JP2009098108A - Refinement method of material having sugar chain and utilization of the same - Google Patents

Refinement method of material having sugar chain and utilization of the same Download PDF

Info

Publication number
JP2009098108A
JP2009098108A JP2007296104A JP2007296104A JP2009098108A JP 2009098108 A JP2009098108 A JP 2009098108A JP 2007296104 A JP2007296104 A JP 2007296104A JP 2007296104 A JP2007296104 A JP 2007296104A JP 2009098108 A JP2009098108 A JP 2009098108A
Authority
JP
Japan
Prior art keywords
lectin
sugar chain
substance
sample
sialic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007296104A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sekizaki
裕幸 関崎
Yasufumi Murakami
康文 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
BIO MATRIX RES Inc
Original Assignee
Tokyo University of Science
BIO MATRIX RES Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science, BIO MATRIX RES Inc filed Critical Tokyo University of Science
Priority to JP2007296104A priority Critical patent/JP2009098108A/en
Publication of JP2009098108A publication Critical patent/JP2009098108A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for less-invasively identifying or estimating a sugar chain modification due to a disease and a clinical condition related to a variation at an early stage. <P>SOLUTION: An albumin occupying a majority of blood is excluded by less-invasively sampling the blood by using a material for recognizing a particular sugar chain such as lectin, and fractionating and concentrating the blood. The minute quantity of a disease marker is detected by comprehensively fractionating and concentrating only a protein having the particular sugar chain. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、シアル酸(Neu5Ac α 2−3Gal β 1−4GlcNAc)またはフコースなどの糖またはそれらの糖鎖を持つ糖タンパク質を分画する方法であり、かつ、特定糖鎖にて試料状態または病態を識別する方法に関する。より具体的には、健常(非病態)試料と比較し有意に特定糖鎖が存在する場合、特定糖鎖に関連する病態にある可能性があると言う推測を行なう方法に関する。  The present invention is a method for fractionating a saccharide such as sialic acid (Neu5Ac α2-3Galβ1-4GlcNAc) or fucose or a glycoprotein having such a sugar chain, and the sample state or disease state in a specific sugar chain It relates to a method for identifying. More specifically, the present invention relates to a method for estimating that there is a possibility of a pathological condition related to a specific sugar chain when a specific sugar chain is significantly present as compared with a healthy (non-pathological condition) sample.

病態や試料状態を識別する方法には侵襲的に患部を切除・摘出した組織をDNAアレイやタイリングアレイにて解析する方法があるが、ゲノム解析だけではリン酸化状態や糖鎖修飾などの翻訳後修飾を解析する事は非常に困難である。
一般に悪性腫瘍などの病態をバイオプシーなどにより解析する場合、悪性腫瘍組織に侵された患部の外科的切除・摘出が必要である。この方法は侵襲的であり、しかも腫瘍の病期が進行している時点で発見される可能性が非常に高い。
腫瘍は転移する前に発見できれば局部的な外科的手術や抗癌剤などの化学療法により完治する可能性が高くなる事実を考慮すると、特に低侵襲的に採血した血液などの試料を用いる事が腫瘍などの病態の早期発見ひいては完治に反映できるものと思われる。
There are methods to identify the pathologic state and sample state by analyzing the invasively excised and removed tissues using DNA array or tiling array. However, genome analysis alone translates phosphorylation state and sugar chain modification. It is very difficult to analyze the post-modification.
In general, when a pathological condition such as a malignant tumor is analyzed by biopsy or the like, it is necessary to surgically remove and remove the affected area affected by the malignant tumor tissue. This method is invasive and is very likely to be discovered at a time when the stage of the tumor is advancing.
Considering the fact that if tumors can be discovered before metastasis, they are likely to be completely cured by local surgical operations or chemotherapy such as anticancer drugs, it is particularly important to use samples such as blood collected minimally invasively. It is thought that it can be reflected in the early detection of the pathological condition of the disease and its complete cure.

癌化に伴い糖鎖修飾の変異が生じる事が知られている。実際にCA19−9などの著名な癌抗原は糖鎖抗原であり、これらの有無が健常者と癌患者の病態を識別する際に実際に臨床で用いられている。特にシアル酸付加が起こっている事が知られているが、癌化に伴うシアル酸に着目した血液分画法の報告は少ない。
特定糖鎖を持つタンパク質に選択的に結合する物質としては抗体があり、実際に臨床診断にも多く用いられている。しかしながら、特定糖鎖に対する抗体を作製する事は極めて困難であるだけでなく、有効な疾患マーカーに対する抗体が少ないため擬陽性を呈する事が多い。
It is known that sugar chain modification mutations occur with canceration. In fact, prominent cancer antigens such as CA19-9 are sugar chain antigens, and the presence or absence of these is actually used clinically in distinguishing the pathology of healthy individuals and cancer patients. In particular, it is known that sialic acid addition has occurred, but there are few reports of blood fractionation methods focusing on sialic acid accompanying canceration.
An antibody is a substance that selectively binds to a protein having a specific sugar chain, and is actually used in many clinical diagnoses. However, it is not only extremely difficult to produce an antibody against a specific sugar chain, but it often exhibits false positives because there are few antibodies against effective disease markers.

特定糖鎖を持つタンパク質に選択的に結合する物質としては他にレクチンがあり、天然物からの抽出または人工タンパク質として合成が可能である。結合能力は一般的に抗体に劣るものの特定糖鎖に選択的に結合できるため、網羅的かつ選択的な解析に適する。
しかも、低侵襲的に採血したタンパク質のほとんどは糖タンパク質であり、その50%以上を占める単純タンパク質であるアルブミンとは結合しないため、効率的に特定糖鎖を持つタンパク質のみを分画できる。
特に、多くのサイトカイン、ホルモン、疾患マーカーなどは数ng/ml以下の微量のものが多いため、有効な分画法や濃縮法が求められていたが、特定糖鎖を持つタンパク質を分画する事でこれらの問題が解決可能である。
Other substances that selectively bind to proteins with specific sugar chains include lectins, which can be extracted from natural products or synthesized as artificial proteins. Although the binding ability is generally inferior to that of an antibody, it can selectively bind to a specific sugar chain, and thus is suitable for exhaustive and selective analysis.
In addition, most of the proteins collected in a minimally invasive manner are glycoproteins and do not bind to albumin, which is a simple protein occupying 50% or more of them, so that only proteins having specific sugar chains can be efficiently fractionated.
In particular, since many cytokines, hormones, disease markers, etc. are in very small amounts of several ng / ml or less, effective fractionation methods and concentration methods have been sought, but proteins with specific sugar chains are fractionated. This can solve these problems.

タンパク質の比較解析はゲル、キャピラリー、カラムなどで分画し、MALDI−TOF−MS(Matrix assisted laser desorption ionization time of flight Mass Spectrometer)などの質量分析装置にて同定するのが一般的であり、プロテオミクスの気運と共に精度・感度ともにa(アット)molレベルのタンパク質の同定が可能である。  Comparative analysis of proteins is generally performed by fractionation with gels, capillaries, columns, etc., and identified with a mass spectrometer such as MALDI-TOF-MS (Matrix assisted laser desorption time of flight Mass Spectrometer). It is possible to identify a (at) mol level protein in both accuracy and sensitivity.

タンパク質を網羅的に分画し比較解析できる技術はスクリーニング、臨床診断、薬品への応用において期待でき、ゲノミクスではスクリーニングできなかったより重要な疾患マーカーを発見できる事と期待される。  A technology that can comprehensively fractionate and comparatively analyze proteins can be expected in screening, clinical diagnosis, and application to drugs, and is expected to discover more important disease markers that could not be screened by genomics.

質量分析装置(MS)の精度・感度が飛躍的に改良されタンパク質同定技術は一般化されたが、血液などにおけるタンパク質のダイナミックレンジは非常に広く、しかも翻訳後修飾を考慮するとさらに解析における複雑性を増す。
特に血液中の単純タンパク質であるアルブミンが優先的に存在し比較解析を困難にしているため、糖鎖を持たないアルブミンを除外し、特定の糖鎖を持つタンパク質のみを分画し濃縮する事ができれば、微量な疾患マーカーを同定できる可能性は飛躍的に増加する。
Although the accuracy and sensitivity of mass spectrometers (MS) have been dramatically improved and protein identification technology has been generalized, the dynamic range of proteins in blood and so on is very wide, and more complex in analysis when post-translational modifications are considered Increase.
In particular, albumin, which is a simple protein in blood, preferentially exists, making comparative analysis difficult, so it is possible to exclude albumin that does not have a sugar chain and fractionate and concentrate only a protein that has a specific sugar chain. If possible, the possibility of identifying a trace amount of a disease marker increases dramatically.

前立腺癌特異的抗原PSAの有無を識別する方法(特開2002−55108)は存在するが、例えばイヌエンジュレクチンを用いてのシアル酸に関する網羅的な分画及び濃縮を行った報告はない。
特定糖鎖に結合する物質(レクチンなど)を用いて、例えば血液を用いた網羅的な特定糖鎖を持つタンパク質の分画による疾患マーカー探索法は未熟であるため、より疾患に関わる特定糖鎖の網羅的探索法が望まれている。
Although there is a method for discriminating the presence or absence of prostate cancer-specific antigen PSA (Japanese Patent Application Laid-Open No. 2002-55108), for example, there has been no report on exhaustive fractionation and concentration of sialic acid using canine endurectin.
Since the method for searching for a disease marker by using a substance that binds to a specific sugar chain (lectin, etc.), for example, fractionation of a protein having a comprehensive specific sugar chain using blood, is immature, the specific sugar chain related to the disease An exhaustive search method is desired.

加えて、特定糖鎖に対する抗体が存在しない時であっても、特定糖鎖を持つタンパク質を健常試料と比較する事で病態を識別または推定する事を可能とする。
すなわち、疾患に伴う糖鎖修飾に関する病態を低侵襲的かつ早期に識別または推定する方法を提供する事を目的とする。
In addition, even when there is no antibody against a specific sugar chain, a disease state can be identified or estimated by comparing a protein having the specific sugar chain with a healthy sample.
That is, an object of the present invention is to provide a method for identifying or estimating a disease state related to sugar chain modification accompanying a disease minimally invasively and at an early stage.

本発明者は従来技術の問題点に対し鋭意検討した結果、特定糖鎖に結合するタンパク質を用いる事で、特定糖鎖を持つタンパク質を低侵襲的かつ網羅的に分画かつ比較しうる方法を見出した。  As a result of intensive studies on the problems of the prior art, the present inventor has developed a method capable of fractionating and comparing proteins having specific sugar chains in a minimally invasive and comprehensive manner by using proteins that bind to specific sugar chains. I found it.

より具体的には、特定の糖鎖を持つタンパク質のみをレクチンを用いる事で分画し、単純タンパク質であり血液の大部分を占めるアルブミンを未結合分画として分離する事で、特定糖鎖を持つ微量なタンパク質のみを濃縮する事を可能にする。
レクチンは糖鎖を認識するタンパク質の総称であり、動植物や微生物などに広く存在する。本発明では例えばイヌエンジュレクチンなどのシアル酸に親和性を有するレクチンをアフィニティカラムの支持物として利用し、高濃度のシアル酸を持ったタンパク質を得る事を特徴とする。
More specifically, only a protein having a specific sugar chain is fractionated by using lectin, and albumin that occupies most of the blood, which is a simple protein, is separated as an unbound fraction. It is possible to concentrate only a small amount of protein.
Lectin is a general term for proteins that recognize sugar chains, and is widely found in animals and plants and microorganisms. The present invention is characterized in that, for example, a protein having a high concentration of sialic acid is obtained by using a lectin having affinity for sialic acid such as canine endurectin as a support for the affinity column.

このようなイヌエンジュレクチンを支持物とするレクチンアフィニティカラムに、シアル酸を含む試料を通液すると、レクチンに対しシアル酸を持ったタンパク質のみが選択的に結合される(結合ステップ)。次に洗浄液を通液すると、夾雑物などはレクチンから流出しシアル酸を持つタンパク質のみがレクチン結合分画として保持される(洗浄ステップ)。さらに溶出液をレクチンカラムに通液する事でレクチン結合分画のシアル酸を持ったタンパク質が溶出され選択的かつ高濃度のシアル酸を持ったタンパク質を得る事が可能となる(溶出ステップ)。  When a sample containing sialic acid is passed through such a lectin affinity column using canine endurectin as a support, only the protein having sialic acid is selectively bound to the lectin (binding step). Next, when the washing solution is passed, contaminants flow out of the lectin, and only the protein having sialic acid is retained as a lectin-binding fraction (washing step). Furthermore, by passing the eluate through a lectin column, the protein having sialic acid in the lectin-binding fraction is eluted, and it becomes possible to obtain a protein having a selective and high concentration of sialic acid (elution step).

レクチンアフィニティカラムによる分画及び濃縮を行なった試料、例えば健常試料及び病態試料、を2次元電気泳動などによって差異のあるタンパク質を比較する事で、病態に関与するマーカーとして病態の識別または推測が可能になる。
この方法はマーカーに対する抗体が存在しない場合でも病態を識別または推測しうる事を意味する。
By comparing proteins that have been fractionated and concentrated using a lectin affinity column, such as healthy samples and pathological samples, by two-dimensional electrophoresis, etc., it is possible to identify or estimate the pathological condition as a marker related to the pathological condition. become.
This method means that a disease state can be identified or estimated even in the absence of an antibody against the marker.

即ち、本発明は、
(1)試料をレクチンと接触させ、前記レクチンに結合する分画を分離することにより、試料中の糖鎖を持つ物質を精製する方法であって、前記レクチンがイヌエンジュレクチンであるときはシアル酸を含む糖鎖を持つ物質を、前記レクチンがレンチルレクチン、又はヒイロチャワンタケレクチンであるときはフコースを含む糖鎖を持つ物質を、精製することを特徴とする、方法;
(2)前記レクチンが、支持体に固定されている、(1)に記載の方法;
(3)前記支持体が、セファロース、アガロース、及びデキストランからなる群より選択される少なくとも1種である、(2)に記載の方法;
(4)試料をレクチンと接触させ、レクチンに結合した分画を分離する工程を、アフィニティークロマトグラフィーにより行う、(1)〜(3)のいずれか1項に記載の方法;
(5)前記糖鎖を持つ物質が、糖タンパク質である、(1)〜(4)のいずれか1項に記載の方法;
(6)試料が、血液、血清、血漿、細胞抽出液、尿、リンパ液、組織液、腹水、髄液、及び体液からなる群より選択される少なくとも1種である、(1)〜(5)のいずれか1項に記載の方法;
(7)試料が、健常者、及び/又は疾患の患者由来のものである、(1)〜(6)のいずれか1項に記載の方法;
(8)(1)〜(7)のいずれか1項に記載の方法により精製した糖鎖を持つ物質を、二次元電気泳動により分離する工程、及び
前記工程で得られた結果を、複数の試料の間で比較する工程、
を含む、試料間で発現量に差がある、シアル酸又はフコースを含む糖鎖を持つ物質を検出する方法;
(9)(8)に記載の方法により検出した物質を、質量分析装置により同定する工程、
を含む、試料間で発現量に差がある、シアル酸又はフコースを含む糖鎖を持つ物質を同定する方法;
(10)質量分析装置が、MALDI−TOF−MS、ESI−MS、SELDI−MS、LC−MS、Q−TOF−MS、及びメンブレンMSからなる群より選択される少なくとも1種である、(9)に記載の方法;
(11)疾患マーカーを探索する方法であって、
(9)〜(10)のいずれか1項に記載の方法により得られた結果を用いて、探索する方法;
(12)病態を推測する方法であって、
(9)〜(10)のいずれか1項に記載の方法により得られた結果を用いて、推測する方法;
に関する。
That is, the present invention
(1) A method for purifying a substance having a sugar chain in a sample by bringing the sample into contact with a lectin and separating a fraction that binds to the lectin, wherein sialic acid is used when the lectin is canine endurectin A method comprising purifying a substance having a sugar chain containing a sugar chain containing fucose when the lectin is a lentil lectin or a yellow bamboo lectin;
(2) The method according to (1), wherein the lectin is immobilized on a support;
(3) The method according to (2), wherein the support is at least one selected from the group consisting of sepharose, agarose, and dextran;
(4) The method according to any one of (1) to (3), wherein the step of bringing the sample into contact with the lectin and separating the fraction bound to the lectin is performed by affinity chromatography;
(5) The method according to any one of (1) to (4), wherein the substance having a sugar chain is a glycoprotein;
(6) The sample according to (1) to (5), wherein the sample is at least one selected from the group consisting of blood, serum, plasma, cell extract, urine, lymph, tissue fluid, ascites, spinal fluid, and body fluid The method according to any one of the above;
(7) The method according to any one of (1) to (6), wherein the sample is derived from a healthy person and / or a diseased patient;
(8) A step of separating a substance having a sugar chain purified by the method according to any one of (1) to (7) by two-dimensional electrophoresis, and a result obtained in the step, Comparing between samples;
A method for detecting a substance having a sugar chain containing sialic acid or fucose, the expression level of which differs between samples,
(9) a step of identifying a substance detected by the method according to (8) with a mass spectrometer,
A method for identifying a substance having a sugar chain containing sialic acid or fucose, the expression level of which differs between samples,
(10) The mass spectrometer is at least one selected from the group consisting of MALDI-TOF-MS, ESI-MS, SELDI-MS, LC-MS, Q-TOF-MS, and membrane MS. ) Method described in;
(11) A method for searching for a disease marker,
(9) A method for searching using a result obtained by the method according to any one of (10);
(12) A method for estimating a disease state,
(9) A method for inferring using the result obtained by the method according to any one of (10);
About.

本発明において、例えば血液における特定糖鎖(シアル酸など)の分画法によれば、特定糖鎖に対する抗体の有無に関わらず、特定糖鎖の修飾が関連した病態を低侵襲的かつ早期に識別または推定する事ができる。  In the present invention, for example, according to a method for fractionating a specific sugar chain (such as sialic acid) in blood, regardless of the presence or absence of an antibody against the specific sugar chain, the pathological condition associated with the modification of the specific sugar chain can be minimally invasive and early. Can be identified or estimated.

より詳細には、血液における比較解析を困難にさせる大量のアルブミンを除外でき、特定の糖鎖を持つタンパク質のみを分画し濃縮する事が可能になるため、より微量で検出できなかった疾患マーカーの探索および比較解析には絶大な効果を発揮するものと期待される。  More specifically, a large amount of albumin that makes comparative analysis in blood difficult can be excluded, and only a protein with a specific sugar chain can be fractionated and concentrated. It is expected to have a tremendous effect on the search and comparative analysis.

よって本発明は従来技術の問題点を大幅に解消した分画法及び病態の識別法として臨床診断に大きく貢献するだけでなく、疾患に関与する特定糖鎖を対象とした抗体医薬、糖鎖医薬などの医薬分野への発展に寄与する期待が大きいものである。  Therefore, the present invention not only greatly contributes to clinical diagnosis as a fractionation method and a disease state identification method that have largely solved the problems of the prior art, but also an antibody drug and a sugar chain drug targeting specific sugar chains involved in diseases. There is great expectation to contribute to the development of the pharmaceutical field.

以下、本発明について、その好ましい態様を具体的に説明する。  Hereinafter, preferred embodiments of the present invention will be specifically described.

本発明に使用する特定糖鎖に結合しうる物質は、シアル酸(Neu5Ac α 2−3Gal β 1−4GlcNAc)やフコースなどの有無を識別する事が可能であるものであれば限定されないが、特にイヌエンジュ(Maackia amurensis)、レンチル(Lens culinaris)、ヒイロチャワンタケ(Aleuria aurantia)由来のレクチンが特に適している。  The substance capable of binding to the specific sugar chain used in the present invention is not limited as long as it can identify the presence or absence of sialic acid (Neu5Ac α 2-3Gal β 1-4GlcNAc), fucose, etc. Particularly suitable are lectins derived from canaencia (Mackia amurensis), lentil (Lens culinaris), and Aleuria aurantia.

本発明に使用するシアル酸(Neu5Ac α 2−3Gal β 1−4GlcNAc)やフコースなどを含む試料としては、血液、血清、血漿、尿、体液、細胞抽出液、リンパ液、組織液、腹水、髄液などを挙げる事が出来る。  Samples containing sialic acid (Neu5Acα2-3Galβ1-4GlcNAc) and fucose used in the present invention include blood, serum, plasma, urine, body fluid, cell extract, lymph fluid, tissue fluid, ascites, cerebrospinal fluid, etc. Can be mentioned.

試料の分画はアフィニティークロマトグラフィーにて行なう。基本的には特定糖鎖に結合する物質を架橋させた支持物を固定相とする。これらの物質を用いる順序または混合する割合などは特に規定するものではない。
支持物としての充填担体はセファロースやアガロース、デキストランなどが望ましく、担体の形状はビーズ状、シート状、網目状などあらゆる形状を含んで良い。
架橋条件は適量のレクチンとNHS担体(N−hydroxysuccinimide activated Sepharose:GEヘルスケア社)をHEPES溶液中にて混合し回旋させる。架橋後、未反応基をTris溶液にてブロッキングし、再度HEPES溶液で平衡化しレクチンカラムとする。
作製したレクチンカラムに血液試料や細胞抽出液を適量添加し一晩結合させ、非結合分画は結合溶液で流出し、結合分画をグリシンで溶出する。
Sample fractionation is performed by affinity chromatography. Basically, a support obtained by crosslinking a substance that binds to a specific sugar chain is used as a stationary phase. The order in which these substances are used or the mixing ratio is not particularly specified.
The packed carrier as the support is preferably sepharose, agarose, dextran, etc. The shape of the carrier may include all shapes such as beads, sheets, and meshes.
As the crosslinking conditions, an appropriate amount of lectin and NHS carrier (N-hydroxysuccinylated activated Sepharose: GE Healthcare) are mixed in a HEPES solution and rotated. After crosslinking, unreacted groups are blocked with a Tris solution, equilibrated again with a HEPES solution, and used as a lectin column.
An appropriate amount of a blood sample or cell extract is added to the prepared lectin column and allowed to bind overnight, the unbound fraction is washed out with the binding solution, and the bound fraction is eluted with glycine.

溶出した結合分画をさらに濃縮した後、タンパク質の量を定量し、そのうち数百μgを2次元電気泳動により比較解析し、健常試料との差異のあるタンパク質を検出する。  After further concentrating the eluted bound fraction, the amount of protein is quantified, and a few hundred μg of that is compared and analyzed by two-dimensional electrophoresis to detect proteins that differ from healthy samples.

差異のあったタンパク質を質量分析装置(MS)にて同定する事が望ましく、同定されたタンパク質は病態に関与する可能性が非常に高いと判断しうる。  It is desirable to identify a protein having a difference with a mass spectrometer (MS), and it can be determined that the identified protein is very likely to be involved in a disease state.

本発明において糖鎖を持つ物質とは、糖タンパク質をはじめ、糖脂質、遊離の糖鎖など、糖鎖を有する物質であれば何でもよい。  In the present invention, the substance having a sugar chain may be any substance having a sugar chain, such as a glycoprotein, a glycolipid, and a free sugar chain.

本発明において試料は、健常者由来、及び疾患の患者由来の双方を用いることもできるが、いずれか一方のみを用いることもできる。疾患の患者由来の試料とは、疾患であることが明らかな者に限らず、疾患の可能性がある者由来の試料も含まれる。また、試料は、複数の者から採取したものを混合してもよい。  In the present invention, as the sample, both a healthy subject and a diseased patient can be used, but only one of them can be used. The sample derived from a patient with a disease is not limited to a person apparently having a disease, but also includes a sample derived from a person with a possibility of a disease. Further, samples collected from a plurality of persons may be mixed.

本発明において疾患とは、例えば、癌、糖尿病などの生活習慣病、メタボリックシンドロームが挙げられる。  Examples of the disease in the present invention include cancer, lifestyle-related diseases such as diabetes, and metabolic syndrome.

本発明において疾患マーカーとは、その量的又は質的差異により、特定の疾患の進行又は病態を推測しうるものを言う。
本発明において、疾患マーカーを探索する方法は、健常者由来の試料及び特定の疾患をもつ患者由来の試料を使用して、レクチンカラムクロマトグラフィーでタンパク質を精製し、二次元電気泳動にて分離した結果を比較する。そこで、患者の試料においてのみ検出されたスポット、又は健常者の試料におけるスポットよりも濃いスポットを選択し、このような、発現量に差があるタンパク質を質量分析装置で同定する。こうして同定した結果から、特定の疾患に関連のある、新規の疾患マーカーの候補を抽出する。比較する対象としては、健常者と特定の疾患をもつ患者の間で行う他、進行度の異なる特定の疾患をもつ患者の間で行うこともできる。
本発明を利用して得られた疾患マーカーは、診断や創薬に活用する他、特定の病態を推測するための指標に活用することができる。
In the present invention, a disease marker refers to a marker that can be used to estimate the progression or pathology of a specific disease based on the quantitative or qualitative difference.
In the present invention, a method for searching for a disease marker is performed by purifying a protein by lectin column chromatography using a sample derived from a healthy subject and a sample derived from a patient having a specific disease, and separating the protein by two-dimensional electrophoresis. Compare the results. Therefore, a spot detected only in a patient sample or a spot darker than a spot in a healthy sample is selected, and such a protein having a difference in expression level is identified by a mass spectrometer. From the identified results, a novel disease marker candidate related to a specific disease is extracted. As an object to be compared, it can be performed between a healthy person and a patient having a specific disease, or can be performed between patients having a specific disease with different degrees of progression.
The disease marker obtained by using the present invention can be used not only for diagnosis and drug discovery but also as an index for estimating a specific disease state.

本発明において、病態を推測する方法は、ある患者がどのような病態にあるかを詳しく調べたいときに、その患者由来の試料を使用して、健常者由来の試料又は異なる病態の患者と比較して発現量に差があるタンパク質を検出し、同定する。このように同定したタンパク質が、前述のマーカーをはじめとする、特定の病態との関連性が明らかなものであれば、その情報から、特定の病態を推測することができる。  In the present invention, the method for estimating the pathological condition uses a sample derived from a patient and compares it with a sample derived from a healthy person or a patient having a different pathological condition when it is desired to examine in detail what pathological condition a patient has. Thus, proteins having different expression levels are detected and identified. If the protein thus identified is clearly related to a specific disease state including the aforementioned marker, the specific disease state can be estimated from the information.

以下に、本発明を実施例によりさらに詳しく説明するが、本発明の範囲はこれに限定されるものではない。
1.未分画とのイヌエンジュ処理分画との比較
健常人の血清を、イヌエンジュレクチンをNHS担体に架橋して作製したレクチンカラムに抵触させ、その結合分画のみをグリシンで溶出して濃縮した。
その後、何の処理もしない健常人の血清と、イヌエンジュレクチンカラムでシアル酸(Neu5Ac α 2−3Gal β 1−4GlcNAc)を持つタンパク質を含む血清試料を同量にして2次元電気泳動を行なった。
その結果、比較解析を困難にする最大の障害であるアルブミンの除外に成功しただけでなく、未処理の血清では検出できなかったタンパク質群が明確にスポットとして検出された(図1)。
これらの結果は、血液処理にはイヌエンジュレクチンによる分画及び濃縮が非常に有用である事を示している。
The present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited thereto.
1. Comparison between unfractionated and canine-end-treated fractions Normal human serum was brought into contact with a lectin column prepared by cross-linking canine endurectin with NHS carrier, and only the bound fraction was eluted with glycine and concentrated.
Thereafter, two-dimensional electrophoresis was performed using the same amount of serum from a healthy person who had not been treated and a serum sample containing a protein having sialic acid (Neu5Acα2-3Galβ1-4GlcNAc) on a canine endurectin column.
As a result, not only did albumin, which is the biggest obstacle that makes comparative analysis difficult, was successfully excluded, but protein groups that could not be detected with untreated serum were clearly detected as spots (FIG. 1).
These results indicate that fractionation and concentration with canine endurectin is very useful for blood treatment.

2.未分画とのレンチル処理分画との比較
健常人の血清を、レンチルレクチンをNHS担体に架橋して作製したレクチンカラムに抵触させ、その結合分画のみをグリシンで溶出して濃縮した。
その後、何の処理もしない健常人の血清と、レンチルレクチンカラムでフコースを持つタンパク質を含む血清試料を同量にして2次元電気泳動を行なった。
その結果、比較解析を困難にする最大の障害であるアルブミンの除外に成功しただけでなく、未処理の血清では検出できなかったタンパク質群が明確にスポットとして検出された(図2)。
これらの結果は、血液処理にはレンチルレクチンによる分画及び濃縮が非常に有用である事を示している。
2. Comparison of unfractionated and lentil-treated fractions Normal human serum was brought into contact with a lectin column prepared by crosslinking lentil lectin to NHS carrier, and only the bound fraction was eluted with glycine and concentrated.
Thereafter, two-dimensional electrophoresis was performed with the same amount of serum from a healthy person who had not been treated and a serum sample containing a protein having fucose in a lentil lectin column.
As a result, not only was the albumin, which was the biggest obstacle making comparative analysis difficult, successfully excluded, but a protein group that could not be detected by untreated serum was clearly detected as spots (FIG. 2).
These results indicate that fractionation and concentration with lentil lectin is very useful for blood treatment.

本発明によれば、特定の糖鎖を持つタンパク質を網羅的に精製することが可能である。本発明の精製方法を利用すれば、癌、及び糖鎖変異若しくは修飾に基づいて起こる疾患の臨床診断、特定の糖鎖を持つタンパク質を標的とした抗体医薬品の開発に有用である。  According to the present invention, it is possible to exhaustively purify a protein having a specific sugar chain. If the purification method of the present invention is used, it is useful for clinical diagnosis of cancers and diseases caused by sugar chain mutations or modifications, and development of antibody drugs targeting proteins with specific sugar chains.

未処理の健常血清試料(A)とイヌエンジュレクチンにて分画した健常血清試料(B)におけるタンパク質の2次元電気泳動の結果を示す写真である。  It is a photograph which shows the result of the two-dimensional electrophoresis of the protein in the untreated healthy serum sample (A) and the healthy serum sample (B) fractionated with canine endlectin. 未処理の健常血清試料(A)とレンチルレクチンにて分画した健常血清試料(B)におけるタンパク質の2次元電気泳動の結果を示す写真である。  It is a photograph which shows the result of the two-dimensional electrophoresis of the protein in an untreated healthy serum sample (A) and the healthy serum sample (B) fractionated with lentil lectin.

Claims (12)

試料をレクチンと接触させ、前記レクチンに結合する分画を分離することにより、試料中の糖鎖を持つ物質を精製する方法であって、前記レクチンがイヌエンジュレクチンであるときはシアル酸を含む糖鎖を持つ物質を、前記レクチンがレンチルレクチン、又はヒイロチャワンタケレクチンであるときはフコースを含む糖鎖を持つ物質を、精製することを特徴とする、方法。A method for purifying a substance having a sugar chain in a sample by contacting the sample with a lectin and separating a fraction that binds to the lectin, and when the lectin is canine endurectin, a sugar containing sialic acid A method comprising purifying a substance having a chain, and a substance having a sugar chain containing fucose when the lectin is a lentil lectin or a yellow bamboo lectin. 前記レクチンが、支持体に固定されている、請求項1に記載の方法。The method according to claim 1, wherein the lectin is immobilized on a support. 前記支持体が、セファロース、アガロース、及びデキストランからなる群より選択される少なくとも1種である、請求項2に記載の方法。The method according to claim 2, wherein the support is at least one selected from the group consisting of sepharose, agarose, and dextran. 試料をレクチンと接触させ、レクチンに結合した分画を分離する工程を、アフィニティークロマトグラフィーにより行う、請求項1〜3のいずれか1項に記載の方法。The method according to any one of claims 1 to 3, wherein the step of contacting the sample with the lectin and separating the fraction bound to the lectin is performed by affinity chromatography. 前記糖鎖を持つ物質が、糖タンパク質である、請求項1〜4のいずれか1項に記載の方法。The method according to any one of claims 1 to 4, wherein the substance having a sugar chain is a glycoprotein. 試料が、血液、血清、血漿、細胞抽出液、尿、リンパ液、組織液、腹水、髄液、及び体液からなる群より選択される少なくとも1種である、請求項1〜5のいずれか1項に記載の方法。The sample according to any one of claims 1 to 5, wherein the sample is at least one selected from the group consisting of blood, serum, plasma, cell extract, urine, lymph, tissue fluid, ascites, spinal fluid, and body fluid. The method described. 試料が、健常者、及び/又は疾患の患者由来のものである、請求項1〜6のいずれか1項に記載の方法。The method according to any one of claims 1 to 6, wherein the sample is derived from a healthy person and / or a diseased patient. 請求項1〜7のいずれか1項に記載の方法により精製した糖鎖を持つ物質を、二次元電気泳動により分離する工程、及び
前記工程で得られた結果を、複数の試料の間で比較する工程、
を含む、試料間で発現量に差がある、シアル酸又はフコースを含む糖鎖を持つ物質を検出する方法。
A step of separating a substance having a sugar chain purified by the method according to any one of claims 1 to 7 by two-dimensional electrophoresis, and comparing a result obtained in the step among a plurality of samples The process of
A method for detecting a substance having a sugar chain containing sialic acid or fucose, the expression level of which differs between samples.
請求項8に記載の方法により検出した物質を、質量分析装置により同定する工程、
を含む、試料間で発現量に差がある、シアル酸又はフコースを含む糖鎖を持つ物質を同定する方法。
Identifying the substance detected by the method according to claim 8 with a mass spectrometer,
A method for identifying a substance having a sugar chain containing sialic acid or fucose and having a difference in expression level between samples.
質量分析装置が、MALDI−TOF−MS、ESI−MS、SELDI−MS、LC−MS、Q−TOF−MS、及びメンブレンMSからなる群より選択される少なくとも1種である、請求項9に記載の方法。The mass spectrometer is at least one selected from the group consisting of MALDI-TOF-MS, ESI-MS, SELDI-MS, LC-MS, Q-TOF-MS, and membrane MS. the method of. 疾患マーカーを探索する方法であって、
請求項9〜10のいずれか1項に記載の方法により得られた結果を用いて、探索する方法。
A method for searching for a disease marker,
The search method using the result obtained by the method of any one of Claims 9-10.
病態を推測する方法であって、
請求項9〜10のいずれか1項に記載の方法により得られた結果を用いて、推測する方法。
A method of guessing the pathology,
The method of estimating using the result obtained by the method of any one of Claims 9-10.
JP2007296104A 2007-10-18 2007-10-18 Refinement method of material having sugar chain and utilization of the same Pending JP2009098108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007296104A JP2009098108A (en) 2007-10-18 2007-10-18 Refinement method of material having sugar chain and utilization of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007296104A JP2009098108A (en) 2007-10-18 2007-10-18 Refinement method of material having sugar chain and utilization of the same

Publications (1)

Publication Number Publication Date
JP2009098108A true JP2009098108A (en) 2009-05-07

Family

ID=40701241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007296104A Pending JP2009098108A (en) 2007-10-18 2007-10-18 Refinement method of material having sugar chain and utilization of the same

Country Status (1)

Country Link
JP (1) JP2009098108A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103743847A (en) * 2013-12-31 2014-04-23 张金玲 MALDI-TOF-MS (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry) detection method of fluoroquinolone medicines in milk
CN107091885A (en) * 2016-02-18 2017-08-25 湖北生物医药产业技术研究院有限公司 The method for determining the sialic acid content of protein

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103743847A (en) * 2013-12-31 2014-04-23 张金玲 MALDI-TOF-MS (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry) detection method of fluoroquinolone medicines in milk
CN107091885A (en) * 2016-02-18 2017-08-25 湖北生物医药产业技术研究院有限公司 The method for determining the sialic acid content of protein

Similar Documents

Publication Publication Date Title
Kailemia et al. Glycans and glycoproteins as specific biomarkers for cancer
Callesen et al. Serum protein profiling by solid phase extraction and mass spectrometry: a future diagnostics tool?
Luque-Garcia et al. Sample preparation for serum/plasma profiling and biomarker identification by mass spectrometry
Clark et al. Cancer biomarker discovery: lectin-based strategies targeting glycoproteins
Mechref et al. Defining putative glycan cancer biomarkers by MS
JP4864875B2 (en) Use of plasma proteomic patterns for diagnosis, classification, prediction of response to treatment and clinical behavior in hematological malignancies, stratification of treatment, and disease monitoring
Mann et al. Glycomic and proteomic profiling of pancreatic cyst fluids identifies hyperfucosylated lactosamines on the N-linked glycans of overexpressed glycoproteins
JP2019053064A (en) Srm assay to show cancer therapy
JP2008508538A (en) Platelet biomarkers for cancer
Liu et al. Enhanced detection of low-abundance human plasma proteins by integrating polyethylene glycol fractionation and immunoaffinity depletion
Olszowy et al. Urine sample preparation for proteomic analysis
Kim et al. Proteome analysis of human cerebrospinal fluid as a diagnostic biomarker in patients with meningioma
HRP20130568A2 (en) Procedure for analysis of n-glycans attached to immunoglobulin g from human blood serum and the use thereof
Lukic et al. An integrated approach for comparative proteomic analysis of human bile reveals overexpressed cancer-associated proteins in malignant biliary stenosis
CN106164676A (en) SRM for PD L1 measures
Donczo et al. N‐Glycosylation analysis of formalin fixed paraffin embedded samples by capillary electrophoresis
Hatakeyama et al. Serum N-glycan profiling predicts prognosis in patients undergoing hemodialysis
JP2009098108A (en) Refinement method of material having sugar chain and utilization of the same
Svoboda et al. Examination of glycan profiles from IgG-depleted human immunoglobulins facilitated by microscale affinity chromatography
US20030134339A1 (en) Proteomics based method for toxicology testing
Govorun et al. Proteomics and peptidomics in fundamental and applied medical studies
JP2009244245A (en) Sialic acid related target molecules in lung cancer and their search method
Ren et al. Mass spectrometry-based N-glycosylation analysis in kidney disease
JPWO2008096790A1 (en) Analysis and utilization of tumor marker sugar chain
AU2004239417A1 (en) Differential diagnosis of colorectal cancer and other diseases of the colon