JP2009093988A - Lighting system - Google Patents
Lighting system Download PDFInfo
- Publication number
- JP2009093988A JP2009093988A JP2007265396A JP2007265396A JP2009093988A JP 2009093988 A JP2009093988 A JP 2009093988A JP 2007265396 A JP2007265396 A JP 2007265396A JP 2007265396 A JP2007265396 A JP 2007265396A JP 2009093988 A JP2009093988 A JP 2009093988A
- Authority
- JP
- Japan
- Prior art keywords
- light
- control member
- light source
- incident
- light control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Liquid Crystal (AREA)
- Planar Illumination Modules (AREA)
Abstract
Description
本発明は照明装置および画像表示装置に関し、特にCCFL(冷陰極管型蛍光管)などの線状光源から出射した光を均等に分散させ、薄型化と光利用効率の向上とを図ることが可能な直下式バックライト装置およびこれを用いた液晶表示装置に関するものである。 The present invention relates to an illumination device and an image display device, and in particular, can uniformly distribute light emitted from a linear light source such as a CCFL (Cold Cathode Fluorescent Tube), thereby reducing the thickness and improving light utilization efficiency. The present invention relates to a direct backlight device and a liquid crystal display device using the same.
画像表示装置用の照明装置を例にすると、導光板の側面に配した光源の光を導光板で正面方向に誘導し、拡散シートで均一化するエッジライト方式と、照明面の裏側に光源を配し、光を拡散シートで均一化する直下方式が挙げられる。
直下方式は光源を装置の背面に備えることから厚さが厚くなる傾向にあり、このため、携帯電話やモバイルパソコン、カーナビゲーションなど薄さを要求される分野では、光源を側面に備えることで薄型化が実現できるエッジライト方式が主流であった。
Taking an illumination device for an image display device as an example, the edge light system that guides the light of the light source arranged on the side of the light guide plate in the front direction with the light guide plate and makes it uniform with the diffusion sheet, and the light source on the back side of the illumination surface And a direct system in which light is made uniform with a diffusion sheet.
The direct type has a tendency to increase in thickness because it has a light source on the back of the device. For this reason, in fields where thinness is required such as mobile phones, mobile PCs, car navigation systems, etc. The edge light method that can be realized is the mainstream.
一方で、近年、テレビやパソコンモニターを中心にディスプレイの大型化および高輝度化の要求が高まってきた。特にディスプレイの大型化に伴い、上記エッジライト方式では、光源を配置できる周辺部の長さの表示面積に対する割合が減少して、光量が不足するため、十分な輝度を得ることができない。またエッジライト方式ではディスプレイの大型化に伴い導光板の重量が増加するといった問題もある。このようにエッジライト方式では、近年のディスプレイの大型化、高輝度化といった市場の要求に応えることが困難となってきた。 On the other hand, in recent years, there has been an increasing demand for larger displays and higher brightness mainly in televisions and personal computer monitors. In particular, with the increase in the size of the display, in the edge light system, the ratio of the length of the peripheral portion where the light source can be arranged to the display area decreases, and the amount of light is insufficient, so that sufficient luminance cannot be obtained. Further, the edge light system has a problem that the weight of the light guide plate increases as the display becomes larger. As described above, in the edge light system, it has become difficult to meet market demands such as an increase in display size and brightness in recent years.
そのため大型のディスプレイ用途では複数光源による直下方式が採用されている。この方式は、光源から放射される光束の割合が高く、且つ光源の数を自由に増加させることができる。
すなわち、光量を自由に増加させることができるため、要求される高輝度が容易に得られ、また、大型化による輝度低下が無い。さらに光を正面方向にむける導光板が不要になるため、軽量化をはかることができる。
Therefore, in large display applications, a direct system using a plurality of light sources is adopted. In this method, the ratio of the luminous flux emitted from the light source is high, and the number of light sources can be increased freely.
That is, since the amount of light can be increased freely, the required high brightness can be easily obtained, and there is no reduction in brightness due to an increase in size. Furthermore, since a light guide plate for directing light in the front direction is not necessary, the weight can be reduced.
しかしながら、直下方式では、ランプイメージの解消、薄型化、省エネルギーといった独特の課題を解決する必要がある。特に、複数光源の直下方式の照明装置では、出射する光のエネルギーは、各光源に対向する位置では大きく、光源間に対向する位置では小さい。そのため、前記ランプイメージは、エッジライト方式よりもはるかに顕著な輝度ムラとして現れる。したがって、従来エッジライト方式で用いられてきた手段、即ち、フィルム表面に拡散材を塗布した拡散フィルムなどの手段ではランプイメージの解消が困難である。 However, the direct method needs to solve unique problems such as elimination of lamp image, thinning, and energy saving. In particular, in a direct illumination system using a plurality of light sources, the energy of emitted light is large at positions facing each light source and small at positions facing between the light sources. For this reason, the lamp image appears as brightness unevenness far more conspicuous than in the edge light system. Therefore, it is difficult to eliminate the lamp image by means conventionally used in the edge light system, that is, means such as a diffusion film in which a diffusion material is applied to the film surface.
そこで、ランプイメージを解消するため、拡散材を含有した拡散シートが広く用いられている。たとえば、良好な拡散性と光利用効率を得るために、メタクリル系樹脂、ポリカーボネート系樹脂、スチレン系樹脂、塩化ビニル系樹脂等の基材樹脂に、無機粒子や架橋有機微粒子を光拡散材と配合して、光拡散シートが作製される。 Therefore, in order to eliminate the lamp image, a diffusion sheet containing a diffusion material is widely used. For example, in order to obtain good diffusibility and light utilization efficiency, inorganic particles and cross-linked organic fine particles are blended with a light diffusing material in a base resin such as methacrylic resin, polycarbonate resin, styrene resin, and vinyl chloride resin. Thus, a light diffusion sheet is produced.
しかし、これらの拡散材を含有した拡散シートを用いる方式では、拡散材へ光が吸収されやすいだけでなく、不要な方向へ光が拡散してしまうため、光利用効率が低下し省エネルギーの観点から好ましくない。また光源を近接して多数配置することでランプイメージは軽減できるが、光源の数が増加することにより、多量の電力を消費するため、コストアップという問題を抱える。 However, in the method using a diffusion sheet containing these diffusing materials, not only the light is easily absorbed into the diffusing material, but also the light diffuses in unnecessary directions, so that the light use efficiency is reduced and from the viewpoint of energy saving. It is not preferable. Further, the lamp image can be reduced by arranging a large number of light sources close to each other. However, since the number of light sources increases, a large amount of power is consumed, which causes a problem of cost increase.
反射シートに独特の形状を持たせて、ランプイメージを消す方法も提案されている(特許文献1)。しかし特許文献に記載されている反射シートの形状では、隣接する凹面間を接続するための凸面が存在するため、さらなる薄型化をすることが困難である。さらに、この凸面により、別途輝度ムラが発生する虞がある。 There has also been proposed a method of erasing the lamp image by giving the reflecting sheet a unique shape (Patent Document 1). However, in the shape of the reflective sheet described in the patent document, since there is a convex surface for connecting adjacent concave surfaces, it is difficult to further reduce the thickness. Further, this convex surface may cause uneven brightness.
また複数の光源に対向して、直線透過率が20%〜90%の輝度調整手段を設置させた直下型バックライト装置(特許文献2)が提案されている。しかし、この装置では、光の進行方向を制御することができても、各光源に対して輝度調整手段をそれぞれ対向して設置しているため、照明装置の薄型化を実現できない。 Further, a direct type backlight device (Patent Document 2) is proposed in which a luminance adjusting means having a linear transmittance of 20% to 90% is installed facing a plurality of light sources. However, in this apparatus, even if the light traveling direction can be controlled, since the brightness adjusting means is installed facing each light source, the lighting apparatus cannot be thinned.
大型照明装置においては、携帯電話やモバイルパソコンほど薄型化の要求は厳しくないが、光源と拡散シートの距離を近づけることや、光学フィルムを削減すること等で薄型化を図る必要がある。しかし、光源と他の部材を近づけたり、光学フィルムを削減すると、ランプイメージが生じやすく、均一な輝度が得られない。 In a large illuminating device, the demand for thinning is not as strict as that of a cellular phone or mobile personal computer, but it is necessary to reduce the thickness by reducing the distance between the light source and the diffusion sheet or by reducing the optical film. However, if the light source and other members are brought close to each other or the optical film is reduced, a lamp image is likely to be generated, and uniform brightness cannot be obtained.
また、省エネルギーを実現するには、光利用効率を高めることが必要である。直下方式は前述のように光源本数を増やすことができ、高輝度を得ることが容易である。しかし、光源の増加は、省エネルギーの視点からは好ましくない。さらに、ランプイメージ解消のため、拡散シートに大量の拡散材を用いると、光利用効率を大きく低下させてしまう。 In order to realize energy saving, it is necessary to increase the efficiency of light utilization. The direct method can increase the number of light sources as described above, and can easily obtain high luminance. However, an increase in the number of light sources is not preferable from the viewpoint of energy saving. Furthermore, if a large amount of diffusion material is used for the diffusion sheet to eliminate the lamp image, the light utilization efficiency is greatly reduced.
そこで本発明は、光源と他の部材を近づけても、ランプイメージが発生しない複数光源直下方式の照明装置およびこれを用いた画像表示装置を提供することを目的とする。
また、本発明の別の目的は、薄型化が実現でき、且つランプイメージ解消のために大量の拡散材を使用する必要がなく、光利用効率を向上できる複数光源直下方式の照明装置およびこれを用いた画像表示装置を提供することである。
Accordingly, an object of the present invention is to provide an illumination device of a direct type of a plurality of light sources that does not generate a lamp image even when a light source and another member are brought close to each other, and an image display device using the same.
Another object of the present invention is to provide a lighting device of a direct type with a plurality of light sources, which can be thinned and does not require the use of a large amount of diffusing material for eliminating the lamp image, and can improve the light utilization efficiency. It is to provide an image display device used.
本発明者らは上記の課題を解決するため以下の点を見出し、本発明を完成した。
第1に、複数光源の直下方式の照明装置では、出射する光のエネルギーは、各光源に対向する位置では大きく、隣接する光源同士の間に対向する位置では小さい。そこで、反射部材に対して凹部を設け、反射光が各光源の直上では少なく、各光源間に対向する位置では多く進行するように凹部の形状を設定するとともに、各凹部を隔てる連結部を設けることによって、一つの光源から出射する反射光と直接光とが互いに補完しあいつつ、光制御部材には隣接する光源からの入射光が重複せずに入射できるよう、反射部材の形状を最適化した。これによって、従来よりも光源と拡散シートの距離を近づけても、光源に対向する位置とそれ以外から出射する光のエネルギーとが等しくなり、薄型化とランプイメージの解消を同時に実現することができる。
In order to solve the above problems, the present inventors have found the following points and completed the present invention.
First, in a direct illumination system using a plurality of light sources, the energy of emitted light is large at a position facing each light source and small at a position facing between adjacent light sources. Therefore, a concave portion is provided on the reflecting member, and the shape of the concave portion is set so that the reflected light is less directly above each light source and proceeds at a position opposed to each light source, and a connecting portion that separates the respective concave portions is provided. As a result, the shape of the reflecting member has been optimized so that the incident light from the adjacent light sources can enter the light control member without overlapping while the reflected light and direct light emitted from one light source complement each other. . As a result, even if the distance between the light source and the diffusion sheet is made closer than before, the position facing the light source and the energy of the light emitted from the other are equal, and it is possible to simultaneously realize thinning and elimination of the lamp image. .
第2に、複数光源であっても、隣接する光源からの入射光がそれぞれ光制御部材へ重複して入射しにくいため、光学制御部材に対して特定の形状を付与することにより、光制御部材への入射光を、拡散部材の主面に対して垂直な方向に近づけることが可能であることがわかった。これにより、光の進行方向が、拡散部材の主面に対して垂直な方向に集まるため、面内で均一な輝度を保つことが可能となることもわかった。 Secondly, even if there are a plurality of light sources, the incident light from adjacent light sources does not easily overlap each other and enter the light control member. Therefore, by giving a specific shape to the optical control member, the light control member It has been found that the incident light on can be brought close to a direction perpendicular to the main surface of the diffusing member. As a result, the traveling direction of light gathers in a direction perpendicular to the main surface of the diffusing member, and it has also been found that uniform luminance can be maintained in the surface.
第3に、拡散部材への入射光の進行方向が、拡散部材の主面に対して垂直方向に集まっているため、このような入射光を特定の拡散部材を通過させることにより、光の後方散乱を高度に抑制することができ、その結果、正面方向だけでなく、斜め方向から視聴した場合にも均一な面光源となり、且つ、光利用効率を下げる拡散材の使用を大幅に減少することができ、高い光利用効率が達成されることが見出された。 Third, since the traveling direction of the incident light to the diffusing member is gathered in a direction perpendicular to the main surface of the diffusing member, the incident light passes through the specific diffusing member, and the rear of the light Scattering can be suppressed to a high degree, resulting in a uniform surface light source when viewed not only in the front direction but also from an oblique direction, and greatly reduces the use of diffusing materials that reduce light utilization efficiency It was found that high light utilization efficiency was achieved.
すなわち、上記の検討結果に基づいてなされた本発明は、同一平面上に互いに並列に配置された複数の線状光源と、各線状光源を囲む複数の凹部とこれら凹部間を連結する連結部とを交互に有する反射部材と、前記線状光源をはさんで反射部材の反対側に配設された光制御部材と、前記光制御部材の光出射側に配設された拡散部材と、を含む照明装置である。
前記反射部材の凹部は、光源の長手方向から見て光源に最も近い部分を中心として左右対称の曲面を有し、且つ光源から最も近接した部分が光源に向けて突起した形状を有している。さらに、反射部材の形状は、前記光制御部材へ入射する入射光が、単一の線状光源から直接入射する直接光と、その線状光源から出射し、反射部材により反射されて入射し、前記直接光を補完する反射光とで構成されるとともに、前記単一の線状光源から光制御部材へ入射する入射光が、その線状光源に隣接する線状光源からの直接光および反射光を実質的に含まないように、設定されている。複数の線状光源からの反射光が前記光制御部材に入射する際、反射光は、各線状光源における光制御部材に対向する直上を中心とする略M字形を連続させた光強度を有してもよい。反射部材において、凹部の幅(すなわち、光源の長手方向と直交する左右方向の幅)は、連結部の幅の5/6〜1/1であることが好ましい。
That is, the present invention made based on the above examination results includes a plurality of linear light sources arranged in parallel to each other on the same plane, a plurality of concave portions surrounding each linear light source, and a connecting portion connecting the concave portions. And a light control member disposed on the opposite side of the reflection member across the linear light source, and a diffusion member disposed on the light emission side of the light control member. It is a lighting device.
The concave portion of the reflecting member has a symmetrical curved surface centered on a portion closest to the light source when viewed from the longitudinal direction of the light source, and has a shape in which a portion closest to the light source protrudes toward the light source. . Furthermore, the shape of the reflecting member is such that the incident light incident on the light control member is directly incident from a single linear light source, is emitted from the linear light source, is reflected by the reflecting member, and is incident. The incident light incident on the light control member from the single linear light source is the direct light and the reflected light from the linear light source adjacent to the linear light source. Is set so as not to substantially contain. When reflected light from a plurality of linear light sources is incident on the light control member, the reflected light has a light intensity in which a substantially M-shape centered directly above the light control member in each linear light source is continuous. May be. In the reflecting member, the width of the concave portion (that is, the width in the left-right direction orthogonal to the longitudinal direction of the light source) is preferably 5/6 to 1/1 of the width of the connecting portion.
光制御部材は、入射光の60%以上を、光制御部材の主面に対して垂直方向に配向させて出射してもよく、光制御部材は、通常、平行に延びる複数の突条を少なくとも光出射面に有するとともに、前記各突条が、光制御部材の主面に対して垂直な面を有してもよい。 The light control member may emit 60% or more of the incident light while being oriented in a direction perpendicular to the main surface of the light control member, and the light control member usually has at least a plurality of protrusions extending in parallel. Each of the protrusions may have a surface perpendicular to the main surface of the light control member.
拡散部材による後方散乱確率は、10%以下であってもよく、拡散部材では、透明なマトリックス樹脂中に、このマトリックス樹脂とは異なる屈折率を有する拡散粒子が分散していてもよい。 The backscattering probability by the diffusing member may be 10% or less. In the diffusing member, diffusing particles having a refractive index different from that of the matrix resin may be dispersed in the transparent matrix resin.
本発明の照明装置は、薄型化が可能であり、例えば、反射部材の底部から拡散部材の光出射側までの距離が、20mm以下であるのが好ましい。
また、本発明は、照明装置の光出射側に、透過型表示素子を設けた画像表示装置も包含する。
The lighting device of the present invention can be thinned. For example, the distance from the bottom of the reflecting member to the light emitting side of the diffusing member is preferably 20 mm or less.
The present invention also includes an image display device in which a transmissive display element is provided on the light emitting side of the illumination device.
なお、明細書中において、「光制御部材へ入射する入射光が、ある線状光源からの直接光および反射光を含むが、その線状光源に隣接する線状光源からの直接光および反射光を実質的に含まない」とは、光制御部材の任意の区画において、ある1つの線状光源からの直接光および反射光を合わせた光強度に対して、その線状光源に隣接する線状光源からの直接光および反射光を合わせた光強度が15%以下であることを意味する。
また、「光制御部材が、入射光の60%以上を光制御部材の主面に対して垂直方向に配向させる」とは、光制御部材への入射光のうち、光制御部材を通過して出射した光の出射方向が、光制御部材の主面に対して、入射光の進行方向よりも、より垂直方向に近づいた光の割合が60%以上であることを意味する。
In the specification, “the incident light incident on the light control member includes direct light and reflected light from a certain linear light source, but direct light and reflected light from a linear light source adjacent to the linear light source. "Substantially does not contain" means that in any section of the light control member, the linear shape adjacent to the linear light source with respect to the combined light intensity of the direct light and the reflected light from one linear light source. It means that the light intensity of direct light and reflected light from the light source is 15% or less.
In addition, “the light control member orients 60% or more of the incident light in a direction perpendicular to the main surface of the light control member” means that the incident light to the light control member passes through the light control member. It means that the ratio of the light that is emitted in the direction in which the emitted light is closer to the vertical direction than the traveling direction of the incident light with respect to the main surface of the light control member is 60% or more.
本発明の照明装置では、光源からの直接光と反射光とが互いに補完しあうとともに、複数光源であっても、隣接する光源からの入射光が、それぞれ光制御部材へ重複して入射しないため、光源の直上と光源との間で光源と光制御部材の位置が近接しても、光制御部材全体へ入射する入射光を均一化できるだけでなく、照明装置の薄型化が可能となる。 In the illuminating device of the present invention, direct light and reflected light from the light source complement each other, and even if there are multiple light sources, incident light from adjacent light sources does not overlap with the light control member, respectively. Even if the positions of the light source and the light control member are close to each other between the light source and the light source, not only the incident light incident on the entire light control member can be made uniform, but also the lighting device can be made thin.
また、このような入射光の性質を利用するため、光制御部材では、入射光を光制御部材の主面に対して垂直方向に向けることができ、これによって、通常、照明装置として最も重要な、光制御部材の主面に垂直な方向へ進行する光が増加する。その結果、不必要な角度へ進行する光が減少し光照明装置の光利用効率が向上できる。 In addition, in order to utilize such a property of incident light, the light control member can direct the incident light in a direction perpendicular to the main surface of the light control member, which is usually the most important as a lighting device. The light traveling in the direction perpendicular to the main surface of the light control member increases. As a result, light traveling to an unnecessary angle is reduced, and the light use efficiency of the light illumination device can be improved.
さらに、光制御部材の主面に垂直な方向へ光が出射するため、拡散部材への入射光も、その主面に対して垂直な方向となり、その結果、拡散部材による光の後方散乱を10%以下にすることができる。これにより、拡散部材中の拡散材により吸収される光や、後方散乱によって失われる光が減少し、光利用効率を向上することができる。 Furthermore, since light is emitted in a direction perpendicular to the main surface of the light control member, the incident light on the diffusing member is also in a direction perpendicular to the main surface. % Or less. Thereby, the light absorbed by the diffusing material in the diffusing member and the light lost by the backscattering can be reduced, and the light utilization efficiency can be improved.
そして、本発明の照明装置の上に透過型表示素子を設けることによって、薄型化が実現でき、且つ光利用効率の高い画面表示装置を容易に得ることができる。 By providing a transmissive display element on the lighting device of the present invention, a thin display can be realized and a screen display device with high light utilization efficiency can be easily obtained.
この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解される。図面は必ずしも一定の縮尺で示されておらず、本発明の原理を示す上で誇張したものになっている。また、添付図面において、複数の図面における同一の部品番号は、同一部分を示す。 The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. The drawings are not necessarily drawn to scale, but are exaggerated in illustrating the principles of the invention. In the accompanying drawings, the same part number in the plurality of drawings indicates the same part.
以下、本発明の実施形態を図面にしたがって説明する。図1は、本発明の照明装置の一形態を説明するための図であり、照明装置に配設された線状光源の長手方向と直交する断面を示す。図1に示すように、照明装置は、上方に開口したケースC内の下部に、反射部材1が配置され、反射部材1に設けた凹部11の上方に、複数の線状光源2が同一平面上に並んで互いに平行に配置され、その上方に、つまり前記線状光源2をはさんで反射部材1の反対側に光制御部材3が配置され、光制御部材3の光出射側に拡散部材4が配置されている。さらに拡散部材4の上方で、ケースCの開口部に、液晶パネル5が支持されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining one embodiment of the illumination device of the present invention, and shows a cross section orthogonal to the longitudinal direction of a linear light source disposed in the illumination device. As shown in FIG. 1, in the lighting device, the reflecting
(反射部材)
反射部材1は、図1に示すように、各線状光源2を下方から囲む凹部11と各凹部を連結する平坦な連結部12とを交互に連続して有する。なお、連結部12は、通常、互いに同一平面上に配置される。
光源2から出射した光は、光制御部材3へ直接入射する直接光7と、反射部材の凹部により反射されて光制御部材3へ入射する反射光8とに分かれる。線状光源2は、上部の一部を残して大部分が連結部12よりも下方に存在しており、光源2の長手方向(図1の紙面と直交する方向)から見て、左右両側への拡がりが抑制されるので、線状光源2が隣接していても、前記光制御部材3へ入射する入射光は、単一の線状光源2からの直接光7と反射光8とで構成され、その線状光源に隣接する線状光源からの直接光および反射光が実質的に排除されて含まれない。
(Reflective member)
As shown in FIG. 1, the reflecting
The light emitted from the
凹部11は、光源2の長手方向と直交する紙面において、光源から最も近い部分、この例では光源2の真下の部分を中心として左右対称の曲面を有し、且つ、図2に示すように、光源から最も近接した部分である突出部13が光源に向けて突起した形状を有している。凹部11の曲面の形状は、光源2からの直接光を補完する反射光を発生させる限り、特に限定されないが、たとえば、線状光源と直交する断面において、図2に示すような、2連楕円形状を有するのが好ましい。
The
また各凹部11に突出部13を設けることにより、反射光が、各光源の間に対向する部分に光強度を集中させるよう、反射光分布を調整することが可能となる。その結果、反射光の光強度は、各線状光源における光制御部材に対向する直上を中心とする略M字形を描くことができる。そして、反射部材が、凹部と連結部とを連続して備えることにより、各凹部に囲まれる線状光源からの反射光は、光制御部材に入射する際、各線状光源の直上を中心とする略M字形を連続させた光強度を示すことができる。
In addition, by providing the
前記2連楕円形状では、それぞれの楕円の長軸が交差する角度(楕円の傾き角度)を調節することによって、反射光が光制御部材3に入射する際の光強度を調節することができ、光源2と光源2の間に位置する場所で、光制御部材に入射するため、光源2の直上のみが明るくなることを抑制し、光制御部材全体における光強度を均一にできる。例えば、光制御部材全体における光強度を均一にする観点から、楕円の傾き角度としては、160〜200°程度が好ましく、170〜190°程度がより好ましい。
In the double ellipse shape, the light intensity when the reflected light is incident on the
連結部12は、前記単一の線状光源から光制御部材へ入射する入射光が、その線状光源に隣接する線状光源からの直接光および反射光を実質的に含まないように、凹部11、11間に十分な間隔を設けるためのものであり、この連結部12の幅(Wp:紙面左右方向寸法)と凹部11の幅(Wc:紙面左右方向寸法)とは、前記の目的を達成できる限り特に制限されないが、たとえば、凹部11の幅は、連結部12の幅の5/6〜1/1程度であるのが好ましく、より好ましくは17/20〜19/20程度である。
The
反射部材1は、正反射光を発生できる限り特に材質は限定されず、公知の反射部材を用いることができるが、軽量性の観点から、オレフィン系樹脂などから形成された樹脂成形品に金属などを被覆または蒸着した反射部材(たとえば、反射シート)を用いるのが好ましい。
The material of the reflecting
(線状光源)
複数の線状光源2は、同一平面上に互いに並列に配置され、各線状光源は、前記光源を囲む凹部11の幅方向(すなわち紙面左右方向)の中心に配置される。光源は、線状の形態を有すれば特に限定されないが、通常、冷陰極管型蛍光管(CCFL)などの蛍光管である場合が多い。光源2を配置する位置は、凹部11の幅方向の中心であるとともに、光制御部材3と反射部材1との間であれば特に限定されないが、凹部11の2連楕円の共有焦点となる部分に光源2を配置することが好ましい。このような場所に光源を配置することによって、反射した光が光源自身に戻りにくく、蛍光管に吸収される光を軽減することができる。
(Linear light source)
The plurality of linear
光源間の距離や照明装置の厚みは、必要とされる輝度や反射部材の形状に応じて自由に選択できるが、たとえば、軽量化と高輝度とを両立させる観点から、反射部材底面から光制御部材までの距離(L1)と、隣接する光源間距離(W1)との比は、(L1)/(W1)=55/100〜80/100程度が好ましく、60/100〜70/100程度がより好ましい。 The distance between the light sources and the thickness of the lighting device can be freely selected according to the required luminance and the shape of the reflecting member. For example, from the viewpoint of achieving both weight reduction and high luminance, light control is performed from the bottom surface of the reflecting member. The ratio of the distance to the member (L1) and the distance between adjacent light sources (W1) is preferably about (L1) / (W1) = 55/100 to 80/100, preferably about 60/100 to 70/100. More preferred.
(光制御部材)
光制御部材3は、光源2からの直接光7と反射光8の進行方向を、光制御部材3の主面に対してより法線方向(または垂直方向)に近づける働きをする。そのため、光制御部材3は、入射光の60%以上を、光制御部材の主面に対して垂直方向に配向させて出射するのが好ましい。光制御部材は、より好ましくは入射光の70%以上、さらに好ましくは入射光の80%以上を、光制御部材の主面に対して垂直方向に配向させて出射してもよい。
(Light control member)
The
このような特定の形状を有する反射部材を設けることにより、複数光源であっても、隣接する光源からの入射光が、それぞれ光制御部材へ重複して入射せず、単一の線状光源から光制御部材へ入射する入射光が、その線状光源に隣接する線状光源からの直接光および反射光を実質的に含まなくなる。 By providing a reflecting member having such a specific shape, even if there are a plurality of light sources, incident light from adjacent light sources does not enter the light control member in an overlapping manner, but from a single linear light source. Incident light incident on the light control member substantially does not include direct light and reflected light from the linear light source adjacent to the linear light source.
したがって、線状光源2の長手方向に直交する面で切断した断面図である図3に示すように、例えば、光制御部材3は、垂直方向に進行する光が比較的多くなるように、少なくともその光出射面において、光源2の長手方向と光源と互いに平行に延びる複数の突条30を有し、前記各突条30が、光制御部材3の主面に対して垂直な垂直面31と、傾斜した傾斜面32とを有する直角三角形状となっている。
前記垂直面31と傾斜面32とのなす角度(頂角)の範囲は、光制御部材3が、入射光の進行方向を、光制御部材3の主面に対してより法線方向(または垂直方向)に近づけることができるかぎり特に制限されないが、例えば、30〜75°程度が好ましく、より好ましくは40〜70°程度である。また、前記突条30のピッチは、0.01〜0.5mm程度が好ましく、より好ましくは0.05〜0.3mm程度である。
Therefore, as shown in FIG. 3, which is a cross-sectional view taken along a plane orthogonal to the longitudinal direction of the linear
The range of the angle (vertical angle) formed by the
また、光制御部材3は、図4に示すように、光出射側および光入射側の両面において、平行に延びる複数の突条30を有するとともに、前記各突条30が、光制御部材3の主面に対して垂直な垂直面を有していてもよい。このように突条30を両面に有する場合、光制御部材3から出射された後、垂直方向に進行する光の割合を高めることができる。
Further, as shown in FIG. 4, the
このような光制御部材3は、光透過性材料で形成されていることが好ましく、いわゆる透明であれば、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂のいずれでも好ましく用いることができる。例えば、このような樹脂としては、(メタ)アクリル系樹脂、(メタ)アクリル−スチレン系共重合樹脂、スチレン系樹脂、芳香族ビニル系樹脂、オレフィン系樹脂、エチレン−酢酸ビニル系共重合樹脂、塩化ビニル系樹脂、ビニルエステル系樹脂、ポリカーボネート、フッ素樹脂、ウレタン樹脂、シリコーン樹脂、アミド系樹脂、イミド系樹脂、ポリエステル系樹脂、エポキシ樹脂、フェノール系樹脂、尿素樹脂、メラミン樹脂などが挙げられる。このような透明樹脂の屈折率は、例えば、1.48〜1.62程度が好ましく、より好ましくは1.50〜1.60程度である。
Such a
光制御部材は、前記透明樹脂から、その樹脂の特徴に応じて、射出成形や、圧縮成形、トランスファ成形などの公知または慣用の方法を用いて直接成形してもよいし、所定の形状の成形体をダイスカットなどにより切削し、作製してもよい。 The light control member may be directly molded from the transparent resin using a known or conventional method such as injection molding, compression molding, transfer molding, or the like according to the characteristics of the resin, or molding a predetermined shape. The body may be cut and produced by dicing.
(拡散部材)
ランプイメージの低減や視野角度を広げるために用いられる拡散部材について、本発明では、光制御部材で光の進行方向を光制御部材の主面に対して垂直方向に近づけることによって、前記拡散部材による後方散乱確率が10%以下にすることができるとともに、拡散部材中の拡散材の量を低減できる。そのため、拡散材による光吸収や、後方散乱による光利用効率低下を解消することができる。
(Diffusion member)
With respect to the diffusing member used for reducing the lamp image and widening the viewing angle, in the present invention, the light control member causes the light traveling direction to approach the direction perpendicular to the main surface of the light control member. The backscattering probability can be reduced to 10% or less, and the amount of the diffusing material in the diffusing member can be reduced. Therefore, it is possible to eliminate light absorption by the diffusing material and light utilization efficiency reduction due to backscattering.
拡散部材4は、透明なマトリックス樹脂中に、このマトリックス樹脂とは異なる屈折率を有する拡散粒子または拡散材が分散しているのが好ましく、透明なマトリックス樹脂としては、前記光制御部材で例示した透明樹脂を使用することができる。
In the diffusing
拡散材は、前記透明樹脂と同じ有機材料から形成されてもよく、または、ガラス粒子などの無機材料から形成されてもよい。拡散材は、略球状であればよく、平均粒子径は、例えば、1〜20μm程度が好ましく、より好ましくは2〜18μm程度である。粒子径が小さすぎると、光の拡散効率が低下する恐れがあり、粒子径が大きすぎると、不要な方向への光拡散が増加する恐れがある。 The diffusing material may be formed from the same organic material as the transparent resin, or may be formed from an inorganic material such as glass particles. The diffusing material may be substantially spherical, and the average particle diameter is preferably, for example, about 1 to 20 μm, more preferably about 2 to 18 μm. If the particle diameter is too small, the light diffusion efficiency may decrease, and if the particle diameter is too large, light diffusion in an unnecessary direction may increase.
マトリックス樹脂中の拡散材の粒子密度(一平方メートル当りの粒子の個数)は、拡散材による光の吸収を少なくする観点から、好ましくは1.0×1012〜1.0×1018程度、より好ましくは1.0×1013〜1.0×1017程度である。粒子密度が少なすぎると、効率よく光を拡散できない場合があり、粒子密度が多すぎると、拡散材による光の吸収量が増加する恐れがある。 The particle density (number of particles per square meter) in the matrix resin is preferably about 1.0 × 10 12 to 1.0 × 10 18 from the viewpoint of reducing light absorption by the diffusing material. Preferably it is about 1.0 * 10 < 13 > -1.0 * 10 < 17 >. If the particle density is too low, light may not be diffused efficiently. If the particle density is too high, the amount of light absorbed by the diffusing material may increase.
また、マトリックス樹脂と拡散材とは、通常、屈折率が異なっており、例えば、マトリックス樹脂の屈折率(Rm)に対する拡散材の屈折率(Rd)の屈折率比(Rd/Rm)は、1.001〜1.3程度が好ましく、1.005〜1.2程度がより好ましい。 The matrix resin and the diffusing material usually have different refractive indexes. For example, the refractive index ratio (Rd / Rm) of the refractive index (Rd) of the diffusing material to the refractive index (Rm) of the matrix resin is 1 About 0.001 to 1.3 is preferable, and about 1.005 to 1.2 is more preferable.
拡散部材は、通常シート状であり、その厚みは、拡散材の粒子径や粒子密度などに応じて適宜設定すればよく、例えば50〜1000μm程度が好ましく、100〜800μm程度がより好ましい。
拡散部材は、マトリックス樹脂の混練時に均一に拡散材を混入して成形するなど、公知の方法で作製できる。また拡散部材は、スペーサを介して光制御部材の光出射側に配設してもよいし、拡散部材と光制御部材とを貼り合わせるなどして一体化してもよい。
The diffusing member is usually in the form of a sheet, and the thickness thereof may be appropriately set according to the particle diameter, particle density, etc. of the diffusing material, and is preferably about 50 to 1000 μm, and more preferably about 100 to 800 μm.
The diffusing member can be produced by a known method such as molding by mixing a diffusing material uniformly when the matrix resin is kneaded. The diffusion member may be disposed on the light emission side of the light control member via a spacer, or may be integrated by bonding the diffusion member and the light control member.
このようにして得られた照明装置では、直下方式であっても薄型化が可能であり、例えば、反射部材の底部から拡散部材の光出射側までの距離は、20mm以下が好ましく、より好ましくは18mm以下、さらに好ましくは15mm以下である。 In the illuminating device thus obtained, it is possible to reduce the thickness even if it is a direct type. For example, the distance from the bottom of the reflecting member to the light emitting side of the diffusing member is preferably 20 mm or less, more preferably It is 18 mm or less, more preferably 15 mm or less.
(画像表示装置)
本発明の画像表示装置は、前記照明装置の光出射側に、透過型表示素子を設けることにより得ることができる。例えば、図1の拡散部材4の上に液晶パネルなどの透過型表示素子5を載置することによって、このパネル表示面内において輝度が均一な液晶表示装置を得ることができる。
(Image display device)
The image display device of the present invention can be obtained by providing a transmissive display element on the light emitting side of the illumination device. For example, by placing a
以下に本発明を実施例にてさらに具体的に説明するが、本発明はこれらの実施例に限定
されるものではない。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.
[実施例1]
本実施例の照明装置の反射部材1は図2のように光源を中心として左右対称な形状をしている。光源は12本のCCFLであり光源間の距離は18.6mm、反射部材1の底面から光制御部材3の光入射側までの距離は12mmである。光制御部材3に到達する光線の量を表したグラフを図5に示す。この図からどの場所にも均等な光量が到達していることがわかる。
また、光源一つのみを点灯させた場合の光制御部材3に到達する直接光と反射光の位置と強度の関係を図6に示す。図6に示すように、反射光は、蛍光管の真上を中心とする略M字型を描くとともに、光制御部材へ入射する光は、一つの光源からの直接光と、反射部材によって反射された反射光で構成され、隣接する光源と同じ場所に入射することが実質的に無いことがわかる。そのため、光制御部材に入射する光は、蛍光管から直接出た光反射部材によって反射された、二つの光進行角度のみである。
[Example 1]
The reflecting
FIG. 6 shows the relationship between the position and intensity of the direct light and the reflected light that reach the
また、拡散部材による拡散角度の分布を図8に示す。図8から明らかなように、主面に対して垂直な方向を0°とした場合、0°方向から進入した光は、−90°〜90°以外の角度に光が拡散しないことがわかる。さらに、拡散部材の主面に対して垂直な方向と、垂直から45°傾いた方向に進行する光の強度分布を図9に示す。 Moreover, the distribution of the diffusion angle by the diffusion member is shown in FIG. As can be seen from FIG. 8, when the direction perpendicular to the main surface is set to 0 °, light entering from the 0 ° direction does not diffuse at angles other than −90 ° to 90 °. Further, FIG. 9 shows the intensity distribution of light traveling in a direction perpendicular to the main surface of the diffusing member and a direction inclined by 45 ° from the vertical.
[比較例1]
反射部材1の形状を凹部11のない平面とし、且つ光制御部材3を用いない以外は、実施例1と同様にして、照明装置を作製した。拡散部材4に到達する光線の量を表したグラフを図7に示す。この図から明らかなように、光強度は光源間で大幅に低下し、顕著な輝度ムラが存在していた。
以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲で、種々の追加、変更または削除が可能であり、そのようなものも本発明の範囲内に含まれる。
[Comparative Example 1]
A lighting device was manufactured in the same manner as in Example 1 except that the shape of the reflecting
As described above, the preferred embodiments of the present invention have been described with reference to the drawings. However, various additions, modifications, or deletions can be made without departing from the spirit of the present invention, and these are also included in the present invention. It is included in the range.
1…反射部材
2…線状光源
3…光制御部材
4…拡散部材
5…透過型表示素子
7…直接光
8…反射光
11…凹部
12…連結部
13…突起部
30…突条
31…垂直面
32…傾斜面
DESCRIPTION OF
Claims (9)
前記反射部材の凹部は、光源から最も近い部分を中心として左右対称の曲面を有し、且つ光源から最も近接した部分が光源に向けて突起した形状を有し、
前記光制御部材へ入射する入射光が、単一の線状光源から直接入射する直接光と、その線状光源から出射し、反射部材により反射されて入射し、前記直接光を補完する反射光とで構成されるとともに、前記単一の線状光源から光制御部材へ入射する入射光が、その線状光源に隣接する線状光源からの直接光および反射光を実質的に含まないように、前記反射部材の形状が設定されている照明装置。 A plurality of linear light sources arranged in parallel to each other on the same plane, a plurality of concave portions surrounding each linear light source and a reflection member alternately connecting the concave portions, and sandwiching the linear light sources A lighting device comprising: a light control member disposed on the opposite side of the reflecting member; and a diffusion member disposed on the light emitting side of the light control member,
The concave portion of the reflecting member has a symmetrical curved surface with the portion closest to the light source as the center, and the portion closest to the light source has a shape protruding toward the light source,
Incident light incident on the light control member includes direct light directly incident from a single linear light source, and reflected light that is emitted from the linear light source, reflected by the reflecting member, and incident to complement the direct light. And the incident light incident on the light control member from the single linear light source substantially does not include direct light and reflected light from the linear light source adjacent to the linear light source. The lighting device in which the shape of the reflecting member is set.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007265396A JP4998948B2 (en) | 2007-10-11 | 2007-10-11 | Lighting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007265396A JP4998948B2 (en) | 2007-10-11 | 2007-10-11 | Lighting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009093988A true JP2009093988A (en) | 2009-04-30 |
JP4998948B2 JP4998948B2 (en) | 2012-08-15 |
Family
ID=40665768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007265396A Expired - Fee Related JP4998948B2 (en) | 2007-10-11 | 2007-10-11 | Lighting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4998948B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011034921A (en) * | 2009-08-05 | 2011-02-17 | Sekisui Plastics Co Ltd | Light reflecting molded body and illumination body |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005024746A (en) * | 2003-06-30 | 2005-01-27 | Stanley Electric Co Ltd | Mirror for backlight |
JP2006202559A (en) * | 2005-01-19 | 2006-08-03 | Stanley Electric Co Ltd | Surface light source apparatus |
JP2006252984A (en) * | 2005-03-11 | 2006-09-21 | Toppan Printing Co Ltd | Direct backlight unit |
JP2007133173A (en) * | 2005-11-10 | 2007-05-31 | Nippon Shokubai Co Ltd | Light diffusing sheet, complex light diffusing plate, and back light unit using those |
JP2007149343A (en) * | 2005-11-07 | 2007-06-14 | Future Vision:Kk | Surface light source device |
-
2007
- 2007-10-11 JP JP2007265396A patent/JP4998948B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005024746A (en) * | 2003-06-30 | 2005-01-27 | Stanley Electric Co Ltd | Mirror for backlight |
JP2006202559A (en) * | 2005-01-19 | 2006-08-03 | Stanley Electric Co Ltd | Surface light source apparatus |
JP2006252984A (en) * | 2005-03-11 | 2006-09-21 | Toppan Printing Co Ltd | Direct backlight unit |
JP2007149343A (en) * | 2005-11-07 | 2007-06-14 | Future Vision:Kk | Surface light source device |
JP2007133173A (en) * | 2005-11-10 | 2007-05-31 | Nippon Shokubai Co Ltd | Light diffusing sheet, complex light diffusing plate, and back light unit using those |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011034921A (en) * | 2009-08-05 | 2011-02-17 | Sekisui Plastics Co Ltd | Light reflecting molded body and illumination body |
Also Published As
Publication number | Publication date |
---|---|
JP4998948B2 (en) | 2012-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7206491B2 (en) | Light guide device and backlight module using the same | |
TW200537201A (en) | Optical material, optical element, illuminator and display device | |
WO2004019082A1 (en) | Light source device and light polarizing element | |
JPWO2004015330A1 (en) | Surface light source device | |
JP4544517B2 (en) | Light source device | |
TWI626482B (en) | Viewing angle switchable back light unit | |
JP2009164101A (en) | Backlight | |
US8075151B2 (en) | Surface light source device and image display device | |
KR101419031B1 (en) | Light emitting device and lighting device having the same | |
JP5209634B2 (en) | Surface light source element array and image display device | |
US8096669B2 (en) | Surface light source device and image display apparatus | |
US20050129357A1 (en) | Light guide apparatus for enhancing light source utilization efficiency | |
JP2006208930A (en) | Optical sheet, and backlight unit and display using same | |
JPH10283818A (en) | Planar illuminant and method of uniforming its luminance | |
KR20210004032A (en) | Display appartus and diffuser plate thereof | |
JP2009109828A (en) | Optical sheet, backlight unit, and display device | |
JPH11305225A (en) | Light transmission element, surface light source device and display device using the surface light source device | |
JP4998948B2 (en) | Lighting device | |
JP4400867B2 (en) | Light deflection element and light source device | |
JP2009158468A (en) | Backlight | |
JP2007103325A (en) | Lighting device, light control member provided for it and image display apparatus using it | |
TWI287126B (en) | Backlight module for LCD | |
KR100971956B1 (en) | LCD and the Backlight unit | |
JP2011171103A (en) | Light guide plate, planar light source device, and display device | |
JP2008134371A (en) | Optical sheet applied to direct back light for liquid crystal display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100715 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120402 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120424 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120509 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150525 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |