JP2009099556A - Fuel cell separator using hydrophilic treatment composition, and manufacturing method thereof - Google Patents

Fuel cell separator using hydrophilic treatment composition, and manufacturing method thereof Download PDF

Info

Publication number
JP2009099556A
JP2009099556A JP2008244836A JP2008244836A JP2009099556A JP 2009099556 A JP2009099556 A JP 2009099556A JP 2008244836 A JP2008244836 A JP 2008244836A JP 2008244836 A JP2008244836 A JP 2008244836A JP 2009099556 A JP2009099556 A JP 2009099556A
Authority
JP
Japan
Prior art keywords
water
fuel cell
separator
treatment composition
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008244836A
Other languages
Japanese (ja)
Other versions
JP5219709B2 (en
Inventor
Yasuyuki Tamate
康之 玉手
Takeshi Kuri
武 久利
Masahiro Kida
昌広 木田
Katsuhiro Kajio
克宏 梶尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Shoji Ltd
Original Assignee
Nitto Shoji Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Shoji Ltd filed Critical Nitto Shoji Ltd
Priority to JP2008244836A priority Critical patent/JP5219709B2/en
Publication of JP2009099556A publication Critical patent/JP2009099556A/en
Application granted granted Critical
Publication of JP5219709B2 publication Critical patent/JP5219709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable to retain good hydrophilicity for a comparatively long period of time right after power generation even with a carbon separator for a fuel cell. <P>SOLUTION: Active components for removing water from an aqueous solution or a water dispersion solution of a hydrophilic treatment composition containing carbodiimide resin with water solubility and/or water dispersibility, is carried on a gas flow channel surface. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、親水化処理組成物を用いた燃料電池用セパレータおよびその製造方法に関するものである。   The present invention relates to a fuel cell separator using a hydrophilic treatment composition and a method for producing the same.

燃料電池のセパレータでは、電池反応による生成水や凝縮水がガス流路に滞留した場合でも、一定以上の反応ガス流速を確保して、セパレータユニットのガス流路から効果的に排水することが主要な課題となっている(例えば、特許文献1参照。)。   In the separator of a fuel cell, even when water generated by the cell reaction or condensed water stays in the gas flow path, it is important to ensure a reaction gas flow rate above a certain level and effectively drain the gas flow from the separator unit. (For example, refer to Patent Document 1).

排水性向上の工夫としては、ガス流路の構造、形態の改良の外、ガス流路表面の撥水処理や親水処理が広く知られている。表面処理としては当初撥水処理が主流であったのが親水処理も多く採用されるようになっている(例えば、特許文献2、3及び5参照。)。これは、液体が自ら濡れ広がる力を駆動力とする流れ、いわゆるキャピラリーフロー特性を発揮する自然力に注目してのことと思われる。また、燃料電池用セパレータとしては金属製の外、黒鉛を採用して導電性の向上を図る燃料電池用黒鉛セパレータも知られている(例えば、特許文献4、5参照。)。特に、特許文献5は、導電性を低下させる親水性物質の塗布や混在なしに、発電効率の確保に重要な導電性、および燃料ガスと酸化剤ガスの反応により発生し電極反応を確保できなくする生成水の排水に重要な親水性の双方を満足するものとして、炭素または黒鉛から成り、かつポリ(メタ)アクリレートを含んでいる燃料電池用セパレータであって、その表面の水との接触角が60度以下で、面方向の体積固有抵抗が50mΩ・cm以下であることを特徴とする燃料電池用セパレータを提案しており、親水性及び導電性がともに優れているとしている。
特開2005−327532号公報 特開2002−313356号公報 特開2002−298871号公報 特開2005−71699号公報 特開2002−352813号公報
As a device for improving drainage, water repellent treatment and hydrophilic treatment on the surface of the gas channel are widely known in addition to improvement of the structure and form of the gas channel. As the surface treatment, water repellent treatment was mainly used at first, but hydrophilic treatment is also widely used (for example, see Patent Documents 2, 3 and 5). This is thought to be due to the natural force that exerts the so-called capillary flow characteristics, with the driving force being the force that the liquid spreads by itself. Further, as a fuel cell separator, there is also known a fuel cell graphite separator which employs graphite in addition to metal to improve conductivity (see, for example, Patent Documents 4 and 5). In particular, Patent Document 5 cannot ensure the electrode reaction caused by the reaction of the fuel gas and the oxidant gas, which is important for ensuring the power generation efficiency, without applying or mixing a hydrophilic substance that lowers the conductivity. A separator for a fuel cell made of carbon or graphite and containing poly (meth) acrylate, which satisfies both of the hydrophilicity important for drainage of generated water, and its surface contact angle with water Has proposed a fuel cell separator characterized by having a volume resistivity in the plane direction of 50 mΩ · cm or less, and having both hydrophilicity and electrical conductivity.
JP 2005-327532 A JP 2002-313356 A JP 2002-298771 A JP-A-2005-71699 JP 2002-352813 A

ところで、燃料電池用カーボンセパレータにおいても表面の親水性は発電性能に影響する重要な特性の1つであり、求められるキャピラリーフロー特性を発揮するには水の接触角を所定範囲に制御し安定化する必要がある。   By the way, in the carbon separator for fuel cells, the hydrophilicity of the surface is one of the important characteristics that affect the power generation performance, and in order to achieve the required capillary flow characteristics, the contact angle of water is controlled within a predetermined range and stabilized. There is a need to.

しかし、燃料電池用カーボンセパレータの表面は本来撥水性を呈し、水の接触角は100°前後で、発電時に発生する高温の水により徐々に親水性が増大し、500時間程度温水と接触し続けると、先の提案値60°程度にまで下がるが、発電開始後の最初の500時間程度は撥水性で推移するため、その間の発電性能は安定しない問題がある。   However, the surface of the carbon separator for fuel cells inherently exhibits water repellency, the contact angle of water is around 100 °, the hydrophilicity gradually increases due to the high-temperature water generated during power generation, and continues to be in contact with hot water for about 500 hours. However, since it is water-repellent for the first 500 hours after the start of power generation, there is a problem that the power generation performance during that time is not stable.

本発明の目的は、そのような新たな知見に基づき、燃料電池用カーボンセパレータであっても発電直後から比較的長期に亘り良好な親水性を維持することができる、親水化処理組成物を用いた燃料電池用セパレータおよびその製造方法を提供することにある。   The object of the present invention is to use a hydrophilized composition that can maintain good hydrophilicity for a relatively long period of time immediately after power generation, even if it is a carbon separator for a fuel cell, based on such new knowledge. An object of the present invention is to provide a separator for a fuel cell and a method for manufacturing the same.

上記課題を解決するため、本発明の燃料電池用セパレータは、水溶性およびまたは水分散性のカルボジイミド樹脂を含む親水化処理組成物の水溶液ないしは水分散液の水を除く有効成分をガス流路表面に担持したことを特徴としている。   In order to solve the above-mentioned problems, the separator for a fuel cell according to the present invention contains an aqueous solution of a hydrophilic treatment composition containing a water-soluble and / or water-dispersible carbodiimide resin, or an active ingredient excluding water in an aqueous dispersion. It is characterized in that it is supported on.

このような構成では、親水化処理組成物中の水を除く有効成分がガス流路表面に担持されたことで、ガス流路表面が親水化し、温水に接触したときの親水性の耐久性を高められる。   In such a configuration, the active ingredient excluding water in the hydrophilization composition is supported on the surface of the gas channel, so that the surface of the gas channel becomes hydrophilic and has hydrophilic durability when contacted with hot water. Enhanced.

このような燃料電池用セパレータは、水溶性およびまたは水分散性のカルボジイミド樹脂を含む親水化処理組成物の水溶液ないしは水分散液を燃料電池用セパレータ基材のガス流路表面にコーティングした後、水を除去する処理をして親水化処理組成物における水を除く有効成分をガス流路表面に担持させる親水化処理工程が設けられていることを特徴とする燃料電池用セパレータの製造方法によって製造することができる。   Such a fuel cell separator is prepared by coating an aqueous solution or water dispersion of a hydrophilization composition containing a water-soluble and / or water-dispersible carbodiimide resin on the surface of a gas flow path of a fuel cell separator substrate, It is manufactured by a method for manufacturing a separator for a fuel cell, characterized in that a hydrophilization treatment step is carried out in which an active ingredient excluding water in the hydrophilization treatment composition is carried on the surface of the gas flow path. be able to.

上記燃料電池用セパレータおよびその製造方法において、前記親水化処理組成物には、さらに、第4級アンモニウムケイ酸塩が含まれていることを特徴とすることができる。   In the fuel cell separator and the method for producing the same, the hydrophilic treatment composition may further contain a quaternary ammonium silicate.

上記燃料電池用セパレータおよびその製造方法において、前記親水化処理組成物には、さらに、シランカップリング剤が含まれていることを特徴とすることができる。   In the fuel cell separator and the manufacturing method thereof, the hydrophilic treatment composition may further include a silane coupling agent.

上記燃料電池用セパレータおよびその製造方法において、前記親水化処理組成物には、カルボジイミド樹脂(A)が1〜100質量部、第4級アンモニウムケイ酸塩(B)が0〜100質量部、シランカップリング剤(C)が0〜10質量部の範囲の組成で含まれていることを特徴とすることができる。   In the fuel cell separator and the method for producing the same, the hydrophilic treatment composition includes 1 to 100 parts by mass of a carbodiimide resin (A), 0 to 100 parts by mass of a quaternary ammonium silicate (B), and silane. The coupling agent (C) may be contained in a composition in the range of 0 to 10 parts by mass.

上記燃料電池用セパレータおよびその製造方法において、さらに、前記有効成分担持後の前記ガス流路表面が無機酸で処理されていることを特徴とすることができる。   In the fuel cell separator and the method for producing the same, the surface of the gas channel after supporting the active ingredient may be further treated with an inorganic acid.

このような構成では、特に、高温・低湿度の環境に曝された場合の親水性の維持時間が長くなる。   In such a configuration, especially, the hydrophilic maintenance time becomes long when exposed to an environment of high temperature and low humidity.

本発明の親水化処理組成物を用いた燃料電池用セパレータおよびその製造方法によれば、金属製である場合はもとより、燃料電池用カーボンセパレータにおいても発電開始から長期に亘る親水性の維持が可能となり、本発明によるカーボンセパレータを用いた燃料電池は、発電開始から長期に亘って安定した発電性能を発揮することができる。   According to the separator for a fuel cell using the hydrophilization composition of the present invention and the method for producing the same, it is possible to maintain hydrophilicity for a long time from the start of power generation in the carbon separator for a fuel cell as well as a metal separator. Thus, the fuel cell using the carbon separator according to the present invention can exhibit stable power generation performance over a long period from the start of power generation.

また、前記有効成分担持後の前記ガス流路表面が無機酸で処理された燃料電池用セパレータであると、発電開始から長期に亘る親水性の維持が可能になるとともに、これを用いた燃料電池では、高い動作温度を許容して発電開始から長期に亘って安定した発電性能を発揮することができる。   Further, when the surface of the gas flow path after supporting the active ingredient is a fuel cell separator treated with an inorganic acid, it is possible to maintain hydrophilicity for a long time from the start of power generation, and a fuel cell using the same Then, a high operating temperature is allowed and stable power generation performance can be exhibited over a long period from the start of power generation.

以下、本発明の親水化処理組成物を用いた燃料電池用セパレータおよびその製造方法に係る実施の形態につき、図を参照しながら説明する。   Hereinafter, embodiments of a fuel cell separator using the hydrophilic treatment composition of the present invention and a method for producing the same will be described with reference to the drawings.

本実施の形態の親水化処理組成物を用いた燃料電池用セパレータおよびその製造方法は、図2〜図5に示すような主として燃料電池用カーボンセパレータ1におけるガス流路2での排水性能向上に向けてなされた技術であり、親水性を高めるのに併せ、必要とされる所定範囲の親水性への制御を含み、親水性の長期維持を目指してなされたものである。   The separator for fuel cells using the hydrophilization composition of the present embodiment and the manufacturing method thereof are mainly used for improving drainage performance in the gas flow path 2 in the carbon separator 1 for fuel cells as shown in FIGS. This is a technique aimed at maintaining hydrophilicity for a long period of time, including control of the hydrophilicity within a predetermined range as required in addition to increasing hydrophilicity.

既述のように、燃料電池用カーボンセパレータのガス流路表面は本来撥水性で水の接触角が100°前後で、発電時に発生する高温の水により徐々に親水性が増大し、500時
間程度温水と接触し続けると水の接触角は60°程度にも下がるが、発電開始後の最初の500時間程度は撥水性で推移しその間の発電性能は安定しない問題につき、本発明者は、まず、発電当初より所定範囲の親水性を発揮させるべく、雨水などによる曇り止めのための親水性付与に用いられる第4級アンモニウムケイ酸塩の水分散液を燃料電池用カーボンセパレータに適用した。しかし、温水浸漬後500時間内で一旦下がった水の接触角が上昇してしまうことを知見した。これは、第4級アンモニウムケイ酸塩の変質や劣化は考えられず、第4級アンモニウムケイ酸塩が黒鉛を主成分とする燃料電池用カーボンセパレータの表面から脱落しセパレータの初期表面が露出したことを意味している。ここに、高温水との接触環境における第4級アンモニウムケイ酸塩の燃料電池用カーボンセパレータのガス流路表面への付着性が第1の課題となった。
As described above, the surface of the gas flow path of the fuel cell carbon separator is inherently water-repellent and has a water contact angle of about 100 °, and the hydrophilicity gradually increases due to the high-temperature water generated during power generation, and it takes about 500 hours. The contact angle of water drops to about 60 ° if it keeps in contact with warm water, but the present inventor first explained that the power generation performance is not stable during the first 500 hours after the start of power generation. From the beginning of power generation, an aqueous dispersion of a quaternary ammonium silicate used for imparting hydrophilicity to prevent fogging with rainwater or the like was applied to a carbon separator for a fuel cell in order to exhibit a predetermined range of hydrophilicity. However, it was found that the contact angle of water once lowered within 500 hours after immersion in warm water increased. This is because the quaternary ammonium silicate is not expected to be altered or deteriorated, and the quaternary ammonium silicate dropped off from the surface of the carbon separator for fuel cells mainly composed of graphite, and the initial surface of the separator was exposed. It means that. Here, the adherence of the quaternary ammonium silicate to the gas flow path surface of the carbon separator for a fuel cell in a contact environment with high-temperature water has become a first problem.

次いで、本発明者は、この第1の課題を解決するために、第4級アンモニウムケイ酸塩に適当なシランカップリング剤を配合する改良組成物で燃料電池用カーボンセパレータを表面処理することを思い立ち実験した。この改良組成物によると、高温水に接触しても発電開始後500時間以上水の接触角60°未満となる親水性を維持することができた。しかし、燃料電池セルでの実用実験では温水浸漬後500時間以内の短期に親水性を失う第2の課題が生じた。   Next, in order to solve the first problem, the inventor has surface treated the carbon separator for a fuel cell with an improved composition containing a suitable silane coupling agent in a quaternary ammonium silicate. Experimented with thought. According to this improved composition, even when contacted with high-temperature water, it was possible to maintain the hydrophilicity such that the contact angle of water was less than 60 ° for 500 hours or more after the start of power generation. However, in a practical experiment using a fuel cell, a second problem of losing hydrophilicity occurred in a short period of time within 500 hours after immersion in warm water.

本発明者はこれにつき種々検討したところ、燃料電池セルの電極間に挟みこまれているフッ素系高分子膜の劣化によって、そのフッ素系高分子膜から溶出することが知られる(例えば、フッ素溶出(NIKKEI MONOZUKURI2007年6月号)速報 技術開発「10年の耐久性にメド立つも 家庭用燃料電池メーカーは背水の陣」第25頁、第27頁「10年間,4万時間にメド」の項)、具体的にはフッ酸が原因し、ガラスの表面処理などでよく知られるフッ酸のエッチング作用がセパレータ表面の第4級アンモニウムケイ酸塩に及んで侵す結果と思われる。   As a result of various investigations by the present inventor, it is known that elution from the fluorine-based polymer membrane occurs due to deterioration of the fluorine-based polymer membrane sandwiched between the electrodes of the fuel cell (for example, fluorine elution) (NIKKEI MONOZUKURI, June 2007 issue) Bulletin of technical development “Responsible for 10 years of durability, but fuel cell manufacturers for home use are backwaters” on page 25, page 27 “med for 10 years, 40,000 hours” ), Specifically, due to hydrofluoric acid, it seems that the etching action of hydrofluoric acid, which is well known for glass surface treatment, affects the quaternary ammonium silicate on the separator surface.

これらの試行錯誤した研究開発の結果、本発明者は燃料電池用カーボンセパレータであっても発電直後から比較的長期に亘り良好な親水性を維持することができる新たな親水化処理組成物を知見した。   As a result of these trial and error research and development, the present inventor has discovered a new hydrophilization treatment composition that can maintain good hydrophilicity for a relatively long period of time immediately after power generation even for a carbon separator for a fuel cell. did.

ここで、燃料電池用カーボンセパレータ1としては、導電性に優れた黒鉛を主成分とし、必要に応じてバインダとしてフェノール樹脂やエポキシ樹脂などの熱硬化性樹脂を用いたものを採用し、さらなる親水性向上に向け試験を繰り返しながら開発を進めた。これには、例えば、東海カーボン株式会社製の燃料電池セパレータ材(商品名「G347B」)を用いた。この基材そのままの表面は撥水性であり、接触角計(協和界面科学株式会社製のDM500)を用いてノズル3からの水の球状滴(液滴量:1.5μl)を滴下させる実験例では、図6に示すように接触角が102°であった。   Here, as the carbon separator 1 for a fuel cell, a material using graphite having excellent conductivity as a main component, and using a thermosetting resin such as a phenol resin or an epoxy resin as a binder, if necessary, is further hydrophilic. Development was repeated while repeating tests to improve performance. For example, a fuel cell separator material (trade name “G347B”) manufactured by Tokai Carbon Co., Ltd. was used. The surface of the substrate as it is is water-repellent, and an experimental example in which spherical drops of water (droplet volume: 1.5 μl) from the nozzle 3 is dropped using a contact angle meter (DM500 manufactured by Kyowa Interface Science Co., Ltd.) Then, as shown in FIG. 6, the contact angle was 102 °.

これに対し、本実施の形態の燃料電池用セパレータは、水溶性およびまたは水分散性のカルボジイミド樹脂を含む親水化処理組成物の水溶液ないしは水分散液の水を除く有効成分をガス流路表面に担持したものとしている。これにより、親水化処理組成物中の水を除く有効成分がガス流路表面に担持されたことで、ガス流路表面が親水化し、温水に接触したときの親水性の耐久性を高められる。   In contrast, the fuel cell separator of the present embodiment has an aqueous solution of a hydrophilic treatment composition containing a water-soluble and / or water-dispersible carbodiimide resin or an active ingredient excluding water in the water dispersion on the surface of the gas channel. It is assumed that it is carried. Thereby, the active ingredient except the water in the hydrophilization treatment composition is carried on the surface of the gas channel, so that the surface of the gas channel becomes hydrophilic and durability of hydrophilicity when contacting with warm water can be enhanced.

このような燃料電池用セパレータは、水溶性およびまたは水分散性のカルボジイミド樹脂を含む親水化処理組成物の水溶液ないしは水分散液を燃料電池用セパレータのガス流路表面にコーティングした後、水を除去する処理をして親水化処理組成物における水を除く有効成分をガス流路表面に担持させる親水化処理工程が設けられていることを特徴とする燃料電池用セパレータの製造方法によって製造することができる。   Such a fuel cell separator removes water after coating the surface of the gas flow path of the fuel cell separator with an aqueous solution or water dispersion of a hydrophilic treatment composition containing a water-soluble and / or water-dispersible carbodiimide resin. And a hydrophilization treatment step in which an active ingredient other than water in the hydrophilization treatment composition is supported on the surface of the gas flow path. it can.

ここで、前記親水化処理組成物には、さらに、第4級アンモニウムケイ酸塩が含まれているものとすることができる。   Here, the hydrophilic treatment composition may further contain quaternary ammonium silicate.

また、前記親水化処理組成物には、さらに、シランカップリング剤が含まれているものとすることができる。   Further, the hydrophilic treatment composition may further contain a silane coupling agent.

さらに具体的には、前記親水化処理組成物には、カルボジイミド樹脂(A)が1〜100質量部、第4級アンモニウムケイ酸塩(B)が0〜100質量部、シランカップリング剤(C)が0〜10質量部の範囲の組成で含まれたものとしたことで、燃料電池用カーボンセパレータ1の場合でも、上記範囲での組成の選択によっては同じ滴下条件での実験例で図1に示すような接触角13.6°という高い親水性を発揮させられたし、80℃の高温水環境において親水性を長期に維持することができた。   More specifically, the hydrophilic treatment composition includes 1 to 100 parts by mass of a carbodiimide resin (A), 0 to 100 parts by mass of a quaternary ammonium silicate (B), and a silane coupling agent (C ) In the range of 0 to 10 parts by mass, even in the case of the carbon separator 1 for a fuel cell, depending on the selection of the composition within the above range, an experimental example under the same dropping conditions is shown in FIG. As shown in FIG. 1, the high hydrophilicity such as a contact angle of 13.6 ° was exhibited, and the hydrophilicity could be maintained for a long time in a high-temperature water environment of 80 ° C.

ここで、親水性によるいわゆるキャピラリーフロー特性を利用した排水性能実験例について説明する。図2〜図5に上記滴下実験例の場合同様に滴下した水4の球滴の1秒毎の濡れ挙動を示している。図2では滴下した水4がセパレータ流路2の底面に接触しているが、滴下位置まで下動しているノズル3との間で保持されてまだ球形をしている。図3ではノズル3が図2の位置から上昇しながら1秒経過し、水4はノズル3側でウエスト部をなして細りながら、ボリュウムが下部に移行してガス流路2の両側面下半部まで濡れ広がり、図4では水4は図3から1秒経過してガス流路2の両側面上部にまで濡れ広がりながら、ボリュウムが図3の場合に対して1/2未満にまで減少している。この減少はガス流路2が水平であるのに、ガス流路2の長手方向に濡れ広がったことを意味し、図4からさらに1秒経過した図5では水4のボリュウムはガス流路2のコーナ部に微小量残る程度に減少し、ガス流路2の長手方向にさらに濡れ広がったことを示している。ここに、水4の濡れ広がりは正しく液体が自ら濡れ広がる力を駆動力とする流れであり、親水性の向上によって燃料電池用セパレータに求められる重要な排水性を高められることが理解される。   Here, an example of drainage performance experiment utilizing so-called capillary flow characteristics due to hydrophilicity will be described. FIGS. 2 to 5 show the wetting behavior per second of the water droplets 4 dropped in the same manner as in the dropping experiment example. In FIG. 2, the dropped water 4 is in contact with the bottom surface of the separator flow path 2, but is held between the nozzle 3 moving down to the dropping position and still has a spherical shape. In FIG. 3, 1 second elapses while the nozzle 3 moves up from the position of FIG. In FIG. 4, water 4 spreads to the upper part of both side surfaces of the gas flow path 2 after 1 second from FIG. 3, while the volume decreases to less than ½ compared to FIG. 3. ing. This decrease means that the gas flow path 2 is horizontal but wet and spread in the longitudinal direction of the gas flow path 2. In FIG. It is shown that the amount of the gas is reduced to a small amount remaining at the corner of the gas channel 2 and further spreads in the longitudinal direction of the gas flow path 2. Here, it is understood that the wetting and spreading of the water 4 is a flow in which the driving force is a force in which the liquid wets and spreads by itself, and it is understood that the important drainage required for the fuel cell separator can be enhanced by improving the hydrophilicity.

このような親水性の長期維持は、本実施の形態の燃料電池用カーボンセパレータ1において、親水化処理組成物の付着性やフッ酸に侵されないことが課題となっていたのを、実用レベルまでクリアできたものといえる。   Such long-term maintenance of hydrophilicity has been a problem in the carbon separator 1 for the fuel cell according to the present embodiment, in which adhesion of the hydrophilization treatment composition and not being affected by hydrofluoric acid have been problems. It can be said that it was clear.

このような親水性とその長期維持には、本発明者の各種試験例によると水溶性およびまたは水分散性のカルボジイミド樹脂(A)の水溶液ないしは水分散液が必須組成物であって、その余の組成物は特に必須とならない。   In order to maintain such hydrophilicity and its long-term maintenance, an aqueous solution or aqueous dispersion of a water-soluble and / or water-dispersible carbodiimide resin (A) is an essential composition according to various test examples of the present inventor. The composition is not particularly essential.

しかし、1〜100質量部の水溶性およびまたは水分散性のカルボジイミド樹脂(A)と、0〜100質量部の第4級アンモニウムケイ酸塩(B)との組み合わせにおいては、本発明者の試験例によると、それら双方の配合比率を変えることによって親水化処理直後の水の接触角、つまり親水性の程度を任意に変化させることができ、このような制御により求められる接触角ないしは親水性に調整することができ、この意味では種々な用途に対応できる。   However, in the combination of 1 to 100 parts by mass of the water-soluble and / or water-dispersible carbodiimide resin (A) and 0 to 100 parts by mass of the quaternary ammonium silicate (B), the inventors' test. According to the example, the contact angle of water immediately after the hydrophilization treatment, that is, the degree of hydrophilicity can be arbitrarily changed by changing the blending ratio of both, and the contact angle or hydrophilicity required by such control can be changed. In this sense, it can be used for various purposes.

前記必須とした、水溶性およびまたは水分散性のカルボジイミド樹脂(A)の水溶液ないしは水分散液としては、1分子中に2個以上のカルボジイミド基を有する樹脂に親水性セグメントを賦与して水溶性または水分散性にした、カルボジイミド樹脂を用いることができる。例えば、日清紡績株式会社製の商品名「カルボジライトV−02、V−02−L2、V−04、SV−02(以上は水溶性)、E−01、E−02、E−03A、E−04(以上は水分散液)」(固形分濃度はいずれも約40%)を挙げることができる。これら単独でも、あるいは2種類以上の組み合わせでも用いることができる。   The aqueous solution or aqueous dispersion of the water-soluble and / or water-dispersible carbodiimide resin (A) that is essential as described above is water-soluble by imparting hydrophilic segments to a resin having two or more carbodiimide groups in one molecule. Alternatively, a carbodiimide resin made water-dispersible can be used. For example, trade names “Carbodilite V-02, V-02-L2, V-04, SV-02 (above are water-soluble), E-01, E-02, E-03A, E-manufactured by Nisshinbo Co., Ltd. 04 (the above is an aqueous dispersion) "(the solid concentration is about 40% in all cases). These can be used alone or in combination of two or more.

また、必須でない第4級アンモニウムケイ酸塩(B)の水分散液としては、一般式(R3N)2O・nSiO2(但し、Rは炭素数1個以上のアルキル基であり、nは1以上の整
数)で表されるものである。具体例としては、ジメチルエタノールアンモニウムシリケート、モノメチルトリプロパノールアンモニウムシリケート、ジメチルプロパノールアンモニウムシリケート、モノエチルトリプロパノールアンモニウムシリケートなどが挙げられ、ジメチルエタノールアンモニウムシリケートとして、例えば、株式会社日板研究所製の商品名「セラミカMS85」(固形分濃度は約35.5%)などを用いることができる。
In addition, as an aqueous dispersion of the quaternary ammonium silicate (B) which is not essential, the general formula (R3N) 2O.nSiO2 (where R is an alkyl group having 1 or more carbon atoms, and n is 1 or more) (Integer). Specific examples include dimethylethanolammonium silicate, monomethyltripropanolammonium silicate, dimethylpropanolammonium silicate, monoethyltripropanolammonium silicate, and the like. “Ceramica MS85” (solid content concentration is about 35.5%) can be used.

また、必須でないシランカップリング剤(C)としては、公知の市販品でよく、例えば3−アミノプロピルトリエトキシシランなどのアミノ系、3−グリシドキシプロピルトリメトキシシランなどのエポキシ系、ビニルトリメトキシシランなどのビニル系、メタクリロキシプロピルトリメトキシラシランなどのメタクリル系シランカップリング剤を用いることができる。   The non-essential silane coupling agent (C) may be a known commercial product, for example, an amino type such as 3-aminopropyltriethoxysilane, an epoxy type such as 3-glycidoxypropyltrimethoxysilane, or vinyl tri A methacrylic silane coupling agent such as vinyl-based methoxysilane or methacryloxypropyltrimethoxylasilane can be used.

これら組成物(A)〜(C)において、配合量は既述したように、
水溶性およびまたは水分散性のカルボジイミド樹脂(A)は1〜100質量部
第4級アンモニウムケイ酸塩(B)は0〜100質量部
シランカップリング剤(C)は0〜10質量部
の範囲で配合割合を選択するのが望ましいが、必須であるカルボジイミド樹脂(A)単独を固形分とする組成物でカーボンセパレータの流路に表面処理した場合、初期の水の接触角が比較的大きくなり、カルボジイミド樹脂(A)と第4級アンモニウムケイ酸塩(B)とを組み合わせた組成物で表面処理した場合では、第4級アンモニウムケイ酸塩(B)の配合比率が高くなるほど、初期の水の接触角が小さくなる。従って、例えば、初期の親水性をより高めるために、カルボジイミド樹脂(A)と第4級アンモニウムケイ酸塩(B)との有効成分の配合比率(A)/(B)を30質量部/70質量部〜1質量部/99質量部とすることが望ましい。
In these compositions (A) to (C), the blending amount is as described above,
The water-soluble and / or water-dispersible carbodiimide resin (A) is 1 to 100 parts by mass. The quaternary ammonium silicate (B) is 0 to 100 parts by mass. The silane coupling agent (C) is 0 to 10 parts by mass. It is desirable to select the blending ratio, but when the surface treatment is performed on the flow path of the carbon separator with a composition containing the essential carbodiimide resin (A) alone, the initial water contact angle becomes relatively large. In the case of surface treatment with a composition comprising a combination of a carbodiimide resin (A) and a quaternary ammonium silicate (B), the higher the compounding ratio of the quaternary ammonium silicate (B), the higher the initial water content. The contact angle becomes smaller. Therefore, for example, in order to further increase the initial hydrophilicity, the mixing ratio (A) / (B) of the active ingredient of the carbodiimide resin (A) and the quaternary ammonium silicate (B) is 30 parts by mass / 70. It is desirable to set it as a mass part-1 mass part / 99 mass parts.

また、上記各場合の表面処理にシランカップリング剤(C)を配合してもよい。カルボジイミド樹脂(A)の中でも、水分散性のものは、第4級アンモニウムケイ酸塩(B)と組み合わせた配合の場合においても、水溶性のカルボジイミド樹脂(A)の場合よりも初期の水の接触角が高くなる傾向があり、その場合にはシランカップリング剤(C)を配合することにより、初期の水の接触角を低下させることができる。   Moreover, you may mix | blend a silane coupling agent (C) with the surface treatment in said each case. Among the carbodiimide resins (A), those that are water-dispersible can be used in an earlier stage of water than in the case of the water-soluble carbodiimide resin (A), even when blended with the quaternary ammonium silicate (B). The contact angle tends to increase. In that case, the initial contact angle of water can be reduced by blending the silane coupling agent (C).

シランカップリング剤(C)の配合量は、カルボジイミド樹脂(A)と第4級アンモニウムケイ酸塩(B)の100質量部に対して、1〜10質量部とするのが好ましい。これを5〜10質量部とすればより好ましい。10質量部を超えて配合することは、カーボンセパレータとしての特性に特段問題ないものの、経済性的に無意味である。   It is preferable that the compounding quantity of a silane coupling agent (C) shall be 1-10 mass parts with respect to 100 mass parts of carbodiimide resin (A) and a quaternary ammonium silicate (B). More preferably, this is 5 to 10 parts by mass. Compounding in excess of 10 parts by mass is economically meaningless, although there is no particular problem with the characteristics as a carbon separator.

これら各種の配合における親水化処理組成物は、水によって希釈することができる。   The hydrophilic treatment composition in these various formulations can be diluted with water.

ここで、希釈水の配合量は、本発明の親水化処理組成物の水を除く有効成分の濃度が30質量%〜0.5質量%になるような配合量が好ましい。有効成分の濃度が30質量部を超えると、カーボンセパレータへの付着量が多過ぎて、第4アンモニウムケイ酸塩の配合比率が高い場合塗膜にクラックが生じやすく、また、水溶性およびまたは水分散性のカルボジイミド樹脂の配合比率が高い場合は塗膜の粘着性が大きくなりカーボンセパレータを取り扱い難くなるため好ましくない。また、有効成分の濃度が0.5質量%未満の場合は、有効成分の塗布量が少なくなり、親水性が低くなる。   Here, the blending amount of the dilution water is preferably such that the concentration of the active ingredient excluding water of the hydrophilization treatment composition of the present invention is 30% by mass to 0.5% by mass. When the concentration of the active ingredient exceeds 30 parts by mass, the amount of adhesion to the carbon separator is too much, and when the quaternary ammonium silicate content is high, cracks are likely to occur in the coating film. When the blending ratio of the dispersible carbodiimide resin is high, the adhesiveness of the coating film increases and it becomes difficult to handle the carbon separator, which is not preferable. Moreover, when the density | concentration of an active ingredient is less than 0.5 mass%, the application amount of an active ingredient will decrease and hydrophilicity will become low.

上記のような高い親水性を長期に亘って維持できる燃料電池用カーボンセパレータ1を製造するには、
水溶性およびまたは水分散性のカルボジイミド樹脂(A)は1〜100質量部
第4級アンモニウムケイ酸塩(B)は0〜100質量部
シランカップリング剤(C)は0〜10質量部
の範囲で組成が選択されてなる親水化処組成物を燃料電池用カーボンセパレータのガス流路表面に塗布するなどしてコーティングした後、水を除去して親水化処理組成物における水を除く有効成分をガス流路表面に担持させればよく、これによって表面が長期に親水性を発揮する燃料電池用セパレータを得ることができる。
In order to produce the fuel cell carbon separator 1 capable of maintaining the above high hydrophilicity over a long period of time,
The water-soluble and / or water-dispersible carbodiimide resin (A) is 1 to 100 parts by mass. The quaternary ammonium silicate (B) is 0 to 100 parts by mass. The silane coupling agent (C) is 0 to 10 parts by mass. After coating the surface of the gas flow path of the fuel cell carbon separator with the hydrophilized composition selected in step (b), the water is removed to remove the active ingredient from the hydrophilized composition. What is necessary is just to carry | support to the gas flow path surface, and the separator for fuel cells whose surface exhibits hydrophilicity for a long term by this can be obtained.

ここで、親水化処理組成物を塗布する被着体としての燃料電池用カーボンセパレータ基材は成形されたままのものを用いてもよいが、親水化処理組成物との密着性を向上させるために、前処理として、表面に付着している離型剤などを除去するのが好適である。それには、ショットブラスト処理や超音波洗浄によることができる。この場合、表面粗度を上げることによって親水化処理組成物の有効成分に対するアンカー効果も得られる。   Here, the carbon separator base material for a fuel cell as an adherend to which the hydrophilic treatment composition is applied may be used as it is molded, but in order to improve the adhesion with the hydrophilic treatment composition. In addition, as a pretreatment, it is preferable to remove a release agent attached to the surface. This can be done by shot blasting or ultrasonic cleaning. In this case, the anchor effect with respect to the active ingredient of the hydrophilic treatment composition can also be obtained by increasing the surface roughness.

親水化処理組成物のカーボンセパレータ表面へのコーティング方法に特別な制限はなく、含浸法、スプレー法など公知の方法を採用することができる。含浸法による場合、表面に付着した余剰の親水化処理組成物をブローノズルなどにより吹き飛ばして除去することにより、塗布量が増大することによる塗膜のクラックや粘着性増大を防止するのに好適である。   There is no special restriction | limiting in the coating method to the carbon separator surface of a hydrophilic treatment composition, Well-known methods, such as an impregnation method and a spray method, are employable. In the case of the impregnation method, by removing the excess hydrophilization treatment composition adhering to the surface by blowing it off with a blow nozzle or the like, it is suitable for preventing cracking of the coating film and increase in adhesiveness due to an increase in the coating amount. is there.

以上のようにカーボンセパレータのガス流路表面にコーティングされた親水化処理組成物の水を除去するには、乾燥によるのが好適である。乾燥条件に特別な制限はないが、カーボンセパレータ基材の反りを防止する上で、乾燥温度は150℃以下とするのが好ましい。   As described above, in order to remove water from the hydrophilic treatment composition coated on the surface of the gas flow path of the carbon separator, it is preferable to use drying. Although there is no special restriction | limiting in drying conditions, In order to prevent the curvature of a carbon separator base material, it is preferable that a drying temperature shall be 150 degrees C or less.

しかし、水溶性およびまたは水分散性のカルボジイミド樹脂の水溶液ないしは水分散液は界面活性剤的な特性を有するために、カーボンセパレータのガス流路表面との馴染み性、濡れ性が良好である。このため、カルボジイミド樹脂単体で用いる場合は、特に、含浸させる時間を長く取る必要はない。ガス流路表面をカルボジイミド液に短時間浸漬するだけでも斑なく表面が濡れるし、乾燥時の加熱により軟化流動してガス流路表面に融着して柔軟な皮膜を形成する。従って、剛直な微粒子である第4アンモニウムケイ酸塩主体の含浸液の場合のような既述のショットブラスト処理、超音波洗浄などによってガス流路表面を粗面化したり、含浸液に長時間浸漬してアンカー効果を狙う必要はなく、生産性の向上、コストの低減が図れる。   However, an aqueous solution or an aqueous dispersion of a water-soluble and / or water-dispersible carbodiimide resin has surfactant-like properties, so that the compatibility with the gas flow path surface of the carbon separator and wettability are good. Therefore, when the carbodiimide resin is used alone, it is not particularly necessary to take a long time for the impregnation. Even if the gas channel surface is dipped in the carbodiimide solution for a short time, the surface gets wet without spots, and softens and flows by heating during drying, and is fused to the gas channel surface to form a flexible film. Therefore, the surface of the gas channel is roughened by the above-described shot blasting treatment and ultrasonic cleaning as in the case of the quaternary ammonium silicate-based impregnation liquid, which is a rigid fine particle, or immersed in the impregnation liquid for a long time. Therefore, there is no need to aim for the anchor effect, and productivity can be improved and costs can be reduced.

ここで、本発明のさらなる理解のために、以下に幾つかの試験例を挙げて評価するが、本発明は以下に示す試験例に何ら限定されるものではない。   Here, for further understanding of the present invention, some test examples will be described below for evaluation. However, the present invention is not limited to the test examples shown below.

カルボジイミド樹脂(A)の水溶液としてカルボジライトSV−02、カルボジイミド樹脂(A)の水分散液としてカルボジライトE−02、第4アンモニウムケイ酸塩(B)の水分散液としてセラミカMS85、シランカップリング剤(C)としてZ−6011を使用して、表1に示す試験例1〜13に用いた各親水化処理組成物を配合した。超音波工業株式会社製の超音波洗浄機「C1238」を用いて30分間超音波洗浄した後、80℃で30分間乾燥した縦10cm、横10cm、厚み3mmのカーボンセパレータ基材(東海カーボン株式会社製の商品名「G347B)を、下記表1に示す試験例1〜13で用いた配合の親水化処理組成物に含浸槽にて30分間浸漬して、含浸槽から引き上げ、エアーノズルにて表面に付着している余剰の親水化処理組成物を吹き飛ばした。その後、それらを50℃で30分、次いで100℃で1時間加熱して水分を乾燥、除去して試験例1〜13に係る親水化処理カーボンセパレータをそれぞれ得た。   Carbodilite SV-02 as an aqueous solution of carbodiimide resin (A), Carbodilite E-02 as an aqueous dispersion of carbodiimide resin (A), Ceramica MS85 as an aqueous dispersion of quaternary ammonium silicate (B), silane coupling agent ( Using C-6011 as C), each hydrophilic treatment composition used in Test Examples 1 to 13 shown in Table 1 was blended. After ultrasonic cleaning for 30 minutes using an ultrasonic cleaner “C1238” manufactured by Ultrasonic Industry Co., Ltd., a carbon separator substrate (Tokai Carbon Co., Ltd.) having a length of 10 cm, a width of 10 cm, and a thickness of 3 mm dried at 80 ° C. for 30 minutes. The product name “G347B” manufactured in the test was immersed in a hydrophilization composition of the formulation used in Test Examples 1 to 13 shown in Table 1 below in an impregnation tank for 30 minutes, pulled up from the impregnation tank, and surfaced with an air nozzle. The excess hydrophilizing composition adhering to the sample was blown away, and then, they were heated at 50 ° C. for 30 minutes and then at 100 ° C. for 1 hour to dry and remove moisture, and the hydrophilicity according to Test Examples 1 to 13 Each of the carbonized carbon separators was obtained.

Figure 2009099556
Figure 2009099556

次に、得られた試験例1〜10に係る親水化処理カーボンセパレータそれぞれについて、処理直後、80℃×500時間の温水浸漬後、および80℃×500時間の500ppmフッ酸水溶液浸漬後の水の接触角を、接触角計(協和界面科学株式会社製のDM500)で測定した。試験例11は親水化処理直後の接触角が処理前より下がるもののやや高くそれ以後の試験は省略した。また、試験例12は親水化処理直後の接触角は低いが、粘着性が見られたため、それ以後の試験は省略した。さらに、試験例13は親水化処理後の表面にクラックが発生したのでそれ以後の試験は省略した。これらの測定結果を下記の表2に示す。   Next, for each of the hydrophilized carbon separators according to Test Examples 1 to 10 obtained, water immediately after treatment, after immersion in hot water at 80 ° C. × 500 hours, and after immersion in a 500 ppm hydrofluoric acid aqueous solution at 80 ° C. × 500 hours The contact angle was measured with a contact angle meter (DM500 manufactured by Kyowa Interface Science Co., Ltd.). In Test Example 11, although the contact angle immediately after the hydrophilic treatment was slightly lower than that before the treatment, the test after that was omitted. In Test Example 12, the contact angle immediately after the hydrophilization treatment was low, but adhesiveness was observed, so the subsequent tests were omitted. Furthermore, in Test Example 13, cracks occurred on the surface after the hydrophilization treatment, so the subsequent tests were omitted. The measurement results are shown in Table 2 below.

Figure 2009099556
Figure 2009099556

表2から、試験例1〜8の各燃料電池用カーボンセパレータは、高温水や高温フッ酸に500時間曝した後も水の接触角が60°以下という親水性を維持しているが、試験例9、10のそれは水の接触角が70°となっている。   From Table 2, the carbon separators for fuel cells of Test Examples 1 to 8 maintain the hydrophilicity such that the contact angle of water is 60 ° or less even after exposure to high temperature water or high temperature hydrofluoric acid for 500 hours. In Examples 9 and 10, the water contact angle is 70 °.

また、試験例1〜12について、カルボジイミド樹脂単独の場合の親水化処理組成物の有効成分濃度と親水化処理した後の初期θとの関係から総括すると、有効成分、特にカルボジイミド樹脂の濃度が30質量%を上回ると、水の接触角θが50°程度に低下するものの燃料電池用カーボンセパレータ表面の粘着性が大きくなり作業性が低下するため好ま
しくない。また、有効成分、特にカルボジイミド樹脂の濃度が低下するほど粘着性が低下し、取り扱いやすく作業性が向上するが、濃度が0.5質量%を下回ると水の接触角θは90°近辺に達してガス流路での排水性を高めにくくなる。これらの結果、有効成分濃度が30質量%〜0.5質量%で、接触角θが50°程度から90°未満程度となって、粘着性も低くガス流路の排水性を高めるのには有効な範囲といえる。また、有効成分濃度が20質量%〜4質量%で、接触角θが52°程度から62°程度を確保でき、粘着性はさらに低下するし、ガス流路の排水性も高められるので好適は範囲といえる。さらに、有効成分濃度が20質量%〜8質量%で、接触角θが52°程度から58°程度をでき、粘着性および接触角θ共に低くより好適な範囲といえる。
Moreover, about Test Examples 1-12, when it summarizes from the relationship between the active ingredient density | concentration of the hydrophilic treatment composition in the case of a carbodiimide resin alone, and initial (theta) after hydrophilization treatment, the density | concentration of an active ingredient, especially carbodiimide resin is 30. If it exceeds mass%, the contact angle θ of water decreases to about 50 °, but the adhesiveness on the surface of the carbon separator for fuel cells increases and the workability decreases, which is not preferable. In addition, the lower the concentration of the active ingredient, especially the carbodiimide resin, the lower the tackiness and the easier to handle and the workability improves. However, when the concentration is less than 0.5% by mass, the contact angle θ of water reaches around 90 °. This makes it difficult to improve drainage in the gas flow path. As a result, the active ingredient concentration is 30% by mass to 0.5% by mass, the contact angle θ is about 50 ° to less than 90 °, the tackiness is low, and the drainage of the gas flow path is improved. This is an effective range. Moreover, since the active ingredient concentration is 20% by mass to 4% by mass, the contact angle θ can be secured from about 52 ° to about 62 °, the adhesiveness is further reduced, and the drainage of the gas flow path is also improved. It's a range. Further, the active ingredient concentration is 20% by mass to 8% by mass, the contact angle θ can be about 52 ° to about 58 °, and both the adhesiveness and the contact angle θ are low and can be said to be a more preferable range.

しかし、近時では、燃料電池の高温作動も目標とされ(例えば、[URL]http://www.mext.go.jp/b_menu/shingi/jyutu/gijyutu2/shiryo/017/06053007/006.htm 文部科学省 リーディング・プロジェクト研究計画ヒアリング資料)、新エネルギー・産業技術総合開発機構(NEDO)は、温度70℃、相対湿度約100%RHという現在動作条件につき、発電効率の向上、COなどの燃料中の不純物の許容範囲が広くなること、CO除去器や外部加湿装置が不要になるなどの面から、2012年には温度80℃、相対湿度65%RHに、さらに、2015年には温度80℃〜90℃、相対湿度30〜40%RHに到達するとの目標を発表している。   However, recently, high-temperature operation of fuel cells has also been targeted (for example, [URL] http://www.ext.go.jp/b_menu/shingi/jiyutu/gijiyutu2/shiryo/017/060503007/006.htm The Ministry of Education, Culture, Sports, Science and Technology's Leading Project Research Plan interview materials), New Energy and Industrial Technology Development Organization (NEDO) have improved the efficiency of power generation and fuels such as CO under the current operating conditions of a temperature of 70 ° C and a relative humidity of about 100% RH. In view of the wide tolerance of impurities inside, the need for a CO remover and an external humidifier, etc., the temperature will be 80 ° C. and relative humidity 65% RH in 2012, and in 2015, the temperature will be 80 ° C. Announces targets to reach RH-90 ° C and relative humidity 30-40% RH.

一方、東洋紡は、高分子固体電解質型燃料電池(PEFC)に用いられるイオン伝導性ポリマ(ICP)として、80℃、相対湿度10〜20%の低湿度下でも実用性のある出力特性が得られる高耐熱型炭化水素系ポリマ(SPNポリマ)の開発に成功したとし、100℃以上も可能としている。これによって、現在のPEFCの作動温度が80℃程度で、温度管理が難しいうえ、電解質膜に使う白金触媒の量を多くしないと反応が進まないなどの問題があったのを、100℃以上の動作温度にできれば、補機類を簡略化でき、PEFCシステムのコンパクト化につながるほか、白金触媒の量を低減することでコスト低減にもつながるとしている([URL]http://techon.nikkeibp.co.jp/premium/AT/ATNEWS/20030624/4/)。また、PEFCの高効率化にSPNポリマを活用することも可能で、フッ素系ポリマが80℃、相対湿度80%で発現する出力特性に対して、SPNポリマでは1.7倍、80℃、相対湿度15%という低湿度下でも1.3倍という高い出力特性を示すとしている。   On the other hand, Toyobo is an ion conductive polymer (ICP) used in polymer solid electrolyte fuel cells (PEFC), and it has practical output characteristics even at a low humidity of 80 ° C. and a relative humidity of 10 to 20%. The company has succeeded in developing a high heat-resistant hydrocarbon polymer (SPN polymer), which enables temperatures of 100 ° C or higher. As a result, the current operating temperature of PEFC is about 80 ° C, temperature control is difficult, and there is a problem that the reaction does not proceed unless the amount of platinum catalyst used in the electrolyte membrane is increased. If the operating temperature can be achieved, the accessories can be simplified, leading to a compact PEFC system, and reducing the amount of platinum catalyst will lead to cost reduction ([URL] http: //techon.nikkeibp. co.jp/premium/AT/ATNEWS/20030624/4/). In addition, it is possible to use SPN polymer for higher efficiency of PEFC. With respect to the output characteristics of fluorine polymer at 80 ° C and 80% relative humidity, SPN polymer is 1.7 times, 80 ° C, relative The output characteristics are 1.3 times higher even at a low humidity of 15%.

そこで、本発明者は、先の実施の形態に係る燃料電池用のセパレータで得ている親水性につき、動作温度との関係を評価試験した。その結果、温度95℃という高温に4時間以上曝すと親水性がやや損なわれることが判明した。   Therefore, the present inventor conducted an evaluation test on the relationship between the hydrophilicity obtained with the fuel cell separator according to the previous embodiment and the operating temperature. As a result, it was found that the hydrophilicity is slightly impaired when exposed to a high temperature of 95 ° C. for 4 hours or more.

これに対応して、本実施の形態では、さらに、発電直後から比較的長期に亘り、高温下でも良好な親水性を維持することができる、親水化、無機酸処理をした燃料電池用セパレータおよびその製造方法を提供している。具体的には、上記親水化処理後の燃料用カーボンセパレータのガス流路表面がフッ酸を始めとする無機酸で処理されたものとしている。これにより、特に、高温・低湿度の環境に曝された場合の親水性の維持時間が長くなる。従って、金属製である場合はもとより、燃料電池用カーボンセパレータにおいても、高温下で発電開始から長期に亘る親水性の維持が可能となり、本発明によるカーボンセパレータを用いた燃料電池は、高い動作温度を許容して発電開始から長期に亘って安定した発電性能を発揮することができる。   Correspondingly, in this embodiment, the separator for a fuel cell that has been hydrophilized and treated with an inorganic acid, which can maintain good hydrophilicity even at high temperatures for a relatively long period of time immediately after power generation, and The manufacturing method is provided. Specifically, the surface of the gas flow path of the fuel carbon separator after the hydrophilic treatment is treated with an inorganic acid such as hydrofluoric acid. Thereby, especially the hydrophilic maintenance time when exposed to an environment of high temperature and low humidity becomes long. Therefore, it is possible to maintain hydrophilicity for a long time from the start of power generation at high temperatures even in the case of carbon separators for fuel cells as well as those made of metal, and fuel cells using the carbon separator according to the present invention have a high operating temperature. And stable power generation performance can be exhibited over a long period from the start of power generation.

このような燃料電池用カーボンセパレータは、親水化処理組成物を燃料電池用セパレータのガス流路表面にコーティングした後、水を乾燥などにより除去する処理をして親水化処理組成物における水を除く有効成分をガス流路表面に担持させる親水化処理工程に加え
、親水化処理工程後の基材表面を、フッ酸を始めとする無機酸に曝して処理する無機酸処理工程を実施することによって得られる。なお、無機酸処理工程は、親水化工程後の基材を無機酸液に所定時間浸漬して行い、その後基材は水洗し乾燥させる。
In such a carbon separator for a fuel cell, after the hydrophilic treatment composition is coated on the surface of the gas flow path of the fuel cell separator, the water is removed by drying or the like to remove water in the hydrophilic treatment composition. By carrying out an inorganic acid treatment step in which the substrate surface after the hydrophilic treatment step is exposed to an inorganic acid such as hydrofluoric acid in addition to the hydrophilic treatment step in which the active ingredient is supported on the gas flow path surface. can get. The inorganic acid treatment step is performed by immersing the substrate after the hydrophilization step in an inorganic acid solution for a predetermined time, and then the substrate is washed with water and dried.

このような親水性の長期維持に関する親水化処理は、本実施の形態の燃料電池用カーボンセパレータ1において、親水化処理組成物の付着性やフッ酸に侵されないことが課題となっていたのを、実用レベルまでクリアできたものといえる一方、本実施の形態での親水化処理後の無機酸処理は、フッ酸を始めとして、硝酸、燐酸、塩酸、ホウ酸などを含む無機酸が、高温条件下での親水性向上にも役立ったものといえる。これは、発電中に生成するフッ酸による問題作用とは無関係といえる。   Such a hydrophilic treatment for long-term maintenance of hydrophilicity has been a problem in the carbon separator 1 for the fuel cell according to the present embodiment in that it is not affected by the adhesion of the hydrophilization composition or hydrofluoric acid. On the other hand, the inorganic acid treatment after the hydrophilization treatment in this embodiment can be said to have been cleared to a practical level. Inorganic acids including nitric acid, phosphoric acid, hydrochloric acid, boric acid, etc., including hydrofluoric acid, It can be said that it was also useful for improving the hydrophilicity under the conditions. This can be said to be irrelevant to the problem effect of hydrofluoric acid generated during power generation.

具体的には、カルボジイミド基にフッ酸が付加して疎水性のカルボジイミド基を親水化することによって、水溶性およびまたは水分散性のカルボジイミド樹脂全体としての親水性がより一層増した結果、高温下、低湿度下での保湿性が向上し、それによって高温下でも発電初期から長期に高い親水性を発揮できたものと考えられ、他の無機酸でも同等の効果があると考えられる。   Specifically, hydrofluoric acid is added to the carbodiimide group to hydrophilize the hydrophobic carbodiimide group, thereby further increasing the hydrophilicity of the water-soluble and / or water-dispersible carbodiimide resin as a whole. It is considered that moisture retention under low humidity has been improved, and as a result, high hydrophilicity can be exhibited for a long time from the initial stage of power generation even at high temperatures, and other inorganic acids are considered to have the same effect.

ここで、具体的な製造工程を示せば、図7に示す通りであり、カーボンセパレータ1などの基材を、親水化処理のための親水化処理組成物に含浸させる含浸工程、含浸工程後の基材に付着している余剰の親水化処理組成物を吹き飛ばすエアブロー工程、基材の表面を例えば100℃×1時間で乾燥させる乾燥工程、無機酸として、例えば500ppmのフッ酸に、80℃×12時間、基材を浸漬させる無機酸浸漬工程、無機酸浸漬処理をした後の基材を、例えば、流水にて表裏を10秒程度ずつ水洗する水洗工程、水洗後の基材を例えば100℃×1時間にて乾燥させる乾燥工程を順次実行する。   Here, if a specific manufacturing process is shown, it is as shown in FIG. 7, and the impregnation process which impregnates base materials, such as the carbon separator 1, in the hydrophilization process composition for a hydrophilization process, after an impregnation process An air blowing step for blowing off the excess hydrophilization composition adhering to the base material, a drying step for drying the surface of the base material at, for example, 100 ° C. × 1 hour, an inorganic acid, for example, 500 ppm of hydrofluoric acid, 80 ° C. × Inorganic acid dipping step for immersing the substrate for 12 hours, the substrate after the inorganic acid dipping treatment, for example, a water washing step for washing the front and back with running water for about 10 seconds each, a substrate after washing with water, for example, 100 ° C. * The drying process of drying in 1 hour is sequentially performed.

ここで、本発明のさらなる理解のために、以下に幾つかの試験例14〜17を挙げて評価するが、本発明は以下に示す試験例に何ら限定されるものではない。   Here, for further understanding of the present invention, several test examples 14 to 17 are evaluated below, but the present invention is not limited to the test examples shown below.

試験例14〜17共に、縦10cm、横10cm、厚み3mmのカーボンセパレータ基材(東海カーボン株式会社製の商品名「G347B」)を用い、試験例14、15は図7に示す工程で処理し、試験例16、17は図8に示す工程で処理した。図8に示す工程は図7に示す工程から一連の無機酸処理工程、すなわち、無機酸浸漬工程、水洗工程、乾燥工程を省いたものである。試験例14、16に用いた親水化処理組成物の組成は、カルボジライトSV02が100質量部、水400質量部であり前記試験例1に対応している。また、試験例15、17に用いた含浸液の組成は、カルボジライトSV02が100質量部、水1900質量部であり、前記試験例8に対応している。これら試験例14、15、試験例16、17につき親水化処理直後の水との初期接触角θ1、80℃の温水に72時間浸漬した温水浸漬後の水との初期温水浸漬後接触角θ2、温水浸漬後さらに95℃×4時間の耐熱加熱を行い室温まで放冷した時の耐熱加熱後の水との耐熱加熱後接触角θ3、耐熱加熱後さらに80℃の温水に12時間浸漬した疑似初期発電環境での水との疑似初期発電後接触角θ4、耐熱加熱後さらに80℃の温水に500時間浸漬した疑似長時間発電環境での水との疑似長時間発電後接触角θ5についての実験結果を示すと下記表3に示す通りである。   In each of Test Examples 14 to 17, a carbon separator substrate (product name “G347B” manufactured by Tokai Carbon Co., Ltd.) having a length of 10 cm, a width of 10 cm, and a thickness of 3 mm was used, and Test Examples 14 and 15 were processed in the steps shown in FIG. Test Examples 16 and 17 were processed in the steps shown in FIG. The process shown in FIG. 8 is obtained by omitting a series of inorganic acid treatment processes, that is, an inorganic acid dipping process, a water washing process, and a drying process from the process shown in FIG. The composition of the hydrophilization treatment composition used in Test Examples 14 and 16 is 100 parts by mass of carbodilite SV02 and 400 parts by mass of water, and corresponds to Test Example 1. The composition of the impregnating liquid used in Test Examples 15 and 17 is 100 parts by mass for Carbodilite SV02 and 1900 parts by mass for water, and corresponds to Test Example 8. For these Test Examples 14 and 15, and Test Examples 16 and 17, the initial contact angle θ1 with water immediately after hydrophilization treatment, the contact angle θ2 after initial warm water immersion with water after hot water immersion immersed in warm water at 80 ° C. for 72 hours, After dipping in warm water, heat-resistant heating at 95 ° C. × 4 hours is performed, and when left to cool to room temperature, contact angle θ3 after heat-resistant heating with water after heat-resistant heating, pseudo-initial stage immersed in warm water at 80 ° C. for 12 hours after heat-resistant heating Experimental result of contact angle θ4 after pseudo initial power generation with water in power generation environment, contact angle θ5 after pseudo long time power generation with water in pseudo long power generation environment immersed in warm water at 80 ° C. for 500 hours after heat-resistant heating Is as shown in Table 3 below.

Figure 2009099556
Figure 2009099556

表3から、試験例14、15は、共に、初期接触角θ1が試験例16、17よりも小さく、耐熱加熱後接触角θ3は試験例14、15に比し格段に小さいことが分かる。試験例14、15において、擬似初期発電後接触角θ4、疑似長時間発電後接触角θ5のいずれも、試験例16、17のそれにほぼ同等の値であるが、試験例14、15自体の初期接触角θ1を下回っており、長時間発電での接触角の低さを十分に確保している。   From Table 3, it can be seen that in Test Examples 14 and 15, the initial contact angle θ1 is smaller than Test Examples 16 and 17, and the contact angle θ3 after heat-resistant heating is much smaller than Test Examples 14 and 15. In Test Examples 14 and 15, both the pseudo-initial power generation contact angle θ4 and the pseudo long-time power contact angle θ5 are substantially equivalent to those of Test Examples 16 and 17, but the initial values of Test Examples 14 and 15 themselves. The contact angle is smaller than the contact angle θ1, and the contact angle is sufficiently low during long-time power generation.

本発明は、燃料電池用カーボンセパレータに実用して、発電直後から比較的長期に亘り良好な親水性を維持できる。   INDUSTRIAL APPLICABILITY The present invention can be practically used for a fuel cell carbon separator and can maintain good hydrophilicity for a relatively long time immediately after power generation.

本発明の実施形態の親水化処理組成物を用いた表面処理によるカーボンセパレータ表面での親水度合いを示す水の滴下実験例を示す断面図である。It is sectional drawing which shows the dripping experiment example of the water which shows the hydrophilic degree in the carbon separator surface by the surface treatment using the hydrophilic treatment composition of embodiment of this invention. 同セパレータのセパレータ流路における水の排水性の実験例を示す水の滴下初期状態を示す断面図である。It is sectional drawing which shows the dripping initial state of the water which shows the experiment example of the water drainage property in the separator flow path of the separator. 図2の状態から1秒経過して滴下した水が上昇する滴下ノズルによって持ち上げられながらセパレータ流路への濡れが広がりつつある状態を示す断面図である。FIG. 3 is a cross-sectional view showing a state in which wetting of a separator channel is spreading while being lifted by a dropping nozzle in which water dropped after 1 second has elapsed from the state of FIG. 2. 図3の状態からさらに1秒経過してノズルから解放された水がセパレータ流路の長手方向にも濡れ広がった状態を示す断面図である。FIG. 4 is a cross-sectional view illustrating a state in which water released from the nozzle after another one second has elapsed from the state of FIG. 3 and spread in the longitudinal direction of the separator channel. 図4の状態からさらに1秒経過して水がセパレータ流路の長手方向への濡れ広がりをさらに増し、セパレータ流路の長手方向に流れ去るキャピラリーフローが発生している状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which a capillary flow in which water further spreads in the longitudinal direction of the separator flow path and further flows away in the longitudinal direction of the separator flow path after one second has elapsed from the state of FIG. . 表面処理しないカーボンセパレータでの親水度合いを示す水の滴下実験例を示す断面図である。It is sectional drawing which shows the dripping experiment example of the water which shows the hydrophilic degree in the carbon separator which is not surface-treated. 本発明の親水化処理後さらに無機酸処理した燃料電池用カーボンセパレータの製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the carbon separator for fuel cells which carried out the inorganic acid process after the hydrophilic treatment of this invention. 本発明の親水化処理し無機酸処理をしない燃料電池用カーボンセパレータの製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the carbon separator for fuel cells which does the hydrophilic treatment of this invention and does not perform an inorganic acid process.

符号の説明Explanation of symbols

1 燃料電池用カーボンセパレータ
2 ガス流路
3 ノズル
4 水
1 Carbon separator for fuel cell 2 Gas flow path 3 Nozzle 4 Water

Claims (10)

水溶性およびまたは水分散性のカルボジイミド樹脂を含む親水化処理組成物の水溶液ないしは水分散液の水を除く有効成分をガス流路表面に担持したことを特徴とする燃料電池用セパレータ。   A separator for a fuel cell, characterized in that an aqueous solution of a hydrophilic treatment composition containing a water-soluble and / or water-dispersible carbodiimide resin or an active ingredient excluding water in a water dispersion is supported on the surface of a gas channel. 前記親水化処理組成物には、
さらに、第4級アンモニウムケイ酸塩が含まれていることを特徴とする請求項1に記載の燃料電池用セパレータ。
In the hydrophilic treatment composition,
Furthermore, the quaternary ammonium silicate is contained, The separator for fuel cells of Claim 1 characterized by the above-mentioned.
前記親水化処理組成物には、
さらに、シランカップリング剤が含まれていることを特徴とする請求項1または2に記載の燃料電池用セパレータ。
In the hydrophilic treatment composition,
The fuel cell separator according to claim 1, further comprising a silane coupling agent.
前記親水化処理組成物には、
カルボジイミド樹脂(A)が1〜100質量部、第4級アンモニウムケイ酸塩(B)が0〜100質量部、シランカップリング剤(C)が0〜10質量部の範囲の組成で含まれていることを特徴とする請求項1に記載の燃料電池用セパレータ。
In the hydrophilic treatment composition,
The carbodiimide resin (A) is included in a range of 1 to 100 parts by mass, the quaternary ammonium silicate (B) is included in a range of 0 to 100 parts by mass, and the silane coupling agent (C) is included in a range of 0 to 10 parts by mass. The fuel cell separator according to claim 1.
前記有効成分担持後の前記ガス流路表面が無機酸で処理されていることを特徴とする請求項1〜4のいずれか1項に記載の燃料電池用セパレータ。   The fuel cell separator according to any one of claims 1 to 4, wherein the surface of the gas flow path after supporting the active ingredient is treated with an inorganic acid. 水溶性およびまたは水分散性のカルボジイミド樹脂を含む親水化処理組成物の水溶液ないしは水分散液を燃料電池用セパレータのガス流路表面にコーティングした後、水を除去する処理をして親水化処理組成物における水を除く有効成分をガス流路表面に担持させる親水化処理工程が設けられていることを特徴とする燃料電池用セパレータの製造方法。   An aqueous solution or aqueous dispersion of a hydrophilic treatment composition containing a water-soluble and / or water-dispersible carbodiimide resin is coated on the surface of the gas flow path of the separator for a fuel cell and then subjected to a treatment for removing water to make the composition hydrophilic. A method for producing a separator for a fuel cell, comprising a hydrophilization treatment step for supporting an active ingredient excluding water in a product on a gas flow path surface. 前記親水化処理組成物には、
さらに、第4級アンモニウムケイ酸塩が含まれていることを特徴とする請求項6に記載の燃料電池用セパレータの製造方法。
In the hydrophilic treatment composition,
Furthermore, the quaternary ammonium silicate is contained, The manufacturing method of the separator for fuel cells of Claim 6 characterized by the above-mentioned.
前記親水化処理組成物には、
さらに、シランカップリング剤が含まれていることを特徴とする請求項6または7に記載の燃料電池用セパレータの製造方法。
In the hydrophilic treatment composition,
Furthermore, the silane coupling agent is contained, The manufacturing method of the separator for fuel cells of Claim 6 or 7 characterized by the above-mentioned.
前記親水化処理組成物には、
カルボジイミド樹脂(A)が1〜100質量部、第4級アンモニウムケイ酸塩(B)が0〜100質量部、シランカップリング剤(C)が0〜10質量部の範囲の組成で含まれていることを特徴とする請求項6に記載の燃料電池用セパレータの製造方法。
In the hydrophilic treatment composition,
The carbodiimide resin (A) is included in a range of 1 to 100 parts by mass, the quaternary ammonium silicate (B) is included in a range of 0 to 100 parts by mass, and the silane coupling agent (C) is included in a range of 0 to 10 parts by mass. A method for producing a fuel cell separator according to claim 6.
前記有効成分担持後の前記ガス流路表面を無機酸に曝して処理する無機酸処理工程が設けられていることを特徴とする請求項6〜9のいずれか1項に記載の燃料電池用セパレータの製造方法。   The fuel cell separator according to any one of claims 6 to 9, further comprising an inorganic acid treatment step in which the surface of the gas channel after supporting the active ingredient is exposed to an inorganic acid for treatment. Manufacturing method.
JP2008244836A 2007-09-26 2008-09-24 Separator for fuel cell using hydrophilization composition and method for producing the same Active JP5219709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008244836A JP5219709B2 (en) 2007-09-26 2008-09-24 Separator for fuel cell using hydrophilization composition and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007249662 2007-09-26
JP2007249662 2007-09-26
JP2008244836A JP5219709B2 (en) 2007-09-26 2008-09-24 Separator for fuel cell using hydrophilization composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009099556A true JP2009099556A (en) 2009-05-07
JP5219709B2 JP5219709B2 (en) 2013-06-26

Family

ID=40702342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008244836A Active JP5219709B2 (en) 2007-09-26 2008-09-24 Separator for fuel cell using hydrophilization composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP5219709B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180074A (en) * 2009-02-03 2010-08-19 Nitto Shoji Kk Carbon shaped body and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020690A (en) * 2000-07-04 2002-01-23 Matsushita Electric Ind Co Ltd Hydrophilic coated film, its production process and solid polymer electrolyte fuel cell and heat exchanger using it
JP2003217608A (en) * 2002-01-21 2003-07-31 Nisshinbo Ind Inc Method for manufacturing fuel cell separator, fuel cell separator, and solid high polymer fuel cell
JP2004103271A (en) * 2002-09-05 2004-04-02 Air Water Inc Separator for fuel cell and surface treatment method of same
JP2004332138A (en) * 2003-05-01 2004-11-25 Kawasumi Lab Inc Hydrophilization-treated substrate and method for producing the same
JP2008056744A (en) * 2006-08-29 2008-03-13 Nitto Denko Corp Aqueous dispersion type acrylic adhesive sheet for repeeling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020690A (en) * 2000-07-04 2002-01-23 Matsushita Electric Ind Co Ltd Hydrophilic coated film, its production process and solid polymer electrolyte fuel cell and heat exchanger using it
JP2003217608A (en) * 2002-01-21 2003-07-31 Nisshinbo Ind Inc Method for manufacturing fuel cell separator, fuel cell separator, and solid high polymer fuel cell
JP2004103271A (en) * 2002-09-05 2004-04-02 Air Water Inc Separator for fuel cell and surface treatment method of same
JP2004332138A (en) * 2003-05-01 2004-11-25 Kawasumi Lab Inc Hydrophilization-treated substrate and method for producing the same
JP2008056744A (en) * 2006-08-29 2008-03-13 Nitto Denko Corp Aqueous dispersion type acrylic adhesive sheet for repeeling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180074A (en) * 2009-02-03 2010-08-19 Nitto Shoji Kk Carbon shaped body and manufacturing method therefor

Also Published As

Publication number Publication date
JP5219709B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP6583969B2 (en) Conductive polymer coating for 3D substrates
US9221076B2 (en) Composition for forming an optically transparent, superhydrophobic coating
KR102212373B1 (en) Ceramic coating on battery separators
ES2374031T3 (en) MATERIAL NOT WOVEN WITH FILLING OF PARTICLES.
JP5867325B2 (en) Method for producing water-repellent substrate
JP2008512844A5 (en)
CN108610786B (en) A kind of super-hydrophobic coat and preparation method thereof based on three-dimensional grapheme
JP2007123122A (en) Electrolyte membrane for fuel cell and membrane electrode assembly
JP2010087251A (en) Conductive paste for solar battery
ES2685575T3 (en) Battery separator with improved wettable capacity and methods for use
JP2001057215A (en) Solid high polymer film type fuel cell and forming method for gas diffusion layer thereof
JP5219709B2 (en) Separator for fuel cell using hydrophilization composition and method for producing the same
CN106899235B (en) A kind of droplet flow power generator and preparation method thereof
EP2960973B1 (en) Method for manufacturing a fuel cell separator
JP2005510631A (en) Electrophoretically deposited hydrophilic coating for fuel cell diffuser / current collector
DE102006022119A1 (en) Electrically conductive element for electrochemical cell, e.g. fuel cell for electric vehicles, comprises adhesion promoting coating overlying regions of surface, and corrosion resistant protective polymeric coating
Song et al. Hierarchically branched siloxane brushes for efficient harvesting of atmospheric water
JP6620579B2 (en) Lead acid battery
JP2006318717A (en) Polyelectrolyte fuel cell and its manufacturing method
JP2020140957A (en) Dispersant composition for secondary battery slurry and utilization thereof
CN103930208A (en) Method of manufacturing ionomer-coated catalyst-supporting carbon nanotube
JPH08269367A (en) Water-repellent coating material and aluminum plate material excellent in water repellency
JP6237922B2 (en) Lead acid battery
JP2008156596A (en) Coating including silica-based material with pendent functional group
JP2022153314A (en) Thermoplastic resin, thermosetting resin, fluid dispersion-like composition, and laminate for solid polymer fuel cell and method for manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5219709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250