JP2009096926A - Method of removing mercury in hydrocarbon oil and method of measuring concentration thereof - Google Patents
Method of removing mercury in hydrocarbon oil and method of measuring concentration thereof Download PDFInfo
- Publication number
- JP2009096926A JP2009096926A JP2007271537A JP2007271537A JP2009096926A JP 2009096926 A JP2009096926 A JP 2009096926A JP 2007271537 A JP2007271537 A JP 2007271537A JP 2007271537 A JP2007271537 A JP 2007271537A JP 2009096926 A JP2009096926 A JP 2009096926A
- Authority
- JP
- Japan
- Prior art keywords
- mercury
- hydrocarbon oil
- concentration
- mercaptan
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 title claims abstract description 125
- 229910052753 mercury Inorganic materials 0.000 title claims abstract description 108
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 81
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 81
- 239000004215 Carbon black (E152) Substances 0.000 title claims abstract description 78
- 238000000034 method Methods 0.000 title claims abstract description 54
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 claims abstract description 39
- 150000002731 mercury compounds Chemical class 0.000 claims abstract description 8
- 230000001678 irradiating effect Effects 0.000 claims abstract description 6
- 238000010521 absorption reaction Methods 0.000 claims description 12
- 239000003463 adsorbent Substances 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 229940100892 mercury compound Drugs 0.000 claims description 7
- 238000002795 fluorescence method Methods 0.000 claims description 2
- 239000003921 oil Substances 0.000 abstract description 59
- 239000003350 kerosene Substances 0.000 abstract description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 6
- 239000010779 crude oil Substances 0.000 abstract description 4
- 239000007789 gas Substances 0.000 abstract description 4
- 239000003498 natural gas condensate Substances 0.000 abstract description 4
- 239000003345 natural gas Substances 0.000 abstract description 3
- 239000003502 gasoline Substances 0.000 abstract description 2
- -1 naphtha Substances 0.000 abstract description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 26
- MEMRJYWXQDJQMI-UHFFFAOYSA-L bis(ethylsulfanyl)mercury Chemical compound [Hg+2].CC[S-].CC[S-] MEMRJYWXQDJQMI-UHFFFAOYSA-L 0.000 description 13
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical compound CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 description 9
- 238000001179 sorption measurement Methods 0.000 description 9
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 239000012086 standard solution Substances 0.000 description 3
- 239000011550 stock solution Substances 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- PMBXCGGQNSVESQ-UHFFFAOYSA-N 1-Hexanethiol Chemical compound CCCCCCS PMBXCGGQNSVESQ-UHFFFAOYSA-N 0.000 description 2
- BDFAOUQQXJIZDG-UHFFFAOYSA-N 2-methylpropane-1-thiol Chemical compound CC(C)CS BDFAOUQQXJIZDG-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- WQAQPCDUOCURKW-UHFFFAOYSA-N butanethiol Chemical compound CCCCS WQAQPCDUOCURKW-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical compound CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910017464 nitrogen compound Inorganic materials 0.000 description 2
- 150000002830 nitrogen compounds Chemical class 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- KJRCEJOSASVSRA-UHFFFAOYSA-N propane-2-thiol Chemical compound CC(C)S KJRCEJOSASVSRA-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000002336 sorption--desorption measurement Methods 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- AMIGDWBXJXRGEN-UHFFFAOYSA-N 1,6-dimethylcyclohexa-2,4-diene-1-thiol Chemical compound CC1(C(C=CC=C1)C)S AMIGDWBXJXRGEN-UHFFFAOYSA-N 0.000 description 1
- ZRKMQKLGEQPLNS-UHFFFAOYSA-N 1-Pentanethiol Chemical compound CCCCCS ZRKMQKLGEQPLNS-UHFFFAOYSA-N 0.000 description 1
- DOCWCRVSOQKFMI-UHFFFAOYSA-N 4-methylpentane-1-thiol Chemical compound CC(C)CCCS DOCWCRVSOQKFMI-UHFFFAOYSA-N 0.000 description 1
- LSESCEUNBVHCTC-UHFFFAOYSA-N 6-methylheptane-1-thiol Chemical compound CC(C)CCCCCS LSESCEUNBVHCTC-UHFFFAOYSA-N 0.000 description 1
- SLCVAWIKRJRNIR-UHFFFAOYSA-N 7-methyloctane-1-thiol Chemical compound CC(C)CCCCCCS SLCVAWIKRJRNIR-UHFFFAOYSA-N 0.000 description 1
- 229910000497 Amalgam Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GIJGXNFNUUFEGH-UHFFFAOYSA-N Isopentyl mercaptan Chemical compound CC(C)CCS GIJGXNFNUUFEGH-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003949 liquefied natural gas Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- ZVEZMVFBMOOHAT-UHFFFAOYSA-N nonane-1-thiol Chemical compound CCCCCCCCCS ZVEZMVFBMOOHAT-UHFFFAOYSA-N 0.000 description 1
- 150000002898 organic sulfur compounds Chemical class 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 238000003918 potentiometric titration Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- SUVIGLJNEAMWEG-UHFFFAOYSA-N propane-1-thiol Chemical compound CCCS SUVIGLJNEAMWEG-UHFFFAOYSA-N 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- WMXCDAVJEZZYLT-UHFFFAOYSA-N tert-butylthiol Chemical compound CC(C)(C)S WMXCDAVJEZZYLT-UHFFFAOYSA-N 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
本発明は、炭化水素油中の水銀の除去方法及び濃度測定方法に関し、特には、炭化水素油中の単体水銀を水銀メルカプチドへ転換した後に水銀の除去及び/又は濃度測定を行う方法に関するものである。 The present invention relates to a method for removing mercury from hydrocarbon oils and a method for measuring concentration, and more particularly to a method for removing mercury and / or measuring concentrations after conversion of elemental mercury in hydrocarbon oil to mercury mercaptide. is there.
原油、天然ガス及び天然ガスコンデンセートは、単体水銀及び水銀化合物を含有する場合がある。そして、それぞれの含有量は産地によって異なる。水銀は、環境に放出すると影響が甚大なため厳しく規制されており、製造設備自体についてもアルミニウムをはじめとする金属にアマルガム腐食による深刻な損傷を与え、更には、設備運転上からは貴金属系触媒の活性に対する毒性が顕著であるため、その除去方法は極めて重要である。従って、従来から水銀の除去方法が種々検討されている。 Crude oil, natural gas and natural gas condensate may contain elemental mercury and mercury compounds. And each content changes with production areas. Mercury is severely regulated when it is released into the environment, and is severely regulated in the manufacturing equipment itself. It also severely damages metals such as aluminum due to amalgam corrosion. The removal method is extremely important because of its remarkable toxicity to the activity. Therefore, various methods for removing mercury have been studied.
例えば、銀を含浸させたアルミナ又はゼオライト、ヨウ化カリウム又は硫黄を担持させた活性炭(特許文献1)、有機硫黄化合物を含有する活性炭(特許文献2)、硫化銅/担体(特許文献3)、銅、コバルト、マンガン、ニッケル、モリブデンなどの多硫化物/担体(特許文献4)、Na2S、Na2S4などの抽出液を使用する方法(特許文献5,6)等が知られている。
しかしながら、上記のように種々の水銀吸着剤が開発されているものの、吸着容量が小さい、あるいは、低濃度の吸着が不十分であるなどの課題が残っていた。また、原料炭化水素油の種類や産地が変わると除去効果が低下するなどの問題があり、より効果的な水銀の除去方法の開発が切望されていた。 However, although various mercury adsorbents have been developed as described above, problems remain such as a small adsorption capacity or insufficient low concentration adsorption. In addition, there is a problem that the removal effect is lowered when the type and production area of the raw material hydrocarbon oil is changed, and thus development of a more effective mercury removal method has been eagerly desired.
そこで、本発明は、原油、天然ガス、天然ガスコンデンセート、ナフサ、ガソリン、灯油、軽油等の炭化水素油に含有される水銀を、簡単な処理によって除去する方法を提供することを目的とする。 Accordingly, an object of the present invention is to provide a method for removing mercury contained in hydrocarbon oils such as crude oil, natural gas, natural gas condensate, naphtha, gasoline, kerosene, and light oil by a simple treatment.
本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、炭化水素油中の単体水銀が配管、貯槽壁、反応塔等の装置構成部材等に吸着及び脱着を繰り返すこと、及び気相と液相の相互移行が起きるために、装置各部において水銀の濃度が変化することを見出した。また、単体水銀を水銀メルカプチドに変換することにより、水銀の形態を安定化することができ、これにより水銀の濃度変化を抑えることができ、また除去が容易に行えることを見出し、本発明に想到した。 As a result of intensive investigations to solve the above problems, the present inventors have repeatedly adsorbed and desorbed single mercury in hydrocarbon oil on apparatus components such as piping, storage tank walls, reaction towers, and the like, and It has been found that the concentration of mercury changes in each part of the device due to the mutual transition between the gas phase and the liquid phase. Further, by converting simple mercury to mercury mercaptide, it was possible to stabilize the form of mercury, thereby suppressing the change in mercury concentration and easily removing it, and the present invention was conceived. did.
すなわち、本発明は以下の通りである。
(1)水銀を含有する炭化水素油中のメルカプタン含有量が所定量になるように調整した後、炭化水素油に紫外線を照射する工程と、該工程後に水銀化合物を除去する工程とを有する、炭化水素油の水銀除去方法である。
That is, the present invention is as follows.
(1) After adjusting the mercaptan content in the hydrocarbon oil containing mercury to be a predetermined amount, the step of irradiating the hydrocarbon oil with ultraviolet rays and the step of removing the mercury compound after the step; This is a method for removing mercury from hydrocarbon oil.
(2)前記メルカプタン含有量が単体水銀1モルに対して100モル以上であり、前記紫外線の照射時間が1分以上である前記(1)に記載の炭化水素油の水銀除去方法である。 (2) The mercury removal method for hydrocarbon oil according to (1), wherein the mercaptan content is 100 mol or more with respect to 1 mol of elemental mercury, and the irradiation time of the ultraviolet rays is 1 minute or more.
(3)前記水銀化合物を除去する工程が、吸着剤と炭化水素油とを接触させる工程である前記(1)又は(2)に記載の炭化水素油の水銀除去方法である。 (3) The method of removing mercury from hydrocarbon oil according to (1) or (2), wherein the step of removing the mercury compound is a step of bringing the adsorbent into contact with the hydrocarbon oil.
(4)前記(1)〜(3)のいずれかに記載の炭化水素油の水銀除去方法により得た水銀含有量が10ng/mL以下の炭化水素油である。 (4) A hydrocarbon oil having a mercury content of 10 ng / mL or less obtained by the method for removing mercury from a hydrocarbon oil according to any one of (1) to (3).
(5)水銀を含有する炭化水素油中のメルカプタン含有量が単体水銀1モルに対して100モル以上となるように調整した後、炭化水素油に紫外線を照射し、加熱気化−原子吸光法、加熱気化−原子蛍光法及び酸水素炎燃焼−原子吸光法のいずれかの方法により水銀濃度を測定する、炭化水素油中の水銀濃度の測定方法である。 (5) After adjusting the mercaptan content in the hydrocarbon oil containing mercury to be 100 mol or more with respect to 1 mol of elemental mercury, the hydrocarbon oil is irradiated with ultraviolet rays, and the heat vaporization-atomic absorption method, This is a method for measuring the mercury concentration in hydrocarbon oil, wherein the mercury concentration is measured by any one of heating vaporization-atomic fluorescence method and oxyhydrogen flame combustion-atomic absorption method.
(6)炭化水素油中の水銀濃度を前記(5)に記載の方法で測定した後、水銀濃度が所定の値以下のときに炭化水素油の精製処理を行う、炭化水素油の製造方法である。 (6) A method for producing hydrocarbon oil, wherein after the mercury concentration in the hydrocarbon oil is measured by the method described in (5) above, the hydrocarbon oil is purified when the mercury concentration is a predetermined value or less. is there.
(7)水銀除去工程の前の炭化水素油中の水銀濃度を前記(5)に記載の方法で測定する工程と、水銀除去工程の後の水銀濃度が所定濃度に達するために必要なメルカプタン濃度を算出する工程を含む前記(1)〜(3)のいずれかに記載の方法により水銀除去を行う、炭化水素油の水銀除去方法である。 (7) A step of measuring the mercury concentration in the hydrocarbon oil before the mercury removal step by the method described in (5) above, and a mercaptan concentration necessary for the mercury concentration after the mercury removal step to reach a predetermined concentration It is the mercury removal method of hydrocarbon oil which performs mercury removal by the method in any one of said (1)-(3) including the process of calculating.
上述のように、炭化水素油中の単体水銀は、形態が不安定で、装置構成部材との間で吸脱着を繰り返すこと及び液相−気相間の移行のため、経時的濃度変化が大きい。これに対して、本発明の炭化水素油中の水銀の除去方法では、単体水銀が装置構成部材との吸脱着を繰り返し挙動不安定になっている状態を、メルカプタン存在下での紫外線の照射により安定な水銀メルカプチドに転換する。生成した水銀メルカプチドは、吸着剤により容易に除去することができるため、炭化水素油中に含まれる微量の水銀をほぼ完全に除去することができる。 As described above, the elemental mercury in the hydrocarbon oil has an unstable form, and the concentration change with time is large due to repeated adsorption / desorption with the apparatus constituent members and transition between the liquid phase and the gas phase. On the other hand, in the method for removing mercury in hydrocarbon oil of the present invention, the state in which elemental mercury repeats adsorption / desorption with apparatus components and becomes unstable behavior is caused by irradiation with ultraviolet rays in the presence of mercaptans. Convert to stable mercury mercaptide. Since the produced mercury mercaptide can be easily removed by the adsorbent, a trace amount of mercury contained in the hydrocarbon oil can be almost completely removed.
また、本発明の水銀濃度の測定方法によれば、水銀が測定容器等に吸脱着している場合においても、炭化水素油中の水銀の形態を水銀メルカプチドにすることにより、水銀の捕捉率を高くすることができ、より正確な定量分析を行うことができる。さらに、この分析方法を工程管理に応用することにより、メルカプタンを過剰に添加することなく効率的な装置運転が可能となり、また、該分析方法は、水銀吸着層の吸着剤の交換判断等にも使用でき、装置運転面やコスト面でも格別な効果を奏する。 In addition, according to the mercury concentration measuring method of the present invention, even when mercury is adsorbed and desorbed to a measuring container or the like, the mercury capture rate can be increased by changing the form of mercury in the hydrocarbon oil to mercury mercaptide. It can be increased, and more accurate quantitative analysis can be performed. Furthermore, by applying this analysis method to process management, it becomes possible to operate the apparatus efficiently without adding mercaptan excessively, and this analysis method can also be used to judge the replacement of the adsorbent in the mercury adsorption layer. It can be used, and it has special effects in terms of device operation and cost.
以下に、本発明を詳細に説明する。本発明は、炭化水素油中の水銀濃度を後述の方法で測定した後、水銀濃度が所定の値以下のときに炭化水素油の精製処理を行う炭化水素油の製造方法に関するものである。水銀の所定濃度は任意に定めてよく、例えば、5質量ppm以下、特には1質量ppm以下のときに炭化水素油の精製処理を行うことが好ましい。精製処理とは、炭化水素油中に含まれるヘテロ元素を除去する水素化精製、吸着処理、蒸留を含むものである。 The present invention is described in detail below. The present invention relates to a method for producing a hydrocarbon oil, in which after the mercury concentration in a hydrocarbon oil is measured by the method described later, the hydrocarbon oil is refined when the mercury concentration is a predetermined value or less. The predetermined concentration of mercury may be arbitrarily determined. For example, when the concentration is 5 ppm by mass or less, and particularly 1 ppm by mass or less, it is preferable to perform the purification treatment of the hydrocarbon oil. The purification treatment includes hydrorefining, adsorption treatment, and distillation for removing hetero elements contained in hydrocarbon oil.
本発明の炭化水素油中の水銀の除去方法は、水銀を含有する炭化水素油中のメルカプタン含有量が所定量になるように調整した後、炭化水素油に紫外線を照射する工程と、該工程後に水銀化合物を除去する工程とを有する炭化水素油の水銀除去方法である。本発明の水銀の除去方法によれば、形態が不安定で経時的濃度変化が大きい炭化水素油中の単体水銀を、メルカプタン存在下での紫外線照射により安定な水銀メルカプチドに転換することにより、炭化水素油中に含まれる微量の水銀をほぼ完全に除去することが可能となる。 The method for removing mercury in the hydrocarbon oil of the present invention includes a step of irradiating the hydrocarbon oil with ultraviolet light after adjusting the mercaptan content in the hydrocarbon oil containing mercury to a predetermined amount, and the step A method for removing mercury from hydrocarbon oils, comprising the step of removing mercury compounds later. According to the mercury removal method of the present invention, single-mercury in hydrocarbon oil having unstable morphology and large concentration change over time is converted into stable mercury mercaptide by irradiation with ultraviolet rays in the presence of mercaptan. It becomes possible to almost completely remove the trace amount of mercury contained in the hydrogen oil.
本発明で使用するメルカプタンは、水銀メルカプチドを形成できるものであれば、特に限定されず、例えば、メチルメルカプタン、エチルメルカプタン、n-プロピルメルカプタン、iso-プロピルメルカプタン、n-ブチルメルカプタン、iso-ブチルメルカプタン、tert-ブチルメルカプタン、n-ペンチルメルカプタン、iso-ペンチルメルカプタン、n-ヘキシルメルカプタン、iso-ヘキシルメルカプタン、n-オクチルメルカプタン、iso-オクチルメルカプタン、n-ノニルメルカプタン、iso-ノニルメルカプタン、ベンゼンチオール、トルエンチオール、キシレンチオールが挙げられる。これらメルカプタンは、1種単独で用いてもよいし、2種以上を混合して用いてもよい。本発明において、メルカプタン含有量の所定量とは、炭化水素油中の単体水銀1モルに対してメルカプタン100モル以上であり、好ましくは500モル以上、より好ましくは1000モル以上である。 The mercaptan used in the present invention is not particularly limited as long as it can form a mercury mercaptide. For example, methyl mercaptan, ethyl mercaptan, n-propyl mercaptan, iso-propyl mercaptan, n-butyl mercaptan, iso-butyl mercaptan , Tert-butyl mercaptan, n-pentyl mercaptan, iso-pentyl mercaptan, n-hexyl mercaptan, iso-hexyl mercaptan, n-octyl mercaptan, iso-octyl mercaptan, n-nonyl mercaptan, iso-nonyl mercaptan, benzenethiol, toluene Examples include thiol and xylene thiol. These mercaptans may be used individually by 1 type, and 2 or more types may be mixed and used for them. In the present invention, the predetermined amount of mercaptan content is 100 mol or more, preferably 500 mol or more, more preferably 1000 mol or more, per mol of elemental mercury in the hydrocarbon oil.
炭化水素油中にメルカプタンが含有されている場合は、メルカプタンの含有量が前記所定量であれば、メルカプタンを添加する必要はないが、所定量でない場合は、メルカプタンを添加して所定量になるように調整する。メルカプタン濃度は、電位差滴定法(JIS K2276)によってppmレベル以上であれば簡便に定量分析できる。添加量は、前記のモル比以上であれは構わないが、メルカプタンの量が多くなり過ぎると、水銀除去工程後の後処理工程での脱硫負荷が増大するため好ましくない。尚、後述する水銀分析方法にて、処理前の炭化水素油中に含まれる水銀濃度を測定した後、必要なメルカプタン量を算出し、メルカプタン含有量が所定量となるようにメルカプタンの添加量を決定した後、メルカプタンを添加することが好ましい。これにより、一連の工程を管理することができる。 When the mercaptan is contained in the hydrocarbon oil, it is not necessary to add the mercaptan if the mercaptan content is the predetermined amount. However, if the mercaptan is not the predetermined amount, the mercaptan is added to obtain the predetermined amount. Adjust as follows. The mercaptan concentration can be easily quantitatively analyzed by the potentiometric titration method (JIS K2276) as long as it is above the ppm level. The amount added may be equal to or higher than the above molar ratio, but an excessive amount of mercaptan is not preferable because the desulfurization load in the post-treatment step after the mercury removal step increases. In addition, after measuring the mercury concentration contained in the hydrocarbon oil before treatment by the mercury analysis method described later, the amount of mercaptan required is calculated, and the amount of mercaptan added is adjusted so that the mercaptan content becomes a predetermined amount. After the determination, it is preferable to add mercaptans. Thereby, a series of processes can be managed.
水銀及びメルカプタンを含有する炭化水素油に、紫外線を照射することによって、例えば、以下の式:
Hg + 2RSH + UV光 → RSHgSR + 2H+
(式中、Rは炭化水素基を示す)に従って、水銀メルカプチドの生成が促進される。照射する紫外線は、自然光であってもよいが、UV−A光、UV−B光及びUV−C光を使用することができる。また、波長280〜320nmのUV−B光、波長320〜400nmのUV−A光、或いは自然光であっても使用できるが、中でも波長280nm以下のUV−C光を好適に使用することができる。紫外線の照射時間については、対象とする油種、単体水銀含有量、照射装置によって異なるが、1分間以上1ヶ月以内で適宜選択すればよく、特に制限はない。
By irradiating a hydrocarbon oil containing mercury and mercaptan with ultraviolet light, for example, the following formula:
Hg + 2RSH + UV light → RSHgSR + 2H +
According to the formula (wherein R represents a hydrocarbon group), the production of mercury mercaptide is promoted. The ultraviolet rays to be irradiated may be natural light, but UV-A light, UV-B light, and UV-C light can be used. Moreover, although UV-B light with a wavelength of 280-320 nm, UV-A light with a wavelength of 320-400 nm, or natural light can be used, UV-C light with a wavelength of 280 nm or less can be preferably used. The irradiation time of ultraviolet rays varies depending on the target oil type, the content of elemental mercury, and the irradiation device, but may be appropriately selected within 1 minute to 1 month, and is not particularly limited.
本発明においては、前述の紫外線照射工程により生成した水銀メルカプチドを、吸着剤により除去することが好ましい。該吸着剤としては、活性炭自体又はその表面に、鉄、ニッケル、銅、亜鉛、錫、アルミニウム及びカドミウムから選ばれる少なくとも一種の金属、その合金又はその酸化物、塩化物、硫化物又はそれらの混合物が担持された処理剤を用いることができる。また、吸着剤の担体としては、ゼオライト、活性炭、石油コークスなどが使用できるが、中でも表面積の大きい多孔質担体が好ましく、比表面積が100〜2500m2/g、好ましくは500〜1500m2/gのものが好適に使用できる。 In the present invention, it is preferable to remove the mercury mercaptide generated by the aforementioned ultraviolet irradiation step with an adsorbent. As the adsorbent, activated carbon itself or on the surface thereof, at least one metal selected from iron, nickel, copper, zinc, tin, aluminum, and cadmium, an alloy thereof, an oxide thereof, a chloride, a sulfide, or a mixture thereof Can be used. Further, a carrier of the adsorbent, zeolite, activated carbon, but such can be used petroleum coke, preferably greater porous carrier Of these surface, a specific surface area of 100~2500m 2 / g, preferably 500 to 1500 2 / g A thing can be used conveniently.
吸着剤による吸着温度は、好ましくは200℃以下、より好ましくは130℃以下である。特に水銀の吸着量を高める意味からは、100℃以下の温度が好ましい。吸着の際の液線速は、好ましくは0.01cm/秒以上、より好ましくは0.1cm/秒以上である。 The adsorption temperature by the adsorbent is preferably 200 ° C. or lower, more preferably 130 ° C. or lower. In particular, a temperature of 100 ° C. or lower is preferable from the viewpoint of increasing the amount of adsorption of mercury. The liquid linear velocity at the time of adsorption is preferably 0.01 cm / second or more, more preferably 0.1 cm / second or more.
水銀を含有する炭化水素油は、特に限定されず、広沸点範囲のもの、例えば、ライトナフサ留分およびヘビーナフサ留分、灯油留分さらに軽油留分に相当する炭化水素留分を含有するものでもよく、原油またはさらに重質油でもよいが、通常、沸点範囲20℃〜400℃のものが用いられる。これらの炭化水素留分は、一般に、硫黄化合物を10〜200ppm、窒素化合物を2〜20ppm含有するが、さらに多量の硫黄化合物、窒素化合物を含有するものであってもよい。炭化水素留分の具体例としては、例えば、ナフサその他の各種石油製品の混合基材、天然ガスコンデンセート、化学原料用ナフサ、合成炭化水素等を挙げることができる。また、常態でガス状の炭化水素であっても液化可能なものであれば、液化状態で吸着処理に供することができる。かかる炭化水素としては、例えば、液化天然ガス、液化プロパン、液化ブタン等を挙げることができる。また、常態で固体の炭化水素であっても加熱して液状となるものは、液体の状態で処理することができる。 The hydrocarbon oil containing mercury is not particularly limited, and may have a wide boiling range, for example, a hydrocarbon fraction corresponding to a light naphtha fraction and a heavy naphtha fraction, a kerosene fraction and a light oil fraction. Well, crude oil or even heavy oil may be used, but those having a boiling range of 20 ° C to 400 ° C are usually used. These hydrocarbon fractions generally contain 10 to 200 ppm of sulfur compound and 2 to 20 ppm of nitrogen compound, but may contain a larger amount of sulfur compound and nitrogen compound. Specific examples of the hydrocarbon fraction include a mixed base of naphtha and other various petroleum products, natural gas condensate, naphtha for chemical raw materials, and synthetic hydrocarbons. Moreover, even if it is a gaseous hydrocarbon normally, if it can be liquefied, it can use for an adsorption process in a liquefied state. Examples of such hydrocarbons include liquefied natural gas, liquefied propane, and liquefied butane. Moreover, even if it is a solid hydrocarbon normally, what is heated and becomes a liquid state can be processed in a liquid state.
また、本発明の水銀化合物の分析方法は、水銀を含有する炭化水素油中のメルカプタン含有量が単体水銀1モルに対して100モル以上となるように調整した後、炭化水素油に紫外線を照射し、加熱気化−原子吸光法、加熱気化−原子蛍光法及び酸水素炎燃焼−原子吸光法のいずれかの方法により水銀濃度を測定する方法である。メルカプタン量の調整及び紫外線の照射に関しては、前述の通りである。本発明は、水銀単体を水銀メルカプチドとした後、生成した水銀メルカプチドを測定することにより、水銀の分析を行う方法である。 In the mercury compound analysis method of the present invention, after adjusting the mercaptan content in the mercury-containing hydrocarbon oil to 100 mol or more per mol of elemental mercury, the hydrocarbon oil is irradiated with ultraviolet rays. In this method, the mercury concentration is measured by any one of heating vaporization-atomic absorption, heating vaporization-atomic fluorescence, and oxyhydrogen flame combustion-atomic absorption. The adjustment of the mercaptan amount and the irradiation with ultraviolet rays are as described above. The present invention is a method for analyzing mercury by measuring mercury produced after the mercury simple substance is converted into mercury mercaptide.
炭化水素油中の単体水銀は、分析のための採取器具や容器等に吸着及び脱着を繰り返すこと及び液相−気相間の移行のため、水銀濃度が経時的に変動する。そのため、測定までの工程数や作業時間等により定量値がばらつくなどの不具合があった。これに対して、単体水銀を水銀メルカプチドとした後、水銀メルカプチドを測定することにより、単体水銀の形態を安定化することができるため、測定値が一定となる。 The mercury concentration in the hydrocarbon oil fluctuates over time due to repeated adsorption and desorption on a sampling tool or container for analysis and transition between liquid phase and gas phase. For this reason, there is a problem that the quantitative value varies depending on the number of processes until the measurement and the working time. On the other hand, since the form of the single mercury can be stabilized by measuring the mercury mercaptide after the single mercury is used as the mercury mercaptide, the measured value becomes constant.
水銀濃度の測定方法としては、加熱気化−原子吸光法(JIS K0102)、加熱気化−原子蛍光法(EPA245.7)及び酸水素炎燃焼−原子吸光法(環境と測定技術、Vol.24、No.3、P.16(1997))が挙げられ、単体水銀を水銀メルカプチドとした後に、これら測定方法のいずれかにより水銀濃度を測定することで、水銀濃度を定量することができる。 Methods for measuring mercury concentration include heat vaporization-atomic absorption (JIS K0102), heat vaporization-atomic fluorescence (EPA 245.7) and oxyhydrogen flame combustion-atomic absorption (environment and measurement technique, Vol. 24, No. 3, P.16 (1997)), and the mercury concentration can be quantified by measuring the mercury concentration by any one of these measurement methods after converting the single mercury to mercury mercaptide.
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
(水銀含有標準溶液の調製)
ドデカン(東京化成製試薬、硫黄分:0.1質量ppm以下、メルカプタン:0.1質量ppm以下)100mLに水銀(関東化学製試薬)約0.3gの1粒を加え、マグネチックスターラーを用いて24時間ゆっくり撹拌してドデカン中に水銀を溶解させた。得られたドデカン中の水銀濃度をJIS K0102の加熱気化−原子吸光法にて測定した結果、1.49μg/mLであることを確認し、原液Aとした。次に、原液Aをドデカンにて33倍に希釈して、水銀濃度45.2ng/mLの水銀含有標準液Bを調製した。
(Preparation of mercury-containing standard solution)
Add about 0.3 g of mercury (reagent made by Kanto Chemical) to 100 mL of dodecane (Tokyo Kasei reagent, sulfur content: 0.1 mass ppm or less, mercaptan: 0.1 mass ppm or less), and use a magnetic stirrer. The mixture was slowly stirred for 24 hours to dissolve mercury in dodecane. As a result of measuring the mercury concentration in the obtained dodecane by the heat vaporization-atomic absorption method of JIS K0102, it was confirmed to be 1.49 μg / mL, and it was used as a stock solution A. Next, the stock solution A was diluted 33 times with dodecane to prepare a mercury-containing standard solution B having a mercury concentration of 45.2 ng / mL.
(実施例1)
水銀含有標準液B 100mLに、オクタンチオール0.05mLを加え(単体水銀1モルに対してオクタンチオール12900モル)、ピーク波長254nmのUV−C光を1時間照射した。UV照射後、活性炭(日本エンバイロケミカルズ製、型番GS2X)10gを加え24時間25℃で撹拌した。その後、3時間静置して活性炭との分離を行った。前記操作をして得られた炭化水素油の水銀濃度をJIS K0102の加熱気化−原子吸光法にて測定した結果、0.6ng/mLであった。
Example 1
To 100 mL of the mercury-containing standard solution B, 0.05 mL of octanethiol was added (12900 mol of octanethiol with respect to 1 mol of elemental mercury), and UV-C light having a peak wavelength of 254 nm was irradiated for 1 hour. After UV irradiation, 10 g of activated carbon (manufactured by Nippon Envirochemicals, model number GS2X) was added and stirred at 25 ° C. for 24 hours. Then, it left still for 3 hours and isolate | separated from activated carbon. It was 0.6 ng / mL as a result of measuring the mercury concentration of the hydrocarbon oil obtained by the said operation by the heating vaporization-atomic absorption method of JISK0102.
(比較例1)
オクタンチオールを添加しなかった以外は、実施例1と同様にして実施した。活性炭除去後の炭化水素油の水銀濃度は1.2ng/mLであった。
(Comparative Example 1)
It carried out like Example 1 except not having added octanethiol. The mercury concentration of the hydrocarbon oil after removing the activated carbon was 1.2 ng / mL.
(比較例2)
UV照射を行わなかった以外は実施例1と同様にして実施した。活性炭除去後の炭化水素油の水銀濃度は1.3ng/mLであった。
(Comparative Example 2)
It implemented like Example 1 except not having performed UV irradiation. The mercury concentration of the hydrocarbon oil after removing the activated carbon was 1.3 ng / mL.
(比較例3)
オクタンチオールを添加せず、UV照射も行わなかった以外は実施例1と同様にして実施した。活性炭除去後の炭化水素油の水銀濃度は1.5ng/mLであった。
(Comparative Example 3)
The same procedure as in Example 1 was performed except that no octanethiol was added and no UV irradiation was performed. The mercury concentration of the hydrocarbon oil after removing the activated carbon was 1.5 ng / mL.
(水銀含有灯油の調製)
市販灯油(硫黄分:8質量ppm、メルカプタン:0.1質量ppm以下、水銀濃度:0.1ng/mL以下)97mLに、水銀濃度1.49μg/mLの原液A 3mLを添加混合し、水銀濃度44.7ng/mLの水銀含有灯油Cを調製した。
(Preparation of mercury-containing kerosene)
To 97 mL of commercial kerosene (sulfur content: 8 mass ppm, mercaptan: 0.1 mass ppm or less, mercury concentration: 0.1 ng / mL or less), 3 mL of stock solution A with a mercury concentration of 1.49 μg / mL was added and mixed, and the mercury concentration 44.7 ng / mL mercury-containing kerosene C was prepared.
(実施例2)
水銀含有灯油C 100mLに、オクタンチオール(東京化成製試薬)0.05mLを加え(単体水銀1モルに対してオクタンチオール13000モル)、ピーク波長254nmのUV−C光を1時間照射した。UV照射後、活性炭(日本エンバイロケミカルズ製、型番GS2X)10gを加え24時間25℃で撹拌した。その後、3時間静置して活性炭との分離を行った。前記操作をして得られた炭化水素油の水銀濃度をJIS K0102の加熱気化−原子吸光法にて測定した結果、0.6ng/mLであった。
(Example 2)
To 100 mL of mercury-containing kerosene C, 0.05 mL of octanethiol (manufactured by Tokyo Chemical Industry) was added (13,000 mol of octanethiol with respect to 1 mol of elemental mercury), and UV-C light with a peak wavelength of 254 nm was irradiated for 1 hour. After UV irradiation, 10 g of activated carbon (manufactured by Nippon Envirochemicals, model number GS2X) was added and stirred at 25 ° C. for 24 hours. Then, it left still for 3 hours and isolate | separated from activated carbon. It was 0.6 ng / mL as a result of measuring the mercury concentration of the hydrocarbon oil obtained by the said operation by the heating vaporization-atomic absorption method of JISK0102.
(実施例3)
水銀含有灯油C 99.5mLに、オクタンチオールのトルエン希釈液(300μg/mL)0.5mLを混合して、溶液D(水銀濃度:44.7ng/mL、メルカプタン濃度:1.5質量ppm)を調製した。溶液Dの単体水銀に対するメルカプタンのモル比は46であった。
(Example 3)
Mix 90.5 mL of mercury-containing kerosene C with 0.5 mL of a toluene diluted solution of octanethiol (300 μg / mL) and add Solution D (mercury concentration: 44.7 ng / mL, mercaptan concentration: 1.5 mass ppm). Prepared. The molar ratio of mercaptan to elemental mercury in Solution D was 46.
単体水銀に対するメルカプタンのモル比を100以上にするため、溶液D 99mLにオクタンチオールのトルエン希釈液(300μg/mL)1mLを添加して、メルカプタン濃度4.5質量ppmの溶液Eを調製した。溶液Eの単体水銀に対するメルカプタンのモル比は140であった。 In order to make the molar ratio of mercaptan with respect to elemental mercury 100 or more, 1 mL of toluene dilution of octanethiol (300 μg / mL) was added to 99 mL of Solution D to prepare Solution E having a mercaptan concentration of 4.5 mass ppm. The molar ratio of mercaptan to elemental mercury in solution E was 140.
溶液E 100mLに、ピーク波長254nmのUV−C光を1時間照射した。UV照射後、活性炭10gを加え24時間25℃で撹拌した。その後、3時間静置して活性炭との分離を行った。前記操作をして得られた炭化水素油の水銀濃度をJIS K0102の加熱気化−原子吸光法にて測定した結果、0.6ng/mLであった。 100 mL of solution E was irradiated with UV-C light having a peak wavelength of 254 nm for 1 hour. After UV irradiation, 10 g of activated carbon was added and stirred at 25 ° C. for 24 hours. Then, it left still for 3 hours and isolate | separated from activated carbon. It was 0.6 ng / mL as a result of measuring the mercury concentration of the hydrocarbon oil obtained by the said operation by the heat vaporization-atomic absorption method of JISK0102.
上記の実施例の結果から、水銀を含有する炭化水素油中のメルカプタン含有量が単体水銀1モルに対して100モル以上となるように調整した後、炭化水素油に紫外線を照射することで、炭化水素油中の水銀を効率的に除去できることが分かる。一方、比較例の結果から、メルカプタンの添加及び/又は紫外線の照射を行わない場合、水銀の残存濃度が大幅に上昇してしまうことが分かる。 From the results of the above examples, after adjusting the mercaptan content in the hydrocarbon oil containing mercury to be 100 mol or more with respect to 1 mol of elemental mercury, by irradiating the hydrocarbon oil with ultraviolet rays, It can be seen that mercury in hydrocarbon oil can be efficiently removed. On the other hand, it can be seen from the results of the comparative example that the residual concentration of mercury is significantly increased when the addition of mercaptan and / or the irradiation with ultraviolet rays is not performed.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007271537A JP5231780B2 (en) | 2007-10-18 | 2007-10-18 | Method for removing mercury and measuring concentration in hydrocarbon oil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007271537A JP5231780B2 (en) | 2007-10-18 | 2007-10-18 | Method for removing mercury and measuring concentration in hydrocarbon oil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009096926A true JP2009096926A (en) | 2009-05-07 |
JP5231780B2 JP5231780B2 (en) | 2013-07-10 |
Family
ID=40700235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007271537A Expired - Fee Related JP5231780B2 (en) | 2007-10-18 | 2007-10-18 | Method for removing mercury and measuring concentration in hydrocarbon oil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5231780B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009157434A1 (en) * | 2008-06-23 | 2009-12-30 | 日揮株式会社 | Method for purifying carbon dioxide off-gas, combustion catalyst for purification of carbon dioxide off-gas, and process for producing natural gas |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5083318A (en) * | 1973-11-27 | 1975-07-05 | ||
JP2001172647A (en) * | 1999-12-21 | 2001-06-26 | Univ Osaka | Method for demetalyzing fossil fuel |
JP2002544368A (en) * | 1999-05-17 | 2002-12-24 | モービル・オイル・コーポレイション | Mercury removal from petroleum crude oil using H2S / C |
JP2007181757A (en) * | 2006-01-05 | 2007-07-19 | Babcock Hitachi Kk | Method of removing mercury from exhaust gas |
-
2007
- 2007-10-18 JP JP2007271537A patent/JP5231780B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5083318A (en) * | 1973-11-27 | 1975-07-05 | ||
JP2002544368A (en) * | 1999-05-17 | 2002-12-24 | モービル・オイル・コーポレイション | Mercury removal from petroleum crude oil using H2S / C |
JP2001172647A (en) * | 1999-12-21 | 2001-06-26 | Univ Osaka | Method for demetalyzing fossil fuel |
JP2007181757A (en) * | 2006-01-05 | 2007-07-19 | Babcock Hitachi Kk | Method of removing mercury from exhaust gas |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009157434A1 (en) * | 2008-06-23 | 2009-12-30 | 日揮株式会社 | Method for purifying carbon dioxide off-gas, combustion catalyst for purification of carbon dioxide off-gas, and process for producing natural gas |
Also Published As
Publication number | Publication date |
---|---|
JP5231780B2 (en) | 2013-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sarda et al. | Deep desulfurization of diesel fuel by selective adsorption over Ni/Al2O3 and Ni/ZSM-5 extrudates | |
Feng et al. | Sulfurization of a carbon surface for vapor phase mercury removal–II: Sulfur forms and mercury uptake | |
US7569199B1 (en) | Method to remove sulfur or sulfur-containing species from a source | |
US8906228B2 (en) | Process, method, and system for removing heavy metals from fluids | |
Avellan et al. | Speciation of mercury in selected areas of the petroleum value chain | |
Tian et al. | Unraveling the synergistic reaction and the deactivation mechanism for the catalytic degradation of double components of sulfur-containing VOCs over ZSM-5-based materials | |
Gallup et al. | The behavior of mercury in water, alcohols, monoethylene glycol and triethylene glycol | |
WO2010096571A2 (en) | Selenium removal process | |
Liu et al. | AgNO3-induced photocatalytic degradation of odorous methyl mercaptan in gaseous phase: mechanism of chemisorption and photocatalytic reaction | |
WO2015057300A2 (en) | Removing mercury from crude oil using a stabilization column | |
JP5032992B2 (en) | Hydrocarbon oil desulfurization agent and desulfurization method | |
JP2007077355A (en) | Kerosene composition | |
AU2017208206A1 (en) | Removing mercury from crude oil | |
Rashid et al. | Sulfur-impregnated porous carbon for removal of mercuric chloride: optimization using RSM | |
JP5231780B2 (en) | Method for removing mercury and measuring concentration in hydrocarbon oil | |
US10081768B2 (en) | Sulfur removal from petroleum fluids | |
JP2017192911A (en) | Desulfurizing agent for fuel cells | |
Warrag | Capturing impurities from oil and gas using deep eutectic solvents | |
JP2004277747A (en) | Method of removing sulfur compound in fuel gas | |
Lambertsson et al. | Rapid dissolution of cinnabar in crude oils at reservoir temperatures facilitated by reduced sulfur ligands | |
Koulocheris | Thermodynamic modelling and simulation of mercury distribution in natural gas | |
US10633600B2 (en) | Process for removing mercury from crude oil | |
JP5588181B2 (en) | Adsorbent for removing odorant in fuel gas under high dew point condition and method for removing odorant | |
JPH0234688A (en) | Method for removal of mercury | |
Yang et al. | Kinetics and mechanism of Se-catalyzed disproportionation of bisulfite: the critical role of selenosulfate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100831 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100906 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121002 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130312 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130322 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160329 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5231780 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |