JP2009097887A - Leakage risk evaluation method for underground storage tank facility - Google Patents

Leakage risk evaluation method for underground storage tank facility Download PDF

Info

Publication number
JP2009097887A
JP2009097887A JP2007267061A JP2007267061A JP2009097887A JP 2009097887 A JP2009097887 A JP 2009097887A JP 2007267061 A JP2007267061 A JP 2007267061A JP 2007267061 A JP2007267061 A JP 2007267061A JP 2009097887 A JP2009097887 A JP 2009097887A
Authority
JP
Japan
Prior art keywords
storage tank
underground storage
corrosion
underground
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007267061A
Other languages
Japanese (ja)
Inventor
Hiroyuki Amemori
宏之 雨森
Yasushi Miyata
康司 宮田
Akiko Tanaka
明子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico System Solutions Co Ltd
Original Assignee
Tokico Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Technology Ltd filed Critical Tokico Technology Ltd
Priority to JP2007267061A priority Critical patent/JP2009097887A/en
Publication of JP2009097887A publication Critical patent/JP2009097887A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To estimate the risk of leakage for underground storage tank facility, using an evaluation method having high degree of certainty. <P>SOLUTION: This leakage risk evaluation method for underground storage tank facility, equipped with a steel underground storage tank for storing combustible fluid, or the like, is such that the data of corrosion amount on the outer surface of the underground storage tank, or the generation of thinning caused by corrosion are generated, relative to many underground storage tank facilities formed of the same coating material; data for each ground potential of the underground storage tank facilities and each number of elapsed years, after burying the underground storage tank facilities are collected; relation data between the corrosion amount on the outer surface of the underground storage tank or the generation of thinning caused by corrosion, and the ground potential and the number of elapsed years, after burying the underground storage tank facility are determined; and a corrosion-generating probability or leakage risk due to the corrosion of other underground storage tanks that constitute the same coating material is predicted, based on the relation data. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、地下貯蔵タンク設備の漏洩リスク評価方法に係り、特にガソリン等の可燃性流体を貯蔵する地下貯蔵タンク及び可燃性流体を流す地下配管等の地下貯蔵タンク設備外面の腐食が進行しタンク壁面を貫通する穿孔が発生する確率または地下貯蔵タンク設備外面の腐食による漏洩リスクを予測する地下貯蔵タンク設備の漏洩リスク評価方法に関する。   TECHNICAL FIELD The present invention relates to a leakage risk evaluation method for underground storage tank facilities, and in particular, corrosion occurs on the outer surface of underground storage tank facilities such as underground storage tanks for storing flammable fluids such as gasoline and underground piping for flowing flammable fluids. The present invention relates to a leakage risk evaluation method for an underground storage tank facility that predicts the probability of occurrence of perforation through a wall surface or the leakage risk due to corrosion of the outer surface of the underground storage tank facility.

例えば、ガソリン、灯油、軽油、重油等の燃料油を貯蔵するタンクからなる地下埋設鋼構造物は、給液所、燃料基地、重油・軽油ボイラーを有する工場、事業所、ビル等に設置されている。また、地下埋設鋼構造物である地下貯蔵タンクの外側は、土壌により腐食しないように、アスファルト、タールエポキシ、FRP(Fiber Reinforced Plastics)等で覆われている。更に、地下貯蔵タンクの内側は、燃料油等の場合、通常のタンク材質である鉄鋼板を腐食することはないため、特段に防食措置を施さずに鉄鋼板が裸の状態となっている。   For example, underground steel structures consisting of tanks that store fuel oil such as gasoline, kerosene, light oil, and heavy oil are installed in service stations, fuel bases, factories, offices, and buildings with heavy oil / light oil boilers. Yes. The outside of the underground storage tank, which is an underground steel structure, is covered with asphalt, tar epoxy, FRP (Fiber Reinforced Plastics) or the like so as not to be corroded by soil. Furthermore, in the case of fuel oil or the like, the inside of the underground storage tank does not corrode the steel plate, which is a normal tank material, so that the steel plate is in a bare state without taking special anticorrosion measures.

さて、従来では、上述した腐食漏洩事故のリスク評価に関連した地下貯蔵タンクの腐食劣化診断手法が米国等で開発されている(例えば、非特許文献1参照)。この非特許文献1による地下貯蔵タンク設備の漏洩リスク評価方法は、地下貯蔵タンクデータ(容量、構造、材質、埋設後の経過年数等)、埋設されている周囲土壌の化学的性質データ(土壌比抵抗、塩化物濃度、硫化物濃度、pH等)と当該地下貯蔵タンクの腐食進行量を多数測定し、土壌データと地下貯蔵タンクの腐食進行量との関係を統計的に解析し、地下貯蔵タンクの腐食劣化量の予測プログラムを開発する手法である。この方法で開発された予測プログラムにより、診断対象地下貯蔵タンクの地下貯蔵タンクデータ、土壌の化学的性質データを採取し予測プログラムにあてはめると、当該地下貯蔵タンクの腐食劣化量が予測できるという手法である。
ASTM規格G158−98、メソッドA
Conventionally, a method for diagnosing corrosion deterioration of underground storage tanks related to the risk assessment of the above-described corrosion leakage accident has been developed in the United States and the like (for example, see Non-Patent Document 1). The leakage risk assessment method for underground storage tank facilities according to Non-Patent Document 1 is based on underground storage tank data (capacity, structure, material, elapsed years after embedment, etc.), chemical properties data of the surrounding soil (soil ratio) Resistance, chloride concentration, sulfide concentration, pH, etc.) and the amount of corrosion progress of the underground storage tank are measured, and the relationship between the soil data and the amount of corrosion progress of the underground storage tank is statistically analyzed, and the underground storage tank It is a technique to develop a program for predicting the amount of corrosion degradation. With the prediction program developed by this method, if the underground storage tank data of the diagnosis target underground storage tank and the chemical property data of the soil are collected and applied to the prediction program, the corrosion deterioration amount of the underground storage tank can be predicted. is there.
ASTM standard G158-98, method A

上述した非特許文献1の手法によると、採取する現場のデータは、土壌の化学的性質データであるが、これは地下貯蔵タンクが埋設されている環境に腐食性があるかどうかを示している。   According to the method of Non-Patent Document 1 described above, the data on the site to be collected is soil chemistry data, which indicates whether the environment in which the underground storage tank is embedded is corrosive. .

しかしながら、仮に地下貯蔵タンクが埋設されている環境(土壌)に腐食性が有ったとしても、地下貯蔵タンクの塗覆装が健全であれば、地下貯蔵タンクに腐食は発生することはない。即ち、土壌の化学的性質データのみからは診断対象である地下貯蔵タンクに腐食が発生するか否かは判断できない。   However, even if the environment (soil) in which the underground storage tank is buried is corrosive, if the coating of the underground storage tank is healthy, the underground storage tank will not be corroded. That is, it cannot be determined whether or not corrosion occurs in the underground storage tank, which is the object of diagnosis, only from the soil chemistry data.

したがって、土壌の化学的性質データのみに基づく診断手法では、地下貯蔵タンク設備の漏洩予測の確度は低く漏洩事故のリスク評価の確度も低いと考えられる。   Therefore, the diagnostic method based only on the soil chemistry data is considered to have low accuracy in leak prediction of underground storage tank facilities and low risk assessment for leakage accidents.

本発明は、上記の問題点に鑑みてなされたものであって、確度が高い地下貯蔵タンク設備の漏洩リスク評価方法を提供することを目的とする。   This invention is made | formed in view of said problem, Comprising: It aims at providing the leakage risk evaluation method of underground storage tank equipment with high accuracy.

上記課題を解決するため、本発明は以下のような手段を有する。   In order to solve the above problems, the present invention has the following means.

本発明は、可燃性流体等を貯蔵する鋼製の地下貯蔵タンクを備えた地下貯蔵タンク設備の漏洩リスク評価方法であって、
同一塗覆装材料によって形成された多数の地下貯蔵タンク設備に対して、前記地下貯蔵タンクの外面の腐食量あるいは腐食による減肉発生の有無のデータを作成する手順と、
当該鋼製地下貯蔵タンク設備の対地電位及び当該鋼製地下貯蔵タンク設備の埋設後経過年数のデータを採取する手順と、
前記地下貯蔵タンクの外面の腐食量あるいは腐食による減肉発生の有無と前記対地電位及び当該鋼製地下貯蔵タンク設備の埋設後経過年数の関係データを求める手順と、
前記関係データに基づいて同一塗覆装材料からなる他の地下貯蔵タンクの腐食発生確率または腐食による漏洩リスクを予測する手順と、
を含むことにより、上記課題を解決するものである。
The present invention is a leakage risk assessment method for an underground storage tank facility comprising a steel underground storage tank for storing a flammable fluid,
For a number of underground storage tank facilities formed of the same coating material, a procedure for creating data on the amount of corrosion on the outer surface of the underground storage tank or occurrence of thinning due to corrosion,
A procedure for collecting data on the ground potential of the steel underground storage tank facility and the number of years elapsed since the steel underground storage tank facility was buried;
A procedure for determining the relationship between the amount of corrosion of the outer surface of the underground storage tank or the occurrence of thinning due to corrosion and the ground potential and the number of years elapsed since the underground storage tank facility made of steel,
A procedure for predicting the corrosion occurrence probability or the risk of leakage due to corrosion of another underground storage tank made of the same coating material based on the relational data;
By including the above, the above-mentioned problems are solved.

本発明によれば、既に地下に埋設し使用されている同一の塗覆装材料の多数の地下貯蔵タンクの腐食による減肉実態量と当該タンクの対地電位、埋設経過年数のデータを採取することにより、関係データに基づいて同一塗覆装材料からなる他の地下貯蔵タンクの腐食発生確率または腐食による漏洩リスクを予測することが可能になり、土壌の腐食性から予測する方法よりも確度の高い予測結果を得ることができ、地下貯蔵タンクの腐食による漏洩リスクの評価に対する信頼性を高めることが可能になる。   According to the present invention, data on the actual amount of thinning due to corrosion of a large number of underground storage tanks of the same coating material that has already been buried and used underground, the ground potential of the tank, and the data of years of burial are collected. Makes it possible to predict the probability of corrosion of other underground storage tanks made of the same coating material or the risk of leakage due to corrosion based on the relational data, which is more accurate than the prediction method based on the corrosiveness of the soil. Predictive results can be obtained, and it becomes possible to increase the reliability of the risk assessment of leakage due to corrosion of underground storage tanks.

以下、図面を参照して本発明を実施するための最良の形態について説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は地下貯蔵タンク設備の一実施例を示す縦断面図である。図1に示されるように、地下貯蔵タンク12は、鉄板を円筒形状に加工し、溶接等により円筒両端部を塞ぐように構成されており、その表面に電気的な絶縁性を有するアスファルト,エポキシ樹脂を用いて塗覆装が施されている。   FIG. 1 is a longitudinal sectional view showing an embodiment of an underground storage tank facility. As shown in FIG. 1, the underground storage tank 12 is constructed so that an iron plate is processed into a cylindrical shape and both ends of the cylinder are closed by welding or the like, and an asphalt or epoxy having an electrically insulating property on the surface thereof. Coating is applied using resin.

給油所の地上には、給油を行う計量機14、地下貯蔵タンク12に連通するマンホール16、地下貯蔵タンク12の注油口18、地下貯蔵タンク12の上部空間に連通された通気口20が設けられている。そして、給油所の地下に埋設された地下貯蔵タンク12には、計量機14の給油系統に連通された給油配管22と、注油口18に連通された注油配管24とが挿入されている。また、通気口20に連通された通気配管26は、地下貯蔵タンク12の上部に取付けられている。   On the ground of the filling station, there are provided a meter 14 for refueling, a manhole 16 communicating with the underground storage tank 12, an oil filling port 18 of the underground storage tank 12, and a vent 20 communicating with the upper space of the underground storage tank 12. ing. In the underground storage tank 12 buried underground in the fueling station, an oil supply pipe 22 communicated with the oil supply system of the measuring machine 14 and an oil supply pipe 24 communicated with the oil supply port 18 are inserted. A ventilation pipe 26 communicated with the vent 20 is attached to the upper part of the underground storage tank 12.

図2は地下貯蔵タンク12の施工状態を示す縦断面図である。図2に示されるように、地下貯蔵タンク12は、コンクリート製の基礎32上に設けられた設置台34に支持されるように設置される。また、設置台34の両側には、コンクリート製の支柱36が起立しており、地下貯蔵タンク12の上部を覆うコンクリート製の上壁部38及びマンホール16を囲むコンクリート舗装部40が支柱36によって支持されている。このように、地下貯蔵タンク12は、タンクローリ車(図示せず)がコンクリート舗装部40を通過する場合でも荷重が作用しないように補強されている。   FIG. 2 is a longitudinal sectional view showing a construction state of the underground storage tank 12. As shown in FIG. 2, the underground storage tank 12 is installed so as to be supported by an installation table 34 provided on a concrete base 32. In addition, concrete pillars 36 are erected on both sides of the installation table 34, and a concrete upper wall 38 covering the upper part of the underground storage tank 12 and a concrete pavement 40 surrounding the manhole 16 are supported by the pillars 36. Has been. Thus, the underground storage tank 12 is reinforced so that a load does not act even when a tank truck (not shown) passes through the concrete pavement 40.

また、地下貯蔵タンク12の周囲には、山砂等の土壌42が埋め戻されており、振動を吸収すると共に、地下貯蔵タンク12を固定している。   In addition, soil 42 such as mountain sand is backfilled around the underground storage tank 12 to absorb vibrations and to fix the underground storage tank 12.

ここで、上記のように地下に埋設された地下貯蔵タンク12の外面が腐食する形態について説明する。腐食形態の一つとしては、例えば電気鉄道等の軌道からの洩れ電流が迷走電流となり、地下埋設鋼構造物等に流れ込むことで発生する電食がある。また、他の腐食形態として、地下貯蔵タンク12、配管22,24,26系と、鉄筋コンクリート構造物(施設の基礎や土間など)中の鉄筋との電気的接触によって発生するコンクリート/土壌マクロセル腐食がある。さらに他の腐食形態として、地下タンク・配管系とアース棒の銅合金等の異種金属との接触によって発生する異種金属マクロセル腐食がある。   Here, the form which the outer surface of the underground storage tank 12 embed | buried underground as mentioned above corrodes is demonstrated. As one of the corrosion forms, for example, there is electrolytic corrosion that occurs when a leakage current from a track such as an electric railway becomes a stray current and flows into an underground steel structure or the like. Another form of corrosion is concrete / soil macrocell corrosion that occurs due to electrical contact between the underground storage tank 12, the piping 22, 24, 26 system and the reinforcing bars in the reinforced concrete structure (such as the foundation of the facility or between soils). is there. Further, as another form of corrosion, there is dissimilar metal macrocell corrosion caused by contact between an underground tank / piping system and a dissimilar metal such as a copper alloy of a ground rod.

土壌中に埋設された炭素鋼の自然電位は−500〜−600mV(飽和硫酸銅電極基準)であるのに対し、コンクリート中の鉄筋の電位は−200〜−300mVと高い。したがって、地下貯蔵タンク12または配管22,24,26と鉄筋の接触により鉄筋→地下貯蔵タンク12、配管22,24,26→土壌→鉄筋の電流ループができ上がり地下貯蔵タンク12、配管22,24,26の塗覆装の電気的絶縁劣化部に進行が早い腐食が発生する。これがコンクリート/土壌マクロセル腐食である。鉄筋と同様に電位が高い銅合金と地下タンク・配管系との接触により発生する腐食が異種金属マクロセル腐食である。   The natural potential of carbon steel embedded in the soil is -500 to -600 mV (saturated copper sulfate electrode standard), whereas the potential of the reinforcing steel in the concrete is as high as -200 to -300 mV. Therefore, the contact between the underground storage tank 12 or the pipes 22, 24, 26 and the reinforcing bars creates a current loop of the reinforcing bars → the underground storage tank 12, the pipes 22, 24, 26 → the soil → the reinforcing bars, and the underground storage tank 12, the pipes 22, 24, Corrosion that progresses quickly occurs in the electrically insulating deteriorated portion of the coating 26. This is concrete / soil macrocell corrosion. Corrosion caused by contact between a high-potential copper alloy and an underground tank / piping system, similar to rebar, is dissimilar metal macrocell corrosion.

これらの腐食形態は、腐食の進行が早いために厚肉鋼板で作られた地下埋設鋼構造物であっても、電食あるいはコンクリート/土壌等のマクロセル腐食が発生すると10年〜20年、あるいは腐食が緩やかな場合には30年程度で地下埋設鋼構造物の一部に穿孔が生じ、貯蔵している危険物等の液の漏洩事故が発生する。したがって、この腐食発生の有無を判断することが地下埋設鋼構造物の腐食診断を高精度に行うためのポイントとなる。   These corrosion forms are 10 to 20 years when macro-cell corrosion such as electric corrosion or concrete / soil occurs even in underground steel structures made of thick steel plates due to the rapid progress of corrosion, or If the corrosion is moderate, a part of the underground steel structure will be perforated in about 30 years, and a liquid accident such as storage of dangerous materials will occur. Therefore, determining whether or not this corrosion has occurred is a point for performing corrosion diagnosis of underground steel structures with high accuracy.

なお、腐食形態には、タンク等の塗覆装の電気的抵抗劣化部炭素鋼表面と土壌との間でミクロセル腐食も存在するが、地下貯蔵タンク12、配管22,24,26は山砂等腐食性の低い土壌で埋め戻されており、その腐食の進行速度は0.02〜0.05mm/年程度と遅く、厚肉鋼板からなる地下貯蔵タンク等においては漏洩リスク上の大きな問題とならない。以上のことから、地下貯蔵タンク12、配管22,24,26の腐食による漏洩事故のリスク評価においては、上述した電食及びコンクリート/土壌等マクロセル腐食発生の有無を診断する必要がある。   In addition, in the corrosion form, there is microcell corrosion between the carbon steel surface and the soil of the electrical resistance deteriorated portion of the coating such as a tank, but the underground storage tank 12, the pipes 22, 24, and 26 are mountain sand and the like. It is backfilled with low corrosive soil, and the rate of progress of the corrosion is slow, about 0.02 to 0.05 mm / year, and it does not become a big problem on leakage risk in underground storage tanks made of thick steel plates. . From the above, in the risk assessment of leakage accidents due to corrosion of the underground storage tank 12 and the pipes 22, 24, 26, it is necessary to diagnose the presence of the above-described macro corrosion such as electric corrosion and concrete / soil.

ここで、電食及びコンクリート/土壌等マクロセル腐食の発生のメカニズムを考えると、電食の場合は、地下貯蔵タンク12、配管22,24,26の周囲に迷走電流の流入があるか否かが第1の要素となる。   Here, considering the mechanism of the occurrence of macro-cell corrosion such as electric corrosion and concrete / soil, in the case of electric corrosion, whether there is inflow of stray current around the underground storage tank 12 and the pipes 22, 24 and 26. It becomes the first element.

また、コンクリート/土壌等マクロセル腐食の場合は、地下貯蔵タンク12、配管22,24,26とコンクリート中の鉄筋あるいは銅合金等の異種金属との接触があるかないかが第2の要素となる。しかしながら、これらの二つの要素があったにしても、地下貯蔵タンク12の塗覆装の被覆状態が健全(地下貯蔵タンク12と土壌との電気的絶縁が良好に保たれている)な場合には、電食もコンクリート/土壌等マクロセル腐食も、更にはミクロセル腐食も発生しない。   In the case of macrocell corrosion such as concrete / soil, the second factor is whether there is contact between the underground storage tank 12 and the pipes 22, 24, and 26 and different metals such as reinforcing steel or copper alloy in the concrete. However, even if these two elements are present, the coating state of the coating of the underground storage tank 12 is healthy (the electrical insulation between the underground storage tank 12 and the soil is maintained well). Does not cause electric corrosion, macrocell corrosion such as concrete / soil, or even microcell corrosion.

日本における可燃性流体を貯蔵する鋼製の地下貯蔵タンク12の外面には腐食の発生を防止するために一定厚さ以上のアスファルトルーフィングあるいはエポキシ樹脂を塗覆装として被覆することが消防法令において規定されており、この法令に則った構造の鋼製の地下貯蔵タンク12を埋設して使用している。即ち、全国に埋設される地下貯蔵タンク12においては、一定品質の塗覆装が施された鋼製タンクが埋設されていると考えられる。   The fire fighting law stipulates that the outer surface of steel underground storage tank 12 for storing flammable fluid in Japan should be coated with asphalt roofing or epoxy resin of a certain thickness or more to prevent corrosion. A steel underground storage tank 12 having a structure conforming to this law is buried and used. That is, in the underground storage tank 12 buried nationwide, it is considered that a steel tank with a certain quality coating is buried.

これら塗覆装を施された地下貯蔵タンク12が地下に埋設されてから長時間使用されている間においては、当該塗覆装は次のような負荷(1)〜(4)を受けることになる。
(1)貯蔵する可燃性流体の出入りによる繰り返し荷重容量。例えば10KLのガソリン貯蔵タンク12の場合、5〜7tonのガソリンの出入りによる繰り返し荷重を受ける。
(2)貯蔵する油と地中温度との温度差による膨張収縮。例えば夏季に、油槽所からタンクローリ車に積み込まれた油の温度は35°C程度以上の高温となる場合があり、一方地下貯蔵タンク12が埋設されている地中温度は14〜18°C程度であるため、両者の温度差は大きい。夏季の高温の油を地下貯蔵タンク12に荷卸した際には、地下貯蔵タンク12全体が膨張し、時間と共に土壌により冷やされて収縮することになる。樹脂や油脂材料と炭素鋼の膨張係数の差は1桁以上あるため、高温の可燃性流体を地中の地下貯蔵タンク12へ荷卸しを繰り返すことにより、塗覆装接着部にストレスが加わり、塗覆装が剥れる要因となる。
(3)土圧の変化
(4)地下貯蔵タンク12の上を走行するタンクローリ等による振動荷重
以上のような負荷(1)〜(4)を長年受けることにより、塗覆装は埋設年数が進むにつれて局部的な剥れや割れが生じると考えられる。これら剥れやわれが発生した部分に地下水が浸透し、タンクの炭素鋼と土壌間の電気的絶縁性の劣化が始まる。また、アスファルトのような塗覆装は吸湿性があるため、ゆっくりとした電気的絶縁性の劣化が生じる。
While these coated underground storage tanks 12 are buried underground, they are subjected to the following loads (1) to (4). Become.
(1) Repeated load capacity by entering and exiting the combustible fluid to be stored. For example, in the case of a 10 KL gasoline storage tank 12, it receives a repeated load caused by 5 to 7 tons of gasoline coming and going.
(2) Expansion and contraction due to temperature difference between stored oil and underground temperature. For example, in summer, the temperature of the oil loaded in the tank truck from the oil tank station may be higher than about 35 ° C, while the underground temperature in which the underground storage tank 12 is buried is about 14-18 ° C. Therefore, the temperature difference between the two is large. When unloading hot oil in the summer to the underground storage tank 12, the entire underground storage tank 12 expands and is cooled by the soil and shrinks over time. Since the difference in expansion coefficient between resin and oil and fat materials and carbon steel is more than an order of magnitude, by repeatedly unloading high-temperature flammable fluid to the underground underground storage tank 12, stress is applied to the coating adhesion part, It becomes a factor that paint coat peels off.
(3) Change in earth pressure (4) Vibration load due to tank lorry etc. traveling on underground storage tank 12 By receiving the above loads (1) to (4) for many years, the coating years will advance It is considered that local peeling and cracking occur as the time elapses. The groundwater penetrates into the part where these peelings occur, and the electrical insulation between the carbon steel of the tank and the soil begins to deteriorate. Moreover, since coating such as asphalt is hygroscopic, it causes a slow deterioration of electrical insulation.

前述のような、法令で規定された一定品質を有する塗覆装の場合、上記の劣化は15〜20年といったある程度の年数を経るとほぼ一律的に発生していると考えられる。   In the case of the coating material having a certain quality defined by laws and regulations as described above, it is considered that the above-mentioned deterioration occurs almost uniformly after a certain number of years such as 15 to 20 years.

こうして塗覆装の劣化が始まり、土壌とタンク炭素鋼表面との間の電気的絶縁性の劣化が起こり始めると土壌と炭素鋼との間で腐食電流が流れ、鉄のイオン化が発生し腐食が発生することとなる。特に、地下貯蔵タンク12、配管22,24,26が迷走電流による電食、あるいはコンクリート/土壌等のマクロセル腐食発生の条件である迷走電流が流れる環境下、あるいはコンクリート中の鉄筋や異種金属と地下貯蔵タンク12、配管22,24,26の鋼が接触する環境下にあった場合、進行が早い電食あるいはコンクリート/土壌,異種金属マクロセル腐食が発生することとなる。   In this way, the coating begins to deteriorate, and when the electrical insulation between the soil and the tank carbon steel surface begins to deteriorate, a corrosion current flows between the soil and the carbon steel, causing iron ionization and corrosion. Will occur. In particular, the underground storage tank 12 and the pipes 22, 24, and 26 are subjected to electric corrosion due to stray current, or in an environment where stray current that is a condition of macro cell corrosion occurrence such as concrete / soil occurs, or underground with reinforcing steel and dissimilar metals in concrete. When the steel in the storage tank 12 and the pipes 22, 24, and 26 is in an environment where they are in contact with each other, electrolytic corrosion or concrete / soil or dissimilar metal macrocell corrosion that occurs quickly occurs.

電食の発生と進行を考えると、迷走電流の値が大きいほど電食の進行は早いと考えられる。   Considering the occurrence and progression of galvanic corrosion, the larger the value of stray current, the faster the progression of galvanic corrosion.

一方、コンクリート/土壌、異種金属マクロセル腐食の場合、地下貯蔵タンク12、配管22,24,26の鋼と接触するコンクリート中の鉄筋や異種金属の量が多いほど、腐食電流供給源が大きくなり、腐食の進行は早いと考えられる。   On the other hand, in the case of concrete / soil, dissimilar metal macrocell corrosion, the greater the amount of rebar or dissimilar metal in the concrete that comes into contact with the steel in the underground storage tank 12, piping 22, 24, 26, the greater the source of corrosion current, The progress of corrosion is considered to be fast.

ここで、コンクリート/土壌、異種金属マクロセル腐食発生の第一条件である地下貯蔵タンク12、配管22,24,26とコンクリート中の鉄筋あるいは異種金属との接触の有無を判定する方法に、地下貯蔵タンク12、配管22,24,26の対地電位の測定がある。   Here, underground storage tank is used as a method for determining the presence or absence of contact between the underground storage tank 12 and the pipes 22, 24 and 26, which are the first conditions for the corrosion of concrete / soil and different metal macrocells, and the reinforcing bars or different metals in the concrete. There is a measurement of the ground potential of the tank 12 and the pipes 22, 24 and 26.

次に、対地電位測定方法について説明する。通常、コンクリート/土壌、異種金属マクロセル腐食の発生の要件となる地下貯蔵タンク配管系とコンクリート中の鉄筋や異種金属との接触については、地下貯蔵タンク12や配管22,24,26の対地電位の測定値が指標となる。その測定図を図3に示す。図3では近傍にある地下貯蔵タンク12に接続されている(電気的にも接続されている)配管22,24,26の何れかの対地電位を、ターミナルボックス50の照合電極54を用いて測定している状態を示している。   Next, the ground potential measurement method will be described. Usually, the contact between the underground storage tank piping system, which is a requirement for the occurrence of corrosion of concrete / soil, dissimilar metal macrocells, and the reinforcing bars and dissimilar metals in the concrete, the ground potential of the underground storage tank 12 and the piping 22, 24, 26 The measured value is an index. The measurement diagram is shown in FIG. In FIG. 3, the ground potential of any of the pipes 22, 24, 26 connected to the underground storage tank 12 in the vicinity (which is also electrically connected) is measured using the reference electrode 54 of the terminal box 50. It shows the state.

配管22,24,26と地下貯蔵タンク12は近傍でつながっているので、この測定値は地下貯蔵タンク配管系の対地電位とみなすことができる。対地電位測定装置60は、地下に埋設されたターミナルボックス50からの検出信号(電位)を計測し、その検出信号をメモリに記憶する。ターミナルボックス50には、配管22,24,26に電気的に接続される電線52と、配管22,24,26の上方の土壌62に接触される照合電極54とを有する。
ここで、一般に土壌62に埋設された鉄の対地電位(自然電位)は、−500mV程度から−600mV程度の値である。一方、コンクリート中の鉄筋は、アルカリ性雰囲気にあるため対地電位は−200mV程度となる(いずれも飽和硫酸銅電極を照合電極54とした場合)。従って、地下貯蔵タンク設備の系統において何れかの場所で鉄筋と電気的に接触した状態にある場合、地下貯蔵タンク12の対地電位は、−450mV程度から−250mV程度の値を示すことになる。
Since the pipes 22, 24 and 26 and the underground storage tank 12 are connected in the vicinity, this measured value can be regarded as the ground potential of the underground storage tank piping system. The ground potential measuring device 60 measures a detection signal (potential) from the terminal box 50 buried underground, and stores the detection signal in a memory. The terminal box 50 includes an electric wire 52 that is electrically connected to the pipes 22, 24, and 26, and a verification electrode 54 that is in contact with the soil 62 above the pipes 22, 24, and 26.
Here, generally, the ground potential (natural potential) of iron embedded in the soil 62 is a value of about −500 mV to −600 mV. On the other hand, since the reinforcing bars in the concrete are in an alkaline atmosphere, the ground potential is about -200 mV (both are cases where a saturated copper sulfate electrode is used as the reference electrode 54). Accordingly, when the underground storage tank facility is in a state of being in electrical contact with the reinforcing bar at any place, the ground potential of the underground storage tank 12 exhibits a value of about −450 mV to −250 mV.

ここで、銅の対地電位も−200mV程度であるから、地下貯蔵タンク12、配管22、24、26の対地電位の値を考えると、地下貯蔵タンク12、配管22,24,26と接触する鉄筋及び銅合金の量が多い場合、即ち腐食電流供給量が大きい場合には、地下貯蔵タンク12、配管22,24,26の対地電位は鉄筋側あるいは銅合金側の電位に近い値となり、逆に接触する鉄筋及び銅の量が少ない場合、鋼の自然電位に近い値となる。   Here, since the ground potential of copper is also about −200 mV, considering the value of the ground potential of the underground storage tank 12 and the pipes 22, 24, 26, the reinforcing bars that are in contact with the underground storage tank 12, the pipes 22, 24, 26 When the amount of copper alloy is large, that is, when the supply amount of corrosion current is large, the ground potential of the underground storage tank 12 and the pipes 22, 24, 26 becomes a value close to the potential on the reinforcing bar side or the copper alloy side. When the amount of reinforcing steel and copper to be contacted is small, the value is close to the natural potential of steel.

即ち、地下貯蔵タンク12、配管22,24,26の対地電位が−300〜−250mV程度に高い場合、発生するコンクリート/土壌等のマクロセル腐食の強度は高く、進行が早いと考えられ、逆に対地電位が−400〜−500mV程度と低い場合、発生するコンクリート/土壌等のマクロセル腐食の強度は低く、進行が遅いと考えられる。   That is, when the ground potential of the underground storage tank 12 and the pipes 22, 24, 26 is as high as about −300 to −250 mV, the strength of the macrocell corrosion of the generated concrete / soil is considered to be high and the progress is rapid. When the ground potential is as low as about −400 to −500 mV, the strength of the generated macrocell corrosion such as concrete / soil is low and the progress is considered to be slow.

当出願人(発明者)は、これまでに長期間使用された同一の塗覆装材料の多数の地下貯蔵タンク12の腐食量を超音波肉厚測定装置で測定し、同時に対地電位の測定を行い、対地電位と地下貯蔵タンク12の腐食量のデータ及び地下貯蔵タンク12の構造、埋設年数等のデータを採取している。   The applicant (inventor) measured the amount of corrosion of a large number of underground storage tanks 12 of the same coating material that has been used for a long period of time with an ultrasonic wall thickness measurement device, and simultaneously measured the ground potential. The data of ground potential, the amount of corrosion of the underground storage tank 12, the structure of the underground storage tank 12, the age of burial, etc. are collected.

このデータにおいて地下貯蔵タンクの埋設後経過年数が20年以下のある一定年数以下の地下タンクにおいては、当該地下貯蔵タンク設備の対地電位の値に関係なく腐食が発生していないという結果である。また、埋設後経過年数が25年程度のデータをピックアップすると、対地電位が−300mVよりも高い場合、腐食発生率は100%程度となり、対地電位が低くなるに従って腐食発生率が低下する結果となっている。   In this data, it is a result that no corrosion has occurred in an underground tank having an elapsed age of 20 years or less after the burying of the underground storage tank regardless of the value of ground potential of the underground storage tank facility. In addition, when data with an elapsed age of about 25 years is picked up when the ground potential is higher than −300 mV, the corrosion rate becomes about 100%, and the corrosion rate decreases as the ground potential becomes lower. ing.

このことは、同一の塗覆装の場合ほぼ一定年数で土壌との間の電気的絶縁性の劣化が始まり、そのタンクが鉄筋及び異種金属と接触状態にあった場合には接触する鉄筋及び異種金属が多い場合、即ち対地電位が高い場合には、当該タンク12には腐食によるタンク肉厚の減肉が早く発生していると推定される。   This means that in the case of the same coating, the electrical insulation between the soil and the soil begins to deteriorate in almost a fixed number of years. When the amount of metal is large, that is, when the ground potential is high, it is estimated that the tank 12 is rapidly reduced in thickness due to corrosion.

鉄筋及び異種金属との接触が有っても、接触する量が少なく腐食の強度が低い場合、即ち対地電位が低い場合には腐食による減肉が遅く発生していると推定される。当然、早く腐食による減肉が発生した地下貯蔵タンク12の腐食の進行は早いので、穿孔に至り漏洩事故が起こるリスクは高いことになる。   Even if there is contact with reinforcing bars and dissimilar metals, when the amount of contact is small and the strength of corrosion is low, that is, when the ground potential is low, it is presumed that thinning due to corrosion occurs late. Naturally, since the underground storage tank 12 that has been rapidly reduced in thickness is rapidly corroded, there is a high risk that a leak will occur due to drilling.

なお、対地電位が−500mVよりも低く地下貯蔵タンク12、配管22,24,26が鉄筋あるいは異種金属と接触がないことが考えられる地下貯蔵タンク12では、埋設年数が30年程度まで長期であっても腐食による減肉の発生は見られなかった。同一の塗覆装材料での地下貯蔵タンクの比較を行っているので、塗覆装は、ほぼどう程度に劣化していると考えられるので、マクロセル腐食よりも腐食強度が低いミクロセル腐食の条件下では腐食による減肉は発生しなかったものと推定される。このことは、地下埋設タンクを埋設設置する場合、地下貯蔵タンクの周囲には砂等により埋め戻しを行うため、ミクロセル腐食の進行を早める塩化物、硫化物の濃度が異常に高い成分がない条件で埋設されている状況にあることも原因となっていると考えられる。   In the underground storage tank 12 where the ground potential is lower than −500 mV and the underground storage tank 12 and the pipes 22, 24, and 26 are considered not to come into contact with reinforcing bars or dissimilar metals, the burial years are long for about 30 years. However, no thinning due to corrosion was observed. Since we are comparing underground storage tanks with the same coating material, it is considered that the coating is almost deteriorated, so the condition of microcell corrosion is lower than that of macrocell corrosion. Therefore, it is presumed that no metal loss due to corrosion occurred. This is because when underground tanks are buried, the underground storage tank is backfilled with sand, etc., so that there is no component with an abnormally high concentration of chloride or sulfide that accelerates the progress of microcell corrosion. It is thought that this is also caused by being buried in

ここで、可燃性流体等を貯蔵する鋼製の地下貯蔵タンク12を備えた地下貯蔵タンク設備の漏洩リスク評価方法の手順について説明する。   Here, the procedure of the leakage risk evaluation method for the underground storage tank facility including the steel underground storage tank 12 for storing the flammable fluid and the like will be described.

手順1では、同一塗覆装材料によって形成された多数の地下貯蔵タンク設備に対して、地下貯蔵タンクの外面の腐食量あるいは腐食による減肉発生の有無を測定しデータを作成する。   In the procedure 1, for a large number of underground storage tank facilities formed of the same coating material, the amount of corrosion on the outer surface of the underground storage tank or the occurrence of thinning due to corrosion is measured and data is created.

手順2では、当該鋼製地下貯蔵タンク設備の対地電位の測定値及び当該鋼製地下貯蔵タンク設備の埋設後経過年数のデータを採取する。   In the procedure 2, the measured value of the ground potential of the steel underground storage tank facility and the data of the number of years elapsed after burying the steel underground storage tank facility are collected.

手順3では、地下貯蔵タンクの外面の腐食量あるいは腐食による減肉発生の有無と対地電位及び当該鋼製地下貯蔵タンク設備の埋設後経過年数の関係データを求める。   In step 3, the relationship between the amount of corrosion of the outer surface of the underground storage tank or the occurrence of thinning due to corrosion, the ground potential, and the years elapsed since the steel underground storage tank facility was buried is obtained.

手順4では、関係データに基づいて同一塗覆装材料からなる他の地下貯蔵タンクの腐食発生確率または腐食による漏洩リスクの図4に示すような腐食発生予測率データテーブル70を作成する。   In the procedure 4, the corrosion occurrence prediction rate data table 70 as shown in FIG. 4 of the corrosion occurrence probability or leakage risk due to corrosion of other underground storage tanks made of the same coating material is created based on the relational data.

図4において、◎は腐食による減肉の発生率が極めて低い条件であることを示し、○は腐食による減肉の発生率が低い条件であることを示し、△は腐食による減肉の発生率が中間値であることを示し、×は腐食による減肉の発生率が高い条件であることを示し、××は腐食による減肉の発生率が極めて高い条件であることを示す。   In FIG. 4, ◎ indicates that the rate of occurrence of thinning due to corrosion is extremely low, ○ indicates that the rate of occurrence of thinning due to corrosion is low, and Δ indicates the rate of occurrence of thinning due to corrosion. Indicates an intermediate value, x indicates that the rate of occurrence of thinning due to corrosion is high, and xx indicates that the rate of occurrence of thinning due to corrosion is extremely high.

ここで、鋼製地下貯蔵タンク設備について、腐食の関係から、タンクを交換すべきか、タンクに対して電気防食(外部電源法)をかけるか、あるいは、そのまま使用可能であるかの、漏洩リスクの評価を行う場合には、図4に示す、腐食発生率予測データテーブル70により、該当地下埋設タンクの埋設年数、及び、対地電位の値に該当する箇所のデータ(〇、△、×等)を参照して決定すればよい。   Here, regarding steel underground storage tank facilities, there is a risk of leakage whether the tank should be replaced, whether the tank should be subjected to anticorrosion (external power supply method), or can be used as it is. When the evaluation is performed, the data on the locations corresponding to the buried years of the underground tank and the value of ground potential (O, Δ, ×, etc.) are obtained from the corrosion incidence prediction data table 70 shown in FIG. What is necessary is just to determine with reference.

尚、上記実施例では、ガソリン等の燃料油を貯蔵する地下貯蔵タンク設備の漏洩検査を行なう場合を例に挙げて説明したが、これに限らず、本発明を燃料油以外の可燃性流体を貯蔵する地下貯蔵タンク設備にも適用できるのは勿論である。   In the above embodiment, the case where the leakage inspection of the underground storage tank facility for storing fuel oil such as gasoline is performed is described as an example. However, the present invention is not limited thereto, and the present invention is not limited to the flammable fluid other than fuel oil. Of course, it can also be applied to underground storage tank facilities for storage.

地下貯蔵タンク設備の一実施例を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Example of an underground storage tank installation. 地下貯蔵タンク12の施工状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the construction state of the underground storage tank 12. FIG. 対地電位の測定の測定方法を示す図である。It is a figure which shows the measuring method of a measurement of ground potential. 腐食発生予測率データテーブル70を模式的に示す図である。It is a figure which shows typically the corrosion generation | occurrence | production prediction rate data table 70. FIG.

符号の説明Explanation of symbols

12 地下貯蔵タンク
14 計量機
18 注油口
20 通気口
22 給油配管
24 注油配管
26 通気配管
32 基礎
34 設置台
50 ターミナルボックス
52,54 照合電極
60 対地電位測定装置
70 腐食発生率予測データテーブル
12 Underground storage tank 14 Weighing machine 18 Lubricating port 20 Venting port 22 Lubrication piping 24 Lubrication piping 26 Venting piping 32 Foundation 34 Installation base 50 Terminal box 52, 54 Reference electrode 60 Ground potential measuring device 70 Corrosion occurrence rate prediction data table

Claims (1)

可燃性流体等を貯蔵する鋼製の地下貯蔵タンクを備えた地下貯蔵タンク設備の漏洩リスク評価方法であって、
同一塗覆装材料によって形成された多数の地下貯蔵タンク設備に対して、前記地下貯蔵タンクの外面の腐食量あるいは腐食による減肉発生の有無のデータを作成する手順と、
当該鋼製地下貯蔵タンク設備の対地電位及び当該鋼製地下貯蔵タンク設備の埋設後経過年数のデータを採取する手順と、
前記地下貯蔵タンクの外面の腐食量あるいは腐食による減肉発生の有無と前記対地電位及び当該鋼製地下貯蔵タンク設備の埋設後経過年数の関係データを求める手順と、
前記関係データに基づいて同一塗覆装材料からなる他の地下貯蔵タンクの腐食発生確率または腐食による漏洩リスクを予測する手順と、
を含むことを特徴とする地下貯蔵タンク設備の漏洩リスク評価方法。
A leakage risk evaluation method for an underground storage tank facility comprising a steel underground storage tank for storing a flammable fluid, etc.
For a number of underground storage tank facilities formed of the same coating material, a procedure for creating data on the amount of corrosion on the outer surface of the underground storage tank or occurrence of thinning due to corrosion,
A procedure for collecting data on the ground potential of the steel underground storage tank facility and the number of years since the underground storage of the steel underground storage tank facility;
The procedure for obtaining the relationship data of the amount of corrosion of the outer surface of the underground storage tank or the occurrence of thinning due to corrosion and the ground potential and the years elapsed since the underground storage tank equipment made of steel,
A procedure for predicting the corrosion occurrence probability or the risk of leakage due to corrosion of another underground storage tank made of the same coating material based on the relational data;
A leakage risk evaluation method for underground storage tank equipment, characterized by including:
JP2007267061A 2007-10-12 2007-10-12 Leakage risk evaluation method for underground storage tank facility Pending JP2009097887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007267061A JP2009097887A (en) 2007-10-12 2007-10-12 Leakage risk evaluation method for underground storage tank facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007267061A JP2009097887A (en) 2007-10-12 2007-10-12 Leakage risk evaluation method for underground storage tank facility

Publications (1)

Publication Number Publication Date
JP2009097887A true JP2009097887A (en) 2009-05-07

Family

ID=40701040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007267061A Pending JP2009097887A (en) 2007-10-12 2007-10-12 Leakage risk evaluation method for underground storage tank facility

Country Status (1)

Country Link
JP (1) JP2009097887A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011498A (en) * 2011-06-29 2013-01-17 Kita Nippon Electric Cable Co Ltd Method for determining lifetime of overhead transmission lines
WO2022070706A1 (en) * 2019-09-30 2022-04-07 株式会社クボタ Buried piping replacement period prediction device, buried piping replacement period prediction method, program, and computer-readable recording medium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202763A (en) * 1989-12-29 1991-09-04 Osaka Gas Co Ltd Method and apparatus for measuring ground potential of underground embedded material
JPH0674932A (en) * 1992-03-11 1994-03-18 Agip Spa Method for monitoring state of protecting film for submerged or embedded pipe line or other metal structure andmethod for positioning separation of protecing film
JPH10141600A (en) * 1996-11-05 1998-05-29 Toshiba Eng Co Ltd Piping wall thinning control system
JP2001012698A (en) * 1999-06-24 2001-01-16 Hitachi Ltd Thickness reduction control system of piping system
JP2001280599A (en) * 2000-03-31 2001-10-10 Hitachi Ltd Service life prediction method for power generation plant piping
JP2003172617A (en) * 2001-12-07 2003-06-20 Tokyo Gas Co Ltd Inspection data-collecting method for gas pipe
JP2006076613A (en) * 2004-09-09 2006-03-23 Tokiko Techno Kk Oil reservoir device
JP2006250823A (en) * 2005-03-11 2006-09-21 Enviro Tech International:Kk System for evaluating corrosive deterioration of underground tank
JP2006284280A (en) * 2005-03-31 2006-10-19 Osaka Gas Co Ltd Method and apparatus for estimating corrosion

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202763A (en) * 1989-12-29 1991-09-04 Osaka Gas Co Ltd Method and apparatus for measuring ground potential of underground embedded material
JPH0674932A (en) * 1992-03-11 1994-03-18 Agip Spa Method for monitoring state of protecting film for submerged or embedded pipe line or other metal structure andmethod for positioning separation of protecing film
JPH10141600A (en) * 1996-11-05 1998-05-29 Toshiba Eng Co Ltd Piping wall thinning control system
JP2001012698A (en) * 1999-06-24 2001-01-16 Hitachi Ltd Thickness reduction control system of piping system
JP2001280599A (en) * 2000-03-31 2001-10-10 Hitachi Ltd Service life prediction method for power generation plant piping
JP2003172617A (en) * 2001-12-07 2003-06-20 Tokyo Gas Co Ltd Inspection data-collecting method for gas pipe
JP2006076613A (en) * 2004-09-09 2006-03-23 Tokiko Techno Kk Oil reservoir device
JP2006250823A (en) * 2005-03-11 2006-09-21 Enviro Tech International:Kk System for evaluating corrosive deterioration of underground tank
JP2006284280A (en) * 2005-03-31 2006-10-19 Osaka Gas Co Ltd Method and apparatus for estimating corrosion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011498A (en) * 2011-06-29 2013-01-17 Kita Nippon Electric Cable Co Ltd Method for determining lifetime of overhead transmission lines
WO2022070706A1 (en) * 2019-09-30 2022-04-07 株式会社クボタ Buried piping replacement period prediction device, buried piping replacement period prediction method, program, and computer-readable recording medium

Similar Documents

Publication Publication Date Title
Chen et al. A review on stray current-induced steel corrosion in infrastructure
Tesfamariam et al. Possibilistic approach for consideration of uncertainties to estimate structural capacity of ageing cast iron water mains
Hopkins Assessing the significance of corrosion in onshore oil and gas pipelines
Zee et al. Corrosion risk assessment, failure analysis and corrosion mitigation for aboveground storage tanks and case histories
Kuliczkowska et al. The structural integrity of water pipelines by considering the different loads
JP2009097887A (en) Leakage risk evaluation method for underground storage tank facility
DeGeer et al. Arctic pipeline design considerations
Evitts et al. Cathodic protection
Cassiani et al. Durability assessment of a tunnel structure with two‐sided chloride ingress—A case study located in a tropical environment
Taji et al. Corrosion performance of steel rebars in the roof of a 65-year-old underground reinforced concrete water-storage tank
Hassi et al. Case study of the performance of prestressed concrete cylinder pipes in northeastern Morocco
Jankowski et al. Application of the electrical resistance technique to monitoring of cathodic protection effectiveness
Samarakoon et al. Residual service life prediction of offshore concrete structures with chloride-induced damage: the state of the art
Gries et al. Evaluation and repair of natural draft cooling towers
Williams et al. Condition Assessment and Repair Prioritization of a Large Diameter Pipeline System
Rodriguez et al. Cathodic Protection Of Water Transmission Pipelines
Fessler et al. Characteristics, Causes, and Management of Circumferential Stress-Corrosion Cracking
Nixon Conducting Precast Concrete Cylinder Pipe Condition Assessment by Matching Corrosion Damage Mechanisms to Diagnostic Methods
Clothier et al. Practical Application of Force Main Condition Assessment Methodologies for Long Term Asset Management Needs
Duchesne et al. Probabilistic modeling of cast iron water distribution pipe corrosion
Priambudi et al. Lifetime prediction of pressurized pipelines in corrosive environments Alfin Priambudi
Villaescusa et al. Corrosion of rock reinforcement in underground hard rock mining excavations
Paul et al. Corrosion control of large diameter piping cathodic protection a proven method
Klechka Jr Corrosion of Storage Tanks
Yoosef-Ghodsi et al. Improving Fitness-for-Purpose Methodology and Safety Target Definitions on Geohazard Related Pipe Deformation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403