JP2009096229A - Road surface friction coefficient estimation device - Google Patents

Road surface friction coefficient estimation device Download PDF

Info

Publication number
JP2009096229A
JP2009096229A JP2007266900A JP2007266900A JP2009096229A JP 2009096229 A JP2009096229 A JP 2009096229A JP 2007266900 A JP2007266900 A JP 2007266900A JP 2007266900 A JP2007266900 A JP 2007266900A JP 2009096229 A JP2009096229 A JP 2009096229A
Authority
JP
Japan
Prior art keywords
driving
braking
driving force
road surface
surface friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007266900A
Other languages
Japanese (ja)
Other versions
JP4959502B2 (en
Inventor
Yoshinobu Yamazaki
義暢 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2007266900A priority Critical patent/JP4959502B2/en
Publication of JP2009096229A publication Critical patent/JP2009096229A/en
Application granted granted Critical
Publication of JP4959502B2 publication Critical patent/JP4959502B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a road surface friction coefficient estimation device which can accurately estimates road surface friction coefficients in a wide driving area and is excellent in versatility. <P>SOLUTION: The road surface friction coefficient estimation device is configured to calculate a generated driving/braking force Fd generated by a wheel based on the longitudinal acceleration of a vehicle, and to calculate an estimated driving/braking force Fm to be added to the wheel based on the output torque of the driving source of the vehicle and the braking force of a brake, and to calculate a generated driving/braking force difference value ΔFd between this time value and past value of the generated driving/braking force Fd and an estimated driving/braking force difference value ΔFm between this time value and past value of the estimated driving/braking force Fm, and to estimate a driving stiffness coefficient Q by using a parameter identification method based on the generated driving/braking force difference value ΔFd and the estimated driving/braking force difference value ΔFm, and to, on the basis of a speed V and the driving stiffness coefficient Q, set a road surface friction coefficient estimated value μE by referring to a characteristic map showing a relationship between prestored driving stiffness coefficient Q and speed V and the road surface friction coefficient estimated value μE. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、直進時だけでなく旋回時にも適用でき、かつ加速時にも精度良く早期に路面摩擦係数を推定する路面摩擦係数推定装置に関する。   The present invention relates to a road surface friction coefficient estimation device that can be applied not only when traveling straight but also when turning, and that estimates a road surface friction coefficient with high accuracy and early even during acceleration.

近年、車両においてはトラクション制御,制動力制御,あるいはトルク配分制御等について様々な制御技術が提案され、実用化されている。これらの技術では、必要な制御パラメータの演算、あるいは、補正に路面摩擦係数を用いるものも多く、その制御を適切に実行するためには、正確な路面摩擦係数を推定する必要がある。   In recent years, various control techniques for traction control, braking force control, torque distribution control, and the like have been proposed and put into practical use in vehicles. Many of these techniques use a road surface friction coefficient for calculation or correction of necessary control parameters, and in order to appropriately execute the control, it is necessary to estimate an accurate road surface friction coefficient.

例えば、特開2003−237558号公報では、4輪の平均車輪速度を車体速度として求め、この車体速度を微分して車両の前後加速度として演算し、主ブレーキ制動時に動力配分制御装置の油圧多板クラッチの締結を解放方向にさせ、後輪の車輪速度と前輪の車輪速度の差を前輪の車輪速度で除してすべり速度差変数を演算し、車両の前後加速度、すべり速度差変数を基に、予め設定しておいたマップを基に路面状態を推定する技術が開示されている。
特開平5−338457号公報
For example, in Japanese Patent Application Laid-Open No. 2003-237558, the average wheel speed of four wheels is obtained as a vehicle body speed, the vehicle body speed is differentiated and calculated as the longitudinal acceleration of the vehicle, and the hydraulic multi-plate of the power distribution control device during main brake braking Engage the clutch in the disengagement direction, calculate the slip speed difference variable by dividing the difference between the wheel speed of the rear wheel and the wheel speed of the front wheel by the wheel speed of the front wheel, and based on the longitudinal acceleration and slip speed difference variables of the vehicle A technique for estimating a road surface state based on a preset map is disclosed.
JP-A-5-338457

しかしながら、上述の特許文献1の技術では、例えば前後駆動力配分機構を有する4輪駆動車において、その制御を一般的に良く知られている、駆動トルクに応じたフィードフォワード制御と車輪差回転に応じたフィードバック制御により実行する場合、加速時は全輪が駆動状態であるため前後輪の駆動力(及びスリップ率)が時々刻々と変化し、車体速度の推定が困難で、特に加速時においては路面摩擦係数の推定が困難であるという問題がある。また、特許文献1の技術は路面摩擦係数に応じて発生する前後すべり速度差を利用して路面摩擦係数を推定する技術であるため、旋回中においては精度良く推定できず、誤判定してしまう虞がある。すなわち、旋回中においては旋回半径に応じた前後輪のすべり率差が発生してしまうため、路面摩擦係数に応じて発生する前後輪のすべり率差以外の外的要因が加わってしまい、路面摩擦係数を誤判定してしまう虞がある。そして結果として、直進付近でしか推定の原理を適用できないという問題もある。   However, in the technique of the above-described Patent Document 1, for example, in a four-wheel drive vehicle having a front-rear driving force distribution mechanism, the control is generally well-known in feedforward control according to drive torque and wheel differential rotation. When executing by the corresponding feedback control, the driving force (and slip ratio) of the front and rear wheels changes from moment to moment because all wheels are in a driving state during acceleration, making it difficult to estimate the vehicle speed, especially during acceleration. There is a problem that it is difficult to estimate the road surface friction coefficient. Moreover, since the technique of patent document 1 is a technique which estimates the road surface friction coefficient using the difference between the front and rear slip speeds generated according to the road surface friction coefficient, it cannot be accurately estimated during turning, and erroneous determination is made. There is a fear. That is, during turning, a difference in slip ratio between the front and rear wheels according to the turning radius occurs, so external factors other than the difference in slip ratio between the front and rear wheels generated according to the road surface friction coefficient are added, resulting in road surface friction. There is a risk of misjudging the coefficient. As a result, there is also a problem that the principle of estimation can be applied only near the straight line.

本発明は上記事情に鑑みてなされたもので、直進時だけでなく旋回時にも適用でき、かつ加速時にも精度良く早期に路面摩擦係数を推定できる路面摩擦係数推定装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a road surface friction coefficient estimating device that can be applied not only when going straight but also when turning, and capable of estimating the road surface friction coefficient accurately and quickly even during acceleration. To do.

本発明は、車両の前後加速度に基づき、車輪が発生している第1の制駆動力を演算する第1の制駆動力演算手段と、車両の駆動源の出力トルクまたはブレーキの制動力に基づき車輪に付加する第2の制駆動力を演算する第2の制駆動力演算手段と、上記第1の制駆動力の今回の値と過去の値との差分値を第1の制駆動力差分値として演算する第1の制駆動力差分値演算手段と、上記第2の制駆動力の今回の値と過去の値との差分値を第2の制駆動力差分値として演算する第2の制駆動力差分値演算手段と、スリップ率と路面摩擦係数の関係を示すタイヤ特性に基づき、所定のスリップ率におけるドライビングスティフネス係数と車速と路面摩擦係数との関係を予め設定し記憶する記憶手段と、上記第1の制駆動力差分値と上記第2の制駆動力差分値により上記ドライビングスティフネス係数を演算するドライビングスティフネス係数演算手段と、車速と上記ドライビングスティフネス係数演算手段で演算したドライビングスティフネス係数を基に、上記記憶手段に記憶した上記ドライビングスティフネス係数と車速と路面摩擦係数との関係から路面摩擦係数を推定する路面摩擦係数推定手段とを備えたことを特徴としている。   The present invention is based on the first braking / driving force calculating means for calculating the first braking / driving force generated by the wheels based on the longitudinal acceleration of the vehicle, and the output torque of the vehicle driving source or the braking force of the brake. A second braking / driving force calculating means for calculating a second braking / driving force to be applied to the wheel, and a difference value between the current value of the first braking / driving force and a past value is defined as a first braking / driving force difference. A first braking / driving force difference value calculating means for calculating a value, and a second value for calculating a difference value between the current value and the past value of the second braking / driving force as a second braking / driving force difference value. A braking / driving force difference value calculating means; and a storage means for presetting and storing a relationship between a driving stiffness coefficient, a vehicle speed, and a road surface friction coefficient at a predetermined slip ratio based on tire characteristics indicating a relationship between a slip ratio and a road surface friction coefficient. The first braking / driving force difference value and the second braking / driving force Driving stiffness coefficient calculating means for calculating the driving stiffness coefficient based on the fraction value, and the driving stiffness coefficient, vehicle speed, and road surface friction stored in the storage means based on the vehicle speed and the driving stiffness coefficient calculated by the driving stiffness coefficient calculating means. A road surface friction coefficient estimating means for estimating a road surface friction coefficient from the relationship with the coefficient is provided.

本発明による路面摩擦係数推定装置によれば、直進時だけでなく旋回時にも適用でき、かつ加速時にも精度良く早期に路面摩擦係数を推定できるという優れた効果を奏する。   The road surface friction coefficient estimating apparatus according to the present invention can be applied not only when traveling straight but also when turning, and has an excellent effect that the road surface friction coefficient can be estimated accurately and quickly even during acceleration.

以下、図面に基づいて本発明の実施の形態を説明する。
図1乃至図5は本発明の実施の一形態を示し、図1は路面摩擦係数推定装置の構成を示す機能ブロック図、図2は路面摩擦係数推定プログラムのフローチャート、図3はドライビングスティフネス係数と車速と路面摩擦係数推定値の特性マップの一例を示す説明図、図4はドライビングスティフネス係数と車速とスリップ率の関係を示す説明図、図5は路面摩擦係数とスリップ率のタイヤ特性曲線の説明図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 5 show an embodiment of the present invention, FIG. 1 is a functional block diagram showing the configuration of a road surface friction coefficient estimation device, FIG. 2 is a flowchart of a road surface friction coefficient estimation program, and FIG. 3 is a driving stiffness coefficient. FIG. 4 is an explanatory diagram showing an example of a characteristic map of vehicle speed and road surface friction coefficient estimated value, FIG. 4 is an explanatory diagram showing the relationship between driving stiffness coefficient, vehicle speed and slip ratio, and FIG. 5 is an explanation of tire characteristic curves of road surface friction coefficient and slip ratio. FIG.

図1において、符号1は車両に搭載され、路面摩擦係数を推定する路面摩擦係数推定装置を示し、この路面摩擦係数推定装置1には、制御部2に、4輪の車輪速センサ3、エンジン制御部4、トランスミッション制御部5、ブレーキ液圧センサ6、前後加速度センサ7が接続され、4輪車輪速ωfl(左前輪車輪速)、ωfr(右前輪車輪速)、ωrl(左後輪車輪速)、ωrr(右後輪車輪速)、エンジン回転数Ne、スロットル開度θth、タービン回転数Nt、トランスミッションギヤ比i、ブレーキ液圧PB、前後加速度Gxが入力される。   In FIG. 1, reference numeral 1 denotes a road surface friction coefficient estimating device that is mounted on a vehicle and estimates a road surface friction coefficient. The road surface friction coefficient estimating device 1 includes a control unit 2, a four-wheel wheel speed sensor 3, an engine. The control unit 4, the transmission control unit 5, the brake fluid pressure sensor 6, and the longitudinal acceleration sensor 7 are connected, and the four-wheel wheel speed ωfl (left front wheel speed), ωfr (right front wheel speed), ωrl (left rear wheel speed). ), Ωrr (right rear wheel speed), engine speed Ne, throttle opening θth, turbine speed Nt, transmission gear ratio i, brake hydraulic pressure PB, and longitudinal acceleration Gx.

そして、路面摩擦係数推定装置1の制御部2は、上述の各入力信号に基づき、後述する路面摩擦係数推定プログラムを実行し、路面摩擦係数を推定して出力する(路面摩擦係数推定値μEを出力する)。すなわち、制御部2は、図1に示すように、車速演算部2a、発生制駆動力演算部2b、推定制駆動力演算部2c、発生制駆動力差分値演算部2d、推定制駆動力差分値演算部2e、ドライビングスティフネス係数演算部2f、路面摩擦係数推定値設定部2gから主要に構成されている。   Then, the control unit 2 of the road surface friction coefficient estimation device 1 executes a road surface friction coefficient estimation program, which will be described later, based on each of the input signals described above, and estimates and outputs the road surface friction coefficient (the road surface friction coefficient estimated value μE). Output). That is, as shown in FIG. 1, the control unit 2 includes a vehicle speed calculation unit 2a, a generated braking / driving force calculation unit 2b, an estimated braking / driving force calculation unit 2c, a generated braking / driving force difference value calculation unit 2d, and an estimated braking / driving force difference. A value calculation unit 2e, a driving stiffness coefficient calculation unit 2f, and a road surface friction coefficient estimated value setting unit 2g are mainly configured.

車速演算部2aは、4輪車輪速センサ3から各車輪の車輪速ωfl、ωfr、ωrl、ωrrが入力され、これらの平均を演算することで車速V(=(ωfl+ωfr+ωrl+ωrr)/4)を演算し、路面摩擦係数推定値設定部2gに出力する。   The vehicle speed calculation unit 2a receives the wheel speeds ωfl, ωfr, ωrl, and ωrr of each wheel from the four-wheel wheel speed sensor 3, and calculates the vehicle speed V (= (ωfl + ωfr + ωrl + ωrr) / 4) by calculating the average of these. And output to the road surface friction coefficient estimated value setting unit 2g.

発生制駆動力演算部2bは、前後加速度センサ7から前後加速度Gxが入力され、例えば、以下の(1)式により、第1の制駆動力としての発生制駆動力Fdを演算し、発生制駆動力差分値演算部2dに出力する。すなわち、発生制駆動力演算部2bは、第1の制駆動力演算手段として設けられている。
Fd=((M・r+Jw)/r)・Gx …(1)
ここで、Mは車重、rはタイヤ半径、Jwは車輪と車軸などを併せた回転部分の慣性モーメントである。
The generated braking / driving force calculation unit 2b receives the longitudinal acceleration Gx from the longitudinal acceleration sensor 7, calculates the generated braking / driving force Fd as the first braking / driving force by, for example, the following expression (1), and It outputs to the driving force difference value calculating part 2d. That is, the generated braking / driving force calculation unit 2b is provided as first braking / driving force calculation means.
Fd = ((M · r 2 + Jw) / r) · Gx (1)
Here, M is the vehicle weight, r is the tire radius, and Jw is the moment of inertia of the rotating part that combines the wheel and the axle.

推定制駆動力演算部2cは、エンジン制御部4からエンジン回転数Ne、スロットル開度θthが入力され、トランスミッション制御部5からタービン回転数Nt、トランスミッションギヤ比iが入力され、ブレーキ液圧センサ6からブレーキ液圧PBが入力される。そして、例えば、以下の(2)式により、第2の制駆動力としての推定制駆動力Fmを演算し、推定制駆動力差分値演算部2eに出力する。すなわち、推定制駆動力演算部2cは、第2の制駆動力演算手段として設けられている。
Fm=(Tm+KB・PB)/r …(2)
ここで、Tmは駆動トルク、KBはブレーキ液圧ゲインであり、Tmは、例えば、以下の(3)式により、演算される。
Tm=Te・i・if・tconv …(3)
ここで、Teは予め設定しておいたエンジン回転数Neとスロットル開度θthの特性マップを基に演算されるエンジン出力トルク、ifは終段減速機のギヤ比、tconvはトルクコンバータ(図示せず)のトルコン比であり、このトルコン比tconvは、トルクコンバータの速度比e(=Nt/Ne)を基に予め設定されたマップから求められる。尚、エンジン出力トルクTeはエンジン制御部4等から直接入力される値を用いても良く、トルコン比tconvはトランスミッション制御部5等から直接入力される値を用いても良い。
The estimated braking / driving force calculation unit 2c receives the engine speed Ne and the throttle opening θth from the engine control unit 4, receives the turbine speed Nt and the transmission gear ratio i from the transmission control unit 5, and receives the brake hydraulic pressure sensor 6 From the brake fluid pressure PB. Then, for example, the estimated braking / driving force Fm as the second braking / driving force is calculated by the following equation (2), and is output to the estimated braking / driving force difference value calculating unit 2e. That is, the estimated braking / driving force calculation unit 2c is provided as second braking / driving force calculation means.
Fm = (Tm + KB · PB) / r (2)
Here, Tm is the driving torque, KB is the brake hydraulic pressure gain, and Tm is calculated by the following equation (3), for example.
Tm = Te · i · if · tconv (3)
Here, Te is the engine output torque calculated based on the preset engine speed Ne and throttle opening θth characteristic map, if is the gear ratio of the final reduction gear, and tconv is a torque converter (not shown). The torque converter ratio tconv is obtained from a map set in advance based on the speed ratio e (= Nt / Ne) of the torque converter. The engine output torque Te may be a value directly input from the engine control unit 4 or the like, and the torque converter ratio tconv may be a value directly input from the transmission control unit 5 or the like.

発生制駆動力差分値演算部2dは、発生制駆動力演算部2bから発生制駆動力Fdが入力される。そして、発生制駆動力Fdの今回の値Fd(k)と、過去の値(本実施の形態では前回の値:Fd(k-1))との差分値(発生制駆動力差分値)ΔFdを演算し、ドライビングスティフネス係数演算部2fに出力する。すなわち、
ΔFd=Fd(k)−Fd(k-1) …(4)
このように、発生制駆動力差分値演算部2dは、第1の制駆動力差分値としての発生制駆動力差分値ΔFdを演算する第1の制駆動力差分値演算手段として設けられている。尚、本実施の形態では、今回の値Fd(k)と前回の値Fd(k-1)とで発生制駆動力差分値ΔFdを演算するようにしているが、前回の値ではなく数サンプリング前の値を過去の値として用いるようにしても良い。
The generated braking / driving force difference value calculation unit 2d receives the generated braking / driving force Fd from the generated braking / driving force calculation unit 2b. The difference value (generated braking / driving force difference value) ΔFd between the current value Fd (k) of the generated braking / driving force Fd and the previous value (previous value: Fd (k-1) in the present embodiment). Is output to the driving stiffness coefficient calculation unit 2f. That is,
ΔFd = Fd (k) −Fd (k−1) (4)
Thus, the generated braking / driving force difference value calculation unit 2d is provided as first braking / driving force difference value calculation means for calculating the generated braking / driving force difference value ΔFd as the first braking / driving force difference value. . In this embodiment, the generated braking / driving force difference value ΔFd is calculated from the current value Fd (k) and the previous value Fd (k−1), but it is not the previous value but a few samplings. The previous value may be used as the past value.

推定制駆動力差分値演算部2eは、推定制駆動力演算部2cから推定制駆動力Fmが入力される。そして、推定制駆動力Fmの今回の値Fm(k)と、過去の値(本実施の形態では前回の値:Fm(k-1))との差分値(推定制駆動力差分値)ΔFmを演算し、ドライビングスティフネス係数演算部2fに出力する。すなわち、
ΔFm=Fm(k)−Fm(k-1) …(5)
このように、推定制駆動力差分値演算部2eは、第2の制駆動力差分値としての推定制駆動力差分値ΔFmを演算する第2の制駆動力差分値演算手段として設けられている。尚、本実施の形態では、今回の値Fm(k)と前回の値Fm(k-1)とで推定制駆動力差分値ΔFmを演算するようにしているが、前回の値ではなく数サンプリング前の値を過去の値として用いるようにしても良い。
The estimated braking / driving force difference value calculation unit 2e receives the estimated braking / driving force Fm from the estimated braking / driving force calculation unit 2c. Then, a difference value (estimated braking / driving force difference value) ΔFm between the current value Fm (k) of the estimated braking / driving force Fm and a past value (previous value: Fm (k-1) in the present embodiment). Is output to the driving stiffness coefficient calculation unit 2f. That is,
ΔFm = Fm (k) −Fm (k−1) (5)
As described above, the estimated braking / driving force difference value calculation unit 2e is provided as second braking / driving force difference value calculation means for calculating the estimated braking / driving force difference value ΔFm as the second braking / driving force difference value. . In this embodiment, the estimated braking / driving force difference value ΔFm is calculated from the current value Fm (k) and the previous value Fm (k-1). The previous value may be used as the past value.

ドライビングスティフネス係数演算部2fは、発生制駆動力差分値演算部2dから発生制駆動力差分値ΔFdが入力され、推定制駆動力差分値演算部2eから推定制駆動力差分値ΔFmが入力される。そして、これら発生制駆動力差分値ΔFdと推定制駆動力差分値ΔFmにより、後述する、スリップ率λと路面摩擦係数μの関係を示すタイヤ特性のドライビングスティフネス係数Qを演算し、路面摩擦係数推定値設定部2gに出力する。本実施の形態では、ドライビングスティフネス係数Qを時系列データから推定する方法として、一般的なパラメータ同定手法の一つである固定トレース法を用いる。すなわち、固定トレース法によれば、φの推定値であるφeを求める式は、以下の(6)式で与えられる。尚、式中の添字(k)は今回の値、(k−1)は前回の値であることを示す。
φe(k)=φe(k-1)−(F(k-1)・p(k))/(ζ+p(k)・F(k-1)・p(k))
・(p(k)・φe(k-1)−y(k)) …(6)
ここで、ζは以下の(7)式で与えられる。
ζ=1/(1+F(k-1)・p(k)) …(7)
The driving stiffness coefficient calculation unit 2f receives the generated braking / driving force difference value ΔFd from the generated braking / driving force difference value calculation unit 2d, and receives the estimated braking / driving force difference value ΔFm from the estimated braking / driving force difference value calculation unit 2e. . Then, by using the generated braking / driving force difference value ΔFd and the estimated braking / driving force difference value ΔFm, a tire stiffness driving stiffness coefficient Q indicating the relationship between the slip ratio λ and the road surface friction coefficient μ, which will be described later, is calculated to estimate the road surface friction coefficient. Output to the value setting unit 2g. In the present embodiment, as a method for estimating the driving stiffness coefficient Q from time series data, a fixed trace method which is one of general parameter identification methods is used. That is, according to the fixed trace method, an equation for obtaining φe, which is an estimated value of φ, is given by the following equation (6). Note that the subscript (k) in the expression indicates the current value, and (k-1) indicates the previous value.
φe (k) = φe (k−1) − (F (k−1) · p (k)) / (ζ + p (k) T · F (k−1) · p (k))
・ (P (k) T・ φe (k-1) -y (k)) (6)
Here, ζ is given by the following equation (7).
ζ = 1 / (1 + F (k−1) 2 · p (k) 2 ) (7)

すなわち、ドライビングスティフネス係数Qは、後述の(14)式に示すように、Q=ΔFd/ΔFmで与えられる。発生制駆動力差分値ΔFdには、時々刻々変化するピッチング運動やサスペンション系の変動が含まれるため、パラメータ同定手法を用いて求めることにより、安定した精度の良いドライビングスティフネス係数Qが得られるようになっている。   That is, the driving stiffness coefficient Q is given by Q = ΔFd / ΔFm, as shown in the following equation (14). Since the generated braking / driving force difference value ΔFd includes pitching motion and suspension system fluctuation that change from moment to moment, a stable and accurate driving stiffness coefficient Q can be obtained by using a parameter identification method. It has become.

そして、上述の(6)式、(7)式に対し、以下のようにパラメータを代入し、ドライビングスティフネス係数Qを推定するのである。
φe(k)=Q、p(k)=p(k)=ΔFm、y(k)=ΔFd
尚、トレースゲインであるF(k-1)は、例えば、0.0001とする。
Then, parameters are substituted into the above equations (6) and (7) as follows to estimate the driving stiffness coefficient Q.
φe (k) = Q, p (k) = p (k) T = ΔFm, y (k) = ΔFd
Note that the trace gain F (k−1) is, for example, 0.0001.

このように、ドライビングスティフネス係数演算部2fは、ドライビングスティフネス係数演算手段として設けられている。   Thus, the driving stiffness coefficient calculation unit 2f is provided as a driving stiffness coefficient calculation means.

路面摩擦係数推定値設定部2gは、車速演算部2aから車速Vが入力され、ドライビングスティフネス係数演算部2fからドライビングスティフネス係数Qが入力される。そして、車速Vとドライビングスティフネス係数Qを基に予め記憶しておいたドライビングスティフネス係数Qと車速Vと路面摩擦係数推定値μEとの関係を示す特性マップ(図3)を参照して路面摩擦係数推定値μEを設定し、出力する。すなわち、路面摩擦係数推定値設定部2gは、記憶手段、及び、路面摩擦係数推定手段として設けられている。   The road surface friction coefficient estimated value setting unit 2g receives the vehicle speed V from the vehicle speed calculation unit 2a, and receives the driving stiffness coefficient Q from the driving stiffness coefficient calculation unit 2f. The road surface friction coefficient is stored with reference to a characteristic map (FIG. 3) showing the relationship between the driving stiffness coefficient Q, the vehicle speed V, and the road surface friction coefficient estimated value μE stored in advance based on the vehicle speed V and the driving stiffness coefficient Q. Estimated value μE is set and output. That is, the road surface friction coefficient estimated value setting unit 2g is provided as a storage unit and a road surface friction coefficient estimation unit.

ここで、図3のドライビングスティフネス係数Qと車速Vと路面摩擦係数μとの関係を示すマップについて説明する。Mを車重、Mwを回転部分重量、Vを車体速度、Vwを4輪平均車速、ωを駆動輪回転速度、Nを垂直荷重、μを路面摩擦係数とおくと、一輪モデルより車輪の運動方程式は、以下の(8)式となる。
Mw・(dVw/dt)=Fm−Fd …(8)
Here, the map showing the relationship among the driving stiffness coefficient Q, the vehicle speed V, and the road surface friction coefficient μ in FIG. 3 will be described. When M is the vehicle weight, Mw is the rotating part weight, V is the vehicle speed, Vw is the average vehicle speed of four wheels, ω is the driving wheel rotational speed, N is the vertical load, and μ is the road friction coefficient. The equation is the following equation (8).
Mw · (dVw / dt) = Fm−Fd (8)

また、車体の運動方程式は、以下の(9)式で与えられる。   The equation of motion of the vehicle body is given by the following equation (9).

M・(dV/dt)=Fd …(9)
但し、車輪の運動は、Mw=Jw/r、Fm=(Tm+KB・PB)/r、Vw=r・ωとする。
M · (dV / dt) = Fd (9)
However, the wheel motion is Mw = Jw / r 2 , Fm = (Tm + KB · PB) / r, and Vw = r · ω.

また、路面とタイヤ間の特性(タイヤ特性)は、スリップ率と路面摩擦係数の路面摩擦関数(図5参照)により記述され、μは次式で定義される。
μ=Fd/N …(10)
ここで、駆動時のスリップ率λは次式で表される。
A characteristic between the road surface and the tire (tire characteristic) is described by a road surface friction function (see FIG. 5) of a slip ratio and a road surface friction coefficient, and μ is defined by the following equation.
μ = Fd / N (10)
Here, the slip ratio λ during driving is expressed by the following equation.

λ=(Vw−V)/Vw …(11)
以下では駆動時のみを考え、タイヤ・路面系を動作点の近似により取り扱う。ここで、あるスリップ率λ0における路面摩擦係数μの傾きをaと定義する。(8)式〜(11)式の摂動システムを作りスリップ率λを消去すると、以下の(12)、(13)式が得られる。
λ = (Vw−V) / Vw (11)
In the following, only driving will be considered, and the tire / road surface system will be handled by approximation of operating points. Here, the slope of the road surface friction coefficient μ at a certain slip ratio λ0 is defined as a. When the perturbation system of the equations (8) to (11) is made and the slip ratio λ is eliminated, the following equations (12) and (13) are obtained.

(dx/dt)=A・x+B・ΔFm …(12)
ΔFd=C・x …(13)
但し、

Figure 2009096229
ここで、V0、Vw0は、それぞれ動作点における車体速度と駆動輪速度である。 (Dx / dt) = A · x + B · ΔFm (12)
ΔFd = C · x (13)
However,
Figure 2009096229
Here, V0 and Vw0 are the vehicle body speed and the driving wheel speed at the operating point, respectively.

以上によりタイヤに与えたトルクから駆動力までの伝達関数を計算すると、ドライビングスティフネス係数Qについての以下の(14)式を得る。
Q=ΔFd/ΔFm=K/(1+τ0・s) …(14)
ここで、
K=(M・(1−λ0))/(Mw+M・(1−λ0)) …(15)
τ0=((Mw・Vw0)/(a・N))
・(M/(Mw+M・(1−λ0)) …(16)
When the transfer function from the torque applied to the tire to the driving force is calculated as described above, the following equation (14) for the driving stiffness coefficient Q is obtained.
Q = ΔFd / ΔFm = K / (1 + τ0 · s) (14)
here,
K = (M · (1−λ0)) / (Mw + M · (1−λ0)) (15)
τ0 = ((Mw · Vw0) / (a · N))
(M / (Mw + M. (1-λ0)) (16)

上述の(14)式を基に、ドライビングスティフネス係数Qとスリップ率λの関係を示すと、図4に示す特性図となる。   When the relationship between the driving stiffness coefficient Q and the slip ratio λ is shown on the basis of the above equation (14), the characteristic diagram shown in FIG. 4 is obtained.

そして、図5に示す、路面摩擦係数とスリップ率のタイヤ特性曲線を基に、スリップ率が路面摩擦係数がピークとなる前のスリップ率(例えば、7%)を目標に、路面摩擦係数推定値μEを、例えば、0.3とおき、車速V、ドライビングスティフネス係数Q、路面摩擦係数推定値μEの関係を設定すると、図3に示すような、ドライビングスティフネス係数Qと車速Vと路面摩擦係数推定値μEの特性マップが得られるのである。   Then, based on the tire characteristic curve of the road surface friction coefficient and the slip ratio shown in FIG. 5, the road surface friction coefficient estimated value with the target slip ratio (for example, 7%) before the road surface friction coefficient reaches the peak. When μE is set to 0.3, for example, and the relationship between the vehicle speed V, the driving stiffness coefficient Q, and the road surface friction coefficient estimated value μE is set, the driving stiffness coefficient Q, the vehicle speed V, and the road surface friction coefficient are estimated as shown in FIG. A characteristic map of value μE is obtained.

次に、上述の路面摩擦係数推定装置1の制御部2で実行される路面摩擦係数推定プログラムを、図2のフローチャートで説明する。
まず、ステップ(以下、「S」と略称)101で、必要パラメータ、すなわち、4輪車輪速ωfl、ωfr、ωrl、ωrr、エンジン回転数Ne、スロットル開度θth、タービン回転数Nt、トランスミッションギヤ比i、ブレーキ液圧PB、前後加速度Gxを読み込む。
Next, a road surface friction coefficient estimation program executed by the control unit 2 of the above-described road surface friction coefficient estimation device 1 will be described with reference to the flowchart of FIG.
First, in step (hereinafter abbreviated as “S”) 101, necessary parameters, that is, four-wheel wheel speeds ωfl, ωfr, ωrl, ωrr, engine speed Ne, throttle opening θth, turbine speed Nt, transmission gear ratio. i, the brake fluid pressure PB, and the longitudinal acceleration Gx are read.

次に、S102に進み、車速演算部2aで車速Vを演算する。   Next, it progresses to S102 and calculates the vehicle speed V in the vehicle speed calculating part 2a.

次いで、S103に進み、発生制駆動力演算部2bで、上述の(1)式により、発生制駆動力Fdを演算し、推定制駆動力演算部2cで、上述の(2)式により、推定制駆動力Fmを演算する。   Next, the process proceeds to S103, where the generated braking / driving force calculation unit 2b calculates the generated braking / driving force Fd by the above-described equation (1), and the estimated braking / driving force calculation unit 2c estimates by the above-described equation (2). The braking / driving force Fm is calculated.

次に、S104に進み、発生制駆動力差分値演算部2dで、上述の(4)式により、発生制駆動力差分値ΔFdを演算し、推定制駆動力差分値演算部2eで、上述の(5)式により、推定制駆動力差分値ΔFmを演算する。   Next, the process proceeds to S104, where the generated braking / driving force difference value calculating unit 2d calculates the generated braking / driving force difference value ΔFd by the above-described equation (4), and the estimated braking / driving force difference value calculating unit 2e The estimated braking / driving force difference value ΔFm is calculated by the equation (5).

次いで、S105に進み、ドライビングスティフネス係数演算部2fで、発生制駆動力差分値ΔFdと推定制駆動力差分値ΔFmにより、パラメータ同定手法の一つである固定トレース法を用い、すなわち、上述の(6)式を用いて、ドライビングスティフネス係数Qを推定する。   Next, the process proceeds to S105, where the driving stiffness coefficient calculation unit 2f uses the fixed trace method, which is one of the parameter identification methods, based on the generated braking / driving force difference value ΔFd and the estimated braking / driving force difference value ΔFm, that is, ( 6) The driving stiffness coefficient Q is estimated using the equation.

そして、S106に進み、路面摩擦係数推定値設定部2gで、車速Vとドライビングスティフネス係数Qを基に予め記憶しておいたドライビングスティフネス係数Qと車速Vと路面摩擦係数推定値μEとの関係を示す特性マップ(図3)を参照して路面摩擦係数推定値μEを設定し、出力する。   In S106, the road surface friction coefficient estimated value setting unit 2g determines the relationship between the driving stiffness coefficient Q, the vehicle speed V, and the road surface friction coefficient estimated value μE stored in advance based on the vehicle speed V and the driving stiffness coefficient Q. The road surface friction coefficient estimated value μE is set and output with reference to the characteristic map shown (FIG. 3).

このように本実施の形態によれば、車両の前後加速度に基づき、車輪が発生している発生制駆動力Fdを演算し、車両の駆動源の出力トルクやブレーキの制動力に基づき、車輪に付加する推定制駆動力Fmを演算し、発生制駆動力Fdの今回の値と過去の値との差分値(発生制駆動力差分値)ΔFdと推定制駆動力Fmの今回の値と過去の値との差分値(推定制駆動力差分値)ΔFmを演算し、発生制駆動力差分値ΔFdと推定制駆動力差分値ΔFmによりパラメータ同定手法を用いてドライビングスティフネス係数Qを推定し、車速Vとドライビングスティフネス係数Qを基に、予め記憶しておいたドライビングスティフネス係数Qと車速Vと路面摩擦係数推定値μEとの関係を示す特性マップを参照して路面摩擦係数推定値μEを設定するようになっている。尚、本実施の形態では、路面摩擦係数の推定に前輪の車輪速度と後輪の車輪速度の差を使用しないため、旋回に伴い発生する前輪と後輪の車輪速度差の影響を受けず、旋回・直進に関わらず路面摩擦係数の推定が可能である。このため、加速、減速、操舵の幅広い運転領域で精度の良い路面摩擦係数の推定ができ、汎用性に優れるという優れた効果を奏する。   Thus, according to the present embodiment, the generated braking / driving force Fd generated by the wheel is calculated based on the longitudinal acceleration of the vehicle, and the wheel is applied based on the output torque of the vehicle driving source and the braking force of the brake. The estimated braking / driving force Fm to be added is calculated, and the difference value (generated braking / driving force difference value) ΔFd between the current value of the generated braking / driving force Fd and the past value and the current value of the estimated braking / driving force Fm and the past A difference value (estimated braking / driving force difference value) ΔFm is calculated, and a driving stiffness coefficient Q is estimated by using a parameter identification method from the generated braking / driving force difference value ΔFd and the estimated braking / driving force difference value ΔFm. On the basis of the driving stiffness coefficient Q, the road surface friction coefficient estimated value μE is set with reference to a characteristic map indicating the relationship between the driving stiffness coefficient Q, the vehicle speed V, and the road surface friction coefficient estimated value μE stored in advance. It has become. In this embodiment, since the difference between the wheel speed of the front wheel and the wheel speed of the rear wheel is not used for estimating the road surface friction coefficient, it is not affected by the wheel speed difference between the front wheel and the rear wheel that occurs along with turning. It is possible to estimate the road friction coefficient regardless of turning or going straight. For this reason, it is possible to estimate the road surface friction coefficient with high accuracy in a wide driving range of acceleration, deceleration, and steering, and there is an excellent effect of excellent versatility.

また、予め記憶しておいたドライビングスティフネス係数Qと車速Vと路面摩擦係数推定値μEとの関係を示す特性マップは、スリップ率が路面摩擦係数がピークとなる前のスリップ率(例えば、7%)を目標に予め設定されるので、小さいスリップ率での判定が可能であり、応答性が良い。   In addition, the characteristic map indicating the relationship between the driving stiffness coefficient Q, the vehicle speed V, and the road surface friction coefficient estimated value μE stored in advance is a slip ratio before the road surface friction coefficient peaks (for example, 7% ) Is set in advance as a target, so that determination with a small slip rate is possible and responsiveness is good.

更に、ドライビングスティフネス係数Qの推定は、発生制駆動力差分値ΔFdと推定制駆動力差分値ΔFmによりパラメータ同定手法を用いて行われるため、それぞれの差分値により道路勾配等による誤差が排除でき、精度の良い路面摩擦係数の推定を行うことができる。   Further, the estimation of the driving stiffness coefficient Q is performed using the parameter identification method based on the generated braking / driving force difference value ΔFd and the estimated braking / driving force difference value ΔFm, so that an error due to a road gradient or the like can be eliminated by each difference value, It is possible to estimate the road surface friction coefficient with high accuracy.

尚、本実施の形態では、全ての運転領域において路面摩擦係数を推定するようになっているが、本手法により路面摩擦係数を推定する運転領域を、例えば、加速領域のみと限定するようにしても良い。   In this embodiment, the road surface friction coefficient is estimated in all the operation regions, but the operation region in which the road surface friction coefficient is estimated by this method is limited to, for example, the acceleration region only. Also good.

また、本実施の形態では、路面摩擦係数推定値設定部2gは、車速Vとドライビングスティフネス係数Qを基に予め記憶しておいたドライビングスティフネス係数Qと車速Vと路面摩擦係数推定値μEとの関係を示す特性マップを参照して路面摩擦係数推定値μEを設定し、そのまま出力するようになっているが、今回設定した路面摩擦係数推定値μE(k)と前回設定した路面摩擦係数推定値μE(k-1)とを比較して小さい方の値を出力するようにしても良い。   Further, in the present embodiment, the road surface friction coefficient estimated value setting unit 2g includes the driving stiffness coefficient Q, the vehicle speed V, and the road surface friction coefficient estimated value μE stored in advance based on the vehicle speed V and the driving stiffness coefficient Q. The road surface friction coefficient estimated value μE is set with reference to the characteristic map showing the relationship and output as it is. The road surface friction coefficient estimated value μE (k) set this time and the road surface friction coefficient estimated value set last time The smaller value may be output by comparing with μE (k−1).

以上のように設定される路面摩擦係数推定値μEは、例えば、図示しない外部表示装置に出力され、インストルメントパネルでの表示等によりドライバの注意を喚起するように用いられる。或いは、エンジン制御部、トランスミッション制御部、前後軸間或いは左右輪間の駆動力配分制御部、ブレーキ制御部(何れも図示せず)等に出力されて、各制御部における制御量の設定に寄与される。   The road surface friction coefficient estimated value μE set as described above is output to an external display device (not shown), for example, and used to call the driver's attention by displaying on the instrument panel or the like. Alternatively, it is output to the engine control unit, the transmission control unit, the driving force distribution control unit between the front and rear shafts or between the left and right wheels, the brake control unit (none of which are shown), and contributes to the setting of the control amount in each control unit Is done.

例えば、前軸:後軸のトルク配分が、100:0〜50:50の間でトランスファクラッチにより可変できる4輪駆動車の前後駆動力配分制御に用いる場合、燃費改善と前後駆動力配分制御とを両立させる為には、高μ路では不要な後輪伝達トルクを減らし内部循環トルクを低減させる一方、低μ路では安定性を重視して所定の後輪伝達トルクを発生させる必要がある。そのため、推定した路面摩擦係数推定値μEに応じてトランスファクラッチトルクの締結力を制御し、後輪トルク配分率を連続的に変化させるようにする。   For example, when used for front-rear driving force distribution control of a four-wheel drive vehicle in which the front shaft: rear shaft torque distribution can be varied by a transfer clutch between 100: 0 and 50:50, fuel efficiency improvement and front-rear driving force distribution control In order to achieve both, it is necessary to reduce the unnecessary rear wheel transmission torque on the high μ road and reduce the internal circulation torque, and on the low μ road, it is necessary to generate a predetermined rear wheel transmission torque with an emphasis on stability. Therefore, the engagement force of the transfer clutch torque is controlled according to the estimated road surface friction coefficient estimated value μE, and the rear wheel torque distribution ratio is continuously changed.

尚、本実施の形態では、ドライビングスティフネス係数演算部2fにおいてドライビングスティフネス係数Qをパラメータ同定手法を用いて求めるようになっているが、発生制駆動力差分値ΔFdと推定制駆動力差分値ΔFmの値を安定して求めることができるのであれば、単に、発生制駆動力差分値ΔFdと推定制駆動力差分値ΔFmとの比率により、ドライビングスティフネス係数Qを推定するようにしても良い。   In the present embodiment, the driving stiffness coefficient computing unit 2f obtains the driving stiffness coefficient Q using a parameter identification method. However, the generated braking / driving force difference value ΔFd and the estimated braking / driving force difference value ΔFm If the value can be obtained stably, the driving stiffness coefficient Q may be simply estimated based on the ratio between the generated braking / driving force difference value ΔFd and the estimated braking / driving force difference value ΔFm.

路面摩擦係数推定装置の構成を示す機能ブロック図Functional block diagram showing the configuration of the road surface friction coefficient estimation device 路面摩擦係数推定プログラムのフローチャートFlowchart of road friction coefficient estimation program ドライビングスティフネス係数と車速と路面摩擦係数推定値の特性マップの一例を示す説明図Explanatory drawing showing an example of a characteristic map of driving stiffness coefficient, vehicle speed, and road surface friction coefficient estimated value ドライビングスティフネス係数と車速とスリップ率の関係を示す説明図Explanatory diagram showing the relationship between driving stiffness coefficient, vehicle speed and slip ratio 路面摩擦係数とスリップ率のタイヤ特性曲線の説明図Explanatory diagram of tire characteristic curves for road friction coefficient and slip ratio

符号の説明Explanation of symbols

1 路面摩擦係数推定装置
2 制御部
2a 車速演算部
2b 発生制駆動力演算部(第1の制駆動力演算手段)
2c 推定制駆動力演算部(第2の制駆動力演算手段)
2d 発生制駆動力差分値演算部(第1の制駆動力差分値演算手段)
2e 推定制駆動力差分値演算部(第2の制駆動力差分値演算手段)
2f ドライビングスティフネス係数演算部(ドライビングスティフネス係数演算手段)
2g 路面摩擦係数推定値設定部(記憶手段、路面摩擦係数推定手段)
3 4輪車輪速センサ
4 エンジン制御部
5 トランスミッション制御部
6 ブレーキ液圧センサ
7 前後加速度センサ
DESCRIPTION OF SYMBOLS 1 Road surface friction coefficient estimation apparatus 2 Control part 2a Vehicle speed calculating part 2b Generated braking / driving force calculating part (1st braking / driving force calculating means)
2c Estimated braking / driving force calculating section (second braking / driving force calculating means)
2d Generated braking / driving force difference value calculation unit (first braking / driving force difference value calculation means)
2e Estimated braking / driving force difference value calculation unit (second braking / driving force difference value calculation means)
2f Driving stiffness coefficient calculation unit (driving stiffness coefficient calculation means)
2g Road surface friction coefficient estimated value setting unit (storage means, road surface friction coefficient estimation means)
3 4 wheel speed sensor 4 engine control unit 5 transmission control unit 6 brake fluid pressure sensor 7 longitudinal acceleration sensor

Claims (3)

車両の前後加速度に基づき、車輪が発生している第1の制駆動力を演算する第1の制駆動力演算手段と、
車両の駆動源の出力トルクまたはブレーキの制動力に基づき車輪に付加する第2の制駆動力を演算する第2の制駆動力演算手段と、
上記第1の制駆動力の今回の値と過去の値との差分値を第1の制駆動力差分値として演算する第1の制駆動力差分値演算手段と、
上記第2の制駆動力の今回の値と過去の値との差分値を第2の制駆動力差分値として演算する第2の制駆動力差分値演算手段と、
スリップ率と路面摩擦係数の関係を示すタイヤ特性に基づき、所定のスリップ率におけるドライビングスティフネス係数と車速と路面摩擦係数との関係を予め設定し記憶する記憶手段と、
上記第1の制駆動力差分値と上記第2の制駆動力差分値により上記ドライビングスティフネス係数を演算するドライビングスティフネス係数演算手段と、
車速と上記ドライビングスティフネス係数演算手段で演算したドライビングスティフネス係数を基に、上記記憶手段に記憶した上記ドライビングスティフネス係数と車速と路面摩擦係数との関係から路面摩擦係数を推定する路面摩擦係数推定手段と、
を備えたことを特徴とする路面摩擦係数推定装置。
First braking / driving force calculating means for calculating the first braking / driving force generated by the wheels based on the longitudinal acceleration of the vehicle;
Second braking / driving force calculating means for calculating a second braking / driving force applied to the wheel based on an output torque of a vehicle driving source or a braking force of a brake;
First braking / driving force difference value calculating means for calculating a difference value between the current value of the first braking / driving force and a past value as a first braking / driving force difference value;
Second braking / driving force difference value calculating means for calculating a difference value between the current value and the past value of the second braking / driving force as a second braking / driving force difference value;
Storage means for presetting and storing a relationship between a driving stiffness coefficient, a vehicle speed, and a road surface friction coefficient at a predetermined slip ratio based on tire characteristics indicating a relationship between a slip ratio and a road surface friction coefficient;
Driving stiffness coefficient calculating means for calculating the driving stiffness coefficient based on the first braking / driving force difference value and the second braking / driving force difference value;
Road surface friction coefficient estimating means for estimating the road surface friction coefficient from the relationship between the driving stiffness coefficient stored in the storage means, the vehicle speed and the road surface friction coefficient based on the vehicle speed and the driving stiffness coefficient calculated by the driving stiffness coefficient calculating means; ,
A road surface friction coefficient estimating device comprising:
上記ドライビングスティフネス係数演算手段は、上記第1の制駆動力差分値と上記第2の制駆動力差分値の比率によりドライビングスティフネス係数を求めることを特徴とする請求項1記載の路面摩擦係数推定装置。   2. The road friction coefficient estimating device according to claim 1, wherein the driving stiffness coefficient calculating means obtains a driving stiffness coefficient from a ratio between the first braking / driving force difference value and the second braking / driving force difference value. . 上記ドライビングスティフネス係数演算手段は、パラメータ同定を用いて上記第1の制駆動力差分値と上記第2の制駆動力差分値により上記ドライビングスティフネス係数を演算することを特徴とする請求項1記載の路面摩擦係数推定装置。   2. The driving stiffness coefficient computing means computes the driving stiffness coefficient from the first braking / driving force difference value and the second braking / driving force difference value using parameter identification. Road friction coefficient estimation device.
JP2007266900A 2007-10-12 2007-10-12 Road friction coefficient estimation device Expired - Fee Related JP4959502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007266900A JP4959502B2 (en) 2007-10-12 2007-10-12 Road friction coefficient estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007266900A JP4959502B2 (en) 2007-10-12 2007-10-12 Road friction coefficient estimation device

Publications (2)

Publication Number Publication Date
JP2009096229A true JP2009096229A (en) 2009-05-07
JP4959502B2 JP4959502B2 (en) 2012-06-27

Family

ID=40699662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007266900A Expired - Fee Related JP4959502B2 (en) 2007-10-12 2007-10-12 Road friction coefficient estimation device

Country Status (1)

Country Link
JP (1) JP4959502B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004345521A (en) * 2003-05-22 2004-12-09 Fuji Heavy Ind Ltd Road surface friction coefficient estimating device of vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004345521A (en) * 2003-05-22 2004-12-09 Fuji Heavy Ind Ltd Road surface friction coefficient estimating device of vehicle

Also Published As

Publication number Publication date
JP4959502B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
US11021068B2 (en) Vehicle control device and control method
US9783182B2 (en) Control method for front and rear wheel torque distribution of electric 4 wheel drive hybrid electric vehicle
US8175785B2 (en) System and method for performance launch control of a vehicle
US8155818B2 (en) Vehicle control system
US20060041365A1 (en) Estimating method for road friction coefficient and vehicle slip angle estimating method
JP2008265467A (en) Road surface friction coefficient estimating device of vehicle
JP6578584B2 (en) Control device for electric vehicle
KR20210014821A (en) Wheel slip control method for vehicle
JP4926776B2 (en) Vehicle driving force control device
JP2004090695A (en) Road surface state change estimation device and automobile loaded with it
US7624832B2 (en) Front and rear drive power distribution control device for vehicle
JP2006200526A (en) Output characteristic control device for vehicle
JP4443582B2 (en) Understeer suppression device
JP6674769B2 (en) Vehicle control device and vehicle control method
JP4926729B2 (en) Vehicle road friction coefficient estimation device
KR102322388B1 (en) Apparatus and method for estimating torque of engine clutch in hybrid electric vehicle
KR100775436B1 (en) Automobile and control method of automobile
JP2010151205A (en) Driving force distribution control device for vehicle
JP5887985B2 (en) Driving force limiting device for limiting driving force acting on driving wheels of vehicle
JP7169461B2 (en) Control device
JP4959502B2 (en) Road friction coefficient estimation device
JP2009184625A (en) Road surface friction coefficient estimation device and driving force distribution controller for four-wheel drive vehicle having the road surface friction coefficient estimation device
JP4684754B2 (en) Front / rear driving force distribution control device for vehicle
JP5003580B2 (en) Driving force distribution control device for four-wheel drive vehicles
JP5180610B2 (en) Vehicle driving force control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4959502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees