the press-fitting, may be the same 0.1g / cm 3 ~0.7g / cm 3 and before press-fitting. By setting the metal foam body 3 to this average density, it is possible to produce an impact energy absorbing member A that can reliably absorb impact energy at the time of a car collision or the like. In addition, if the average density of the metal foam body 3 is less than 0.1 g / cm 3 , it does not make sense as the impact energy absorbing member A, and if it exceeds 0.7 g / cm 3 , the metal foam body 3 The press-fitting into the cylindrical body 1 becomes very difficult.

また前記の説明では、圧入する前の発泡金属体3の外径は、筒状体1の内径より0.1%〜3.0%大きいいと説明したが、その差が0.1%未満であれば、筒状体1に圧入した発泡金属体3の充填固定が不十分となる。また、その差が3.0%超であれば、発泡金属体3の筒状体1への圧入が非常に行い難いもの、或いは圧入不可能なものとなる。   In the above description, the outer diameter of the metal foam body 3 before press-fitting is described as being 0.1% to 3.0% larger than the inner diameter of the cylindrical body 1, but the difference is less than 0.1%. If there is, the filling and fixing of the metal foam body 3 press-fitted into the cylindrical body 1 will be insufficient. On the other hand, if the difference exceeds 3.0%, it is difficult to press-fit the foam metal body 3 into the cylindrical body 1 or impossible to press-fit.

以上、図1及び図2に基づいて、本発明の一実施形態を説明したが、筒状体1及び発泡金属体3の断面形状は、必ずしも円形でなくても良く、例えば矩形等であっても良い。これらの断面形状が、矩形の場合は、筒状体1の内径(中空部2の直径)及び発泡金属体3の外径は、夫々中空部2の厚み寸法、発泡金属体3の厚み寸法と置き換えることで説明することができる。   As mentioned above, although one Embodiment of this invention was described based on FIG.1 and FIG.2, the cross-sectional shape of the cylindrical body 1 and the foam metal body 3 does not necessarily need to be circular, for example, is a rectangle etc. Also good. When these cross-sectional shapes are rectangular, the inner diameter of the cylindrical body 1 (the diameter of the hollow part 2) and the outer diameter of the foamed metal body 3 are the thickness dimension of the hollow part 2 and the thickness dimension of the foamed metal body 3, respectively. It can be explained by replacing.

以下、前記した衝撃エネルギー吸収部材Aの製造方法とは異なる本発明の他の様々な製造方法について説明する。   Hereinafter, various other manufacturing methods of the present invention different from the manufacturing method of the impact energy absorbing member A will be described.

まず、一つ目の製造方法では、圧入する前の発泡金属体3を、その発泡金属体3の融点以下(発泡金属体3が合金の場合は固相線以下)に加熱する。この加熱した発泡金属体3を筒状体1の中空部2に圧入し、圧入を完了した後に焼ばめを行って冷却する。この焼ばめにより、金属製の筒状体1がその熱膨張係数に伴い収縮するため、発泡金属体3に収縮力を付与でき、金属製の筒状体1の中空部2内への発泡金属体3の充填固定をより確実とすることができる。   First, in the first manufacturing method, the foam metal body 3 before press-fitting is heated to a temperature equal to or lower than the melting point of the metal foam body 3 (or lower than the solid phase line when the metal foam body 3 is an alloy). The heated metal foam body 3 is press-fitted into the hollow portion 2 of the cylindrical body 1 and, after completing the press-fitting, is cooled by shrink fitting. Due to this shrinkage fitting, the metallic cylindrical body 1 contracts with its thermal expansion coefficient, so that it is possible to impart a contracting force to the foamed metallic body 3 and foam into the hollow portion 2 of the metallic cylindrical body 1. The filling and fixing of the metal body 3 can be made more reliable.

また、別の製造方法では、発泡金属体3を筒状体1の中空部2に圧入した後に、液体窒素(−195.8℃)雰囲気下で、極低温(−123℃)まで冷却する冷やしばめを実施する。この冷やしばめにより、金属製の筒状体1がその熱膨張係数に伴い収縮するため、発泡金属体3に収縮力を付与でき、金属製の筒状体1の中空部2内への発泡金属体3の充填固定をより確実とすることができる。   In another manufacturing method, after the metal foam body 3 is press-fitted into the hollow portion 2 of the cylindrical body 1, it is cooled to an extremely low temperature (−123 ° C.) in an atmosphere of liquid nitrogen (−195.8 ° C.). Perform a fit. Due to this cold fitting, the metallic cylindrical body 1 contracts with its thermal expansion coefficient, so that a shrinking force can be applied to the foamed metallic body 3, and foaming into the hollow portion 2 of the metallic cylindrical body 1 is achieved. The filling and fixing of the metal body 3 can be made more reliable.

また、更に異なる製造方法では、まず、筒状体1の内表面に細かな凹凸を形成する。その筒状体1の内表面と、その筒状体1の中空部2に圧入した発泡金属体3の外表面を、接着剤で固着することで、筒状体1の中空部2内への発泡金属体3の充填固定をより確実とする。なお、接着剤としては、液状接着剤を、圧入する前の発泡金属体3の外表面に事前塗布しておくものでも良いし、ホットメルト用のシート状構造接着剤を、圧入する前の発泡金属体3の外表面に事前に巻きつけておき、圧入後に熱源を照射する等の手段でその接着剤を溶かすことで、筒状体1の内表面に発泡金属体3の外表面を接着するもの等であっても良い。   In a further different manufacturing method, first, fine irregularities are formed on the inner surface of the cylindrical body 1. By fixing the inner surface of the cylindrical body 1 and the outer surface of the foam metal body 3 press-fitted into the hollow portion 2 of the cylindrical body 1 with an adhesive, the hollow body 2 into the hollow portion 2 of the cylindrical body 1 is fixed. The filling and fixing of the metal foam body 3 is made more reliable. As the adhesive, a liquid adhesive may be applied in advance to the outer surface of the foam metal body 3 before press-fitting, or a hot melt sheet-like structural adhesive is foamed before press-fitting. The outer surface of the metal foam 3 is bonded to the inner surface of the cylindrical body 1 by wrapping around the outer surface of the metal body 3 in advance and dissolving the adhesive by means such as irradiating a heat source after press-fitting. It may be a thing.

更に異なる製造方法では、発泡金属体3を筒状体1の中空部2に圧入した後に、筒状体1の外表面側から熱源を照射することで、アーク溶接、レーザ溶接を行って、筒状体1の内表面に発泡金属体3の外表面を溶着する。この溶着で、筒状体1の中空部2内への発泡金属体3の充填固定をより確実とする。   Further, in another manufacturing method, after the metal foam body 3 is press-fitted into the hollow portion 2 of the cylindrical body 1, a heat source is irradiated from the outer surface side of the cylindrical body 1, thereby performing arc welding and laser welding, The outer surface of the foam metal body 3 is welded to the inner surface of the body 1. By this welding, filling and fixing of the foam metal body 3 into the hollow portion 2 of the cylindrical body 1 is further ensured.

更にまた異なる製造方法では、発泡金属体3を筒状体1の中空部2に圧入した後、筒状体1の中空部2の断面積を減少させることで、筒状体1の中空部2内への発泡金属体3の充填固定を更に確実とする。   Furthermore, in another manufacturing method, after the metal foam body 3 is press-fitted into the hollow part 2 of the cylindrical body 1, the hollow area 2 of the cylindrical body 1 is reduced by reducing the cross-sectional area of the hollow part 2 of the cylindrical body 1. The filling and fixing of the metal foam body 3 to the inside is further ensured.

筒状体1の中空部2の断面積を減少させる方法としては、(1)筒状体1の外表面側から圧縮変形を加えたり、押出変形、ロール圧延加工等を行ったりして、筒状体1の中空部2の断面積を減少させる方法、(2)発泡金属体3を圧入した筒状体1に、電磁成形による縮管を施して、周方向から均等な荷重を一瞬にして付与することで、筒状体1の中空部2の断面積を減少させる方法、(3)筒状体1の材質を、発泡金属体3の融点以下で相変態により体積減少する材質、例えば、Ni−Ti系形状記憶合金とし、発泡金属体3の融点以下の加熱で、筒状体1の中空部2の断面積を減少させる方法等がある。   As a method for reducing the cross-sectional area of the hollow portion 2 of the cylindrical body 1, (1) compressive deformation from the outer surface side of the cylindrical body 1, extrusion deformation, roll rolling, etc. A method for reducing the cross-sectional area of the hollow portion 2 of the cylindrical body 1, (2) a cylindrical tube 1 into which the foam metal body 3 is press-fitted is subjected to a contraction tube by electromagnetic forming, and an even load is instantaneously applied from the circumferential direction. A method of reducing the cross-sectional area of the hollow portion 2 of the cylindrical body 1 by applying, (3) a material that reduces the volume of the cylindrical body 1 by phase transformation below the melting point of the foamed metal body 3, for example, There is a method of reducing the cross-sectional area of the hollow portion 2 of the cylindrical body 1 by using a Ni—Ti-based shape memory alloy and heating below the melting point of the metal foam body 3.

本実施例で用いた筒状体と発泡金属体は、以下に説明する通りである。筒状体は、5502−H34アルミニウム合金で形成された断面円形の閉断面部材で成る。その板厚は1mm、内径は80mm、軸方向の寸法は200mmである。一方、発泡金属体は、純アルミニウムを発泡して形成した円柱状のもので、その密度は0.24g/cm、外径は80.5mm、軸方向の寸法は200mmである。即ち、発泡金属体の外径は、筒状体の内径よりも0.5mm大きい。 The cylindrical body and the metal foam body used in this example are as described below. The cylindrical body is formed of a closed cross-section member having a circular cross section formed of 5502-H34 aluminum alloy. The plate thickness is 1 mm, the inner diameter is 80 mm, and the axial dimension is 200 mm. On the other hand, the foam metal body is a cylindrical body formed by foaming pure aluminum, and has a density of 0.24 g / cm 3 , an outer diameter of 80.5 mm, and an axial dimension of 200 mm. That is, the outer diameter of the metal foam body is 0.5 mm larger than the inner diameter of the cylindrical body.

以上の構成の発泡金属体を、筒状体の中空部に圧入する。この圧入は、インストロン社製の型万能試験機(型番:4200、荷重容量:5ton)を用いて、速度:5mm/minで徐々に行った。圧入時の平均荷重は、約20kNであった。   The foam metal body having the above configuration is press-fitted into the hollow portion of the cylindrical body. This press-fitting was gradually performed at a speed of 5 mm / min using a model universal testing machine (model number: 4200, load capacity: 5 ton) manufactured by Instron. The average load at the time of press fitting was about 20 kN.

上記の方法で作製した、発泡金属体を筒状体に圧入して形成した供試体(実施例)と、外径が80mmの発泡金属体を内径が同じく80mmの筒状体に挿入して形成した供試体(比較例1)と、外径が80mmの前記発泡金属体単体で成る供試体(比較例2)と、内径が80mmの前記筒状体単体で成る供試体(比較例3)について夫々静的圧縮試験を行い、各供試体の軸方向の寸法が50%(100mm)にまで変形した際の各供試体のエネルギー吸収に及ぼす下記する各因子の影響について調べた。   Formed by inserting a foam metal body produced by the above-mentioned method by press-fitting a foam metal body into a cylindrical body, and inserting a foam metal body having an outer diameter of 80 mm into a cylindrical body having an inner diameter of 80 mm. The test specimen (Comparative Example 1), the specimen (Comparative Example 2) made of the foam metal body having an outer diameter of 80 mm, and the specimen (Comparative Example 3) made of the cylindrical body having an inner diameter of 80 mm A static compression test was performed to examine the influence of the following factors on the energy absorption of each specimen when the axial dimension of each specimen was deformed to 50% (100 mm).

各供試体のエネルギー吸収量の向上に影響を及ぼす因子は、(a)筒状体自体、(b)発泡金属体自体、(c)筒状体へ発泡金属体を挿入したことによる効果、(d)筒状体へ大径の発泡金属体を圧入したことによる拘束力付与効果の4種があると考えられる。図3に、夫々の供試体のエネルギー吸収量に影響を及ぼした前記各因子の寄与率を示す。   Factors affecting the improvement of the energy absorption amount of each specimen are (a) the cylindrical body itself, (b) the foam metal body itself, (c) the effect of inserting the foam metal body into the cylindrical body, ( d) It is thought that there are four types of restraining force imparting effects due to press-fitting a large-diameter metal foam into the cylindrical body. FIG. 3 shows the contribution ratios of the factors that have influenced the amount of energy absorption of each specimen.

比較例2は発泡金属体単体、比較例3は筒状体単体であるため、夫々の供試体のエネルギー吸収量に影響を及ぼす因子は、(a)筒状体自体、或いは、(b)発泡金属体自体のみである。   Since Comparative Example 2 is a single foam metal body and Comparative Example 3 is a single cylinder body, factors that affect the amount of energy absorbed by each specimen are (a) the tubular body itself or (b) foam body. Only the metal body itself.

これに対し、比較例1、実施例では、複数の因子が、各供試体のエネルギー吸収量の向上に影響を及ぼしている。比較例1では、(a)筒状体自体、(b)発泡金属体自体のほか、(c)筒状体への発泡金属体の挿入効果が、供試体のエネルギー吸収量の向上に影響を及ぼしている。実施例では、更に、(d)筒状体へ大径の発泡金属体を圧入したことによる拘束力付与効果が、供試体のエネルギー吸収量の向上に影響を及ぼしている。   On the other hand, in Comparative Example 1 and Examples, a plurality of factors affect the improvement of the energy absorption amount of each specimen. In Comparative Example 1, in addition to (a) the cylindrical body itself, (b) the foam metal body itself, (c) the effect of inserting the foam metal body into the cylindrical body has an effect on the improvement of the energy absorption amount of the specimen. It is exerting. In the example, (d) the restraint force imparting effect by press-fitting a large-diameter foam metal body into the cylindrical body affects the improvement of the energy absorption amount of the specimen.

図3によると、実施例では、(c)筒状体への発泡金属体の挿入効果と、(d)筒状体へ大径の発泡金属体を圧入したことによる拘束力付与効果が、夫々供試体のエネルギー吸収量の向上に影響を及ぼした寄与率は略同等であり、実施例のエネルギー吸収量は、比較例1のエネルギー吸収量に比べて、(d)筒状体へ大径の発泡金属体を圧入したことによる拘束力付与効果分、即ち、約1.4倍にまで向上していることがわかる。この実施例では、発泡金属体の外径を、筒状体の内径よりも0.5mm大きくしたが、その差を0.5mmよりも更に大きくすれば(但し、発泡金属体の表層部のみがその変形によって潰され、それより内方のセル組織は潰されることがない範囲で)、エネルギー吸収量は更に向上させることができる。   According to FIG. 3, in the example, (c) the effect of inserting the foam metal body into the cylindrical body and (d) the effect of imparting the restraining force by press-fitting the large-diameter foam metal body into the cylindrical body, respectively. The contribution rate that affected the improvement of the energy absorption amount of the specimen was substantially the same, and the energy absorption amount of the example was (d) larger than the energy absorption amount of Comparative Example 1 (d) It can be seen that the restraining force imparting effect due to the press-fitting of the foam metal body is improved to about 1.4 times. In this embodiment, the outer diameter of the metal foam body is 0.5 mm larger than the inner diameter of the cylindrical body, but if the difference is further larger than 0.5 mm (however, only the surface layer portion of the metal foam body is As long as it is crushed by the deformation and the inner cell structure is not crushed), the amount of energy absorption can be further improved.

本発明の一実施形態を示すもので、筒状体の中空部に発泡金属体を充填する前の斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of the present invention, and is a perspective view before a metal foam body is filled in a hollow portion of a cylindrical body. 同実施形態を示すもので、筒状体の中空部に発泡金属体を充填する途中の状態の要部拡大縦断面図である。FIG. 4 is an enlarged vertical cross-sectional view of a main part in a state where the hollow metal part is filled with a foam metal body, showing the same embodiment. 各供試体のエネルギー吸収量に影響を及ぼす各因子の寄与率を示す説明図である。It is explanatory drawing which shows the contribution rate of each factor which affects the energy absorption amount of each specimen.

符号の説明Explanation of symbols

1…筒状体
2…中空部
3…発泡金属体
4…表層部
A…衝撃エネルギー吸収部材
DESCRIPTION OF SYMBOLS 1 ... Cylindrical body 2 ... Hollow part 3 ... Foam metal body 4 ... Surface layer part A ... Impact energy absorption member

Claims (11)

閉断面を有する金属製の筒状体の中空部に、発泡金属体を充填して成る衝撃エネルギー吸収部材の製造方法であって、
前記筒状体の中空部の開口部側から、その中空部の断面寸法より、その断面寸法が僅かに大きな前記発泡金属体を、その発泡金属体の表層部のみを塑性変形させながら、圧入させることを特徴とする衝撃エネルギー吸収部材の製造方法。
A method for producing an impact energy absorbing member formed by filling a hollow metal metal body having a closed cross section with a foam metal body,
From the opening side of the hollow part of the cylindrical body, the foam metal body whose cross-sectional dimension is slightly larger than the cross-sectional dimension of the hollow part is press-fitted while only the surface layer part of the foam metal body is plastically deformed. A method for producing an impact energy absorbing member.
圧入する前の前記発泡金属体の断面の厚み寸法が、前記筒状体の中空部の断面の厚み寸法と比較して、0.1%〜3.0%大きいことを特徴とする請求項1記載の衝撃エネルギー吸収部材の製造方法。   2. The thickness dimension of the cross section of the metal foam body before press-fitting is 0.1% to 3.0% larger than the thickness dimension of the cross section of the hollow portion of the cylindrical body. The manufacturing method of the impact energy absorption member of description. 圧入する前の前記発泡金属体の厚み寸法と、前記筒状体の中空部の厚み寸法の差は、全周において略同一であることを特徴とする請求項2記載の衝撃エネルギー吸収部材の製造方法。   3. The impact energy absorbing member according to claim 2, wherein a difference between the thickness dimension of the metal foam body before being press-fitted and the thickness dimension of the hollow portion of the cylindrical body is substantially the same in the entire circumference. Method. 前記発泡金属体を前記筒状体の中空部に圧入する際に、その発泡金属体の表層部のみを圧縮・せん断変形させることを特徴とする請求項1乃至請求項3のいずれかに記載の衝撃エネルギー吸収部材の製造方法。   4. When the metal foam body is press-fitted into the hollow portion of the cylindrical body, only the surface layer portion of the metal foam body is compressed / shear-deformed. 5. A method for producing an impact energy absorbing member. 圧入した後の前記発泡金属体の平均密度は、塑性変形した表層部を除き0.1g/cm〜0.7g/cmであることを特徴とする請求項1乃至請求項4のいずれかに記載の衝撃エネルギー吸収部材の製造方法。 The average density of the metal foam body after the press-fitting, one of claims 1 to 4, characterized in that it is 0.1g / cm 3 ~0.7g / cm 3 except the surface layer portion which is plastically deformed The manufacturing method of the impact energy absorption member as described in any one of. 前記発泡金属体をその融点以下に加熱後、前記筒状体の中空部に圧入し、その後冷却する焼ばめを実施することを特徴とする請求項1乃至請求項5のいずれかに記載の衝撃エネルギー吸収部材の製造方法。   6. The shrink-fitting is performed according to claim 1, wherein the metal foam body is heated to a temperature equal to or lower than its melting point, and then press-fitted into the hollow portion of the cylindrical body and then cooled. A method for producing an impact energy absorbing member. 前記発泡金属体を前記筒状体の中空部に圧入した後、極低温まで冷却する冷やしばめを実施することを特徴とする請求項1乃至請求項5のいずれかに記載の衝撃エネルギー吸収部材の製造方法。   The impact energy absorbing member according to any one of claims 1 to 5, wherein after the metal foam body is press-fitted into the hollow portion of the cylindrical body, a cold fit for cooling to a cryogenic temperature is performed. Manufacturing method. 前記筒状体の内表面を凹凸状に形成し、その筒状体の内表面と、その筒状体の中空部に圧入した前記発泡金属体の外表面を、接着剤で固着することを特徴とする請求項1乃至請求項7のいずれかに記載の衝撃エネルギー吸収部材の製造方法。   The inner surface of the cylindrical body is formed in an uneven shape, and the inner surface of the cylindrical body and the outer surface of the metal foam body press-fitted into the hollow portion of the cylindrical body are fixed with an adhesive. The manufacturing method of the impact energy absorption member in any one of Claim 1 thru | or 7. 前記発泡金属体を前記筒状体の中空部に圧入した後、その筒状体の外表面側から熱源を照射して、前記筒状体の内表面と前記発泡金属体の外表面を溶接することを特徴とする請求項1乃至請求項7のいずれかに記載の衝撃エネルギー吸収部材の製造方法。   After the metal foam body is press-fitted into the hollow portion of the cylindrical body, a heat source is irradiated from the outer surface side of the cylindrical body to weld the inner surface of the cylindrical body and the outer surface of the metal foam body. The method for manufacturing an impact energy absorbing member according to any one of claims 1 to 7. 前記発泡金属体を前記筒状体の中空部に圧入した後、前記筒状体の中空部の断面積を減少させることを特徴とする請求項1乃至請求項9のいずれかに記載の衝撃エネルギー吸収部材の製造方法。   The impact energy according to any one of claims 1 to 9, wherein after the metal foam body is press-fitted into a hollow portion of the cylindrical body, a cross-sectional area of the hollow portion of the cylindrical body is reduced. Manufacturing method of absorbent member. 閉断面を有する金属製の筒状体の中空部に、発泡金属体を充填して成る衝撃吸収部材であって、
前記発泡金属体は、その表層部の密度が、その表層部より内方の密度より大きいことを特徴とする衝撃エネルギー吸収部材。
A shock absorbing member formed by filling a hollow portion of a metal cylindrical body having a closed cross section with a foam metal body,
The metal foam body has an impact energy absorbing member characterized in that the density of the surface layer portion is larger than the density inside the surface layer portion.
JP2007272794A 2007-10-19 2007-10-19 Manufacturing method for impact energy absorption member, and impact energy absorption member Pending JP2009103140A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007272794A JP2009103140A (en) 2007-10-19 2007-10-19 Manufacturing method for impact energy absorption member, and impact energy absorption member
KR1020080098889A KR20090040218A (en) 2007-10-19 2008-10-09 Manufacturing method of impact energy absorbing member and impact energy absorbing member
CN2008101701605A CN101412408B (en) 2007-10-19 2008-10-13 Manufacturing method of impact energy absorbing component and impact energy absorbing component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007272794A JP2009103140A (en) 2007-10-19 2007-10-19 Manufacturing method for impact energy absorption member, and impact energy absorption member

Publications (1)

Publication Number Publication Date
JP2009103140A true JP2009103140A (en) 2009-05-14

Family

ID=40593206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007272794A Pending JP2009103140A (en) 2007-10-19 2007-10-19 Manufacturing method for impact energy absorption member, and impact energy absorption member

Country Status (3)

Country Link
JP (1) JP2009103140A (en)
KR (1) KR20090040218A (en)
CN (1) CN101412408B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150292589A1 (en) * 2014-04-11 2015-10-15 GM Global Technology Operations LLC Switchable/variable rate isolators using shape memory alloys
CN104088947B (en) * 2014-06-06 2017-07-07 中国核电工程有限公司 A kind of energy absorbing device of utilization material limits characteristic and preparation method thereof
CN112623034B (en) * 2020-12-28 2022-05-13 湖南大学 Automobile front longitudinal beam with partitioned filling materials, automobile and manufacturing method of front longitudinal beam
JP2022117565A (en) * 2021-02-01 2022-08-12 トヨタ自動車株式会社 Manufacturing method for cast product or forged product having insert joined thereto

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187443A (en) * 1992-01-16 1993-07-27 Nippon Seiko Kk Static pressure gas bearing
JPH08164869A (en) * 1994-12-15 1996-06-25 Fuji Heavy Ind Ltd Front part frame structure of vehicle
JPH1159298A (en) * 1997-05-23 1999-03-02 Daimler Benz Ag Energy absorbing element
JP2003028224A (en) * 2001-07-13 2003-01-29 Nissan Motor Co Ltd Energy absorbing member and manufacturing method of the same
JP2003336677A (en) * 2002-05-17 2003-11-28 Nissan Motor Co Ltd Energy absorbing member and manufacturing method therefor
JP2004209526A (en) * 2003-01-06 2004-07-29 Nissan Motor Co Ltd Method for fixing light metal foamed body in hollow structural member
JP2005083459A (en) * 2003-09-08 2005-03-31 Nissan Motor Co Ltd Shock absorbing member
JP2005199737A (en) * 2004-01-13 2005-07-28 Nissan Motor Co Ltd Shock absorbing member and its manufacturing method
JP2005247165A (en) * 2004-03-05 2005-09-15 Nissan Motor Co Ltd Impact energy absorbing member and its manufacturing method
JP2005325968A (en) * 2004-05-17 2005-11-24 Nissan Motor Co Ltd Impact energy absorbing structural member

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187443A (en) * 1992-01-16 1993-07-27 Nippon Seiko Kk Static pressure gas bearing
JPH08164869A (en) * 1994-12-15 1996-06-25 Fuji Heavy Ind Ltd Front part frame structure of vehicle
JPH1159298A (en) * 1997-05-23 1999-03-02 Daimler Benz Ag Energy absorbing element
JP2003028224A (en) * 2001-07-13 2003-01-29 Nissan Motor Co Ltd Energy absorbing member and manufacturing method of the same
JP2003336677A (en) * 2002-05-17 2003-11-28 Nissan Motor Co Ltd Energy absorbing member and manufacturing method therefor
JP2004209526A (en) * 2003-01-06 2004-07-29 Nissan Motor Co Ltd Method for fixing light metal foamed body in hollow structural member
JP2005083459A (en) * 2003-09-08 2005-03-31 Nissan Motor Co Ltd Shock absorbing member
JP2005199737A (en) * 2004-01-13 2005-07-28 Nissan Motor Co Ltd Shock absorbing member and its manufacturing method
JP2005247165A (en) * 2004-03-05 2005-09-15 Nissan Motor Co Ltd Impact energy absorbing member and its manufacturing method
JP2005325968A (en) * 2004-05-17 2005-11-24 Nissan Motor Co Ltd Impact energy absorbing structural member

Also Published As

Publication number Publication date
CN101412408B (en) 2010-09-29
KR20090040218A (en) 2009-04-23
CN101412408A (en) 2009-04-22

Similar Documents

Publication Publication Date Title
JP5488069B2 (en) Crash box and car body
WO2011049029A1 (en) Vehicle bumper beam and method for manufacturing same
US8210583B2 (en) Energy absorber device and method of forming same
JP2009519863A (en) Mechanical energy absorption system
EP2541093A1 (en) Impact absorbing member
JP2002316642A (en) Collision energy absorption structure of vehicle
US9586545B2 (en) Bumper for a motor vehicle
JP2008261493A (en) Shock absorbing member and its manufacturing method
JP2009103140A (en) Manufacturing method for impact energy absorption member, and impact energy absorption member
CN104760554A (en) Automotive insertion sheet filling type foamed aluminum energy absorption box
JP2004148994A (en) Impact absorbing member for vehicle
JP2008068849A (en) Bumper structure
JP2002079388A (en) Method for laser beam welding of shock-absorbing member having excellent shock absorption characteristic against axial collapse
CN112406761A (en) Mounting device for coupling a bumper beam to a crash box and side rails of a vehicle
JP4645131B2 (en) Bumper structure for vehicle and method for forming the same
JP5131810B2 (en) Crash box and manufacturing method thereof
WO2021256035A1 (en) Automotive impact energy absorptive part
EP3059468B1 (en) Shock-absorbing part
JP2012111356A (en) Method for manufacturing energy absorbing structure, and energy absorbing structure
KR20180049071A (en) Manufacturing method of tubular spring and tubular spring for automobile
JP2003056617A (en) Impact energy absorption structure member
JP7464722B2 (en) Expanded tube for automobile crash box and its manufacturing method
US20140152071A1 (en) Bent Tube With Foam Reinforcement And Method
JP2001153169A (en) Hybrid impact absorbing member
JP2005162061A (en) Shock absorbing member for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601