JP2009099707A - Molding having anisotropy in thermal conductivity - Google Patents
Molding having anisotropy in thermal conductivity Download PDFInfo
- Publication number
- JP2009099707A JP2009099707A JP2007268709A JP2007268709A JP2009099707A JP 2009099707 A JP2009099707 A JP 2009099707A JP 2007268709 A JP2007268709 A JP 2007268709A JP 2007268709 A JP2007268709 A JP 2007268709A JP 2009099707 A JP2009099707 A JP 2009099707A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- thermal
- thermal conductivity
- resin
- molded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本発明は、携帯電話、パーソナルコンピューター、ゲーム機、携帯型端末等の電子部品に用いる熱伝導素材に関する。 The present invention relates to a heat conduction material used for electronic parts such as a mobile phone, a personal computer, a game machine, and a portable terminal.
従来から携帯電話、パーソナルコンピューター、ゲーム機、携帯型端末等に使用される熱伝導用部品としては、熱伝導の良い金属(アルミニウムなど)を使用したもの、また熱伝導フィラーをジェルや液体に分散させたもの、あるいは樹脂に分散させ、加工したシート状、プレート状のものが市販されている。 Conventionally, heat conduction parts used in mobile phones, personal computers, game consoles, portable terminals, etc., use heat conductive metals (such as aluminum), and heat conduction fillers are dispersed in gels and liquids. Sheets or plates that are processed by dispersing in resin or processed are commercially available.
しかし、シート状のものは比較的柔軟に熱伝達方向を変えて放熱を行うことが出来るが、狭い空間で他に熱を漏らすことなく伝熱することができなかった。 However, although the sheet-like material can dissipate heat by changing the heat transfer direction relatively flexibly, it cannot transfer heat without leaking heat in a narrow space.
また、液状、ジェル状のものは低分子シロキサン等による接点障害が問題視されているためガスを発生させない提案もされている。(特許文献1)
熱伝導部品を必要とする製品としては、携帯電話やノート型パーソナルコンピューター、携帯型ゲーム機など小型で高性能なICを使用する電子機器が多く、発熱も多いため伝熱はとても重要な技術ファクターとなっている。また、これらの電子機器は小型であるがゆえに製品内部のクリアランスが小さいことが多く、放熱部分も必ずしも発熱体の近くに配置出来るとは限らない。
In addition, liquid and gel-like materials have been proposed to prevent gas generation because contact failure due to low-molecular siloxane or the like is regarded as a problem. (Patent Document 1)
As products that require heat conduction components, there are many electronic devices that use small, high-performance ICs, such as mobile phones, notebook personal computers, and portable game machines, and heat transfer is a very important technology factor. It has become. In addition, since these electronic devices are small in size, the clearance inside the product is often small, and the heat radiating portion cannot always be arranged near the heating element.
そこで発熱体から離れた放熱部分に熱を伝達するために熱伝導率の高い部材を使用し熱伝達を行う方法がとられているが、従来の熱伝導部材は、いずれも四方へ熱が伝達してしまい方向性を持たない場合が多い。 Therefore, in order to transfer heat to the heat dissipating part away from the heating element, a method of transferring heat using a member with high thermal conductivity is used, but all conventional heat conducting members transfer heat in all directions. In many cases, it does not have directionality.
このため、ブロック状で熱を伝え、しかも熱の伝達方向を設定可能な方法も報告さてれている。(特許文献2)これは、熱伝達の方向を変えるため二つ以上の熱伝導物質を組み合わせたものである。
特許文献2に記載の方法は、熱伝達の方向を変えるため二つ以上の熱伝導物質を組み合わせたものであるが、しかしこの方法では、熱伝導体の接合面が熱抵抗となり、熱の伝達効率が著しく低下する場合がある。
The method described in
従って熱の伝達効率が低下しにくい一体品であり、かつそれ自体に熱伝導異方性を持たせることで熱の伝達を所望の方向に変えることが出来る熱伝導部品が望まれている。 Accordingly, there is a demand for a heat conductive component that is an integral product in which the heat transfer efficiency is unlikely to decrease, and that can change heat transfer in a desired direction by imparting thermal conductivity anisotropy to itself.
また、小型で部品間のクリアランスが小さい製品内部であるがゆえに熱の滞留が他の部品に悪影響を及ぼしてしまう場合があり、また、熱伝達部品も熱伝達時に自身からの放熱があり、このため他の部品への熱の影響を避けるため熱を所望の方向へ伝達させるという方策が望まれている。 In addition, heat retention may adversely affect other parts because it is small and the clearance between parts is small, and heat transfer parts also radiate heat from themselves during heat transfer. Therefore, in order to avoid the influence of heat on other parts, a method of transferring heat in a desired direction is desired.
また、同一回路内に複数の発熱体、放熱体がある場合も多く、互いに熱の影響を与えないように、出来るだけ少ない部品点数で、しかし確実に熱を伝達する方法が望まれている。 Also, there are many cases where there are a plurality of heat generators and heat radiators in the same circuit, and there is a demand for a method of reliably transferring heat with as few parts as possible so as not to affect the heat of each other.
本発明は、上記課題を改善したものである。 The present invention has improved the above-described problems.
すなわち、本発明は、少なくとも鱗片状の熱伝導性フィラーと樹脂バインダーを含む混合物を射出成形する際、少なくとも二つ以上のゲート(注入口)をもつ射出成形用金型で成形することにより得られる熱伝導異方性を有する成形体である。 That is, the present invention can be obtained by injection molding a mixture containing at least a scale-like thermally conductive filler and a resin binder by using an injection mold having at least two gates (injection ports). It is a molded article having thermal conductivity anisotropy.
本発明はまた、樹脂バインダーに占める熱伝導フィラーの含有率が3〜70体積%である熱伝導異方性を有する成形体である。 This invention is also a molded object which has the heat conductivity anisotropy whose content rate of the heat conductive filler which occupies for a resin binder is 3-70 volume%.
本発明はさらに、成形体が上述の射出成形された成形体から切り出されてなる熱伝導異方性を有する成形体である。 The present invention further provides a molded article having thermal conductivity anisotropy obtained by cutting the molded article from the above-described injection-molded molded article.
本発明は、熱伝導性が高く、かつ熱伝導異方性を持った一体型の樹脂成形体であり、これにより熱を伝達させる方向を変えることが出来るため、熱伝導効率を低下させることなく異なる方向へ熱伝達を行うことが可能となる。 The present invention is an integral resin molded body having high thermal conductivity and thermal conductivity anisotropy, and the direction in which heat is transferred can be changed thereby, without reducing the thermal conductivity efficiency. Heat transfer can be performed in different directions.
また、熱伝達を行う方向以外には放熱され難くする事が出来、クリアランスの小さな製品内においては他の部品への熱の影響を抑え、発熱体や放熱体の配置の自由度を向上させることができる。更に、複数の発熱体から複数の放熱体への熱の伝達が一つの熱伝導樹脂成形体によって行うことが出来る。 In addition, it can be made difficult to dissipate heat except in the direction of heat transfer, and in products with a small clearance, the effect of heat on other parts can be suppressed, and the degree of freedom in the arrangement of heating elements and radiators can be improved. Can do. Furthermore, heat can be transferred from the plurality of heat generating elements to the plurality of heat dissipating elements by using one heat conductive resin molding.
一般に、鱗片状の熱伝導性フィラーを樹脂に混ぜ成型する場合、フィラーは成形方向に層状に配向され、熱伝導も成形方向に高い値を示す。一方、層方向に対し垂直方向では熱伝導率は比較的低くなることがわかっている。このフィラーの配向による熱伝導の異方性を鋭意研究した結果、本発明者は特に射出成形で部分的にフィラーの配向方向が変わること、さらに、2つ以上の複数のゲートを持つ射出成形用の金型を使用することで樹脂と樹脂の合わせ目(いわゆるウエルドライン)の鱗片状の熱伝導性フィラーの配向が互いにほぼ平行になること、および、平行に配向された鱗片状の熱伝導性フィラーの間には樹脂が多く介在するため、このウエルドラインを横切る方向(ウエルドラインに対して垂直方向)への熱の伝達性が悪くなることを突き止めた。そして、射出成形では上記のように部分的に鱗片状の熱伝導性フィラーの配向方向が変わることに着目し、鱗片状の熱伝導性フィラーを用いることで熱伝導異方性を成形体に賦与出来ることを見出した。特に複数のゲートを持つ射出用金型において、射出成形時に部分的にフィラーの配向方向が変わること、および、ウエルドラインを横切る方向(ウエルドラインに対して垂直方向)への熱伝達性が悪くなること、また、熱伝導素材本来の熱伝導の良さからくる熱伝導異方性を利用することで、同一成形体内で熱の伝達方向を変えることが出来ることを見出した。さらに成形体単体を任意の形状に切削加工する事で同一成型体内での熱の伝達方向を変えることが出来ることを見出した。 Generally, when a scaly heat conductive filler is mixed with a resin and molded, the filler is oriented in a layered manner in the molding direction, and the heat conduction also shows a high value in the molding direction. On the other hand, it has been found that the thermal conductivity is relatively low in the direction perpendicular to the layer direction. As a result of diligent research on the anisotropy of heat conduction due to the orientation of the filler, the present inventor found that the orientation direction of the filler partially changes particularly in the injection molding, and further, for injection molding having two or more gates By using this mold, the alignment of the scale-like heat conductive filler at the joint between the resin and the resin (so-called weld line) becomes almost parallel to each other, and the scale-like thermal conductivity oriented in parallel Since a large amount of resin is present between the fillers, it has been found that heat transfer in the direction crossing the weld line (perpendicular to the weld line) is deteriorated. And in injection molding, paying attention to the fact that the orientation direction of the scaly heat conductive filler partially changes as described above, the heat conduction anisotropy is imparted to the compact by using the scaly heat conductive filler. I found what I can do. Particularly in an injection mold having a plurality of gates, the orientation direction of the filler partially changes at the time of injection molding, and the heat transfer performance in the direction crossing the weld line (perpendicular to the weld line) deteriorates. In addition, it has been found that the heat transfer direction can be changed in the same molded body by utilizing the heat conduction anisotropy resulting from the heat conduction material inherent in good heat conduction. Furthermore, it has been found that the direction of heat transfer in the same molded body can be changed by cutting the molded body alone into an arbitrary shape.
本発明においては、熱伝導率の異方性を持っている樹脂成形体を熱伝達部材として使用することで上記課題を解決する事が出来る。 In this invention, the said subject can be solved by using the resin molding which has the anisotropy of thermal conductivity as a heat transfer member.
以下、詳細について説明する。 Details will be described below.
本発明の熱伝導異方性を有する成形体は、鱗片状の熱伝導性フィラーと樹脂バインダーを主体に混合したものを、射出成形用金型を用いて射出成形することにより得ることが出来る。 The molded article having thermal conductivity anisotropy of the present invention can be obtained by injection molding using a mold for injection molding, which is mainly composed of a scaly heat conductive filler and a resin binder.
樹脂バインダーとしては、たとえば塩化ビニル−酢酸ビニル共重合体、エチレン−エチルアクリレート樹脂(EEA)、ポリアミド樹脂、ポリスチレン樹脂、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、PPS(ポリフェニルスルフィド)、EVA(エチレン−酢酸ビニル共重合体)、EVOH(エチレン−ビニルアルコール共重合体)、CPE(塩素化ポリエチレン)およびPVC(ポリ塩化ビニル)などの熱可塑性樹脂があげられる。これらは単独で使用してもよく、2種類以上を組み合わせて混合して用いることも出来る。これらのうちでは、塩化ビニル−酢酸ビニル共重合体がコストの点から好ましいが、本発明は、特に柔らかい材料、例えばエチレン−エチルアクリレート樹脂(EEA)などのような樹脂に熱伝導性フィラーを混合分散したペレットを成形材料として使用する場合に特に有効である。 Examples of the resin binder include vinyl chloride-vinyl acetate copolymer, ethylene-ethyl acrylate resin (EEA), polyamide resin, polystyrene resin, PET (polyethylene terephthalate), PBT (polybutylene terephthalate), PPS (polyphenyl sulfide), Examples thereof include thermoplastic resins such as EVA (ethylene-vinyl acetate copolymer), EVOH (ethylene-vinyl alcohol copolymer), CPE (chlorinated polyethylene), and PVC (polyvinyl chloride). These may be used alone or in combination of two or more. Among these, vinyl chloride-vinyl acetate copolymer is preferable from the viewpoint of cost. However, in the present invention, a heat conductive filler is mixed with a soft material such as ethylene-ethyl acrylate resin (EEA). This is particularly effective when the dispersed pellet is used as a molding material.
また、熱伝導の良いフィラーとしては例えば黒鉛(グラファイト)、窒化ホウ素、窒化アルミニウム、窒化ケイ素、アルミナ、マグネシア、ベリリア、炭酸カルシウム、アルミニウム粉、銅粉、鉄粉、炭化チタン、ダイヤモンド、高分子フィルムを焼成しグラファイト化したフィルム粉砕品などを使用することが出来る。特に黒鉛(グラファイト)は熱伝導率が優れていることから熱伝導性フィラーとして一般的に多く用いられており、形状やコスト、入手のしやすさ、取り扱いの容易さなどからこの材料を使用することが最も望ましい。これらの材料のうち単独で用いるか、あるいは2種類以上を混合して用いても良い。 Examples of fillers having good thermal conductivity include graphite (graphite), boron nitride, aluminum nitride, silicon nitride, alumina, magnesia, beryllia, calcium carbonate, aluminum powder, copper powder, iron powder, titanium carbide, diamond, and polymer film. A film pulverized product obtained by baking and graphitizing can be used. In particular, graphite (graphite) is widely used as a thermally conductive filler because of its excellent thermal conductivity, and this material is used because of its shape, cost, availability, and ease of handling. It is most desirable. Of these materials, they may be used alone or in combination of two or more.
使用する熱伝導性フィラーとしては、鱗片状の熱伝導の良いフィラーを使用する事が必要である。ここで鱗片状とは、例えば厚みと直径の比が概ね1:5〜1:100、縦横の長さの比が概ね1:1〜1:50の形状である。球状のものでは熱伝導の異方性を与えることが出来ず効果を得ることが出来ない。 As the heat conductive filler to be used, it is necessary to use a scaly filler having good heat conductivity. Here, the scale shape is, for example, a shape having a ratio of thickness to diameter of approximately 1: 5 to 1: 100 and a ratio of length to width of approximately 1: 1 to 1:50. In the case of a spherical shape, anisotropy of heat conduction cannot be given and an effect cannot be obtained.
また、鱗片状でない他の形状を有する熱伝導の良いフィラーを通常50重量%未満、好ましくは30重量%未満の範囲で、鱗片状のフィラーと併用することもできる。しかし、50重量%以上になると熱伝導の異方性が著しく低下する傾向にある。 Moreover, the heat conductive filler which has another shape which is not scale-like can be used together with scale-like filler in the range of usually less than 50 weight%, preferably less than 30 weight%. However, when it is 50% by weight or more, the anisotropy of heat conduction tends to be remarkably reduced.
なお樹脂バインダーに占める熱伝導フィラーの含有率は3〜70体積%、さらには効果的でかつ配合のしやすさから30〜60体積%がより好ましい。前記樹脂フィラーの含有率が3体積%未満の場合、熱伝導率が低くなる傾向にあり、熱伝導樹脂としての性能を出すことが難しい。また、70体積%を超える場合、熱伝導効果は高いが樹脂バインダーへ熱伝導フィラーを練り込む事が困難となる傾向にあり、成形体を形成すること自体が難しくなる。 In addition, the content rate of the heat conductive filler which occupies for a resin binder is 3-70 volume%, Furthermore, 30-60 volume% is more preferable from the effectiveness and the ease of a mixing | blending. When the content of the resin filler is less than 3% by volume, the thermal conductivity tends to be low, and it is difficult to obtain the performance as a thermal conductive resin. If it exceeds 70% by volume, the heat conduction effect is high, but it tends to be difficult to knead the heat conduction filler into the resin binder, and it becomes difficult to form a molded body itself.
熱伝導性フィラーと樹脂バインダーは、場合によっては分散剤、安定剤、滑剤などをヘンシェルミキサーなどでブレンドし、2軸混練機やロールミルなどの混練機により樹脂とフィラーの混練分散を行う。その後、粉砕機により樹脂混練物を粉砕してペレット化し、射出成形を行う。 In some cases, the thermally conductive filler and the resin binder are blended with a dispersant, a stabilizer, a lubricant, and the like using a Henschel mixer, and the resin and filler are kneaded and dispersed using a kneader such as a biaxial kneader or a roll mill. Thereafter, the resin kneaded product is pulverized and pelletized by a pulverizer, and injection molding is performed.
射出成形条件は、それぞれ使用する樹脂に合わせた成形条件で良い。 The injection molding conditions may be molding conditions suited to the resin used.
なお、成形時の金型温度は10〜95℃が良い。射出成型のしやすさから30〜80℃がより好ましい。 The mold temperature during molding is preferably 10 to 95 ° C. 30-80 degreeC is more preferable from the ease of injection molding.
また、射出成形用金型は、ごく一般的な成形用金型で良い。キャビティは、成形品を所望の形、大きさになるように合わせて設計されたもので良く、特別な金型である必要はない。 The injection mold may be a very general mold. The cavity may be designed so that the molded product has a desired shape and size, and need not be a special mold.
ただし、射出成形用金型のゲートは通常は一つで良いが、複数の発熱体から複数の放熱体へ熱を伝達させる等の目的に応じるためには、図2、図3のように少なくとも二つ以上設ける必要がある。現実的には2〜6箇所程度が好ましい。7カ所以上だと金型製作上制約が多く技術的にも難しくなる傾向があり、また、金型製作コストも高くなる傾向がある。 However, although one injection mold gate is usually sufficient, at least as shown in FIGS. 2 and 3 in order to meet the purpose of transferring heat from a plurality of heat generating elements to a plurality of heat dissipating elements. Two or more must be provided. Actually, about 2 to 6 locations are preferable. If the number is 7 or more, there are many restrictions on mold production, which tends to be technically difficult, and the mold production cost tends to increase.
射出成形によって成型された成形体は、所望の形状に加工する事が出来るが、成形体を所望の大きさ、形状に加工する際、図2のように射出成形された成形体のウエルドライン部分を少なくとも1か所以上を含む部分を有するように加工する必要がある。発熱部分、放熱部分が複数箇所あり、伝熱を複数箇所に行う必要がある場合、必ずしもウエルドラインは1カ所とする必要はない。発熱部分と発熱部分の間にウエルドラインを挟んだレイアウトにする事によりお互いの熱を干渉し合うことなくそれぞれ異なった方向、または同方向の放熱部分へ伝熱させることが出来る。また、熱伝導フィラーの配向に合わせて形状を決定することで効率的に熱を伝達することが可能となる。 The molded body molded by injection molding can be processed into a desired shape, but when the molded body is processed into a desired size and shape, the weld line portion of the molded body injection-molded as shown in FIG. Must be processed to have a portion including at least one or more. When there are a plurality of heat generating portions and heat dissipating portions and heat transfer needs to be performed at a plurality of locations, it is not always necessary to have one weld line. By adopting a layout in which a weld line is sandwiched between the heat generating portions, heat can be transferred to the heat radiating portions in different directions or in the same direction without interfering with each other's heat. Moreover, heat can be efficiently transferred by determining the shape according to the orientation of the heat conductive filler.
また、射出成形条件等により多少変化するが、射出成形された樹脂成形物のウエルドラインの熱を伝えにくい部分の有効幅Mは、図7に示すように、成形品全体の寸法Lに対しておよそ0.1〜30%である。 Further, the effective width M of the portion where the heat of the weld line of the injection-molded resin molded product is difficult to be transferred, with respect to the dimension L of the entire molded product, as shown in FIG. About 0.1 to 30%.
設計形状は、たとえば図8示すようにT字型、L字型、プレート型、ブロック型、二叉型等自由に設計することが出来る。しかし、成形体の大きさは、最終的に使用される大きさに合わせて決定されるが、形状は加工のしやすさから、なかでも角ブロック形状または円柱ブロック形状が望ましい。 The design shape can be freely designed, for example, as shown in FIG. 8, such as a T-shape, an L-shape, a plate shape, a block shape, and a bifurcated shape. However, the size of the molded body is determined in accordance with the size to be finally used, but the shape is preferably a square block shape or a cylindrical block shape because of ease of processing.
成形体を所望の大きさ、形状に加工する方法は、例えば図4の(l)に示すように、成形体(l−1)から成形体ブロック(l―2)を切り出すようにする。この際、図4(l−2)のようにウエルドラインを挟むように加工する。 As a method of processing the molded body into a desired size and shape, for example, as shown in FIG. 4 (l), the molded body block (1-2) is cut out from the molded body (1-1). At this time, processing is performed so as to sandwich the weld line as shown in FIG.
また、例えば複数の発熱体や放熱体への熱の伝達が必要な場合には、図4(m)に示すように、複数のウエルドラインを持つ成形体(m―1)から成形体ブロック(m―2)を切り出し、ウエルドラインを含むように加工すればよい。 Further, for example, when it is necessary to transfer heat to a plurality of heat generating bodies and heat radiating bodies, as shown in FIG. 4 (m), a molded body block ( m-2) may be cut out and processed to include a weld line.
射出成形された成形体からの切削加工は、特に制限はないが、エンドミルや旋盤、フライス盤などを使用しての機械加工でも良いし、柔らかい素材の樹脂を使用した場合、カッターなどでスライスして使用しても良い。必要な形状に合わせた加工方法を用いれば良い。 There is no particular restriction on the cutting from the injection-molded molded body, but it may be machined using an end mill, lathe, milling machine, etc., or when using soft resin, slice it with a cutter. May be used. What is necessary is just to use the processing method matched with the required shape.
熱は、例えば図1に示すように成型体内を伝わるため、発熱体から放熱体までの距離により必要に応じた形状で成形するのがよい。またタテでもヨコでも使用することが出来る。 Since heat is transmitted through the molded body, for example, as shown in FIG. 1, it is preferable that the heat is molded in a shape as required depending on the distance from the heat generating body to the heat radiating body. It can also be used vertically or horizontally.
図5は、熱伝導樹脂使用例で、3点ゲート(ゲートは互いに対角の位置に設置)を持つ射出成形用金型を用いて成形し、切削加工したものである。下部と中央にウエルドラインがくるように加工し使用することで、二つの発熱体9から二つの放熱体10へ熱を伝えることが出来る。また発熱体9と他の部品11の間にウエルドラインを配置することにより、他の部品11への熱の影響を少なくすることが出来る。
FIG. 5 shows an example in which a heat conductive resin is used, which is molded and cut using an injection mold having a three-point gate (the gates are installed at diagonal positions). By processing and using the weld lines at the bottom and the center, heat can be transferred from the two
また図6は、熱伝導樹脂使用例で、3点ゲート(ゲートは互いに対角の位置に設置)を持つ射出成形用金型を用いて成形し、切削加工したものである。中央部にウエルドラインがくるように加工し使用することで、発熱体9から二箇所の放熱体10へ熱を分けて伝えることが出来る。発熱体9で発生した熱量は、中央のウエルドラインにより下部へは伝わりにくい。
FIG. 6 is an example of using a heat conductive resin, which is molded and cut using an injection mold having a three-point gate (the gates are installed at positions diagonal to each other). By processing and using the weld line at the center, heat can be transferred from the
本発明によって作られた熱伝導性ブロックは例えば図1のような熱伝達の異方性を持つ。6の方向へは熱を伝え易いが、いわゆるウエルドラインを横切る方向(ウエルドラインに対して垂直方向)へは熱の伝達は非常に少ない。これにより特定方向の熱伝達を抑え熱伝達に異方性を持たせることが可能となり、電子部品内での熱伝達径路の自由度が上がり効率的に熱伝達を行え、また他部品への熱の影響を抑える事が出来る。
The heat conductive block made according to the present invention has heat transfer anisotropy as shown in FIG. Heat is easily transferred in the
前記のごとく、本発明により発熱体から放熱体まで伝熱をする熱伝導性樹脂を提供することができるが、以上は一例であり本発明を制限するものではない。 As described above, the present invention can provide a heat conductive resin that transfers heat from a heat generating body to a heat radiating body, but the above is an example and does not limit the present invention.
以下に実施例と比較例を示し、本発明をより具体的に説明するが、本発明は以下の実施例に制限されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples.
なお、熱伝導率はホットディスク社製のTPS2500測定装置を用い、ホットディスク法により各5回測定し、その平均値とした。
(実施例1)
樹脂バインダーとしてエチレン−エチルアクリレート樹脂(日本ユニカー製PES−220)を50体積%(滑剤、可塑剤、安定剤を含む)、熱伝導性フィラーとして黒鉛(日本黒鉛工業(株)製CB−150鱗片状)を50体積%とし、これらを混合しロールミルにて溶融混練した。混練物をペレット状に粉砕した物を射出成形機により図4(l―1)に示すような形状(φ40×20mm)に成形加工した。
The thermal conductivity was measured five times by the hot disk method using a TPS 2500 measuring device manufactured by Hot Disk Co., and the average value was obtained.
Example 1
50% by volume of ethylene-ethyl acrylate resin (PES-220 manufactured by Nihon Unicar) as a resin binder (including lubricant, plasticizer and stabilizer), and graphite (CB-150 scale manufactured by Nippon Graphite Industries Co., Ltd.) as a heat conductive filler ) Was 50% by volume, and these were mixed and melt-kneaded in a roll mill. A product obtained by pulverizing the kneaded material into a pellet shape was molded into a shape (φ40 × 20 mm) as shown in FIG.
ゲートは二つ対角線上に設置した射出成形金型を用いた。 The gate used was an injection mold placed on two diagonal lines.
図4(l―1)の成形物の中心部分のウエルドラインを含むように図4(l―2)のような形状(熱伝導率測定用サンプル形状)(10×10×10mm)に切削加工し熱伝導率を測定した。(n=5)
結果を表1に示す。
4 (l-1) is cut into a shape (sample shape for measuring thermal conductivity) (10 × 10 × 10 mm) as shown in FIG. 4 (l-2) so as to include the weld line at the center of the molded product. The thermal conductivity was measured. (N = 5)
The results are shown in Table 1.
樹脂バインダーとしてエチレン−エチルアクリレート樹脂(日本ユニカー製PES−220)を50体積%(滑剤、可塑剤、安定剤を含む)、熱伝導性フィラーとして黒鉛(日本黒鉛工業(株)製CB−150鱗片状)を50体積%とし、これらを混合しロールミルにて溶融混練した。混練物をペレット状に粉砕した物を射出成形機により図4(m―1)に示すような形状(φ40×20mm)に成形加工した。
50% by volume of ethylene-ethyl acrylate resin (PES-220 manufactured by Nihon Unicar) as a resin binder (including lubricant, plasticizer and stabilizer), and graphite (CB-150 scale manufactured by Nippon Graphite Industry Co., Ltd.) as a heat conductive filler ) Was 50% by volume, and these were mixed and melt-kneaded in a roll mill. A product obtained by pulverizing the kneaded product into a pellet shape was molded into a shape (φ40 × 20 mm) as shown in FIG.
ゲートは三つ、0°方向から左右45°に二つ、180°方向に一つの角度を付けて設置した射出成形金型を用いた。 Three gates were used, which were injection molds installed at an angle of 180 °, two from 45 ° to the left and right at 45 °.
図4(m―1)の成形物の中心部分のウエルドラインを含むように図4(m―2)のような形状(熱伝導率測定用サンプル形状)(10×10×10mm)に切削加工し熱伝導率を測定した。(n=5)
結果を表1に示す。
Cutting into a shape (sample shape for thermal conductivity measurement) as shown in FIG. 4 (m-2) (10 × 10 × 10 mm) so as to include a weld line at the center of the molded product in FIG. 4 (m-1). The thermal conductivity was measured. (N = 5)
The results are shown in Table 1.
(比較例1)
樹脂バインダーとしてエチレン−エチルアクリレート樹脂(日本ユニカー製PES−220)を50体積%(滑剤、可塑剤、安定剤を含む)、熱伝導性フィラーとして黒鉛(日本黒鉛工業(株)製LB−BG球状)を50体積%とし、これらを混合しロールミルにて溶融混練した。混練物をペレット状に粉砕した物を射出成形機により図4(l―1)に示すような形状(φ40×20mm)に成形加工した。
(Comparative Example 1)
50% by volume of ethylene-ethyl acrylate resin (PES-220 manufactured by Nihon Unicar) as a resin binder (including lubricant, plasticizer and stabilizer), and graphite (LB-BG spherical by Nippon Graphite Industries Co., Ltd.) as a heat conductive filler ) Was 50% by volume, and these were mixed and melt-kneaded in a roll mill. A product obtained by pulverizing the kneaded material into a pellet shape was molded into a shape (φ40 × 20 mm) as shown in FIG.
ゲートは二つ対角線上に設置した射出成形金型を用いた。 The gate used was an injection mold placed on two diagonal lines.
図4(l―1)の成形物の中心部分のウエルドラインを挟むように図4(l―2)のような形状(熱伝導率測定用サンプル形状)(10×10×10mm)に切削加工し熱伝導率を測定した。(n=5)
結果を表1に示す。
Fig. 4 (l-1) is cut into a shape (sample shape for thermal conductivity measurement) (10 x 10 x 10 mm) as shown in Fig. 4 (l-2) so as to sandwich the weld line at the center of the molded product. The thermal conductivity was measured. (N = 5)
The results are shown in Table 1.
実施例1および2は熱伝導率が高く、かつ、熱伝導異方性があることを示しているが、比較例1は熱伝導性異方性がほとんど無く、このことから鱗片状の熱伝導性フィラーを混合して2つ以上の複数ゲートを備えた金型から射出成形した成形体の効果が明確に現れている。また、ウエルドラインの熱の伝達性の悪さを利用した異方性の効果も明確に現れている。 Examples 1 and 2 show high thermal conductivity and thermal conductivity anisotropy, but Comparative Example 1 has almost no thermal conductivity anisotropy. The effect of a molded article injection-molded from a mold having two or more gates mixed with a conductive filler clearly appears. In addition, the effect of anisotropy using the poor heat transferability of the weld line clearly appears.
1 熱伝導樹脂成形体
2 射出ゲート
3 切削加工された成形体
4 フィラー(フィラー配向層)
5 樹脂部
6 熱伝達方向
7 ウエルドライン
8 基盤
9 発熱体
10 放熱体(ヒートシンク)
11 他の部品
a 射出成形による成形体
b 切り出したブロック
c 熱伝導樹脂成形例
d 熱伝導樹脂成形例
e 熱伝導樹脂成形例
f 熱伝導樹脂成形例
g 熱伝導樹脂成形例
h 熱伝導樹脂成形例
i 熱伝導樹脂成形例
j 熱伝導樹脂成形例
k 熱伝導樹脂成形例
l―1 熱伝導樹脂加工例(ゲート二つ)
l−2 熱伝導測定位置と測定方向
m―1 熱伝導樹脂加工例(ゲート三つ)
m−2 熱伝導測定位置と測定方向
n―1 熱伝導樹脂加工例(ゲート一つ)
n−2 熱伝導測定位置と測定方向
o 熱伝導樹脂加工例
p 熱伝導樹脂加工例
q 熱伝導樹脂加工例
r 熱伝導樹脂加工例
s 熱伝導樹脂加工例
t 熱伝導樹脂加工例
u 熱伝導樹脂加工例
v 熱伝導樹脂加工例
w 熱伝導樹脂加工例
A 熱伝導測定方向
B 熱伝導測定方向
C 熱伝導測定方向
D 熱伝導測定方向
E 熱伝導測定方向
F 熱伝導測定方向
G 熱伝導測定方向
H 熱伝導測定方向
I 熱伝導測定方向
L 成形品幅
M ウエルドラインの熱の非伝導有効範囲
DESCRIPTION OF
5
11 Other parts a Molded body b by injection molding c Cut-out block c Thermal conductive resin molding example d Thermal conductive resin molding example e Thermal conductive resin molding example f Thermal conductive resin molding example g Thermal conductive resin molding example h Thermal conductive resin molding example i Thermal conductive resin molding example j Thermal conductive resin molding example k Thermal conductive resin molding example 1-1 Thermal conductive resin processing example (two gates)
1-2 Thermal conductivity measurement position and measurement direction m-1 Thermal conductive resin processing example (three gates)
m-2 Heat conduction measurement position and measurement direction n-1 Heat conduction resin processing example (one gate)
n-2 Heat conduction measurement position and measurement direction o Thermal conductive resin processing example p Thermal conductive resin processing example q Thermal conductive resin processing example r Thermal conductive resin processing example s Thermal conductive resin processing example t Thermal conductive resin processing example u Thermal conductive resin Processing example v Heat conduction resin processing example w Heat conduction resin processing example A Heat conduction measurement direction B Heat conduction measurement direction C Heat conduction measurement direction D Heat conduction measurement direction E Heat conduction measurement direction F Heat conduction measurement direction G Heat conduction measurement direction H Heat conduction measurement direction I Heat conduction measurement direction L Molded product width M Non-conductive effective range of weld line heat
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007268709A JP2009099707A (en) | 2007-10-16 | 2007-10-16 | Molding having anisotropy in thermal conductivity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007268709A JP2009099707A (en) | 2007-10-16 | 2007-10-16 | Molding having anisotropy in thermal conductivity |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009099707A true JP2009099707A (en) | 2009-05-07 |
Family
ID=40702444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007268709A Pending JP2009099707A (en) | 2007-10-16 | 2007-10-16 | Molding having anisotropy in thermal conductivity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009099707A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015073067A (en) * | 2013-09-06 | 2015-04-16 | バンドー化学株式会社 | Thermally conductive resin molded product |
WO2016031212A1 (en) * | 2014-08-26 | 2016-03-03 | バンドー化学株式会社 | Thermally conductive resin molded article |
-
2007
- 2007-10-16 JP JP2007268709A patent/JP2009099707A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015073067A (en) * | 2013-09-06 | 2015-04-16 | バンドー化学株式会社 | Thermally conductive resin molded product |
WO2016031212A1 (en) * | 2014-08-26 | 2016-03-03 | バンドー化学株式会社 | Thermally conductive resin molded article |
JP6068733B2 (en) * | 2014-08-26 | 2017-01-25 | バンドー化学株式会社 | Thermally conductive resin molded product |
KR20170042365A (en) * | 2014-08-26 | 2017-04-18 | 반도 카가쿠 가부시키가이샤 | Thermally conductive resin molded article |
CN106575644A (en) * | 2014-08-26 | 2017-04-19 | 阪东化学株式会社 | Thermally conductive resin molded article |
JPWO2016031212A1 (en) * | 2014-08-26 | 2017-04-27 | バンドー化学株式会社 | Thermally conductive resin molded product |
TWI621704B (en) * | 2014-08-26 | 2018-04-21 | 阪東化學股份有限公司 | Heat conductive molded article |
TWI637050B (en) * | 2014-08-26 | 2018-10-01 | 日商阪東化學股份有限公司 | Heat conductive molded article |
KR101940567B1 (en) | 2014-08-26 | 2019-01-21 | 반도 카가쿠 가부시키가이샤 | Thermally conductive resin molded article |
US10457845B2 (en) | 2014-08-26 | 2019-10-29 | Bando Chemical Industries, Ltd. | Thermally conductive resin molded article |
US10941325B2 (en) | 2014-08-26 | 2021-03-09 | Bando Chemical Industries, Ltd. | Thermally conductive resin molded article |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8530566B2 (en) | Electrically insulating and thermally conductive composition and electronic device | |
Hong et al. | High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers | |
CN100385650C (en) | Heat radiation structure | |
CN108495897B (en) | Heat conductive resin molded article | |
KR101082636B1 (en) | Thermally conductive thermoplastic resin composition having good electroconductivity and preparation method thereof | |
CN107871721A (en) | Heat conductive sheet and preparation method thereof and semiconductor device | |
WO2021044867A1 (en) | Thermally conductive silicone composition and thermally conductive silicone material | |
CN103772992A (en) | Thermal conductive composite material and preparation method thereof | |
US20220363836A1 (en) | Thermally conductive silicone composition and thermally conductive silicone material | |
WO2021171970A1 (en) | Thermally conductive silicone composition and thermally conductive silicone material | |
JP7220150B2 (en) | Low dielectric constant thermal conductive heat dissipation material | |
KR20110124127A (en) | Thermoplastic resin composition and resin molded article | |
JP2009099707A (en) | Molding having anisotropy in thermal conductivity | |
US6890970B2 (en) | Thermal conductive material and method for producing the same | |
JP2009054926A (en) | Compact having heat-conductivity anisotropy | |
KR20120078478A (en) | Thermal interface material comprising carbon nano tube and metal, and ceramic nano particle | |
JP2011054609A (en) | Thermally conductive sheet and method of manufacturing the same | |
JP2014234407A (en) | Heat dissipation resin molded body | |
Kar et al. | Effect of coefficient of thermal expansion on positive temperature coefficient of resistivity behavior of HDPE–Cu composites | |
EP3965150A1 (en) | Thermally conductive sheet, and method for manufacturing thermally conductive sheet | |
JP2007211087A (en) | Electrically insulating and thermally conducting resin and method for producing the same | |
KR101671564B1 (en) | Thermal conductive composition for dual bonding having improved adhesive property with substrate | |
CN204244561U (en) | A kind of pcb board level system | |
TW201840733A (en) | Resin compound and molded product formed by molding with the resin compound | |
JP2007091804A (en) | Insulating, highly heat-conductive resin and its manufacturing method |