JP2009097760A - Communication control device of air conditioner - Google Patents

Communication control device of air conditioner Download PDF

Info

Publication number
JP2009097760A
JP2009097760A JP2007268297A JP2007268297A JP2009097760A JP 2009097760 A JP2009097760 A JP 2009097760A JP 2007268297 A JP2007268297 A JP 2007268297A JP 2007268297 A JP2007268297 A JP 2007268297A JP 2009097760 A JP2009097760 A JP 2009097760A
Authority
JP
Japan
Prior art keywords
outdoor unit
communication path
communication
indoor unit
current limiting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007268297A
Other languages
Japanese (ja)
Inventor
Harunobu Nukushina
治信 温品
Masaki Toyoda
正基 豊田
Takahisa Endo
隆久 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2007268297A priority Critical patent/JP2009097760A/en
Publication of JP2009097760A publication Critical patent/JP2009097760A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/32Details or features not otherwise provided for preventing human errors during the installation, use or maintenance, e.g. goofy proof

Abstract

<P>PROBLEM TO BE SOLVED: To provide a communication control device of an air conditioner capable of surely protecting various elements on a communication path with a simple and inexpensive constitution by performing high-speed response to overcurrent caused by wrong wiring and the like. <P>SOLUTION: In this communication control device 1 of the air conditioner which has an outdoor unit 2 and an indoor unit 3 connected with the outdoor unit 2 by two AC power wires and one communication wire, and in which the transmission of a signal for controlling an operation between the outdoor unit 2 and the indoor unit 3 is performed by using one of the AC power wires as a line N in common use, and the outdoor unit 2 and the indoor unit 3 comprises transmitting/receiving circuits 21, 31 connected with a communication path 6 formed by the line N in common use in series, the outdoor unit 2 or the indoor unit 3, or the outdoor unit 2 and the indoor unit 3 comprise electric current limiting circuits 24, 34 connected with the communication path 6 in series. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、スプリット型の空気調和機において室外機と室内機との間におけるデータ伝送を行う空気調和機の通信制御装置に関する。   The present invention relates to a communication control device for an air conditioner that performs data transmission between an outdoor unit and an indoor unit in a split type air conditioner.

建物の外部に室外機が、また建物の内部に室内機が据え付けられるいわゆるスプリット型(室内外分離型)の空気調和機においては、室外機と室内機との間においてそれぞれの運転を制御するために信号の伝送が行われている。この信号の伝送の方式としては、2本の交流電源線及び2本の通信線の計4本の線によって室外機と室内機とを結んで信号のやりとりを行う方式の他に、例えば以下の特許文献1において開示される方式も提案されている。   In a so-called split type (indoor / outdoor separation type) air conditioner in which an outdoor unit is installed outside the building and an indoor unit is installed inside the building, each operation is controlled between the outdoor unit and the indoor unit. Signal transmission is performed. In addition to the method of transmitting signals by connecting the outdoor unit and the indoor unit through a total of four lines of two AC power supply lines and two communication lines, the signal transmission method includes, for example, the following: A method disclosed in Patent Document 1 has also been proposed.

すなわちこの特許文献1においては、室外機と室内機とを2本の交流電源線(L、N)及び1本の通信線(S)とで接続し、室外機と室内機との間で行われる信号の伝送は交流電源線の1本(N)を共用線として用いる構成が示されている。図4は、この構成を説明するための説明図である。この説明図では、空気調和機100における通信回路の構成を簡易に示している。   That is, in Patent Document 1, an outdoor unit and an indoor unit are connected by two AC power supply lines (L, N) and one communication line (S), and are performed between the outdoor unit and the indoor unit. In the transmission of the signal, one AC power supply line (N) is used as a shared line. FIG. 4 is an explanatory diagram for explaining this configuration. In this explanatory drawing, the structure of the communication circuit in the air conditioner 100 is simply shown.

空気調和機100は、室外機101と、室内機102とからなり、室外機101と室内機102とは渡り部分103を挟んで互いに接続されている。室外機101は、交流電源104に接続され、2本の交流電源線L、Nを介して室内機102に電力を供給している。また、室外機101と室内機102は、それぞれ互いの間で信号の伝送を行うための信号線を備えている。信号線はその端子を、交流電源線のうちの一方の交流電源線Nと通信線Sと接続されることで室外機201と室内機102との間で信号をやり取りする通信経路105が構成される。   The air conditioner 100 includes an outdoor unit 101 and an indoor unit 102, and the outdoor unit 101 and the indoor unit 102 are connected to each other with a crossover portion 103 interposed therebetween. The outdoor unit 101 is connected to an AC power source 104 and supplies power to the indoor unit 102 via two AC power lines L and N. The outdoor unit 101 and the indoor unit 102 each include a signal line for transmitting a signal between each other. By connecting the terminal of the signal line to one of the AC power supply lines N and the communication line S, a communication path 105 for exchanging signals between the outdoor unit 201 and the indoor unit 102 is configured. The

また、室外機101と室内機102とは、それぞれ送受信回路106,107を備える。これら送受信回路106,107は送信素子106a,107aと、受信素子106b,107bから構成され、送信する際には送信素子106a,107aを介して、信号を受信する際には受信素子106b,107bを介して行われる。また、通信経路105上には、室外機101と室内機102のそれぞれの側に通信経路105を流れる電流を制限する抵抗108,110と逆電圧が印加されることを防止するためのダイオード109,111が設けられている。また、通信経路105の途中には、この通信経路105の一方向に電流を流すための通信用DC電源112が設けられている。   The outdoor unit 101 and the indoor unit 102 include transmission / reception circuits 106 and 107, respectively. These transmission / reception circuits 106 and 107 are composed of transmitting elements 106a and 107a and receiving elements 106b and 107b. When transmitting signals, the transmitting elements 106a and 107b are used. When receiving signals, the receiving elements 106b and 107b are connected. Done through. On the communication path 105, resistors 108 and 110 for limiting the current flowing through the communication path 105 on the respective sides of the outdoor unit 101 and the indoor unit 102 and a diode 109 for preventing a reverse voltage from being applied. 111 is provided. In addition, a communication DC power source 112 for supplying a current in one direction of the communication path 105 is provided in the middle of the communication path 105.

この構成では、通信経路105に電流を流すか否かによって信号の「0」または「1」を送受信する。例えば、室内機102から室外機101へ信号を送信する場合、室外機101側の送信素子106aはON(導通)状態にしておき、室内機102の送信素子107aが通信経路105上を流れる電流のON、OFFを行う。そして、このON、OFFの信号を室外機101側の受信素子106bが受信する。   In this configuration, a signal “0” or “1” is transmitted and received depending on whether or not a current is passed through the communication path 105. For example, when a signal is transmitted from the indoor unit 102 to the outdoor unit 101, the transmission element 106 a on the outdoor unit 101 side is turned on (conductive), and the transmission element 107 a of the indoor unit 102 has a current flowing through the communication path 105. Turn on and off. The ON / OFF signal is received by the receiving element 106b on the outdoor unit 101 side.

但し、この通信経路が正常に機能するためには室外機と室内機とを接続する際の結線を正しく行わなければならない。なぜならば、この通信経路上の送受信回路上の素子は低電圧直流用素子で構成されるため、誤配線により交流電源が誤印加されてしまうとこれらの素子が破壊されてしまうからである。以下に示す特許文献2においては、誤配線時の素子破壊を防止する方法として次に挙げる発明を開示している。   However, in order for this communication path to function properly, it is necessary to correctly connect the outdoor unit and the indoor unit. This is because the elements on the transmission / reception circuit on this communication path are composed of low-voltage DC elements, and these elements will be destroyed if an AC power supply is erroneously applied due to incorrect wiring. In Patent Document 2 shown below, the following invention is disclosed as a method for preventing element destruction at the time of incorrect wiring.

すなわち、ツェナーダイオードと正特性サーミスタまたはヒューズの組み合わせを通信経路に直列に挿入し、誤配線により通信経路に交流電源が印加されると、ツェナーダイオードによって、ツェナーダイオードの逆方向にはツェナー電圧以上の電圧が加わらないようにされ、素子には過電圧が印加されなくなる。また、過電流が流れると、正特性サーミスタの場合は自己発熱で抵抗値が増大し電流が抑制され、ヒューズの場合は溶断して電流が遮断される。
特開平2−146456号公報 特許第3434098号公報
That is, when a combination of a Zener diode and a positive temperature coefficient thermistor or fuse is inserted in series in the communication path, and AC power is applied to the communication path due to miswiring, the Zener diode causes the Zener diode to exceed the Zener voltage in the reverse direction. No voltage is applied, and no overvoltage is applied to the element. When an overcurrent flows, the resistance value increases due to self-heating in the case of a positive thermistor and the current is suppressed, and in the case of a fuse, the current is cut off and cut off.
Japanese Patent Laid-Open No. 2-146456 Japanese Patent No. 3434098

しかしながら、特に上述の特許文献2に開示されている構成では、誤配線の際に正特性サーミスタまたはヒューズの動作遅れによる突入電流が流れツェナーダイオードが破壊されてしまう可能性がある。   However, particularly in the configuration disclosed in Patent Document 2 described above, an inrush current due to a delay in the operation of the positive temperature coefficient thermistor or the fuse flows in the case of incorrect wiring, and the Zener diode may be destroyed.

また、通信経路上に設けられている送信素子がONしてしまうと、受信素子に過電流が流れて破壊されてしまう可能性がある。そのため、この破壊を回避し送受信回路等の保護を図るためには、このような過電流に耐性のある素子等の部品を選択しなければならず、部品選択の余地が狭まるという問題点もある。   Further, if the transmitting element provided on the communication path is turned on, an overcurrent may flow through the receiving element and be destroyed. Therefore, in order to avoid this destruction and protect the transmission / reception circuit, etc., it is necessary to select a component such as an element resistant to such an overcurrent, and there is a problem that the room for selecting the component is narrowed. .

本発明は上記課題を解決するためになされたものであり、本発明の目的は、誤配線等によって生ずる過電流に対して、簡単、安価な構成でしかも高速応答を行うことでより確実に通信経路上の各種素子を保護することのできる空気調和機の通信制御装置を提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide more reliable communication with a simple and inexpensive configuration and a high-speed response to an overcurrent caused by miswiring or the like. An object of the present invention is to provide a communication control device for an air conditioner that can protect various elements on a path.

本発明の実施の形態に係る特徴は、室外機と前記室外機と2本の交流電源線及び1本の通信線とで接続される室内機とを有し、室外機と室内機との間で行われる運転制御のための信号の伝送は交流電源線の1本を共用線として用いるとともに、室外機及び室内機はそれぞれ通信線と共用線により形成される通信経路に直列に接続される送信回路及び受信回路を備える空気調和機の通信制御装置において、室外機及び室内機の少なくとも一方に、通信経路に直列に接続される電流制限回路を備える。   A feature according to an embodiment of the present invention is that an outdoor unit, the outdoor unit, and an indoor unit connected by two AC power supply lines and one communication line are included, and between the outdoor unit and the indoor unit In the transmission of signals for operation control performed in the system, one of the AC power lines is used as a shared line, and the outdoor unit and the indoor unit are each connected in series to a communication path formed by the communication line and the shared line. In a communication control device for an air conditioner including a circuit and a receiving circuit, at least one of an outdoor unit and an indoor unit includes a current limiting circuit connected in series to a communication path.

本発明によれば、誤配線等によって生ずる過電流に対して、簡単、安価な構成でしかも高速応答を行うことでより確実に通信経路上の各種素子を保護することのできる空気調和機の通信制御装置を提供することができる。   According to the present invention, communication of an air conditioner that can protect various elements on a communication path more reliably by performing a high-speed response with a simple and inexpensive configuration against an overcurrent caused by miswiring or the like. A control device can be provided.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1の実施の形態)
図1は、空気調和機における通信制御装置1の構成を簡易に示す説明図である。図1に示すように、本発明の第1の実施の形態に係る通信制御装置1を備える空気調和機は、室外機2と、室内機3とからなり、室外機2と室内機3とは渡り部分4を挟んで互いに接続されている。
(First embodiment)
FIG. 1 is an explanatory diagram simply showing the configuration of a communication control device 1 in an air conditioner. As shown in FIG. 1, the air conditioner including the communication control device 1 according to the first embodiment of the present invention includes an outdoor unit 2 and an indoor unit 3, and the outdoor unit 2 and the indoor unit 3 are They are connected to each other with the crossover part 4 interposed therebetween.

室外機2は、交流電源5に接続され、2本の交流電源線L、Nを介して室内機3に電力を供給している。また、室外機2と室内機3は、それぞれ互いの間で信号の伝送を行うための信号線を備えている。これらの信号線はその端子を交流電源線のうちいずれか一方の交流電源線(本発明の実施の形態においては、交流電源線Nを選定し、以下、適宜「共用線N」という。)と通信線Sとで接続されることによって、室外機2と室内機3との間における信号をやり取りする通信経路6が構成される。   The outdoor unit 2 is connected to an AC power source 5 and supplies power to the indoor unit 3 via two AC power lines L and N. Moreover, the outdoor unit 2 and the indoor unit 3 are each provided with the signal wire | line for transmitting a signal between each other. The terminals of these signal lines are any one of the AC power supply lines (in the embodiment of the present invention, the AC power supply line N is selected and hereinafter referred to as “shared line N” as appropriate). By connecting with the communication line S, a communication path 6 for exchanging signals between the outdoor unit 2 and the indoor unit 3 is configured.

また、室外機2と室内機3とは、それぞれ送受信回路21,31を備える。これら送受信回路21,31は送信素子21a,31aと、受信素子21b,31bから構成され、送信する際には送信素子21a,31aを介して、信号を受信する際には受信素子21b,31bを介して行われる。一般的に、送信素子21a,31aには通信経路にフォトトランジスタを直列に接続したフォトカプラが使用され、受信素子21b,31bには通信経路にフォトダイオードを直列に接続したフォトカプラが使用される。なお、図示しないが、室外機2の送信素子21aの入力、受信素子21bの出力は室外制御回路に接続される。一方、室内機3の送信素子31aの入力、受信素子31bの出力は室内制御回路に接続される。   The outdoor unit 2 and the indoor unit 3 include transmission / reception circuits 21 and 31, respectively. These transmission / reception circuits 21 and 31 are composed of transmission elements 21a and 31a and reception elements 21b and 31b. When transmitting signals, the reception elements 21b and 31b are connected via the transmission elements 21a and 31a. Done through. Generally, a photocoupler in which a phototransistor is connected in series in a communication path is used for the transmitting elements 21a and 31a, and a photocoupler in which a photodiode is connected in series in a communication path is used for the receiving elements 21b and 31b. . Although not shown, the input of the transmitting element 21a and the output of the receiving element 21b of the outdoor unit 2 are connected to an outdoor control circuit. On the other hand, the input of the transmitting element 31a and the output of the receiving element 31b of the indoor unit 3 are connected to the indoor control circuit.

また、通信経路6上には、室外機2と室内機3のそれぞれの側に通信経路6を流れる電流を制限する抵抗22,32と逆電圧が印加されることを防止するためのダイオード23,33が設けられている。また、室外機2、室内機3のいずれか一方もしくは両方に通信用直流電源(図1ないし図3においては、「通信用DC電源」と表わしている。)51が設けられ、その出力が通信経路6に一方向に電流が流れるように供給される。   Further, on the communication path 6, resistors 22 and 32 that limit the current flowing through the communication path 6 on the respective sides of the outdoor unit 2 and the indoor unit 3 and a diode 23 for preventing a reverse voltage from being applied. 33 is provided. Further, a communication DC power source (in FIG. 1 to FIG. 3, “communication DC power source”) 51 is provided in one or both of the outdoor unit 2 and the indoor unit 3, and the output thereof is communication. A current is supplied to the path 6 so as to flow in one direction.

通信経路6上であって室外機2及び室内機3のそれぞれの側には、電流制限回路24,34が設けられている。室外機2と室内機3とを電気的に接続する際、2本の交流電源線L、N及び通信線Sをそれぞれ適切に接続する必要があるが、例えば、誤って室外機2において共用線Nではない交流電源線Lを通信線Sと接続してしまった場合には、通信経路6上に設けられている各素子、回路等が破壊されることになる。すなわち、上述したように送信素子21a,31a、21b,31bは低電圧直流回路用の素子によって構成されるため、誤配線によって交流電源が印加されると通信経路6が破壊されてしまう。そのために通信経路6上に電流制限回路24,34を設けたものである。   Current limiting circuits 24 and 34 are provided on the communication path 6 and on the respective sides of the outdoor unit 2 and the indoor unit 3. When the outdoor unit 2 and the indoor unit 3 are electrically connected, it is necessary to appropriately connect the two AC power supply lines L and N and the communication line S. For example, the common line in the outdoor unit 2 is erroneously connected. When an AC power supply line L that is not N is connected to the communication line S, each element, circuit, etc. provided on the communication path 6 is destroyed. That is, as described above, the transmission elements 21a, 31a, 21b, and 31b are configured by elements for a low-voltage DC circuit, so that the communication path 6 is destroyed when an AC power supply is applied due to miswiring. For this purpose, current limiting circuits 24 and 34 are provided on the communication path 6.

図1に示す通信制御装置1においては、室外機2、室内機3のいずれも電流制限回路24,34は送受信回路21,31と電流制限抵抗22,32との間に設けられているが、通信経路6上であれば図1では省略されているどの部分に設けられていても良い。また、図1に示す通信制御装置1においては、室外機2、室内機3のいずれも電流制限回路24,34を設けているが、室外機2或いは室内機3のいずれかにのみ電流制限回路を設けても良い。   In the communication control device 1 shown in FIG. 1, in both the outdoor unit 2 and the indoor unit 3, the current limiting circuits 24 and 34 are provided between the transmission / reception circuits 21 and 31 and the current limiting resistors 22 and 32. As long as it is on the communication path 6, it may be provided in any part omitted in FIG. In the communication control device 1 shown in FIG. 1, both the outdoor unit 2 and the indoor unit 3 are provided with the current limiting circuits 24 and 34, but the current limiting circuit is provided only in either the outdoor unit 2 or the indoor unit 3. May be provided.

電流制限回路24は、一般的に使用されている回路であり、図1に示すように、第1のトランジスタ24aと、第2のトランジスタ24bと、直流電源24cと、通信経路6上であって第1のトランジスタ24aと送受信回路21との間に設けた第1の電流制限抵抗24dと、直流電源24cと第2のトランジスタ24bとの間に設けた第2の電流制限抵抗24eとから構成される。   The current limiting circuit 24 is a circuit that is generally used. As shown in FIG. 1, the current limiting circuit 24 is provided on the communication path 6 on the first transistor 24a, the second transistor 24b, the DC power supply 24c, and The first current limiting resistor 24d provided between the first transistor 24a and the transmission / reception circuit 21 and the second current limiting resistor 24e provided between the DC power supply 24c and the second transistor 24b. The

具体的には、電流制限回路24は、第1のトランジスタ24aのエミッタとコレクタが、通信経路6途中に挿入され、この第1のトランジスタ24aのベースには直流電源24cの直流出力が供給される。第2のトランジスタ24bのベースは、第1のトランジスタ24aのエミッタと第1の電流制限抵抗24d間の通信経路6に接続され、第2のトランジスタ24bのエミッタは、第1の電流制限抵抗24dの他端である、電流制限抵抗24dと送受信回路21との間に接続され、第2のトランジスタ24bのコレクタは、第1のトランジスタのベースに接続される。   Specifically, in the current limiting circuit 24, the emitter and collector of the first transistor 24a are inserted in the middle of the communication path 6, and the DC output of the DC power supply 24c is supplied to the base of the first transistor 24a. . The base of the second transistor 24b is connected to the communication path 6 between the emitter of the first transistor 24a and the first current limiting resistor 24d, and the emitter of the second transistor 24b is connected to the first current limiting resistor 24d. The other end, which is connected between the current limiting resistor 24d and the transmission / reception circuit 21, is connected to the base of the first transistor.

室内機3側に設けられる電流制限回路34の構成も同様である。なお、図1ないし図3においては電流制限回路を構成する直流電源を「DC電源」と表わしている。   The configuration of the current limiting circuit 34 provided on the indoor unit 3 side is also the same. In FIG. 1 to FIG. 3, the direct current power source constituting the current limiting circuit is represented as “DC power source”.

第1のトランジスタ24a,34aは、第2のトランジスタ24b,34bと比べてより高耐圧、高許容コレクタ損失の性質をもつトランジスタを採用している。これは、通信経路6上の素子が破壊されることを避けるために、まず誤配線により過電流が流れ込み高電圧が印加される第1のトランジスタ24a,34aが破壊されることを避けるためである。   The first transistors 24a and 34a employ transistors having higher breakdown voltage and higher allowable collector loss than the second transistors 24b and 34b. This is to avoid the destruction of the first transistors 24a and 34a to which a high voltage is applied due to an overcurrent caused by miswiring in order to avoid destruction of elements on the communication path 6. .

すなわち、通常時は第2のトランジスタ24b,34bはオフ状態にあり、第1のトランジスタ24a,34aにはDC電源41,51から十分なベース電流が供給されるため、第1のトランジスタ24a,34aがONし、そのコレクタ−エミッタ間は完全な導通状態となり、通信経路6は導通する。この際、第1のトランジスタ24a,34aは完全なON状態にあるため、コレクタ−エミッタ間での電力損失は十分小さい。   That is, normally, the second transistors 24b and 34b are in an OFF state, and a sufficient base current is supplied from the DC power sources 41 and 51 to the first transistors 24a and 34a. Is turned on, and the collector-emitter becomes completely conductive, and the communication path 6 becomes conductive. At this time, since the first transistors 24a and 34a are in the complete ON state, the power loss between the collector and the emitter is sufficiently small.

しかし、誤配線により通信経路6に商用電源電圧がそのまま印加されると、第1の電流制限抵抗24d、34dの両端電圧が、第2のトランジスタ24b,34bのVBEを越えてしまうため、第2のトランジスタ24b,34bがオンし、第1のトランジスタ24a,34aはベース電流を奪われて不飽和状態となる。この結果、第1のトランジスタ24a,34aのコレクタ−エミッタ間を流れる電流値を、第2のトランジスタ24b,34bのVBEを第1の電流制限抵抗24d、34dで除した抵抗の値となるように制限する。したがって、第1の電流制限抵抗24d、34dの抵抗値を適切に設定することで、誤配線による過電流を抑制することができる。この際、第1のトランジスタ24a,34aのコレクタ−エミッタ間で通信経路6の電力損失を負担するため、高耐圧、高許容コレクタ損失であることが要求される。   However, if the commercial power supply voltage is applied as it is to the communication path 6 due to incorrect wiring, the voltage across the first current limiting resistors 24d and 34d exceeds the VBE of the second transistors 24b and 34b. The transistors 24b and 34b are turned on, and the first transistors 24a and 34a are deprived of the base current and become unsaturated. As a result, the value of the current flowing between the collector and the emitter of the first transistors 24a and 34a becomes a resistance value obtained by dividing VBE of the second transistors 24b and 34b by the first current limiting resistors 24d and 34d. Restrict. Therefore, by setting the resistance values of the first current limiting resistors 24d and 34d appropriately, overcurrent due to incorrect wiring can be suppressed. At this time, in order to bear the power loss of the communication path 6 between the collector and emitter of the first transistors 24a and 34a, it is required to have a high breakdown voltage and a high allowable collector loss.

なお、第1の実施の形態における電流制限回路24,34では第1のトランジスタ24a,34a、第2のトランジスタ24b、34bのいずれもNPNタイプのものが用いられる。   In the current limiting circuits 24 and 34 in the first embodiment, all of the first transistors 24a and 34a and the second transistors 24b and 34b are NPN type.

このように、通信経路6上に電流制限回路44,54を設けることによって、誤配線等によって生ずる過電流に対して、簡単、安価な構成でしかも高速応答を行うことでより確実に通信経路6上の素子を保護することのできる空気調和機の通信制御装置を提供することができる。   Thus, by providing the current limiting circuits 44 and 54 on the communication path 6, the communication path 6 can be surely secured by performing a high-speed response with a simple and inexpensive configuration against an overcurrent caused by miswiring or the like. It is possible to provide a communication control device for an air conditioner that can protect the upper element.

特に、上述した特許文献2において開示されている発明の構成では、例えば、突入電流が生じた場合に正特性サーミスタやヒューズでは対応できない場合がある。そのため、予め通信経路上に設けられる素子の耐性を大きなものとしておく必要が生じる。   In particular, in the configuration of the invention disclosed in Patent Document 2 described above, for example, when an inrush current occurs, a positive temperature coefficient thermistor or a fuse may not be able to cope. For this reason, it is necessary to increase the resistance of the elements provided on the communication path in advance.

本発明の実施の形態で説明した構成では正特性サーミスタやヒューズを使用していないので応答の遅れが生ずることはない。従って、電流制限回路44,54を設けることによって誤配線等によって生ずる過電流から通信経路上の素子を確実に保護することができるため、各素子についても誤配線等による過電流に対応した部品選定を行わずに済み、部品選定の自由度が高まる。また、電流制限回路を設けることによって誤配線等による過電流に対応するために通信経路上に設けられる電流制限抵抗22,32を大きくする必要はなくなり、低抵抗化、或いは不要とすることも可能である。   In the configuration described in the embodiment of the present invention, no positive characteristic thermistor or fuse is used, so that there is no response delay. Therefore, by providing the current limiting circuits 44 and 54, it is possible to reliably protect the elements on the communication path from overcurrent caused by miswiring, etc., and therefore, for each element, component selection corresponding to overcurrent due to miswiring, etc. There is no need to perform the process, which increases the degree of freedom in selecting parts. In addition, by providing a current limiting circuit, it is not necessary to increase the current limiting resistors 22 and 32 provided on the communication path in order to cope with an overcurrent due to erroneous wiring or the like, and it is possible to reduce or eliminate the resistance. It is.

さらに、共用線Nと通信線Sとの間に発生する誘起電圧に起因して送受信回路の受信素子が誤受信する問題についても、誤配線への対応については電流制限回路44,54に担わせることができるため、電流制限抵抗22,32の大きさは誘起電圧にのみ対応することができれば足りるとすることができる。従って、通信経路全体のインピーダンスを低くして誘起電圧の発生を抑制する等の点について配慮すれば良く、電流制限抵抗22,32の選定に当たって選択幅が拡大する。   Further, regarding the problem that the receiving element of the transmission / reception circuit erroneously receives due to the induced voltage generated between the shared line N and the communication line S, the current limiting circuits 44 and 54 are responsible for dealing with the erroneous wiring. Therefore, the size of the current limiting resistors 22 and 32 may be sufficient if only the induced voltage can be handled. Therefore, it is only necessary to consider such points as reducing the impedance of the entire communication path to suppress the generation of the induced voltage, and the selection range is expanded when selecting the current limiting resistors 22 and 32.

また、室外機2台に複数の室内機が接続される、いわゆるマルチ構成とする場合にも、室外機から室内機への通信制御を考えればより多くの電流が通信経路上を流れることになるので、室外機側の電流制限抵抗を低抵抗化できれば、有利である。。   In addition, when a plurality of indoor units are connected to two outdoor units, so-called multi-configuration, more current flows on the communication path in consideration of communication control from the outdoor unit to the indoor unit. Therefore, it is advantageous if the current limiting resistance on the outdoor unit side can be reduced. .

以上、通信経路上に電流制限回路を設けることによって、誤配線等によって生ずる過電流から確実に通信経路上の素子を保護するだけではなく、上述した様々な効果を奏することのできる空気調和機の通信制御装置を提供することができる。   As described above, by providing a current limiting circuit on the communication path, not only can the elements on the communication path be reliably protected from overcurrent caused by miswiring or the like, but also the air conditioner that can exhibit the various effects described above. A communication control device can be provided.

(第2の実施の形態)
次に本発明の第2の実施の形態について説明する。なお、以下の実施の形態において、上述の第1の実施形態において説明した構成要素と同一の構成要素には同一の符号を付し、同一の構成要素の説明は重複するので省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. In the following embodiments, the same components as those described in the first embodiment are denoted by the same reference numerals, and the description of the same components is omitted because it is duplicated.

第2の実施の形態では、電流制限回路用に設けた直流電源を、予め室外機及び/または室内機に設けられている通信用DC電源を共用して使用している点に特徴がある。   The second embodiment is characterized in that the DC power source provided for the current limiting circuit is used in common with the DC power source for communication provided in advance in the outdoor unit and / or indoor unit.

すなわち、図2に示すように、第2の実施の形態における電流制限回路44,54は、通信経路6上であって予め室外機2側、室内機3側にそれぞれ設けられている直流電源41,51を第1のトランジスタ24a,34aのバイアス電源として兼用している。この結果、電流制限回路のために新たな直流電源を設ける必要がなくなり、部品点数を減らすことができる。   That is, as shown in FIG. 2, the current limiting circuits 44 and 54 in the second embodiment are provided on the communication path 6 and in advance on the outdoor unit 2 side and the indoor unit 3 side, respectively. , 51 are also used as bias power supplies for the first transistors 24a, 34a. As a result, it is not necessary to provide a new DC power supply for the current limiting circuit, and the number of parts can be reduced.

なお、第2の実施の形態における電流制限回路44に組み込まれる第1のトランジスタ24a,第2のトランジスタ24bはいずれもNPNタイプのものが用いられる。一方、室内機3側の電流制限回路34では第1のトランジスタ34a、第2のトランジスタ34bのいずれもPNPタイプのものが用いられているが、その動作は同様である。   The first transistor 24a and the second transistor 24b incorporated in the current limiting circuit 44 in the second embodiment are both NPN type. On the other hand, in the current limiting circuit 34 on the indoor unit 3 side, both the first transistor 34a and the second transistor 34b are PNP type, but the operation is the same.

この構成により、上述した第1の実施の形態における効果に加え、電流制限回路を構成する部品を減らすことができ、より低コストな空気調和機の通信制御装置を提供することができる。   With this configuration, in addition to the effects of the first embodiment described above, it is possible to reduce the number of components that constitute the current limiting circuit, and to provide a communication controller for an air conditioner that is lower in cost.

(第3の実施の形態)
次に本発明の第3の実施の形態について図3を用いて説明する。なお、以下の実施の形態において、上述の第1または第2の実施形態において説明した構成要素と同一の構成要素には同一の符号を付し、同一の構成要素の説明は重複するので省略する。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. In the following embodiments, the same components as those described in the first or second embodiment are denoted by the same reference numerals, and the description of the same components is omitted because it is duplicated. .

第3の実施の形態においては、電流制限回路64,74の直流電源24c,34cの出力の一端を第2の電流制限抵抗24e,34eを介して第1のトランジスタ24a,34aのベースと第2のトランジスタ24b,34bのコレクタとの接続部に接続し、他方を送受信回路21,31を挟んで通信経路6に接続することを特徴としている。   In the third embodiment, one end of the outputs of the DC power sources 24c and 34c of the current limiting circuits 64 and 74 is connected to the bases of the first transistors 24a and 34a via the second current limiting resistors 24e and 34e. The transistors 24b and 34b are connected to a connection portion with the collector, and the other is connected to the communication path 6 with the transmission / reception circuits 21 and 31 interposed therebetween.

このように直流電源24c、34cの出力経路に送受信回路21,31を挟みむことで、誤配線によって電流制限回路64,74が動作して通信経路6の電流を制限した後、送信素子21a,31aをOFFすれば、直流電源24c、34cの出力は切断される。この結果、第1のトランジスタ24a,34aのベース電流がなくなり、第1のトランジスタ24a,34aがオフし、通信経路6そのものが切断される。この時、第1のトランジスタ24a,34a、第2のトランジスタ24b,34bのいずれもオフとなり、電流が流れないため、これらのトランジスタでの電力消費や発熱もなくなる。   In this way, by sandwiching the transmission / reception circuits 21 and 31 between the output paths of the DC power supplies 24c and 34c, the current limiting circuits 64 and 74 operate due to miswiring to limit the current of the communication path 6, and then the transmission elements 21a, If 31a is turned OFF, the outputs of the DC power sources 24c and 34c are cut off. As a result, the base currents of the first transistors 24a and 34a disappear, the first transistors 24a and 34a are turned off, and the communication path 6 itself is disconnected. At this time, all of the first transistors 24a and 34a and the second transistors 24b and 34b are turned off and no current flows, so that power consumption and heat generation in these transistors are eliminated.

したがって、電流制限回路64,74による電流を制限から短時間で送信素子21a,31aをOFFすれば、第1のトランジスタ24a,34a、第2のトランジスタ24b,34bとして、許容コレクタ損失が低い素子を使用することも可能となる。   Therefore, if the transmission elements 21a and 31a are turned off in a short time after the current limiting circuits 64 and 74 limit the current, elements having low allowable collector loss are used as the first transistors 24a and 34a and the second transistors 24b and 34b. It can also be used.

なお、第3の実施の形態における電流制限回路24に組み込まれる第1のトランジスタ24a,第2のトランジスタ24bはいずれもNPNタイプのものが用いられる。一方、室内機3側の電流制限回路34では第1のトランジスタ34a、第2のトランジスタ34bのいずれもPNPタイプのものが用いられる。   The first transistor 24a and the second transistor 24b incorporated in the current limiting circuit 24 in the third embodiment are both NPN type. On the other hand, in the current limiting circuit 34 on the indoor unit 3 side, both the first transistor 34a and the second transistor 34b are PNP type.

このように、第3の実施の形態では、上述した第1の実施の形態における効果を全て得ることができる上に、誤配線によって通信経路に過電流が流れた場合に、送信素子を制御することで最終的に電流を遮断することができ、電流制限回路を構成する各素子の発熱や劣化を避けることができる。また、過電流が流れることを想定して耐性の大きな素子を使用しなくても良くなり、部品選定の自由度が高まる。   As described above, in the third embodiment, all the effects of the first embodiment described above can be obtained, and the transmission element is controlled when an overcurrent flows in the communication path due to miswiring. As a result, the current can be finally cut off, and heat generation and deterioration of each element constituting the current limiting circuit can be avoided. In addition, it is not necessary to use a highly durable element on the assumption that an overcurrent flows, and the degree of freedom of component selection is increased.

なお、この発明は、上記実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。例えば、上記第2の実施の形態において説明した構成と第3の実施の形態において説明した構成とを組み合わせて電流制限回路を構成することもできる。また、トランジスタとして複合型FET或いは低電流ダイオードを使用することもできる。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. For example, the current limiting circuit can be configured by combining the configuration described in the second embodiment and the configuration described in the third embodiment. Also, a composite FET or a low current diode can be used as the transistor.

さらに、上記実施の形態に開示されている複数の構成要素を適宜組み合わせることにより種々の発明を形成できる。例えば、実施の形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施の形態に亘る構成要素を適宜組み合わせてもよい。   Furthermore, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine the component covering different embodiment suitably.

本発明の第1の実施の形態に係る空気調和機における通信制御装置の構成を簡易に示す説明図である。It is explanatory drawing which shows simply the structure of the communication control apparatus in the air conditioner which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る空気調和機における通信制御装置の構成を簡易に示す説明図である。It is explanatory drawing which shows simply the structure of the communication control apparatus in the air conditioner which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る空気調和機における通信制御装置の構成を簡易に示す説明図である。It is explanatory drawing which shows simply the structure of the communication control apparatus in the air conditioner which concerns on the 3rd Embodiment of this invention. 従来の空気調和機における通信制御装置の構成を簡易に示す説明図である。It is explanatory drawing which shows simply the structure of the communication control apparatus in the conventional air conditioner.

符号の説明Explanation of symbols

1…通信制御装置、2…室内機3…室内機、4…渡り部分、5…交流電源、6…通信経路、21…室外機側の送受信回路、21a…送信素子、21b…受信素子、22…電流制限抵抗、23…ダイオード、24…電流制限回路、24a…第1のトランジスタ、24b…第2のトランジスタ、24c…直流電源、24d…第1の電流制限抵抗、24e…第2の電流制限抵抗、31…室内機側の送受信回路、31a…送信素子、31b…受信素子、32…電流制限抵抗、33…ダイオード、34…電流制限回路、34a…第1のトランジスタ、34b…第2のトランジスタ、34c…直流電源、34d…第1の電流制限抵抗、34e…第2の電流制限抵抗   DESCRIPTION OF SYMBOLS 1 ... Communication control apparatus, 2 ... Indoor unit 3 ... Indoor unit, 4 ... Transition part, 5 ... AC power supply, 6 ... Communication path, 21 ... Outdoor unit side transmission / reception circuit, 21a ... Transmission element, 21b ... Reception element, 22 ... Current limiting resistor, 23 ... Diode, 24 ... Current limiting circuit, 24a ... First transistor, 24b ... Second transistor, 24c ... DC power source, 24d ... First current limiting resistor, 24e ... Second current limiting Resistor 31 ... Transmitting / receiving circuit on indoor unit side, 31a ... Transmitting element, 31b ... Receiving element, 32 ... Current limiting resistor, 33 ... Diode, 34 ... Current limiting circuit, 34a ... First transistor, 34b ... Second transistor , 34c: DC power supply, 34d: first current limiting resistor, 34e: second current limiting resistor

Claims (3)

室外機と前記室外機と2本の交流電源線及び1本の通信線とで接続される室内機とを有し、前記室外機と前記室内機との間で行われる運転制御のための信号の伝送は前記交流電源線の1本を共用線として用いるとともに、前記室外機及び前記室内機はそれぞれ前記通信線と前記共用線により形成される通信経路に直列に接続される送信回路及び受信回路を備える空気調和機の通信制御装置において、
前記室外機及び前記室内機の少なくとも一方に、前記通信経路に直列に接続される電流制限回路を備えることを特徴とする空気調和機の通信制御装置。
A signal for operation control performed between the outdoor unit and the indoor unit, comprising an outdoor unit, an indoor unit connected to the outdoor unit with two AC power supply lines and one communication line The transmission unit uses one of the AC power supply lines as a shared line, and the outdoor unit and the indoor unit are connected in series to a communication path formed by the communication line and the shared line, respectively. In an air conditioner communication control apparatus comprising:
At least one of the outdoor unit and the indoor unit includes a current limiting circuit connected in series to the communication path.
前記電流制限回路は、前記通信経路途中にエミッタとコレクタが接続された第1のトランジスタと、前記通信経路途中に挿入された抵抗と、前記第1のトランジスタのベースに接続された通信用直流電源と、ベースが前記第1のトランジスタと前記抵抗間に接続され、前記エミッタが前記抵抗の他端に接続され、前記コレクタが前記第1のトランジスタのベースに接続された第2のトランジスタと、からなることを特徴とする請求項1に記載の空気調和機の通信制御装置。   The current limiting circuit includes a first transistor having an emitter and a collector connected in the middle of the communication path, a resistor inserted in the middle of the communication path, and a communication DC power source connected to the base of the first transistor. And a second transistor having a base connected between the first transistor and the resistor, an emitter connected to the other end of the resistor, and a collector connected to the base of the first transistor. The communication control device for an air conditioner according to claim 1, wherein 前記通信用直流電源の出力は、一端が前記第1のトランジスタのベースに接続され、他端が前記通信経路上に設けられている前記送信回路を挟んで前記通信経路に接続されていることを特徴とする請求項2に記載の空気調和機の通信制御装置。   The output of the DC power supply for communication is such that one end is connected to the base of the first transistor and the other end is connected to the communication path across the transmission circuit provided on the communication path. The communication control device for an air conditioner according to claim 2, wherein the communication control device is an air conditioner.
JP2007268297A 2007-10-15 2007-10-15 Communication control device of air conditioner Pending JP2009097760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007268297A JP2009097760A (en) 2007-10-15 2007-10-15 Communication control device of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007268297A JP2009097760A (en) 2007-10-15 2007-10-15 Communication control device of air conditioner

Publications (1)

Publication Number Publication Date
JP2009097760A true JP2009097760A (en) 2009-05-07

Family

ID=40700934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007268297A Pending JP2009097760A (en) 2007-10-15 2007-10-15 Communication control device of air conditioner

Country Status (1)

Country Link
JP (1) JP2009097760A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014184878A1 (en) 2013-05-14 2014-11-20 三菱電機株式会社 Protection device and protection method
WO2018229899A1 (en) * 2017-06-14 2018-12-20 三菱電機株式会社 Air conditioner communication circuit
JP2020527327A (en) * 2017-08-04 2020-09-03 広東美的制冷設備有限公司Gd Midea Air−Conditioning Equipment Co.,Ltd. Air conditioner current loop communication electrical circuit and air conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243040A (en) * 1990-02-21 1991-10-30 Anritsu Corp Bidirectional current control circuit
JPH0846647A (en) * 1994-07-29 1996-02-16 Nippondenso Co Ltd Short-circuit protection detector for transmission line
JPH0962957A (en) * 1995-08-21 1997-03-07 Hochiki Corp Reception circuit for fire alarm
JP2002213803A (en) * 2001-01-22 2002-07-31 Matsushita Electric Ind Co Ltd Indoor-outdoor communication control device for air conditioner
JP2003345448A (en) * 2002-05-28 2003-12-05 Matsushita Electric Works Ltd Power-supply unit
JP2004134928A (en) * 2002-10-09 2004-04-30 Mitsubishi Heavy Ind Ltd Signal transmission apparatus
JP2005257256A (en) * 2004-02-10 2005-09-22 Fujitsu General Ltd Control device for air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243040A (en) * 1990-02-21 1991-10-30 Anritsu Corp Bidirectional current control circuit
JPH0846647A (en) * 1994-07-29 1996-02-16 Nippondenso Co Ltd Short-circuit protection detector for transmission line
JPH0962957A (en) * 1995-08-21 1997-03-07 Hochiki Corp Reception circuit for fire alarm
JP2002213803A (en) * 2001-01-22 2002-07-31 Matsushita Electric Ind Co Ltd Indoor-outdoor communication control device for air conditioner
JP2003345448A (en) * 2002-05-28 2003-12-05 Matsushita Electric Works Ltd Power-supply unit
JP2004134928A (en) * 2002-10-09 2004-04-30 Mitsubishi Heavy Ind Ltd Signal transmission apparatus
JP2005257256A (en) * 2004-02-10 2005-09-22 Fujitsu General Ltd Control device for air conditioner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014184878A1 (en) 2013-05-14 2014-11-20 三菱電機株式会社 Protection device and protection method
CN105229388A (en) * 2013-05-14 2016-01-06 三菱电机株式会社 Protective device and guard method
JPWO2014184878A1 (en) * 2013-05-14 2017-02-23 三菱電機株式会社 Protection device and protection method
EP2998661A4 (en) * 2013-05-14 2017-04-19 Mitsubishi Electric Corporation Protection device and protection method
CN105229388B (en) * 2013-05-14 2018-03-20 三菱电机株式会社 Protection device and guard method
US10122164B2 (en) 2013-05-14 2018-11-06 Mitsubishi Electric Corporation Protection device and protection method
WO2018229899A1 (en) * 2017-06-14 2018-12-20 三菱電機株式会社 Air conditioner communication circuit
JPWO2018229899A1 (en) * 2017-06-14 2019-11-07 三菱電機株式会社 Air conditioner communication circuit
JP2020527327A (en) * 2017-08-04 2020-09-03 広東美的制冷設備有限公司Gd Midea Air−Conditioning Equipment Co.,Ltd. Air conditioner current loop communication electrical circuit and air conditioner
US11378294B2 (en) 2017-08-04 2022-07-05 Gd Midea Air-Conditioning Equipment Co., Ltd. Air conditioner current loop communication circuit and air conditioner

Similar Documents

Publication Publication Date Title
JP5315986B2 (en) Power supply circuit and power supply system
JP2009079811A (en) Air conditioning system and indoor unit
JP6272315B2 (en) Protection device and protection method
JP4725119B2 (en) Air conditioner control device
JP2009097760A (en) Communication control device of air conditioner
WO2005039069A1 (en) Facilities equipment communication circuit
JP2005175749A (en) Multi-point digital input circuit and duplex multi-point digital input circuit
JP3379226B2 (en) Control device for air conditioner
JP3434098B2 (en) Protection device for bidirectional signal transfer circuit
JP5436881B2 (en) Air conditioner
JP5667495B2 (en) Positioner
JP2009097754A (en) Communication control device for air conditioner
AU753916B2 (en) Control circuit for an air conditioner
CN114520502A (en) Protection circuit system and electronic equipment
JP3598945B2 (en) Communication circuit protection device for air conditioner
JP3349984B2 (en) Reverse connection protection circuit
JP2005287277A (en) Power supply control system
CN215897372U (en) Multi-power supply circuit supporting hot plug
JP2010051043A (en) Rush current preventing circuit
JP4596791B2 (en) Power supply
JP6952493B2 (en) Communication system and relay device
JP2002039603A (en) Communication device
JP3086488U (en) Television and power control
GB2612178A (en) System component, mini PC and operating method for a system component
JP2003114705A (en) Programmable controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703