JP2009094302A - Bonding wire - Google Patents
Bonding wire Download PDFInfo
- Publication number
- JP2009094302A JP2009094302A JP2007263761A JP2007263761A JP2009094302A JP 2009094302 A JP2009094302 A JP 2009094302A JP 2007263761 A JP2007263761 A JP 2007263761A JP 2007263761 A JP2007263761 A JP 2007263761A JP 2009094302 A JP2009094302 A JP 2009094302A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- bonding
- bonding wire
- kgf
- modulus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L24/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/4501—Shape
- H01L2224/45012—Cross-sectional shape
- H01L2224/45015—Cross-sectional shape being circular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48463—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
- H01L2224/48465—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/8512—Aligning
- H01L2224/85148—Aligning involving movement of a part of the bonding apparatus
- H01L2224/85169—Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
- H01L2224/8518—Translational movements
- H01L2224/85181—Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00011—Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01004—Beryllium [Be]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01012—Magnesium [Mg]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0102—Calcium [Ca]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0103—Zinc [Zn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01031—Gallium [Ga]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01042—Molybdenum [Mo]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01044—Ruthenium [Ru]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01045—Rhodium [Rh]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01046—Palladium [Pd]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01049—Indium [In]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0105—Tin [Sn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01074—Tungsten [W]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01076—Osmium [Os]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01077—Iridium [Ir]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/011—Groups of the periodic table
- H01L2924/01105—Rare earth metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/012—Semiconductor purity grades
- H01L2924/01204—4N purity grades, i.e. 99.99%
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20751—Diameter ranges larger or equal to 10 microns less than 20 microns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/20—Parameters
- H01L2924/207—Diameter ranges
- H01L2924/20752—Diameter ranges larger or equal to 20 microns less than 30 microns
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Wire Bonding (AREA)
Abstract
Description
本発明は、電子素子内の微小電極間の導通を確保するためのワイヤーボンディングに関し、特に結線されたワイヤーループの高さのばらつきを抑えることができるボンディングワイヤーに関するものである。 The present invention relates to wire bonding for ensuring electrical conduction between microelectrodes in an electronic device, and more particularly to a bonding wire that can suppress variations in the height of connected wire loops.
一般に電子素子内の微小電極間の導通を確保するためにはワイヤーボンディング法が使用されている。ワイヤーボンディング法に使用するボンディングワイヤーは、電導度が高く、端子金属との接合性に優れ、しかも適当な引張強度と弾性を備えていることが要求される。
従来、ボンディングワイヤーとしては線径が数十μmで純度が99.99%以上の純金ワイヤーが使用されてきた。この純金線の破断強度は0.014kgf/mm2〜0.016kgf/mm2程度、ヤング率は6,000kgf/mm2から7、200kgf/mm2程度で、40〜70μmピッチのループの形成が可能である。
In general, a wire bonding method is used to ensure conduction between microelectrodes in an electronic element. The bonding wire used for the wire bonding method is required to have high electrical conductivity, excellent bondability with the terminal metal, and appropriate tensile strength and elasticity.
Conventionally, a pure gold wire having a wire diameter of several tens of μm and a purity of 99.99% or more has been used as a bonding wire. This pure gold wire has a breaking strength of about 0.014 kgf / mm 2 to 0.016 kgf / mm 2 , a Young's modulus of about 6,000 kgf / mm 2 to 7, 200 kgf / mm 2 , and a loop with a pitch of 40 to 70 μm can be formed. Is possible.
電子素子の高密度化に伴い、ワイヤーボンディング技術は長ループ化、狭ピッチ化の傾向が強まっており、ワイヤーが弛みその変形によってワイヤー同士が接触したり、チップとワイヤーが接触して電気的短絡を起こす、いわゆるワイヤー流れが発生する可能性が高くなってきた。
ワイヤー流れの発生を防止するために、ヤング率の高い金属線の表面に接合性に優れた金属を被覆したボンディングワイヤーを使用する技術が開示されている(例えば、特許文献1参照。)。
ワイヤー流れを支配する要因を解析すると、接合形状など接合時の要因とワイヤー材質そのものの要因があることが判る。ワイヤー材質に関してはそのヤング率が最も大きく影響し、ヤング率が高いほどワイヤー流れが小さくなることが判明した。特許文献1に開示されたボンディングワイヤーは、ヤング率が10,000kgf/mm2から13,700kgf/mm2程度のタングステン(W)、モリブデン(Mo)あるいはロジウム(Rh)を芯線として使用し、表面に金(Au)、銅(Cu)あるいはパラジウム(Pd)等の電導性の高い金属を10μm程度被覆したボンディングワイヤーである。このボンディングワイヤーを使用することにより、同一のループを形成する場合の流れの発生割合は、1/3〜1/4に低減するとされている。
As the density of electronic elements increases, wire bonding technology is becoming increasingly loops and pitches are narrowed. Wires come loose and contact each other due to deformation. The so-called wire flow that is likely to occur is increasing.
In order to prevent the occurrence of wire flow, a technique is disclosed that uses a bonding wire in which a metal wire having a high Young's modulus is coated with a metal having excellent bonding properties (see, for example, Patent Document 1).
Analyzing the factors that govern the wire flow, it can be seen that there are factors at the time of joining, such as the joining shape, and factors of the wire material itself. It has been found that the Young's modulus has the greatest influence on the wire material, and the higher the Young's modulus, the smaller the wire flow. The bonding wire disclosed in Patent Document 1 uses tungsten (W), molybdenum (Mo) or rhodium (Rh) having a Young's modulus of about 10,000 kgf / mm 2 to 13,700 kgf / mm 2 as a core wire, A bonding wire in which about 10 μm is coated with a highly conductive metal such as gold (Au), copper (Cu) or palladium (Pd). By using this bonding wire, it is said that the generation rate of the flow when forming the same loop is reduced to 1/3 to 1/4.
近年、電子機器の小型化に伴い、半導体パッケージにおいても小型軽量の一途をたどっている。これに伴い使用される材料への要求品質も厳しさを増してきている。具体的には、半導体パッケージの外形寸法が小型化することによる半導体素子の小型化、外部接続のためのリード幅の縮小等があげられる。
ボンディングワイヤーを接続するために半導体素子上には電極が設けられるが、従来は隣接する電極間の間隔(以下、ボンドピッチと記す。)は、0.070mm〜0.15mm程度であったが、近年ではボンドピッチのファインピッチ化が進み、ボンドピッチは最小で0.045mmの半導体素子が量産化されている。
さらに、半導体素子の小型化により、外部接続リードと半導体素子上の電極との距離が長くなる傾向にあり、ボンディングワイヤーの長さが5mmを越える半導体パッケージも出現している。
In recent years, along with the downsizing of electronic devices, semiconductor packages are also becoming smaller and lighter. Along with this, the required quality of the materials used has become increasingly severe. Specifically, the semiconductor device can be miniaturized by reducing the external dimensions of the semiconductor package, the lead width for external connection can be reduced, and the like.
Electrodes are provided on the semiconductor element to connect the bonding wires. Conventionally, the interval between adjacent electrodes (hereinafter referred to as bond pitch) was about 0.070 mm to 0.15 mm. In recent years, the bond pitch has become finer, and semiconductor elements having a minimum bond pitch of 0.045 mm have been mass-produced.
Further, as the semiconductor element is miniaturized, the distance between the external connection lead and the electrode on the semiconductor element tends to be longer, and a semiconductor package in which the length of the bonding wire exceeds 5 mm has appeared.
ファインピッチでボンディングする際には、ボンドピッチが狭まっているので先にボンディングされた隣接するボンディングワイヤーにキャピラリー(先導具)が接触し、ループ倒れなどの異常を引き起こすことがある。このため、ボトルネックタイプのキャピラリーが使用されている。このキャピラリーは、先端部の形状を細くすることで隣接するボンディングワイヤーに接触せずにボンディングができるように配慮されたものである。しかし、キャピラリーの外形寸法が小さくなるために、キャピラリー内に設けられた円筒孔の内径も小さくする必要がある。
一般的にキャピラリー内に設けられた円筒孔の内面とボンディングワイヤーとのクリアランスが狭い場合、ループ形状異常などが発生することから、円筒孔の内面とワイヤーとのクリアランスを十分に保つ必要がある。このため、0.070mm以上の広いボンドピッチの場合であっても、使用されるボンディングワイヤーは0.020mm〜0.025mmの線径のものが使用されている。
When bonding at a fine pitch, since the bond pitch is narrowed, the capillary (leader) may come into contact with the adjacent bonding wire that has been bonded first, which may cause abnormalities such as loop collapse. For this reason, a bottleneck type capillary is used. This capillary is designed so that bonding can be performed without making contact with the adjacent bonding wire by reducing the shape of the tip. However, since the outer dimension of the capillary is reduced, it is necessary to reduce the inner diameter of the cylindrical hole provided in the capillary.
In general, when the clearance between the inner surface of the cylindrical hole provided in the capillary and the bonding wire is narrow, a loop shape abnormality or the like occurs, and thus it is necessary to sufficiently maintain the clearance between the inner surface of the cylindrical hole and the wire. For this reason, even in the case of a wide bond pitch of 0.070 mm or more, the bonding wire used has a wire diameter of 0.020 mm to 0.025 mm.
一方、前述のように半導体関連の技術進歩はめざましく、今後もさらなるファインピッチ化が予想される。具体的には、ボンドピッチが0.030mm〜0.040mmでの実用量産化が計画されている。ボンドピッチのファインピッチ化を進めていくためには、ワイヤー径を細くしていく必要があり、使用されるボンディングワイヤーの直径も0.012mm〜0.020mmの極細線を使用することが計画されている。
このような極細線のボンディングワイヤーではワイヤーが変形してしまう恐れがあり、ファインピッチ化への大きな阻害要因となる。
On the other hand, as described above, technological advances related to semiconductors are remarkable, and further fine pitches are expected in the future. Specifically, practical mass production with a bond pitch of 0.030 mm to 0.040 mm is planned. In order to promote finer bond pitches, it is necessary to reduce the wire diameter, and it is planned to use ultrafine wires with a bonding wire diameter of 0.012 mm to 0.020 mm. ing.
Such an ultra-fine bonding wire may be deformed, which is a major impediment to fine pitch.
半導体素子上のボンドピッチが0.030mm〜0.040mmのファインピッチに対応でき、ワイヤー径が0.012mm〜0.020mmの極細線であって、高いヤング率を有し曲がりの発生の少ないボンディングワイヤーとして、Auを主成分とし、Sn、Zn及びCaを微量含有する金合金が開示されている(例えば、特許文献2参照。)。
特許文献2に開示された金合金は、線径0.012mmのボンディングワイヤーでもヤング率を8,000kgf/mm2から8,720kgf/mm2迄大きくすることができるので、ワイヤーが変形しにくく、曲がりの発生の少ないファインピッチ用ボンディングワイヤーを提供することできるとされている。
Gold alloy disclosed in Patent Document 2, since the Young's modulus in bonding wire having a diameter of 0.012mm may be increased from 8,000kgf / mm 2 up to 8,720kgf / mm 2, hardly wire deformation, It is said that it is possible to provide a fine pitch bonding wire with less bending.
電子素子などで使用される直径数十ミクロン程度のボンディングワイヤーは、巻かれた状態でボンディングマシンにセットされ、電子素子内の微小電極間の導通を確保するための結線材料として使用される。ボンディングマシンの中にはミシン針のようなボンディングワイヤーの経路を決定するキャピラリーと呼ばれる中空の部品があり、中空の穴にボンディングワイヤーを通した状態でキャピラリーと微小電極基板の相対位置を予め設定した移動距離、方向、角度、経路で順次動かすことと、ボンディングワイヤーをキャピラリーから繰り出したり、またはクリップしたりするなどのボンディングワイヤーの供給状態を組み合わせたモーションパターンを工夫することで、ファーストボンディングとセカンドボンディングを結ぶ所望のループ形状が得られるようにクセ付けをする。 A bonding wire having a diameter of about several tens of microns used in an electronic element or the like is set in a bonding machine in a wound state, and used as a connection material for ensuring conduction between microelectrodes in the electronic element. In the bonding machine, there is a hollow part called a capillary that determines the path of the bonding wire, such as a sewing needle, and the relative position between the capillary and the microelectrode substrate is set in advance with the bonding wire passed through the hollow hole. First bonding and second bonding by devising a motion pattern that combines the movement status, direction, angle, and path in order and the bonding wire supply state, such as feeding or clipping the bonding wire from the capillary. Threading is performed so that a desired loop shape connecting the two can be obtained.
同じ材質のボンディングワイヤーを使用した場合でも、ボンディングワイヤーをドローイングする前の元材料であるインゴット間の材質ばらつき、あるいはインゴット内部の材質分布などによって、最終製品であるボンディングワイヤーの材質がロット毎に、または同一ロット内で部分的に異なるために、ボンディングしてできたループの高さがばらつくことがある。そのために微小電極基板の垂直方向に異なる高さを有するループを重ねて配置する新しいボンディング技術である多重ループを形成した場合、前述した材質のばらつきによりループ高さが設計通りにならず、高さ方向に重ねて形成した他のループと接触してショートする危険性が生じる。 Even when bonding wires of the same material are used, the material of the bonding wire, which is the final product, varies from lot to lot depending on the material variation between the ingots, which is the original material before drawing the bonding wire, or the material distribution inside the ingot. Alternatively, the height of the loop formed by bonding may vary due to partial differences within the same lot. For this reason, when forming multiple loops, which is a new bonding technology that stacks and arranges loops with different heights in the vertical direction of the microelectrode substrate, the loop height does not match the design due to the material variations described above. There is a risk of shorting in contact with other loops formed in the direction.
そこで同じ材質のボンディングワイヤーを使用し、かつ同じモーションパターンでボンディングした場合に、高さのバラツキが非常に少なく安定したループ形状が得られるようにすることは、これを用いる半導体装置の歩留まりを向上させるために非常に重要である。
本発明の目的とするところは、結線されたワイヤーループの高さのバラツキを極力低く抑えることができるボンディングワイヤーを提供することにある。
Therefore, when bonding wires of the same material are used and bonding is performed with the same motion pattern, it is possible to obtain a stable loop shape with very little height variation, which improves the yield of semiconductor devices using this. Is very important to make.
An object of the present invention is to provide a bonding wire that can suppress variations in the height of connected wire loops as low as possible.
本発明者は、2直線近似で表したボンディングワイヤーの材料定数であるヤング率、降伏応力、接線係数に着目して、ループ形状との関係について鋭意調査した結果、ボンディングワイヤーの材料定数の中でもループ高さへの影響が最も大きい降伏歪を所定の範囲内に収めることにより、ループ高さのバラツキを低減できることを見出し、本発明に至った。
すなわち本発明は、電子素子内の微小電極間の導通を確保するためのボンディングワイヤーであって、2直線近似で表したワイヤー材料特性の降伏歪が0.0009から0.0051であるボンディングワイヤーである。
As a result of earnestly investigating the relationship with the loop shape by paying attention to the Young's modulus, yield stress, and tangential coefficient, which are the material constants of the bonding wire expressed by a two-line approximation, the present inventor It was found that the variation in loop height can be reduced by keeping the yield strain having the greatest influence on the height within a predetermined range, and the present invention has been achieved.
That is, the present invention is a bonding wire for ensuring electrical conduction between microelectrodes in an electronic device, and a bonding wire having a yield strain of 0.0009 to 0.0051 as a wire material characteristic expressed by a two-line approximation. is there.
本発明のボンディングワイヤーは、2直線近似で表したワイヤー材料特性の接線係数とヤング率の比が0.0033から0.0067であることが好ましい。
また、ヤング率が3,900kgf/mm2から8,670kgf/mm2であり、接線係数が26から57であることが好ましい。
さらに、線径が0.012mmから0.020mmであり、破断強度が0.005kgf/mm2から0.007kgf/mm2であることが好ましい。
In the bonding wire of the present invention, it is preferable that the ratio of the tangent coefficient and the Young's modulus of the wire material characteristic expressed by two-line approximation is 0.0033 to 0.0067.
The Young's modulus is preferably 3,900 kgf / mm 2 to 8,670 kgf / mm 2 and the tangential coefficient is preferably 26 to 57.
Furthermore, it is preferable that the wire diameter is 0.012 mm to 0.020 mm, and the breaking strength is 0.005 kgf / mm 2 to 0.007 kgf / mm 2 .
本発明のボンディングワイヤーは、金を主成分とし、合金元素としてBe、Mg、Ca、Ge、Sn、Ga、In、Y及び希土類元素から選ばれた少なくとも1種の元素を0.001〜0.01質量%、またはそれに加えてCu、Ag、Ru、Rh、Pd、Os、Ir及びPtから選ばれた少なくとも1種の元素を0.0005〜2.0質量%含有する合金を使用することにより達成される。 The bonding wire of the present invention contains gold as a main component and at least one element selected from Be, Mg, Ca, Ge, Sn, Ga, In, Y and rare earth elements as an alloying element is 0.001 to 0.00. By using an alloy containing 0.0005 to 2.0% by mass of 01% by mass, or in addition, at least one element selected from Cu, Ag, Ru, Rh, Pd, Os, Ir and Pt Achieved.
本発明によれば、結線されたワイヤーループの高さHLを178.9ミクロンから182.8ミクロン、つまり高さの分布幅を±2ミクロン以内に小さく抑えて形成することができる。
これによりボンドピッチのファインピッチ化とワイヤーループの長距離化への対応が可能となり、電子機器の小型化に大いに寄与することができる。
According to the present invention, the connected wire loop can be formed with a height HL of 178.9 microns to 182.8 microns, that is, a height distribution width kept within ± 2 microns.
This makes it possible to cope with finer bond pitches and longer wire loops, which can greatly contribute to downsizing of electronic devices.
本発明者は、2直線近似で表したボンディングワイヤーの材料定数であるヤング率、降伏応力、接線係数に着目してループ形状との関係について鋭意調査した結果、次のような性質を見出した。
物体に外力を加えると形状や体積に変化が生じ、これを歪みと呼ぶ。応力が弾性限界内であれば、弾性歪みが発生し、外力を除けば歪みは消滅する。応力が弾性限界を超えると塑性変形が起こって塑性歪みが残る。すなわち、1次元におけるボンディングワイヤーの全歪εは弾性歪εelと塑性歪εplからなり、全歪εを弾性歪εelと塑性歪εplに分解すると以下の式1から式4のようになる。これらの式から全歪εは、ヤング率Eと接線係数Dを用いてD/Eと降伏歪εYで表現できる。
全体の歪ε: ε=弾性歪εel+塑性歪εpl=σ/E+εpl (式1)
そのときの応力(一次元)σ: σ=σY+D(ε−εY) (式2)
ここで、Eはヤング率、Dは接線係数である。
また、式1から
塑性歪εpl: εpl=ε−σ/E=ε−σY/E−D/E(ε−εY)
=(ε−εY)(1−D/E) (式3)
弾性歪εel: εel=σ/E=σY/E+D/E(ε−εY)
=εY+D/E(ε−εY) (式4)
ここで、上記の式で用いられるσYは降伏応力である。
As a result of earnestly investigating the relationship with the loop shape by paying attention to the Young's modulus, yield stress, and tangent coefficient, which are the material constants of the bonding wire expressed by two-line approximation, the present inventor has found the following properties.
When an external force is applied to an object, the shape and volume change, which is called distortion. If the stress is within the elastic limit, an elastic strain is generated, and if the external force is removed, the strain disappears. When the stress exceeds the elastic limit, plastic deformation occurs and plastic strain remains. That is, the total strain ε of the bonding wire in one dimension is composed of an elastic strain ε el and a plastic strain ε pl . When the total strain ε is decomposed into an elastic strain ε el and a plastic strain ε pl , the following equations 1 to 4 are obtained. Become. From these equations, the total strain ε can be expressed by D / E and yield strain ε Y using Young's modulus E and tangential coefficient D.
Overall strain ε: ε = elastic strain ε el + plastic strain ε pl = σ / E + ε pl (Formula 1)
Stress at that time (one-dimensional) σ: σ = σ Y + D (ε−ε Y ) (Formula 2)
Here, E is Young's modulus and D is a tangent coefficient.
Further, from Equation 1, plastic strain ε pl : ε pl = ε-σ / E = ε-σ Y / ED−E (ε-ε Y )
= (Ε−ε Y ) (1-D / E) (Formula 3)
Elastic strain ε el : ε el = σ / E = σ Y / E + D / E (ε−ε Y )
= Ε Y + D / E (ε−ε Y ) (Formula 4)
Here, σ Y used in the above equation is the yield stress.
図1に一般的なワイヤーボンディングにおけるワイヤーループの外観図を示し、ループ高さHLを定義する。図1はファーストボンディング部分1にある半導体チップ3上の微小電極7の表面と、セカンドボンディング部分4にある微小電極8の表面とをボンディングワイヤー6により接続する場合を模式的に示したものである。図中5はキャピラリーである。
ループ高さHLとは、図においてファーストボンディング部分1における微小電極7からボンディングワイヤー6のネック部分2の最高点までの距離で定義する。このループ高さHLのバラツキを最小に抑えるのが本発明の目的である。
FIG. 1 shows an external view of a wire loop in general wire bonding, and defines a loop height HL . FIG. 1 schematically shows a case where the surface of the microelectrode 7 on the semiconductor chip 3 in the first bonding portion 1 and the surface of the microelectrode 8 in the second bonding portion 4 are connected by the bonding wire 6. . In the figure, 5 is a capillary.
The loop height H L is defined by the distance from the microelectrode 7 in the first bonding portion 1 to the highest point of the neck portion 2 of the bonding wire 6 in the drawing. It is an object of the present invention to minimize the variation in the loop height HL .
図2に前述のワイヤーボンディングにおける歪みと応力との関係を概略図で示す。図に示すようにボンディングワイヤーには線分OA−ABに沿ってσの応力がかかり、εの全歪みが発生している。点A迄は弾性変形、AからB迄は塑性変形である。
降伏点Aにおける応力が降伏応力σY、歪みが降伏歪みεYである。
全歪:εは弾性歪εelと塑性歪εplに分けられる(式1参照。)。図中降伏点Aまでは材料のヤング率Eに従って応力と歪みは比例関係にある。すなわち、σY=E・εY(εY=σY/E)の関係にある。
降伏点Aを過ぎると応力が増すと折線係数Dに従って歪みが増えていく。
また、図2において折線係数Dは線分A−Bの勾配であるから、D=(σ−σY)/(ε−εY)であり、(式2)が導かれる。
FIG. 2 schematically shows the relationship between strain and stress in the wire bonding described above. As shown in the figure, the bonding wire is subjected to the stress of σ along the line segment OA-AB, and the total strain of ε is generated. Up to point A is elastic deformation, and from A to B is plastic deformation.
The stress at the yield point A is the yield stress σ Y , and the strain is the yield strain ε Y.
Total strain: ε is divided into elastic strain ε el and plastic strain ε pl (see Equation 1). Up to the yield point A in the figure, the stress and strain are proportional to each other according to the Young's modulus E of the material. That is, there is a relationship of σ Y = E · ε Y (ε Y = σ Y / E).
When the stress increases after the yield point A, the strain increases according to the polygonal line coefficient D.
In FIG. 2, the polygonal line coefficient D is the gradient of the line segment AB, so D = (σ−σ Y ) / (ε−ε Y ), and (Expression 2) is derived.
上記の各式の意味するところは、D/Eと降伏歪εYが同じであれば、ヤング率E、接線係数D、降伏応力σYが異なる材料でも、全歪に占める弾性歪εelと塑性歪εplの割合は同一となり、形成するループ形状は同一になるということである。得られた知見に基づき、図3に示すような一般的なモーションパターンでループを形成した場合のループ高さHLのD/EおよびεYへの依存性について調査した。その結果を図4に示す。
図3はモーションパターンを示す図で、キャピラリーを順次水平方向と垂直方向に移動させる軌跡を示している。スケールは任意単位である。図3に示すキャピラリーのモーションパターンで、図1に示すループを形成する。
図4は上述のようにして形成したワイヤーループの高さHLを、各材料の降伏応力σYと
ヤング率Eとの比σY/Eに対してプロットしたものである。
実際に使用されている一般的なボンディングワイヤーのD/EとεYは、各々(D/E)<0.01、εY<0.005の範囲である。図4を見て分かるようにεY<0.0011になると形成されたループ高さHLのεY依存性は非常に大きくなる(曲線c、d参照。)。そのためεYがこの領域にあるボンディングワイヤーは、材質εYが多少変動しただけでループ高さが大きく変化することが容易に予想できる。
The meaning of each of the above formulas is that if D / E and yield strain ε Y are the same, even if materials having different Young's modulus E, tangential coefficient D, and yield stress σ Y are different from each other, elastic strain ε el The ratio of the plastic strain ε pl is the same, and the formed loop shape is the same. Based on the obtained knowledge, the dependency of the loop height H L on D / E and ε Y when a loop was formed with a general motion pattern as shown in FIG. 3 was investigated. The result is shown in FIG.
FIG. 3 is a diagram showing a motion pattern, and shows a trajectory for sequentially moving the capillary in the horizontal direction and the vertical direction. The scale is an arbitrary unit. The loop shown in FIG. 1 is formed with the capillary motion pattern shown in FIG.
FIG. 4 is a plot of the height HL of the wire loop formed as described above against the ratio σ Y / E of the yield stress σ Y and Young's modulus E of each material.
D / E and εY of a general bonding wire actually used are in a range of (D / E) <0.01 and ε Y <0.005, respectively. As can be seen from FIG. 4, when ε Y <0.0011, the ε Y dependency of the formed loop height H L becomes very large (see curves c and d). Therefore, it can be easily expected that the bonding wire having ε Y in this region will have a large change in loop height with only a slight change in the material ε Y.
以上の知見をもとにして考え出された本件発明は、電子素子内の微小電極間の導通を確保するために用いられるボンディングワイヤーであり、一般的なモーションパターンを利用した場合に、2直線近似で表したボンディングワイヤーの材料特性の比であるD/Eが0.0033から0.0067、かつ降伏歪εY が0.0009から0.0051の範囲内で分布しているのであれば、結線されたワイヤーループの高さHLを178.9ミクロンから182.8ミクロン、つまり高さの分布幅±2ミクロンで形成することができることが図4から理解できる。 The present invention devised on the basis of the above knowledge is a bonding wire used for ensuring electrical conduction between microelectrodes in an electronic element. When a general motion pattern is used, two linear lines are used. If the D / E, which is the ratio of the material properties of the bonding wire expressed in approximation, is 0.0033 to 0.0067 and the yield strain ε Y is within the range of 0.0009 to 0.0051, It can be seen from FIG. 4 that the height H L of the connected wire loop can be formed from 178.9 to 182.8 microns, that is, the height distribution width ± 2 microns.
また、このような材料特性を有する本発明のボンディングワイヤーは、合金元素としてBe、Mg、Ca、Ge、Sn、Ga、In、Y及び希土類元素から選ばれた少なくとも1種の元素が0.001〜0.01質量%であることが好ましい。0.001質量%未満では、細線にした場合の強度が不足し、ヤング率も低くなり目標とする値が得られないため好ましくなくない。また、0.01質量%を超えると、材質がもろくなって細線加工が困難となる。
本発明のボンディングワイヤーでは、更に、上記合金元素に加えて、Cu、Ag、Ru、Rh、Pd、Os、Ir及びPtから選ばれた少なくとも1種の元素が0.0005〜2.0質量%含むものであることが好ましい。0.0005質量%未満では、破断強度向上の効果に乏しく、また、2.0質量%を超えると電気抵抗が増加するため好ましくないからである。
このような金合金を鍛造加工と焼鈍を組み合わせて所定の線径とした後最終焼鈍する工程を経て、溶解鋳造後に圧延加工を行うことなく直接伸線加工を行い、且つ最終焼鈍前の伸線加工の途中に少なくとも1回の中間焼鈍加工を施すことにより得られる。
この金合金極細線は、ヤング率が3,900kgf/mm2から8,670kgf/mm2で、折線係数は26〜57、線径0.012mmでの破断強度は0.005kgf/mm2〜0.007kgf/mm2の極細線が得られる。
In the bonding wire of the present invention having such material characteristics, at least one element selected from Be, Mg, Ca, Ge, Sn, Ga, In, Y and rare earth elements as an alloy element is 0.001. It is preferable that it is -0.01 mass%. If it is less than 0.001% by mass, the strength in the case of a thin wire is insufficient, the Young's modulus is lowered, and the target value cannot be obtained, which is not preferable. On the other hand, if it exceeds 0.01 mass%, the material becomes brittle and thin wire processing becomes difficult.
In the bonding wire of the present invention, in addition to the above alloy elements, at least one element selected from Cu, Ag, Ru, Rh, Pd, Os, Ir, and Pt contains 0.0005 to 2.0 mass%. It is preferable that it is included. If it is less than 0.0005% by mass, the effect of improving the breaking strength is poor, and if it exceeds 2.0% by mass, the electric resistance increases, which is not preferable.
Such a gold alloy is subjected to a step of final annealing after combining forging and annealing to obtain a predetermined wire diameter, and after wire casting, direct wire drawing without rolling is performed, and wire drawing before final annealing. It is obtained by performing at least one intermediate annealing process during the process.
This gold alloy ultrafine wire has a Young's modulus of 3,900 kgf / mm 2 to 8,670 kgf / mm 2 , a fold line coefficient of 26 to 57, and a breaking strength of 0.005 kgf / mm 2 to 0 at a wire diameter of 0.012 mm. An ultrafine wire of .007 kgf / mm 2 is obtained.
以下に本発明の実施例として2直線近似で表したボンディングワイヤーの材料特性であるヤング率Eが4484kgf/mm2、接線係数Dが26、降伏応力εYが10kgf/mm2であるような2直線近似で表現できる金線ボンディングワイヤーを用意してボンディングした場合について説明する。
尚、当該金線ボンディングワイヤーは、合金元素としてBeを0.005重量%含有する金合金からなっている。
上記材料のD/Eは0.0058、εYの中心値は0.0022,εYの変動幅は±0.01ミクロンであった。
このような金線ボンディングワイヤーを用いて図3に示す一般的なモーションパターンにてボンディングを実施して同一ループを約500個形成した。それらのループ高さHL のばらつきを評価した結果、180.8ミクロンから182.3ミクロンであり、その高さの分布幅は±0.08ミクロンと非常に高さ安定性に優れたループ群が得られた。
Embodiment the Young's modulus E is 4484kgf / mm 2 which is a material property of the bonding wire, expressed in 2 linear approximation as an example of the present invention below, the tangent modulus D 26, such as yield stress epsilon Y is at 10 kgf / mm 2 2 A case where a gold wire bonding wire that can be expressed by linear approximation is prepared and bonded will be described.
The gold wire bonding wire is made of a gold alloy containing 0.005% by weight of Be as an alloy element.
D / E of the material is 0.0058, the center value of epsilon Y is 0.0022, the variation width of the epsilon Y was ± 0.01 microns.
Using such a gold wire bonding wire, bonding was performed with the general motion pattern shown in FIG. 3 to form about 500 identical loops. As a result of evaluating the variation of the loop height HL, it is 180.8 microns to 182.3 microns, and the height distribution range is ± 0.08 microns. Obtained.
高さ方向のボンディング密度が高く、かつ薄型電子素子に採用するにより、信頼性が高く、薄型素子を提供することができるために他の製品との差別化を図ることができる。 By adopting a thin electronic element with a high bonding density in the height direction, it is possible to provide a thin element with high reliability and thus can be differentiated from other products.
1 ファーストボンディング部分
2 ネック部分
3 半導体チップ
4 セカンドボンディング部分
5 キャピラリー
6 ボンディングワイヤー
7,8 微小電極
HLループ高さ
1 First bonding portion 2 Neck portion 3 Semiconductor chip 4 Second bonding portion 5 Capillary 6 Bonding wire 7, 8 Microelectrode H L loop height
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007263761A JP2009094302A (en) | 2007-10-09 | 2007-10-09 | Bonding wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007263761A JP2009094302A (en) | 2007-10-09 | 2007-10-09 | Bonding wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009094302A true JP2009094302A (en) | 2009-04-30 |
Family
ID=40665986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007263761A Pending JP2009094302A (en) | 2007-10-09 | 2007-10-09 | Bonding wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009094302A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011145129A (en) * | 2010-01-13 | 2011-07-28 | Denso Corp | Physical quantity sensor |
-
2007
- 2007-10-09 JP JP2007263761A patent/JP2009094302A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011145129A (en) * | 2010-01-13 | 2011-07-28 | Denso Corp | Physical quantity sensor |
US8578774B2 (en) | 2010-01-13 | 2013-11-12 | Denso Corporation | Physical quantity sensor including bonding wire with vibration isolation performance characteristics |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2239766B1 (en) | Bonding wire for semiconductor device | |
JP5116101B2 (en) | Bonding wire for semiconductor mounting and manufacturing method thereof | |
US8836147B2 (en) | Bonding structure of multilayer copper bonding wire | |
KR102040450B1 (en) | Bonding wire for semiconductor devices | |
EP2993693B1 (en) | Bonding wire for use with semiconductor devices and method for manufacturing said bonding wire | |
EP2461358A1 (en) | Bonding wire for semiconductor | |
CN107195609B (en) | Bonding wire for semiconductor device | |
WO2012169067A1 (en) | High-strength, high-elongation-percentage gold alloy bonding wire | |
JP5634149B2 (en) | Semiconductor device | |
TWI536396B (en) | Silver alloy soldered wire for semiconductor packages | |
WO2014137288A1 (en) | Palladium coated copper wire for bonding applications | |
JP6762386B2 (en) | A method for producing thick copper wire for bonding applications | |
JP2009094302A (en) | Bonding wire | |
JP6410692B2 (en) | Copper alloy bonding wire | |
EP3007216B1 (en) | Bonding wire for use with semiconductor devices and method for manufacturing said bonding wire | |
JP2005294874A (en) | Wire wedge bonded semiconductor device and gold alloy bonding wire | |
JP4232731B2 (en) | Bonding wire | |
JP4655426B2 (en) | Au bonding wire for connecting semiconductor element and manufacturing method thereof | |
WO2014137287A1 (en) | Palladium coated copper wire for bonding applications | |
JP6898705B2 (en) | Copper alloy thin wire for ball bonding | |
JP4947670B2 (en) | Heat treatment method for bonding wires for semiconductor devices | |
CN105006513B (en) | Silver alloy wire rod | |
JP2003007757A (en) | Gold alloy wire for bonding semiconductor element | |
Levine et al. | Wire bonding strategies to meet thin packaging requirements | |
JP2006073693A (en) | Bonding wire |