JP2009099425A - Fuel cell separator - Google Patents

Fuel cell separator Download PDF

Info

Publication number
JP2009099425A
JP2009099425A JP2007270732A JP2007270732A JP2009099425A JP 2009099425 A JP2009099425 A JP 2009099425A JP 2007270732 A JP2007270732 A JP 2007270732A JP 2007270732 A JP2007270732 A JP 2007270732A JP 2009099425 A JP2009099425 A JP 2009099425A
Authority
JP
Japan
Prior art keywords
separator
gasket
rib
current collecting
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007270732A
Other languages
Japanese (ja)
Other versions
JP5157363B2 (en
Inventor
Koichi Shiraishi
剛一 白石
Toshihiko Nonobe
利彦 野々部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2007270732A priority Critical patent/JP5157363B2/en
Publication of JP2009099425A publication Critical patent/JP2009099425A/en
Application granted granted Critical
Publication of JP5157363B2 publication Critical patent/JP5157363B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for a fuel cell hard to be damaged even if there is interference caused by a neighboring member when laminating the separator while suppressing sacrifice of a sealing property. <P>SOLUTION: In the separator for the fuel cell, at least on one face of a plate-like separator main body and in the vicinity of the inner periphery of a gasket, a plurality of rib members are erectedly installed in an arrangement to form a flow passage of gas supplied to an anode electrode or a cathode electrode, and on the end faces of these rib members, a plate-like current collecting member having numerous openings is stretched and installed. Here, out of the end sides of the current collecting member, the end sides overlapped along longitudinal directions of the end faces in the rib members are positioned at the inside of a face direction except the end sides of the longitudinal directions of the end faces, so that, without making a distance between a sealing part of the gasket and a membrane electrode assembly long, the distance can be made longer between the end sides of the current collecting member apt to be broken by the interference with the gasket. Accordingly, breakage of the current collecting member can be made hard to occur against the interference caused by the gasket without damaging the sealing property. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、燃料電池用セパレータに関し、積層時に隣接する部材による干渉があっても破損し難い燃料電池用セパレータに関する。   The present invention relates to a fuel cell separator, and more particularly to a fuel cell separator that is less likely to be damaged even when there is interference from adjacent members during lamination.

一般的に、固体高分子型燃料電池の単位セルは、膜電極接合体(MEA:Membrane Electrode Assembly)と、その両面にそれぞれ積層されるセパレータとから構成される。   In general, a unit cell of a polymer electrolyte fuel cell is composed of a membrane electrode assembly (MEA) and separators stacked on both sides of the membrane electrode assembly (MEA).

膜電極接合体は、Nafion(登録商標:デュポン社製)などの固体高分子電解質膜からなる電解質膜と、この電解質膜の一面に配置された触媒層及びガス拡散層から構成され酸化剤ガス(例えば、空気)が供給される空気極(カソード極)と、電解質膜の他面に配置された触媒層及びガス拡散層とから構成され燃料ガス(例えば、水素ガス)が供給される燃料極(アノード極)とを有している。   The membrane electrode assembly is composed of an electrolyte membrane made of a solid polymer electrolyte membrane such as Nafion (registered trademark: manufactured by DuPont), a catalyst layer and a gas diffusion layer disposed on one surface of the electrolyte membrane, and an oxidant gas ( For example, a fuel electrode (for example, hydrogen gas) that includes an air electrode (cathode electrode) to which air is supplied and a catalyst layer and a gas diffusion layer disposed on the other surface of the electrolyte membrane (for example, hydrogen gas) is supplied. Anode electrode).

セパレータは、導電性の材料から気密に成型され、膜電極接合体を間に挟んで積層された場合に、膜電極接合体における空気極側に空気室を形成し、燃料極側に燃料室を形成する。   When the separator is hermetically molded from a conductive material and laminated with the membrane electrode assembly interposed therebetween, an air chamber is formed on the air electrode side of the membrane electrode assembly, and the fuel chamber is formed on the fuel electrode side. Form.

燃料電池スタックが構成される場合には、隣り合う単位セルはセパレータが共通とされている。そのため、セパレータは、各単位セルで発電された電気を集電する一方で、隣接する単位セルへのガスの移動を遮断する機能を有する。   When the fuel cell stack is configured, the separators are common to adjacent unit cells. Therefore, the separator has a function of blocking the movement of gas to the adjacent unit cell while collecting electricity generated in each unit cell.

近年、効率的な集電機能と膜電極接合体へのガスの効率的な供給機能とを持たせるべく、開口を有する導電性部材(例えば、エキスパンドメタル)を集電部として採用したセパレータ(又はセパレータユニット)が提案されている(例えば、特許文献1)。
特開2007−35527号公報
In recent years, a separator (or an electrically conductive member having an opening (for example, expanded metal) as a current collector in order to have an efficient current collecting function and an efficient gas supplying function to the membrane electrode assembly (or A separator unit) has been proposed (for example, Patent Document 1).
JP 2007-35527 A

ところで、膜電極接合体とセパレータとを積層して燃料電池を構成する場合には、一対のセパレータ間にはガスシール性を確保する目的でガスケットが介在される。かかるガスケットには、大きく分けて、セパレータの表面に配置されるタイプのガスケット(例えば、Oリングなど)と、膜電極接合体の外周側に一体的に配設されるタイプのガスケットとがある。これらのタイプのうち、製造工程数の抑制などの観点では、膜電極接合体の外周側に一体的に配設されるタイプのガスケットが好ましいとされている。   By the way, when a fuel cell is configured by laminating a membrane electrode assembly and a separator, a gasket is interposed between the pair of separators for the purpose of ensuring gas sealing properties. Such gaskets are roughly classified into a type of gasket (for example, an O-ring) disposed on the surface of the separator and a type of gasket integrally disposed on the outer peripheral side of the membrane electrode assembly. Among these types, from the viewpoint of suppressing the number of manufacturing steps, a type of gasket that is integrally disposed on the outer peripheral side of the membrane electrode assembly is preferable.

しかしながら、ガスケットとして、膜電極接合体の外周側に配設されるタイプのガスケットを採用した場合には、膜電極接合体とセパレータとの積層時に、ガスケットがセパレータ側へ近づきつつ配置されるので、寸法誤差や位置合わせの誤差などによってセパレータの集電部とガスケットとが干渉する危険性が高まる。上述した特許文献1に記載されるタイプのセパレータに対し、かかる干渉が生じると、開口を有する導電性部材の破損を招く。   However, when a gasket of the type disposed on the outer peripheral side of the membrane electrode assembly is adopted as the gasket, when the membrane electrode assembly and the separator are stacked, the gasket is disposed while approaching the separator side, The risk of interference between the separator current collector and the gasket increases due to dimensional errors and alignment errors. When such interference occurs with respect to the type of separator described in Patent Document 1, the conductive member having the opening is damaged.

かかる干渉の解決策としては、ガスケットのシール部分と膜電極接合体との間を長く設計することが挙げられるが、ガスケットのシール部分と膜電極接合体との距離が長くなる程、シール性を低下させるので好ましくなく、有効な解決策とはなり得ない。   A solution for such interference is to design a longer gap between the gasket seal portion and the membrane electrode assembly. The longer the distance between the gasket seal portion and the membrane electrode assembly, the greater the sealing performance. It is not preferable because it lowers and cannot be an effective solution.

本発明は、上述した事情を鑑みてなされたものであり、シール性の犠牲を抑制しつつ、積層時に隣接する部材による干渉があっても破損し難い燃料電池用セパレータを提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a fuel cell separator that is less likely to be damaged even when there is interference from adjacent members during stacking while suppressing sacrifice of sealing performance. Yes.

この目的を達成するために、請求項1記載の燃料電池用セパレータは、固体高分子電解質膜とその固体高分子電解質膜のそれぞれ片面に積層されたアノード極とカソード極とを有する膜電極接合体を、該膜電極接合体の外周に配設されるガスケットを挟んで積層するためのものであって、導電性を有する板状のセパレータ本体と、前記セパレータ本体の少なくとも片面かつ前記ガスケットの内周近傍に立設され、その配置によって前記アノード極又は前記カソード極へ供給するガスの流路を形成する複数本の導電性のリブ部材と、前記複数本のリブ部材の端面上に架設され、前記固体高分子電解質膜を挟持したときに前記アノード極又は前記カソード極に当接されると共に多数の開口を有する板状の集電部材と、を備え、前記集電部材の端辺のうち、前記リブ部材における端面の長手方向に沿って重なる端辺が、該端面の長手方向の端辺を避けた面方向内側に位置する。   In order to achieve this object, a fuel cell separator according to claim 1 is a membrane electrode assembly having a solid polymer electrolyte membrane and an anode electrode and a cathode electrode laminated on one side of the polymer electrolyte membrane, respectively. For sandwiching a gasket disposed on the outer periphery of the membrane electrode assembly, and having a plate-shaped separator body having conductivity, at least one side of the separator body and the inner periphery of the gasket. A plurality of electrically conductive rib members that are erected in the vicinity and form a flow path of gas to be supplied to the anode electrode or the cathode electrode by the arrangement, and are erected on end surfaces of the plurality of rib members, A plate-shaped current collecting member that is in contact with the anode electrode or the cathode electrode when a solid polymer electrolyte membrane is sandwiched and has a large number of openings, and an edge of the current collecting member Among them, the end edges overlapping along the longitudinal direction of the end surface of the rib member is positioned on the surface inwardly to avoid the longitudinal edge of the end face.

請求項2記載の燃料電池用セパレータは、請求項1記載の燃料電池用セパレータにおいて、前記複数本のリブ部材は、略平行に配置されており、最も外側に位置するリブ部材の剛性が、他のリブ部材の剛性に比べて高くされている。   The fuel cell separator according to claim 2 is the fuel cell separator according to claim 1, wherein the plurality of rib members are arranged substantially in parallel, and the rigidity of the rib member located on the outermost side is the other. The rigidity of the rib member is increased.

請求項3記載の燃料電池セパレータは、請求項1又は2に記載の燃料電池用セパレータにおいて、前記複数本のリブ部材は、略平行に配置されており、最も外側に位置するリブ部材の幅が、他のリブ部材の幅に比べて広くされている。   The fuel cell separator according to claim 3 is the fuel cell separator according to claim 1 or 2, wherein the plurality of rib members are arranged substantially in parallel, and the width of the rib member located on the outermost side is the same. The width of the rib member is wider than that of other rib members.

請求項1記載の燃料電池用セパレータによれば、板状のセパレータ本体の少なくとも片面かつガスケットの内周近傍に、複数本のリブ部材が、アノード極又はカソード極へ供給するガスの流路を形成する配置で立設されており、それらのリブ部材の端面上に、多数の開口を有する板状の集電部材が架設されている。かかるタイプの燃料電池セパレータは、集電部材の端辺のうち、リブ部材における端面の長手方向に沿って重なる端辺が、ガスケットとの干渉の際に最も破損(例えば、リブ部材からの剥離や、折れや歪み等の損傷など)が生じ易い。   According to the fuel cell separator of claim 1, a plurality of rib members form a gas flow path to be supplied to the anode electrode or the cathode electrode on at least one surface of the plate-shaped separator body and in the vicinity of the inner periphery of the gasket. The plate-shaped current collection member which has many opening is constructed on the end surface of those rib members. In this type of fuel cell separator, of the end sides of the current collecting member, the end side that overlaps along the longitudinal direction of the end face of the rib member is most damaged when it interferes with the gasket (for example, peeling from the rib member or , Damage such as breakage or distortion).

しかし、請求項1記載の燃料電池用セパレータによれば、集電部材の端辺のうち、リブ部材における端面の長手方向に沿って重なる端辺が、該端面の長手方向の端辺を避けた面方向内側に位置されるので、ガスケットのシール部分と膜電極接合体との距離を長くすることなく、ガスケットとの干渉によって最も破損し易い集電部材の端辺との距離を長くすることができる。よって、シール性を損なうことなくガスケットによる干渉に対しても集電部材の破損を生じ難くすることができるという効果がある。   However, according to the separator for a fuel cell according to claim 1, of the end sides of the current collecting member, the end sides that overlap along the longitudinal direction of the end surface of the rib member avoid the end sides in the longitudinal direction of the end surface. Because it is located on the inner side in the surface direction, it is possible to increase the distance between the end of the current collecting member that is most easily damaged by interference with the gasket without increasing the distance between the seal portion of the gasket and the membrane electrode assembly. it can. Therefore, there is an effect that it is possible to make it difficult to cause the current collecting member to be damaged against interference by the gasket without impairing the sealing performance.

請求項2記載の燃料電池用セパレータによれば、請求項1記載の燃料電池用セパレータの奏する効果に加えて、次の効果を奏する。複数本のリブ部材は、略平行に配置されており、ここで、最も外側に位置するリブ部材、即ち、ガスの流路端部となるリブ部材の剛性が、他のリブ部材の剛性に比べて高くされている。一般的に、ガスの流路端部となるリブ部材がガスケットと最も干渉を起こし易い箇所であるので、かかる箇所に位置するリブ部材の剛性を高めることにより、ガスケットの圧縮応力に対抗し得る剛性が確保されて破損し難いという効果がある。   According to the fuel cell separator of claim 2, in addition to the effect of the fuel cell separator of claim 1, the following effect is obtained. The plurality of rib members are arranged substantially in parallel. Here, the rigidity of the rib member located on the outermost side, that is, the rib member serving as the end of the gas flow path is higher than the rigidity of the other rib members. It is high. In general, since the rib member that is the gas flow path end is the place where the gasket is most likely to interfere with the gasket, the rigidity that can resist the compressive stress of the gasket is enhanced by increasing the rigidity of the rib member located at the place. Has the effect of being secured and difficult to break.

請求項3記載の燃料電池用セパレータによれば、請求項1又は2に記載の燃料電池用セパレータの奏する効果に加えて、次の効果を奏する。複数本のリブ部材は、略平行に配置されており、ここで、最も外側に位置するリブ部材、即ち、ガスの流路端部となるリブ部材の幅が、他のリブ部材の幅に比べて広くされている。   According to the fuel cell separator of claim 3, in addition to the effect of the fuel cell separator of claim 1 or 2, the following effect is obtained. The plurality of rib members are arranged substantially in parallel. Here, the width of the rib member located on the outermost side, that is, the rib member serving as the end of the gas flow path is larger than the width of the other rib members. Have been widely used.

一般的に、ガスの流路端部となるリブ部材がガスケットと最も干渉を起こし易い箇所であるので、かかる箇所に位置するリブ部材の幅を広くすることにより、そのリブ部材の剛性を高めることができる。よって、ガスケットの圧縮応力に対抗し得る剛性が確保されて破損し難いという効果がある。   Generally, the rib member that is the end of the gas flow path is the place where interference with the gasket is most likely to occur. Therefore, by increasing the width of the rib member located at such place, the rigidity of the rib member is increased. Can do. Therefore, there is an effect that rigidity capable of resisting the compressive stress of the gasket is ensured and hardly damaged.

また、ガスの流路端部となるリブ部材の幅を広くしたことにより、かかるリブ部材における端面の長手方向に沿って重なる集電部材の端辺を、該端面の長手方向の端辺を避けた面方向内側に位置させたとしても、集電部材とリブ部材との接触面積(接合面積)を十分に確保することができるので、これらの部材の接合強度を十分に確保することができ、ガスケットによる干渉に対しても集電部材の破損を生じ難くすることができるという効果がある。   Further, by widening the rib member serving as the gas flow path end, the end of the current collecting member that overlaps along the longitudinal direction of the end surface of the rib member is avoided from the end of the end surface in the longitudinal direction. Even if it is positioned on the inner side in the plane direction, the contact area (bonding area) between the current collecting member and the rib member can be sufficiently ensured, so that the bonding strength of these members can be sufficiently ensured, There is an effect that it is possible to make it difficult to cause damage to the current collecting member against interference by the gasket.

以下、本発明の好ましい実施形態について添付図面を参照して説明する。まず、図1は、燃料電池の単位セル10が複数積層された燃料電池スタック100の一部を示す分解斜視図である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. First, FIG. 1 is an exploded perspective view showing a part of a fuel cell stack 100 in which a plurality of unit cells 10 of a fuel cell are stacked.

図1に示すように、燃料電池スタック100は、内周側に膜電極接合体20が一体化されているガスケット部材40と、メタルセパレータ60とが交互に多数積層された構造(図1では、3枚のガスケット部材40と3枚のメタルセパレータ60のみを図示)を有する。なお、この燃料電池スタック100の積層方向の両端には、エンドプレート(図示せず)が配置されており、ボルト(図示せず)及びナット(図示せず)などを用いて両エンドプレートを締結することによって、交互に積層されるガスケット部材20及びメタルセパレータ60を加圧挟持している。   As shown in FIG. 1, the fuel cell stack 100 has a structure in which a number of gasket members 40 in which membrane electrode assemblies 20 are integrated on the inner peripheral side and metal separators 60 are alternately stacked (in FIG. 1, Only three gasket members 40 and three metal separators 60 are shown). End plates (not shown) are arranged at both ends of the fuel cell stack 100 in the stacking direction, and both end plates are fastened using bolts (not shown) and nuts (not shown). By doing so, the gasket member 20 and the metal separator 60 which are laminated | stacked alternately are press-clamped.

ここで、燃料電池の単位セル10は、膜電極接合体20と、膜電極接合体20の外周側に配設されているガスケット部材40と、膜電極接合体20の両面側に位置するメタルセパレータ60とによって構成される。なお、図1に示すように、1のメタルセパレータ60は、隣接する単位セル10のセパレータとして共通に使用されている。   Here, the unit cell 10 of the fuel cell includes a membrane electrode assembly 20, a gasket member 40 disposed on the outer peripheral side of the membrane electrode assembly 20, and metal separators positioned on both sides of the membrane electrode assembly 20. 60. As shown in FIG. 1, one metal separator 60 is commonly used as a separator for adjacent unit cells 10.

膜電極接合体20は、Nafion(登録商標:デュポン社製)やAciplex(登録商標:旭化成(株)製)などの固体高分子電解質膜21(図2(c)参照)と、該固体高分子電解質膜の両面に各々積層されて接合された一対の電極層22,23(図2(c)参照)とから構成される。   The membrane electrode assembly 20 includes a solid polymer electrolyte membrane 21 (see FIG. 2 (c)) such as Nafion (registered trademark: manufactured by DuPont) or Aciplex (registered trademark: manufactured by Asahi Kasei Co., Ltd.), and the solid polymer. It is comprised from a pair of electrode layers 22 and 23 (refer FIG.2 (c)) each laminated | stacked and joined on both surfaces of the electrolyte membrane.

膜電極接合体20における両電極層22,23は、どちらも、触媒層(図示せず)とガス拡散層(図示せず)とから構成され、触媒層の側が固体高分子電解質膜に接合されている。これらの電極層は、供給されるガスの種類に応じて、空気極(カソード極)又は燃料極(アノード極)とされる。なお、以下では、電極層22を空気極22とし、電極層23を燃料極23として説明する。   Both electrode layers 22 and 23 in the membrane electrode assembly 20 are each composed of a catalyst layer (not shown) and a gas diffusion layer (not shown), and the catalyst layer side is joined to the solid polymer electrolyte membrane. ing. These electrode layers are used as an air electrode (cathode electrode) or a fuel electrode (anode electrode) depending on the type of gas supplied. Hereinafter, the electrode layer 22 will be described as the air electrode 22, and the electrode layer 23 will be described as the fuel electrode 23.

なお、空気極22及び燃料極23における図示されないガス拡散層は、ガス拡散が可能なカーボン製の織物やカーボン製の紙等から構成されるものであり、例えば、カーボンクロス、カーボンペーパー、カーボン繊維からなる不織布などが使用される。   A gas diffusion layer (not shown) in the air electrode 22 and the fuel electrode 23 is composed of carbon woven fabric, carbon paper, or the like capable of gas diffusion. For example, carbon cloth, carbon paper, carbon fiber A nonwoven fabric made of or the like is used.

また、膜電極接合体20における図示されない触媒層としては、例えば、白金触媒が担持されたカーボンと電解質とを含んで構成された層を採用することができる。   In addition, as the catalyst layer (not shown) in the membrane electrode assembly 20, for example, a layer including carbon carrying a platinum catalyst and an electrolyte can be employed.

次に、図2及び図3を参照して、本実施形態のガスケット部材40について説明する。図2(a)は、内周側に膜電極接合体20が一体化されているガスケット部材40の一面側を模式的に示す斜視図であり、図2(b)は、図2(a)に示すガスケット部材40の裏面側を模式的に示す斜視図であり、図2(c)は、図2(a)のIIc−IIc線における断面図である。なお、図2(a)及び図2(c)では、図面の理解を容易にする目的で、シール構造体45,51の詳細な構成を省略して示している。   Next, with reference to FIG.2 and FIG.3, the gasket member 40 of this embodiment is demonstrated. 2A is a perspective view schematically showing one surface side of the gasket member 40 in which the membrane electrode assembly 20 is integrated on the inner peripheral side, and FIG. 2B is a perspective view of FIG. FIG. 2C is a perspective view schematically showing the back surface side of the gasket member 40 shown in FIG. 2, and FIG. 2C is a cross-sectional view taken along the line IIc-IIc in FIG. 2A and 2C, the detailed structure of the seal structures 45 and 51 is omitted for the purpose of facilitating understanding of the drawings.

図3(a)は、図2(a)において矢印IIIa方向から見た部分の正面図であり、図3(b)は、図3(a)のIIIb−IIIb線における断面図であり、図3(c)は、図2(a)において矢印IIIc方向から見た部分の正面図である。なお、図面の理解を容易にする目的で、図3(a)における肩部45b,45cに対し、並びに、図3(c)における肩部51b,51cに対してハッチングを施している。   3 (a) is a front view of the portion viewed from the direction of arrow IIIa in FIG. 2 (a), and FIG. 3 (b) is a cross-sectional view taken along line IIIb-IIIb in FIG. 3 (a). 3 (c) is a front view of a portion viewed from the direction of arrow IIIc in FIG. 2 (a). For the purpose of facilitating understanding of the drawing, hatching is applied to the shoulder portions 45b and 45c in FIG. 3A and to the shoulder portions 51b and 51c in FIG. 3C.

ガスケット部材40は、膜電極接合体20の外周側に配設されて、その両面にそれぞれ対向して配置される一対のメタルセパレータ60との間のガスシール性を確保するための部材である。このガスケット部材40は、ガスケット部材40の一面を構成する空気極ガスケット41と、他面を構成する燃料極ガスケット42とから構成される。空気極ガスケット41及び燃料極ガスケット42は、ゴムや樹脂などの絶縁性弾性体から構成されており、それぞれ、絶縁性弾性体を該当形状に射出成型することによって作製される。   The gasket member 40 is a member that is disposed on the outer peripheral side of the membrane electrode assembly 20 and ensures a gas sealing property between a pair of metal separators 60 that are disposed to face both surfaces thereof. The gasket member 40 includes an air electrode gasket 41 constituting one surface of the gasket member 40 and a fuel electrode gasket 42 constituting the other surface. The air electrode gasket 41 and the fuel electrode gasket 42 are made of an insulating elastic body such as rubber or resin, and are produced by injection molding the insulating elastic body into a corresponding shape.

ここで、各ガスケット41,42の一面側(互いに接着される側の面)には、補強板を兼ねる接着フィルムシート(図示せず)が配設されており、これらの接着フィルムシートを対向させて両ガスケット41,42を接着させることにより、ガスケット部材40が作製される。なお、空気極ガスケット41及び燃料極ガスケット42には、それぞれ、膜電極接合体20に応じた開口41a及び42aが形成されており、ガスケット部材40作製時には、空気極ガスケット41と燃料極ガスケット42との間に膜電極接合体20を介在させた上で接着させる。よって、膜電極接合体20が接着フィルムシート(図示せず)によって固定されて、その結果、ガスケット部材40は、その内周側に膜電極接合体20が一体化されたものとして得られる。   Here, an adhesive film sheet (not shown) that also serves as a reinforcing plate is disposed on one side of each gasket 41, 42 (the side to be bonded to each other), and these adhesive film sheets are opposed to each other. The gasket member 40 is manufactured by bonding the gaskets 41 and 42 together. The air electrode gasket 41 and the fuel electrode gasket 42 have openings 41a and 42a corresponding to the membrane electrode assembly 20, respectively. When the gasket member 40 is manufactured, the air electrode gasket 41 and the fuel electrode gasket 42 After the membrane electrode assembly 20 is interposed between the two, they are bonded. Therefore, the membrane electrode assembly 20 is fixed by the adhesive film sheet (not shown), and as a result, the gasket member 40 is obtained as the membrane electrode assembly 20 integrated on the inner peripheral side thereof.

ガスケット部材40は、膜電極接合体20を挟む両端側に開口部43,44を有している。これらの開口部43,44は、燃料電池スタック100の積層方向(図2(a)における矢印Z方向又はその反対方向)に燃料ガス(例えば、水素ガス)を流通させる流路とされるものである。   The gasket member 40 has openings 43 and 44 on both ends sandwiching the membrane electrode assembly 20. These openings 43 and 44 serve as flow paths through which fuel gas (for example, hydrogen gas) flows in the stacking direction of the fuel cell stack 100 (the arrow Z direction in FIG. 2A or the opposite direction). is there.

かかる開口部43,44から空気極22や外界へ燃料ガスが漏洩することを防止するため、ガスケット部材40における空気極ガスケット41には、開口部43,44の周囲にシール構造体45が形成されている。   In order to prevent fuel gas from leaking from the openings 43 and 44 to the air electrode 22 and the outside, a seal structure 45 is formed around the openings 43 and 44 in the air electrode gasket 41 of the gasket member 40. ing.

このシール構造体45は、シールリップ部45aと、断面視におけるシールリップ部45aの両側(即ち、シールリップ45aの内周側及び外周側)に位置する肩部45b,45cと、シールリップ部45aと肩部45bとの間に形成される溝部45dと、シールリップ部45aと肩部45cとの間に形成される溝部45eとから構成される。かかるシール構造体は、低荷重でのシール性を確保できるように低硬度(例えば、硬度40〜50度程度)の絶縁性弾性体から構成されている。   The seal structure 45 includes a seal lip portion 45a, shoulder portions 45b and 45c positioned on both sides of the seal lip portion 45a in cross-sectional view (that is, the inner peripheral side and the outer peripheral side of the seal lip 45a), and the seal lip portion 45a. 45d formed between the shoulder portion 45b and the groove portion 45e formed between the seal lip portion 45a and the shoulder portion 45c. Such a sealing structure is composed of an insulating elastic body having a low hardness (for example, a hardness of about 40 to 50 degrees) so as to ensure a sealing property under a low load.

シールリップ部45aは、燃料電池スタック100の構成時(積層時)に対向するメタルセパレータ60から押圧されて変形し、そのメタルセパレータ60と密接することによってガスシール機能を発揮する部分である。肩部45b,45cは、後述する肩部51b,51cと共に、燃料電池スタック100の構成時(積層時)に一対のメタルセパレータ60の間隔を規定すると共に、シールリップ45aを側方から支持してリップ倒れを防止する機能を果たす。また、溝部45d,45eは、圧縮荷重によるシールリップ部45aの変形を許容するための絶縁性弾性体の逃げ部として機能する部分である。   The seal lip portion 45 a is a portion that exerts a gas seal function by being deformed by being pressed from the metal separator 60 facing when the fuel cell stack 100 is configured (stacking). The shoulder portions 45b and 45c, together with shoulder portions 51b and 51c described later, define the distance between the pair of metal separators 60 when the fuel cell stack 100 is configured (stacked), and support the seal lip 45a from the side. It serves to prevent lip collapse. The groove portions 45d and 45e are portions that function as escape portions of the insulating elastic body for allowing deformation of the seal lip portion 45a due to a compressive load.

より詳細には、シールリップ部45aは、ガスシール機能の長期耐久性に対する要求を満たすべく、図3(b)に示すような断面山形状や断面三角形状など、鋭利な先細の先端部を有していると共に、その高さが肩部45b,45cの高さより高くなる(即ち、先端部が肩部45b,45cより高い位置となる)ように構成されている。   More specifically, the seal lip portion 45a has a sharp tapered tip such as a cross-sectional mountain shape or a triangular shape as shown in FIG. 3B in order to satisfy the demand for long-term durability of the gas seal function. In addition, the height of the shoulder portions 45b and 45c is higher than that of the shoulder portions 45b and 45c (that is, the tip portion is positioned higher than the shoulder portions 45b and 45c).

図3(b)に示すように、肩部45b,45cは、シールリップ部45aを所望の圧縮率に制御できる(即ち、シールリップ部45aを圧縮荷重に対して所望の高さに制御できる)よう、いずれもシールリップ部45aの高さより低く、互いに略同一の高さであるように構成されている。   As shown in FIG. 3B, the shoulder portions 45b and 45c can control the seal lip portion 45a to a desired compression rate (that is, the seal lip portion 45a can be controlled to a desired height with respect to the compression load). As such, both are configured to be lower than the height of the seal lip portion 45a and substantially the same height.

また、肩部45b,45cの先端部が広幅とされているので、ガスケット部40の横ずれをある程度許容することができ、許容範囲内において横ずれによるシール性の低下を防止することができる。   In addition, since the front end portions of the shoulder portions 45b and 45c are wide, the lateral displacement of the gasket portion 40 can be allowed to some extent, and deterioration of the sealing performance due to the lateral displacement can be prevented within the allowable range.

ガスケット部材40における空気極ガスケット41には、対向する2端辺46a,46b側の開放された凹部46が形成されている。この凹部46は、メタルセパレータ60を積層した場合に空気極側コレクタ63(図4(a)参照)を収容し、酸化剤ガスとしての空気が空気極22上を矢印X方向(又はその反対方向)に流通する空気室を形成する。   The air electrode gasket 41 in the gasket member 40 is formed with an open recess 46 on the opposite two end sides 46a, 46b side. The concave portion 46 accommodates the air electrode side collector 63 (see FIG. 4A) when the metal separator 60 is laminated, and the air as the oxidant gas flows on the air electrode 22 in the arrow X direction (or the opposite direction). ) Is formed.

一方で、ガスケット部材40における燃料極ガスケット42の外周にはシール構造体51が形成されている。このシール構造体51は、燃料電池スタック100(又は単位セル10)から外界への燃料ガスの漏洩を防止するものである。   On the other hand, a seal structure 51 is formed on the outer periphery of the fuel electrode gasket 42 in the gasket member 40. The seal structure 51 prevents fuel gas from leaking from the fuel cell stack 100 (or unit cell 10) to the outside.

シール構造体51は、上述したシール構造体45と同様に、シールリップ部51aと、断面視におけるシールリップ部51aの両側(即ち、シールリップ45aの内周側及び外周側)に位置する肩部51b,51cと、シールリップ部51aと肩部51bとの間に形成される溝部51dと、シールリップ部51aと肩部51cとの間に形成される溝部51eとから構成される。   Similar to the seal structure 45 described above, the seal structure 51 includes a seal lip portion 51a and shoulder portions located on both sides of the seal lip portion 51a in cross-sectional view (that is, the inner peripheral side and the outer peripheral side of the seal lip 45a). 51b, 51c, a groove 51d formed between the seal lip 51a and the shoulder 51b, and a groove 51e formed between the seal lip 51a and the shoulder 51c.

シールリップ部51aは、シールリップ45aと同様に、燃料電池スタック100の構成時(積層時)に対向するメタルセパレータ60から押圧されて変形し、そのメタルセパレータ60と密接することによってガスシール機能を発揮する部分であり、鋭利な先細の先端部を有していると共に、その高さが肩部51b,51cの高さより高くなるように構成されている。   Similar to the seal lip 45a, the seal lip portion 51a is deformed by being pressed from the metal separator 60 facing when the fuel cell stack 100 is configured (stacked), and has a gas seal function by being in close contact with the metal separator 60. It is a part to be exhibited, and has a sharp tapered tip, and is configured such that its height is higher than the height of the shoulders 51b and 51c.

肩部51b,51cは、上述した肩部45b,45cと共に、一対のメタルセパレータ60の間隔を規定する部分であり、その高さがシールリップ部51aの高さより低く、互いに略同一の高さであるように構成されている。また、肩部51b,51cは、肩部45b,45cと同様に、先端部が広幅に構成されている(図3(b)参照)。   The shoulder portions 51b and 51c together with the above-described shoulder portions 45b and 45c are portions that define the distance between the pair of metal separators 60, and the height thereof is lower than the height of the seal lip portion 51a, and is substantially the same height as each other. It is configured to be. Further, the shoulder portions 51b and 51c are configured to have a wide end portion (see FIG. 3B), similarly to the shoulder portions 45b and 45c.

また、溝部51d,51eは、上述した溝部45d,45eと同様に、圧縮荷重によるシールリップ部51aの変形を許容するための絶縁性弾性体の逃げ部として機能する部分である。   Moreover, the groove parts 51d and 51e are parts which function as escape parts of the insulating elastic body for allowing deformation of the seal lip part 51a due to a compressive load, like the groove parts 45d and 45e described above.

また、ガスケット部材40における燃料極ガスケット42には、凹部52が形成されている。この凹部52は、メタルセパレータ60を積層した場合に燃料極側コレクタ62(図4(b)参照)を収容し、燃料ガス(例えば、水素)が燃料極23上を矢印Y方向(又はその反対方向)に流通する燃料室を形成する。   A recess 52 is formed in the fuel electrode gasket 42 of the gasket member 40. The recess 52 accommodates the fuel electrode side collector 62 (see FIG. 4B) when the metal separators 60 are stacked, and the fuel gas (for example, hydrogen) moves on the fuel electrode 23 in the arrow Y direction (or vice versa). A fuel chamber that circulates in the direction) is formed.

次に、図4を参照して、本実施形態のメタルセパレータ60について説明する。図4(a)は、メタルセパレータ60の一面側を模式的に示す斜視図であり、図4(b)は、図4(a)に示すメタルセパレータ60の裏面側を模式的に示す斜視図であり、図4(c)は、図4(a)におけるA部を矢印IVc方向から見た拡大図であり、図4(d)は、図4(a)のIVd−IVd線における断面図である。   Next, the metal separator 60 of the present embodiment will be described with reference to FIG. 4A is a perspective view schematically showing one surface side of the metal separator 60, and FIG. 4B is a perspective view schematically showing the back surface side of the metal separator 60 shown in FIG. 4A. 4C is an enlarged view of portion A in FIG. 4A viewed from the direction of arrow IVc, and FIG. 4D is a cross-sectional view taken along the line IVd-IVd in FIG. It is.

メタルセパレータ60は、板状のセパレータ本体61と、セパレータ61の一面に設けられた燃料極側コレクタ62と、セパレータ61の他面に設けられた空気極側コレクタ63とから構成される。   The metal separator 60 includes a plate-shaped separator main body 61, a fuel electrode side collector 62 provided on one surface of the separator 61, and an air electrode side collector 63 provided on the other surface of the separator 61.

セパレータ本体61は、隣接する単位セル10間のガス遮断部材として機能するものであり、導電性の薄板から構成され、ガスケット部材40の開口部43,44に対応する位置(即ち、積層した場合に開口部43,44と連通される位置)に、燃料ガスの流路となる開口部61a,61bが開口されている。なお、セパレータ本体61を構成する導電性の薄板としては、例えば、ステンレス鋼、ニッケル合金、チタン合金などに金メッキ等の耐腐食導電処理を施した薄板を使用できる。   The separator body 61 functions as a gas blocking member between the adjacent unit cells 10 and is made of a conductive thin plate, and corresponds to the openings 43 and 44 of the gasket member 40 (that is, when stacked). Openings 61a and 61b serving as fuel gas flow paths are opened at positions communicating with the openings 43 and 44). As the conductive thin plate constituting the separator main body 61, for example, a thin plate obtained by subjecting a stainless steel, nickel alloy, titanium alloy or the like to a corrosion-resistant conductive treatment such as gold plating can be used.

燃料極側コレクタ62は、ガスケット部材40の凹部52a(図2参照)に収容されて膜電極接合体20における燃料極23側に接触して電極反応によって生じた電流を集電する集電体である。   The fuel electrode side collector 62 is a current collector that is accommodated in the recess 52a (see FIG. 2) of the gasket member 40 and collects current generated by electrode reaction by contacting the fuel electrode 23 side of the membrane electrode assembly 20. is there.

この燃料極側コレクタ62は、セパレータ本体61の一面側から同じ高さに立設される導電性を有する複数本のリブ62a,62bと、これらのリブ62a,62bの先端面に架設される導電性の集電部材62cとから構成される。   The fuel electrode side collector 62 has a plurality of conductive ribs 62a and 62b erected at the same height from the one surface side of the separator body 61, and a conductive material provided on the tip surfaces of the ribs 62a and 62b. And a current collecting member 62c.

図4(a)に示すように、複数本のリブ62a,62bは、開口部61aと開口部61bとの間に延設されており、各リブ62a,62bは略同ピッチの間隔で略平行となるように配置されている。本実施形態では、複数本のリブ62a,62bのうち、両端(最外端)に位置するリブ62aの幅(短手方向長さ)が、両端以外のリブ62bの幅より広く構成されている。   As shown in FIG. 4A, the plurality of ribs 62a and 62b extend between the opening 61a and the opening 61b, and the ribs 62a and 62b are substantially parallel at intervals of substantially the same pitch. It is arranged to become. In the present embodiment, among the plurality of ribs 62a and 62b, the width of the rib 62a (the length in the short direction) located at both ends (outermost ends) is configured to be wider than the width of the rib 62b other than both ends. .

また、集電部材62cは、多数の開口を有する導電性の板材(例えば、エキスパンドメタルやパンチングメタル等のメタル板材など)から構成される。かかる集電部材62cがリブ62a,62bの上端に架設されたことにより、セパレータ本体61とリブ62a,62bのうち隣接する2本のリブと集電部材62cとにより囲まれる空間62dが燃料ガス流路として機能する。上述のように、集電部材62cは多数の開口を有しているので、空間62d(燃料ガス流路)を流通する燃料ガスは、かかる開口を通過して燃料極23へと供給される。   The current collecting member 62c is composed of a conductive plate material having a large number of openings (for example, a metal plate material such as expanded metal or punching metal). Since the current collecting member 62c is installed on the upper ends of the ribs 62a and 62b, the space 62d surrounded by the two adjacent ribs of the separator main body 61 and the ribs 62a and 62b and the current collecting member 62c is flown in the fuel gas flow. Functions as a road. As described above, since the current collecting member 62c has a large number of openings, the fuel gas flowing through the space 62d (fuel gas flow path) passes through the openings and is supplied to the fuel electrode 23.

図4(c)に示すように、本実施形態のメタルセパレータ60では、最外端のリブ62aの長手方向に沿って重なる集電部材62cの端辺62c1が、リブ62aの端面62a1の長手方向の端辺(即ち、最外端辺)を避けた面方向内側にて接合されている。   As shown in FIG. 4C, in the metal separator 60 of the present embodiment, the end side 62c1 of the current collecting member 62c that overlaps along the longitudinal direction of the outermost rib 62a is the longitudinal direction of the end surface 62a1 of the rib 62a. Are joined on the inner side in the plane direction so as to avoid the end side (that is, the outermost end side).

上述したように、燃料極側コレクタ62は、燃料電池スタック100の構成時(積層時)に、ガスケット部材40における燃料極ガスケット42の凹部52に収容される。その際、寸法誤差や位置合わせの誤差などによって、燃料極ガスケット42のシール構造体51が、最外端のリブ62a付近に干渉することがある。   As described above, the fuel electrode side collector 62 is accommodated in the recess 52 of the fuel electrode gasket 42 in the gasket member 40 when the fuel cell stack 100 is configured (when stacked). At this time, the seal structure 51 of the fuel electrode gasket 42 may interfere with the vicinity of the outermost rib 62a due to a dimensional error or an alignment error.

しかし、本実施形態のメタルセパレータ60によれば、燃料極側コレクタ62の集電部材62cにおける端辺62c1が、その端辺62c1が重なる最外端のリブ62aの端面62a1の最外端辺を避けた面方向内側にて接合されているので、その分、かかる端辺62c1は燃料極ガスケット42のシール構造体51から遠く離されることになり、シール構造体51が最外端のリブ62a付近に干渉したとしても、集電部材62cの破損(例えば、リブ62aからからの端辺62c1が剥離や、折れや歪みの発生など)を生じ難くすることができる。   However, according to the metal separator 60 of the present embodiment, the end 62c1 of the current collector 62c of the fuel electrode side collector 62 is the outermost end of the end surface 62a1 of the outermost rib 62a where the end 62c1 overlaps. Since the joining is performed on the inner side in the avoiding plane direction, the end side 62c1 is far away from the seal structure 51 of the fuel electrode gasket 42, and the seal structure 51 is near the outermost rib 62a. Even if they interfere with each other, it is possible to make it difficult to cause damage to the current collecting member 62c (for example, the end 62c1 from the rib 62a is peeled off, broken or distorted).

ここで、本実施形態のメタルセパレータ60によれば、最外端となるリブ62aの幅が、他のリブ62bの幅より広くされているので、端辺62c1を端面62a1における最外端辺を避けた面方向内側にて接合させたとしても、集電部材62cとリブ62aとの接触面積(接合面積)を十分に確保することができる。よって、端辺62c1を端面62a1における最外端辺を避けた面方向内側にて接合させたとしても、集電部材62cとリブ62aとの接合強度を十分に確保することができるので、その点においても、ガスケット部材40(シール構造体51)による干渉によって集電部材62cが破損されることを抑制できる。   Here, according to the metal separator 60 of the present embodiment, since the width of the rib 62a which is the outermost end is made wider than the width of the other ribs 62b, the end side 62c1 is set to be the outermost end side of the end face 62a1. Even if it is joined on the inner side in the surface direction that is avoided, a sufficient contact area (joint area) between the current collecting member 62c and the rib 62a can be secured. Therefore, even if the end side 62c1 is joined on the inner side in the plane direction avoiding the outermost end side in the end face 62a1, the joining strength between the current collecting member 62c and the rib 62a can be sufficiently secured. In this case, it is possible to prevent the current collecting member 62c from being damaged due to the interference by the gasket member 40 (the seal structure 51).

一方で、空気極側コレクタ63は、ガスケット部材40の凹部46(図2参照)に収容されて膜電極接合体20における空気極22側に接触して電極反応によって生じた電流を集電する集電体である。   On the other hand, the air electrode side collector 63 is housed in the recess 46 (see FIG. 2) of the gasket member 40 and contacts the air electrode 22 side of the membrane electrode assembly 20 to collect current generated by the electrode reaction. It is an electric body.

この空気極側コレクタ63は、セパレータ本体61の一面側から同じ高さに立設される導電性を有する複数本のリブ63a,63bと、これらのリブ63a,63bの先端面に架設される導電性の集電部材63cとから構成される。   The air electrode side collector 63 has a plurality of conductive ribs 63a and 63b erected at the same height from one surface side of the separator body 61, and a conductive material erected on the front end surfaces of the ribs 63a and 63b. Current collecting member 63c.

図4(b)に示すように、複数本のリブ63a,63bは、燃料極側コレクタ62のリブ62a,62bと略直交する方向に延設されており、各リブ63a,63bは略同ピッチの間隔で略平行となるように配置されている。本実施形態では、燃料極側コレクタ62のリブ62a,62bと同様に、空気極側コレクタ63における複数本のリブ62a,62bのうち、両端(最外端)に位置するリブ63aの幅(短手方向長さ)が、両端以外のリブ63bの幅より広く構成されている。   As shown in FIG. 4B, the plurality of ribs 63a and 63b are extended in a direction substantially orthogonal to the ribs 62a and 62b of the fuel electrode side collector 62, and the ribs 63a and 63b have substantially the same pitch. Are arranged so as to be substantially parallel with each other. In the present embodiment, like the ribs 62 a and 62 b of the fuel electrode side collector 62, the width (short) of the ribs 63 a located at both ends (outermost ends) among the plurality of ribs 62 a and 62 b in the air electrode side collector 63. The length in the hand direction) is wider than the width of the rib 63b other than both ends.

空気極側コレクタ63の集電部材63cもまた、燃料極側コレクタ62の集電部材62cと同様に、多数の開口を有する導電性の板材(例えば、エキスパンドメタルやパンチングメタル等のメタル板材など)から構成される。かかる集電部材63cがリブ63a,63bの上端に架設されたことにより、セパレータ本体61とリブ63a,63bのうち隣接する2本のリブと集電部材63cとにより囲まれる空間63dが燃料ガス流路として機能する。上述のように、集電部材63cは多数の開口を有しているので、空間63d(空気流路)を流通する空気は、かかる開口を通過して空気極22へと供給される。また、電極反応の結果として空気極22において生成された水を集電部材63cの開口を介して空間63d(空気流路)へ透過することができる。   Similarly to the current collecting member 62c of the fuel electrode side collector 62, the current collecting member 63c of the air electrode side collector 63 is also a conductive plate material having a large number of openings (for example, a metal plate material such as expanded metal or punching metal). Consists of Since the current collecting member 63c is installed on the upper ends of the ribs 63a and 63b, the space 63d surrounded by the two adjacent ribs of the separator main body 61 and the ribs 63a and 63b and the current collecting member 63c flows in the fuel gas flow. Functions as a road. As described above, since the current collecting member 63c has a large number of openings, the air flowing through the space 63d (air flow path) passes through the openings and is supplied to the air electrode 22. Moreover, the water produced | generated in the air electrode 22 as a result of an electrode reaction can permeate | transmit to the space 63d (air flow path) through opening of the current collection member 63c.

図4(d)に示すように、空気極側コレクタ63における最外端のリブ63aの長手方向に沿って重なる集電部材63cの端辺63c1が、リブ63aの端面63a1の長手方向の端辺を避けた面方向内側にて接合されている。   As shown in FIG. 4D, the end 63c1 of the current collecting member 63c that overlaps along the longitudinal direction of the outermost rib 63a in the air electrode side collector 63 is the end in the longitudinal direction of the end face 63a1 of the rib 63a. It is joined on the inner side in the plane direction avoiding.

上述したように、空気極側コレクタ63は、燃料電池スタック100の構成時(積層時)に、ガスケット部材40における空気極ガスケット41の凹部46に収容されるが、本実施形態のメタルセパレータ60によれば、上述した燃料極側コレクタ62の場合と同様に、空気極側コレクタ63における集電部材63cの端辺63c1をリブ63aの端面63a1の長手方向の端辺を避けた面方向内側にて接合させたことにより、その分、かかる端辺63c1と空気極ガスケット41のシール構造体45との間隔を長くすることができ、その結果として、シール構造体45による干渉によって集電部材62cが破損されることを抑制できる。   As described above, the air electrode side collector 63 is accommodated in the recess 46 of the air electrode gasket 41 in the gasket member 40 when the fuel cell stack 100 is configured (during lamination). Accordingly, as in the case of the fuel electrode side collector 62 described above, the end side 63c1 of the current collecting member 63c in the air electrode side collector 63 is on the inner side in the plane direction avoiding the end side in the longitudinal direction of the end surface 63a1 of the rib 63a. By joining, the distance between the end 63c1 and the seal structure 45 of the air electrode gasket 41 can be increased correspondingly. As a result, the current collecting member 62c is damaged due to interference by the seal structure 45. Can be suppressed.

また、本実施形態のメタルセパレータ60によれば、最外端となるリブ63aの幅が、他のリブ63bの幅より広くされているので、上述した燃料極側コレクタ62の場合と同様に、集電部材63cとリブ63aとの接触面積(接合面積)を十分に確保することができ、集電部材62cとリブ62aとの接合強度を十分に確保することができる。その結果、燃料電池スタック100の構成時(積層時)に、シール構造体45による干渉によって集電部材62cが破損されることを好適に抑制できる。   Further, according to the metal separator 60 of the present embodiment, since the width of the rib 63a which is the outermost end is made wider than the width of the other rib 63b, as in the case of the fuel electrode side collector 62 described above, The contact area (bonding area) between the current collecting member 63c and the rib 63a can be sufficiently secured, and the bonding strength between the current collecting member 62c and the rib 62a can be sufficiently secured. As a result, when the fuel cell stack 100 is configured (at the time of stacking), it is possible to suitably suppress damage to the current collecting member 62c due to interference by the seal structure 45.

なお、上述した燃料極側コレクタ62を構成するリブ62a,62b及び集電部材62c、並びに、空気側コレクタ63を構成するリブ63a,63b及び集電部材63cとしては、上述したセパレータ本体61として採用した導電性の材質、即ち、ステンレス鋼、ニッケル合金、チタン合金などに金メッキ等の耐腐食導電処理を施したものを使用できる。   The ribs 62a and 62b and the current collecting member 62c constituting the fuel electrode side collector 62 and the ribs 63a and 63b and the current collecting member 63c constituting the air side collector 63 are employed as the separator body 61 described above. It is possible to use a conductive material that has been subjected to corrosion-resistant conductive treatment such as gold plating on stainless steel, nickel alloy, titanium alloy or the like.

以上説明したように、本実施形態によれば、シール構造体45,51による干渉によって破損され易い集電部材62c,63cの端辺62c1,63c1を、最外端となるリブ62a,63aの端面62a1,63a1における最外端辺を避けた面方向内側にて接合するので、シール構造体45,51と膜電極接合体20との距離を長くすることなく、シール構造体45,51との干渉によって最も破損し易い集電部材62c,63cの端辺62c1,63c1との距離を長くすることができる。よって、シール性を損なうことなくガスケット部材40(シール構造体45,51)による干渉に対しても集電部材62c,63cの破損(例えば、リブ62aからからの端辺62c1が剥離や、折れや歪みの発生など)を生じ難くすることができる。   As described above, according to the present embodiment, the end surfaces 62c1 and 63c1 of the current collecting members 62c and 63c that are easily damaged by the interference by the seal structures 45 and 51 are the end surfaces of the ribs 62a and 63a that are the outermost ends. Since the bonding is performed on the inner side in the plane direction avoiding the outermost end sides of 62a1 and 63a1, the interference with the seal structures 45 and 51 without increasing the distance between the seal structures 45 and 51 and the membrane electrode assembly 20 Therefore, it is possible to increase the distance from the end sides 62c1 and 63c1 of the current collecting members 62c and 63c that are most easily damaged. Therefore, damage to the current collecting members 62c and 63c (for example, the end 62c1 from the rib 62a is peeled off, bent, or the like) against interference by the gasket member 40 (seal structures 45 and 51) without impairing the sealing performance. Distortion) and the like can be made difficult to occur.

ここで、端辺62c1,63c1が位置する最外端のリブ62a,63aの幅は、他のリブ62b,63bの幅より広くされているので、端辺62c1,63c1を端面62a1,63a1における最外端辺を避けた面方向内側にて接合させたとしても、集電部材62cとリブ62aとの接触面積、及び、集電部材63cとリブ63aとの接触面積をそれぞれ十分に確保することができる。従って、集電部材62cとリブ62aとの接合強度、及び、集電部材63cとリブ63aとの接合強度を共に十分に確保することができるので、ガスケット部材40(シール構造体51)による干渉によって集電部材62cが破損されることを好適に抑制できる。   Here, since the widths of the outermost ribs 62a and 63a where the end sides 62c1 and 63c1 are located are wider than the widths of the other ribs 62b and 63b, the end sides 62c1 and 63c1 are arranged at the outermost ends 62a1 and 63a1. Even if they are joined on the inner side in the plane direction so as to avoid the outer edge, it is possible to sufficiently secure the contact area between the current collecting member 62c and the rib 62a and the contact area between the current collecting member 63c and the rib 63a. it can. Accordingly, both the bonding strength between the current collecting member 62c and the rib 62a and the bonding strength between the current collecting member 63c and the rib 63a can be sufficiently ensured, so that interference by the gasket member 40 (seal structure 51) can be ensured. It can suppress suitably that the current collection member 62c is damaged.

また、シール構造体45,51と最も干渉し易いリブ62a,63aの幅を、他のリブ62b,63bの幅より広くすることにより、そのリブ部材62a,63a自体の剛性を高めることができる。よって、ガスケット部材による干渉時に圧縮応力に対抗し得る剛性が確保されるので、リブ部材62a,63aも破損し難くなる。   Further, by making the width of the ribs 62a and 63a that most easily interfere with the seal structures 45 and 51 wider than the width of the other ribs 62b and 63b, the rigidity of the rib members 62a and 63a itself can be increased. Therefore, the rigidity capable of resisting the compressive stress at the time of interference by the gasket member is ensured, and the rib members 62a and 63a are not easily damaged.

以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。   As described above, the present invention has been described based on the embodiments, but the present invention is not limited to the above-described embodiments, and various improvements and modifications can be easily made without departing from the spirit of the present invention. It can be guessed.

例えば、上記実施形態では、最外端のリブ62a,63aの幅を他のリブ62b,63bの幅より広くする構成としたが、最外端のリブ62a,63aの幅と他のリブ62b,63bの幅とが略同一の構成であってもよい。   For example, in the above-described embodiment, the outermost ribs 62a and 63a are configured to be wider than the other ribs 62b and 63b. However, the outermost ribs 62a and 63a and the other ribs 62b, The width of 63b may be substantially the same.

また、上記実施形態では、最外端のリブ62a,63aの幅を他のリブ62b,63bの幅より広くすることにより、リブ部材62a,63a自体の剛性を高めたが、リブ62b,63bの材質や接合態様により、これらの最外端のリブ部材62a,63aの剛性を高める構成としてもよい。   In the above embodiment, the rigidity of the rib members 62a and 63a itself is increased by making the width of the outermost ribs 62a and 63a wider than the width of the other ribs 62b and 63b. It is good also as a structure which raises the rigidity of these rib members 62a and 63a of the outermost end with a material and a joining aspect.

また、上記実施形態では、燃料極側コレクタ62のリブ62a,62b、及び、空気極側コレクタ63のリブ63a,63bを略平行に配置するものとしたが、ガスの流路に応じて適宜配置を変更することができる。その際も、集電部材62c,63cの端辺のうち、最外端となるリブにおける端面の長手方向に沿って重なる端辺が、該端面の長手方向の端辺を避けた面方向内側に位置することにより、ガスケット部材40(シール構造体45,51)による干渉に対しても集電部材62c,63cの破損(例えば、リブ62aからからの端辺62c1が剥離や、折れや歪みの発生など)を生じ難くすることができる。   In the above embodiment, the ribs 62a and 62b of the fuel electrode side collector 62 and the ribs 63a and 63b of the air electrode side collector 63 are arranged substantially in parallel. Can be changed. Also in this case, of the end sides of the current collecting members 62c and 63c, the end side overlapping along the longitudinal direction of the end surface of the rib serving as the outermost end is on the inner side in the plane direction avoiding the end side in the longitudinal direction of the end surface. By being positioned, damage to the current collecting members 62c and 63c (for example, the end side 62c1 from the rib 62a is peeled off, broken or distorted) against interference by the gasket member 40 (the seal structures 45 and 51). Etc.) can be made difficult to occur.

燃料電池の単位セルが複数積層された燃料電池スタックの一部を示す分解斜視図である。1 is an exploded perspective view showing a part of a fuel cell stack in which a plurality of unit cells of a fuel cell are stacked. (a)は、内周側に膜電極接合体が一体化されているガスケット部材の一面側を模式的に示す斜視図であり、(b)は、図2(a)に示すガスケット部材の裏面側を模式的に示す斜視図であり、(c)は、図2(a)のIIc−IIc線における断面図である。(A) is a perspective view which shows typically the one surface side of the gasket member by which the membrane electrode assembly is integrated by the inner peripheral side, (b) is the back surface of the gasket member shown to Fig.2 (a). It is a perspective view which shows the side typically, (c) is sectional drawing in the IIc-IIc line | wire of Fig.2 (a). (a)は、図2(a)において矢印IIIa方向から見た部分の正面図であり、(b)は、図3(a)のIIIb−IIIb線における断面図であり、(c)は、図2(a)において矢印IIIc方向から見た部分の正面図である。(A) is the front view of the part seen from the arrow IIIa direction in Fig.2 (a), (b) is sectional drawing in the IIIb-IIIb line | wire of Fig.3 (a), (c) is It is the front view of the part seen from the arrow IIIc direction in Fig.2 (a). (a)は、メタルセパレータの一面側を模式的に示す斜視図であり、(b)は、図4(a)に示すメタルセパレータの裏面側を模式的に示す斜視図であり、(c)は、図4(a)におけるA部を矢印IVc方向から見た拡大図であり、(d)は、図4(a)のIVd−IVd線における断面図である。(A) is a perspective view which shows typically the one surface side of a metal separator, (b) is a perspective view which shows typically the back surface side of the metal separator shown to Fig.4 (a), (c) These are the enlarged views which looked at the A section in Fig.4 (a) from the arrow IVc direction, (d) is sectional drawing in the IVd-IVd line | wire of Fig.4 (a).

符号の説明Explanation of symbols

10 単位セル
21 固体高分子電解質膜
22 空気極(カソード極)
23 燃料極(アノード極)
60 メタルセパレータ(燃料電池用セパレータ)
61 セパレータ本体
62a リブ(複数本のリブ部材の一部、最も外側に位置するリブ部材)
62b リブ(複数本のリブ部材の一部、他のリブ部材)
62c 集電部材
62d 空間(ガスの流路)
63a リブ(複数本のリブ部材の一部、最も外側に位置するリブ部材)
63b リブ(複数本のリブ部材の一部、他のリブ部材)
63c 集電部材
63d 空間(ガスの流路)
100 燃料電池スタック
10 Unit cell 21 Solid polymer electrolyte membrane 22 Air electrode (cathode electrode)
23 Fuel electrode (anode electrode)
60 Metal separator (separator for fuel cell)
61 Separator body 62a Rib (a part of plural rib members, rib member located on the outermost side)
62b Rib (part of multiple rib members, other rib members)
62c Current collecting member 62d Space (gas flow path)
63a rib (a part of a plurality of rib members, the rib member located on the outermost side)
63b rib (a part of plural rib members, other rib members)
63c Current collecting member 63d Space (gas flow path)
100 Fuel cell stack

Claims (3)

固体高分子電解質膜とその固体高分子電解質膜のそれぞれ片面に積層されたアノード極とカソード極とを有する膜電極接合体を、該膜電極接合体の外周に配設されるガスケットを挟んで積層するための燃料電池用セパレータであって、
導電性を有する板状のセパレータ本体と、
前記セパレータ本体の少なくとも片面かつ前記ガスケットの内周近傍に立設され、その配置によって前記アノード極又は前記カソード極へ供給するガスの流路を形成する複数本の導電性のリブ部材と、
前記複数本のリブ部材の端面上に架設され、前記固体高分子電解質膜を挟持したときに前記アノード極又は前記カソード極に当接されると共に多数の開口を有する板状の集電部材と、を備え、
前記集電部材の端辺のうち、前記リブ部材における端面の長手方向に沿って重なる端辺が、該端面の長手方向の端辺を避けた面方向内側に位置することを特徴とする燃料電池用セパレータ。
A membrane electrode assembly having an anode electrode and a cathode electrode laminated on each side of a solid polymer electrolyte membrane and the solid polymer electrolyte membrane is laminated with a gasket disposed on the outer periphery of the membrane electrode assembly. A separator for a fuel cell,
A plate-like separator body having conductivity;
A plurality of conductive rib members that stand on at least one surface of the separator main body and in the vicinity of the inner periphery of the gasket, and that form gas flow paths to be supplied to the anode electrode or the cathode electrode by the arrangement;
A plate-like current collecting member that is provided on the end surfaces of the plurality of rib members and has a large number of openings while being in contact with the anode electrode or the cathode electrode when sandwiching the solid polymer electrolyte membrane; With
Of the end sides of the current collecting member, an end side that overlaps along the longitudinal direction of the end face of the rib member is located on the inner side in the plane direction avoiding the end side in the longitudinal direction of the end face. Separator for use.
前記複数本のリブ部材は、略平行に配置されており、最も外側に位置するリブ部材の剛性が、他のリブ部材の剛性に比べて高くされていることを特徴とする請求項1記載の燃料電池用セパレータ。   The plurality of rib members are arranged substantially in parallel, and the rigidity of the outermost rib member is higher than the rigidity of other rib members. Fuel cell separator. 前記複数本のリブ部材は、略平行に配置されており、最も外側に位置するリブ部材の幅が、他のリブ部材の幅に比べて広くされていることを特徴とする請求項1又は2に記載の燃料電池用セパレータ。




The plurality of rib members are arranged substantially in parallel, and the width of the outermost rib member is wider than the width of other rib members. A separator for a fuel cell as described in 1.




JP2007270732A 2007-10-17 2007-10-17 Fuel cell separator Expired - Fee Related JP5157363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007270732A JP5157363B2 (en) 2007-10-17 2007-10-17 Fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007270732A JP5157363B2 (en) 2007-10-17 2007-10-17 Fuel cell separator

Publications (2)

Publication Number Publication Date
JP2009099425A true JP2009099425A (en) 2009-05-07
JP5157363B2 JP5157363B2 (en) 2013-03-06

Family

ID=40702238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007270732A Expired - Fee Related JP5157363B2 (en) 2007-10-17 2007-10-17 Fuel cell separator

Country Status (1)

Country Link
JP (1) JP5157363B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011008951A (en) * 2009-06-23 2011-01-13 Toyota Motor Corp Gasket for fuel cell, laminate member for fuel cell, and fuel cell
JP2012146522A (en) * 2011-01-12 2012-08-02 Honda Motor Co Ltd Fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209470A (en) * 2004-01-22 2005-08-04 Equos Research Co Ltd Fuel cell
JP2007053007A (en) * 2005-08-18 2007-03-01 Toyota Motor Corp Fuel cell
JP2007280636A (en) * 2006-04-03 2007-10-25 Dainippon Printing Co Ltd Separator for polymer electrolyte fuel cell and its manufacturing method
JP2007299619A (en) * 2006-04-28 2007-11-15 Equos Research Co Ltd Separator unit and fuel cell stack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209470A (en) * 2004-01-22 2005-08-04 Equos Research Co Ltd Fuel cell
JP2007053007A (en) * 2005-08-18 2007-03-01 Toyota Motor Corp Fuel cell
JP2007280636A (en) * 2006-04-03 2007-10-25 Dainippon Printing Co Ltd Separator for polymer electrolyte fuel cell and its manufacturing method
JP2007299619A (en) * 2006-04-28 2007-11-15 Equos Research Co Ltd Separator unit and fuel cell stack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011008951A (en) * 2009-06-23 2011-01-13 Toyota Motor Corp Gasket for fuel cell, laminate member for fuel cell, and fuel cell
JP2012146522A (en) * 2011-01-12 2012-08-02 Honda Motor Co Ltd Fuel cell

Also Published As

Publication number Publication date
JP5157363B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5412804B2 (en) Fuel cell stack
US10320009B2 (en) Deformation absorption member and fuel cell
JP2011003453A (en) Sealing structure of fuel cell
WO2013171323A1 (en) Arrangement for the alignment of a membrane - electrode -assemblies within a stack during assembly
JP4929647B2 (en) Fuel cell
JP5130623B2 (en) Fuel cell and gasket
JP2006294453A (en) Separator for fuel cell
WO2014103528A1 (en) Fuel cell stack
JP2008171613A (en) Fuel cells
JP5790088B2 (en) Fuel cell
CN104247116A (en) Fuel cell stack
JP5157363B2 (en) Fuel cell separator
JP5181950B2 (en) Fuel cell
US9843063B2 (en) Fuel cell
JP2011222393A (en) Fuel cell
JP2013012324A (en) Fuel cell
JP2009099423A (en) Gasket member
JP2010015939A (en) Fuel cell
JP6172510B2 (en) Single cell for fuel cell
JP2008243799A (en) Fuel cell
JP2009152134A (en) Fuel cell
JP6395121B2 (en) Fuel cell stack
JP2021163534A (en) Separator for fuel cell
JP2009099424A (en) Gasket member and fuel cell stack
US11996591B2 (en) Attachment structure for deformation absorption member and attachment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R150 Certificate of patent or registration of utility model

Ref document number: 5157363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees