JP2009092630A - Aircraft loading type carbon dioxide continuous measuring device - Google Patents

Aircraft loading type carbon dioxide continuous measuring device Download PDF

Info

Publication number
JP2009092630A
JP2009092630A JP2007266386A JP2007266386A JP2009092630A JP 2009092630 A JP2009092630 A JP 2009092630A JP 2007266386 A JP2007266386 A JP 2007266386A JP 2007266386 A JP2007266386 A JP 2007266386A JP 2009092630 A JP2009092630 A JP 2009092630A
Authority
JP
Japan
Prior art keywords
carbon dioxide
aircraft
gas
concentration
analysis cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007266386A
Other languages
Japanese (ja)
Inventor
Hidekazu Matsueda
秀和 松枝
Toshinobu Machida
敏暢 町田
Naoto Kondo
直人 近藤
Keita Goto
啓太 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
METEOROLOGICAL AGENCY
Jamco Corp
National Institute for Environmental Studies
Original Assignee
METEOROLOGICAL AGENCY
Jamco Corp
National Institute for Environmental Studies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by METEOROLOGICAL AGENCY, Jamco Corp, National Institute for Environmental Studies filed Critical METEOROLOGICAL AGENCY
Priority to JP2007266386A priority Critical patent/JP2009092630A/en
Publication of JP2009092630A publication Critical patent/JP2009092630A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for measuring continuously a carbon dioxide concentration in the atmosphere in the high sky by loading it on an aircraft. <P>SOLUTION: This aircraft loading type carbon dioxide continuous measuring device 10 has a case 100 made of a honeycomb panel, and two tanks 110, 120. The tanks 110, 120 are filled with two kinds of standard gases having each verified concentration of carbon dioxide. An unillustrated carbon dioxide analyzing cell is provided in the case 100 to measure continuously the carbon dioxide concentration in the atmosphere. Each standard gas is analyzed periodically to improve measurement accuracy. The carbon dioxide analyzing cell is stored in a heat insulating device to reduce an influence of a temperature change during flight. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、航空機に搭載して高空の大気中の二酸化炭素濃度を連続して自動的に測定する航空機搭載型二酸化炭素連続測定装置に関する。   The present invention relates to an aircraft-mounted continuous carbon dioxide measurement device that is mounted on an aircraft and continuously and automatically measures the carbon dioxide concentration in the atmosphere in the high sky.

近年、地球環境の悪化を防止するために、国際的な環境保全の必要性が高まっている。特に、大気中に放出される二酸化炭素は、地球温暖化の原因物質としてその放出削減が急務となっている。   In recent years, there is an increasing need for international environmental conservation in order to prevent deterioration of the global environment. In particular, there is an urgent need to reduce the release of carbon dioxide released into the atmosphere as a causative substance of global warming.

大気中の成分等の観測は、各地の地上観測所で行われている。しかしながら、地球的な大規模な観測は、長時間高々度を飛行する国際線の旅客機等により長期間にわたって行われることが望ましい。
本発明の目的は、大型の航空機に搭載して高空の大気中の二酸化炭素濃度を連続的に測定し、測定位置や高度等の情報を同時に記憶できる航空機搭載型二酸化炭素連続測定装置を提供するものである。
Observations of atmospheric components are carried out at various ground stations. However, it is desirable that large-scale global observations be performed over a long period of time using international passenger aircraft that fly at high altitude for a long time.
An object of the present invention is to provide an aircraft-mounted continuous carbon dioxide measurement device that can be mounted on a large aircraft and continuously measure the carbon dioxide concentration in the air in the high sky, and simultaneously store information such as measurement position and altitude. Is.

上記目的を達成するために、本発明の航空機搭載型二酸化炭素連続測定装置は、基本的な手段として、ハニカムパネル製の中央パネルと中央パネルの上下部に中央部が固定される上部パネル及び下部パネルにより構成される筐体と、筐体の中央パネルの一方の壁面側に装備される二酸化炭素の濃度が予め検定された2種類の標準ガスが充填された2本のタンクと、筐体の中央パネルの他方の壁面側に装備される二酸化炭素の濃度を分析する二酸化炭素分析セルと、二酸化炭素分析セルを流れる気体の流量を一定に保つ流量調整器と、二酸化炭素分析セル内の圧力を一定に保つ圧力調整器と、2種類の標準ガスと外気とを交互に二酸化炭素分析セルに供給する電磁弁と、二酸化炭素分析セルを収容する断熱装置を備えるものである。
そして、タンクに装備されるバルブは、タンク内のガス圧力が所定の圧力を超えたときに破裂してガスを逃がす破裂板を有する安全弁機能を備え、破裂板は、日本の高圧ガス保安法と米国の高圧ガス法の規定を同時に満足する特性を有する
ものである。
In order to achieve the above object, an aircraft-mounted carbon dioxide continuous measurement apparatus according to the present invention includes, as a basic means, a central panel made of a honeycomb panel and an upper panel and a lower panel whose central part is fixed to the upper and lower parts of the central panel A casing constituted by a panel, two tanks filled with two kinds of standard gases preliminarily tested for the concentration of carbon dioxide provided on one wall surface side of the central panel of the casing, The carbon dioxide analysis cell that analyzes the concentration of carbon dioxide installed on the other wall side of the center panel, the flow regulator that keeps the flow rate of gas flowing through the carbon dioxide analysis cell constant, and the pressure in the carbon dioxide analysis cell A pressure regulator that keeps constant, an electromagnetic valve that alternately supplies two types of standard gas and outside air to the carbon dioxide analysis cell, and a heat insulating device that houses the carbon dioxide analysis cell are provided.
The valve installed in the tank has a safety valve function that has a rupture plate that ruptures and escapes gas when the gas pressure in the tank exceeds a predetermined pressure. It has characteristics that satisfy the requirements of the US High Pressure Gas Law at the same time.

本発明の航空機搭載型二酸化炭素連続測定装置によれば、軽量で丈夫な筐体内に各機器が収容され、小型軽量化が図れる。また、二酸化炭素分析セルは断熱され、測定精度も向上する。   According to the aircraft-mounted continuous carbon dioxide measuring apparatus of the present invention, each device is housed in a lightweight and strong casing, and the size and weight can be reduced. Also, the carbon dioxide analysis cell is insulated and the measurement accuracy is improved.

図1は、本発明の航空機搭載型二酸化炭素連続測定装置を搭載する航空機の概要を示し、図2は図1のA部の断面を示す。
航空機の機体1の床部材2の下部には、収納スペース3が用意されており、例えば、機内で使用される真水用のタンク5等が装備される。
本発明の航空機搭載型二酸化炭素連続測定装置10は、この収納スペース3の空間を利用して搭載される。搭載に際しては、既存の機器等の干渉を避け、機体構造に影響を与えないように、適宜の取付部材を用意して床部材2に吊り下げる構造で搭載する。
航空機搭載型二酸化炭素連続測定装置10を搭載する機種は複数にまたがるので、各機種に適した位置に搭載する。
FIG. 1 shows an outline of an aircraft equipped with an aircraft-mounted carbon dioxide continuous measurement apparatus of the present invention, and FIG. 2 shows a cross section of a portion A in FIG.
A storage space 3 is prepared in the lower part of the floor member 2 of the aircraft body 1 and is equipped with, for example, a tank 5 for fresh water used in the aircraft.
The aircraft-mounted carbon dioxide continuous measurement apparatus 10 of the present invention is mounted using the space of the storage space 3. At the time of mounting, an appropriate mounting member is prepared and suspended from the floor member 2 so as to avoid interference with existing equipment and the like and not affect the airframe structure.
Since there are a plurality of models on which the aircraft-mounted carbon dioxide continuous measurement apparatus 10 is mounted, the aircraft-mounted carbon dioxide continuous measuring apparatus 10 is mounted at a position suitable for each model.

図3は、航空機搭載型二酸化炭素連続測定装置の概要を示す一方向からみた斜視図、図4は他方側からみた斜視図、図5は筐体の説明図である。
全体を符号10で示す航空機搭載型二酸化炭素連続測定装置は、ハニカムパネルで構成される筐体100を有する。筐体100は、中央パネル102と、中央パネル102の上下部に中央部が固定される上部パネル104、下部パネル106を備える。
上部パネル104と下部パネル106は、中央パネル102に対してネジSにより固着される。中央パネル102は、測定機器等をとりつけるための開口部Hが予め用意される。
中央パネル102の一方の側には、予め二酸化炭素(CO)の濃度が検定された2種類の標準ガスを充填された2本のタンク110、120が搭載される。各タンク110、120は電磁弁220等により自動的に後述する二酸化炭素分析セル300へ送られる。
3 is a perspective view seen from one direction showing an outline of an aircraft-mounted carbon dioxide continuous measuring apparatus, FIG. 4 is a perspective view seen from the other side, and FIG. 5 is an explanatory view of a housing.
An aircraft-mounted carbon dioxide continuous measurement apparatus, indicated as a whole by reference numeral 10, has a casing 100 formed of a honeycomb panel. The housing 100 includes a central panel 102, and an upper panel 104 and a lower panel 106 whose central part is fixed to the upper and lower parts of the central panel 102.
Top panel 104 and bottom panel 106 is secured by screws S 1 with respect to central panel 102. Central panel 102, the openings H 1 for attaching the measuring device or the like are prepared in advance.
On one side of the central panel 102, two tanks 110 and 120 filled with two kinds of standard gases whose carbon dioxide (CO 2 ) concentration has been previously tested are mounted. The tanks 110 and 120 are automatically sent to a carbon dioxide analysis cell 300 described later by an electromagnetic valve 220 or the like.

航空機搭載型二酸化炭素連続測定器10は、この2種類の標準ガスと大気を交互に二酸化炭素測定装置へ送り込むための機器が装備されていて、採取した高空の大気を加圧するポンプ160、乾燥器140、フィルタ150、152、レギュレータ130等がタンク110、120側に装備される。
中央パネル102を挟んで反対側の筐体100内には、断熱装置400内に格納された二酸化炭素分析セル300が装備され、流量調整器170、172、圧力計180、182、圧力制御器132、流量制御器134等が設けられる。
電装部材としては、入力ボード200、RS232Cモジュール210、電磁弁220、ARINCコンバータ230、ARINCフィルタ240、ストレージモジュール250、データロガー260等が設けられる。
また、タンク110、120側には、DCコンバータ202が設けられ、機体側から供給される直流電源を航空機搭載型二酸化炭素連続測定装置10用の直流電源に交換する。
また、ラインにノイズが混入するのを防止するノイズフィルタ280等も設けられる。
The aircraft-mounted carbon dioxide continuous measuring device 10 is equipped with equipment for alternately sending these two types of standard gas and the atmosphere to the carbon dioxide measuring device, and a pump 160 that pressurizes the collected high-air atmosphere, a dryer 140, filters 150 and 152, a regulator 130, and the like are provided on the tanks 110 and 120 side.
A carbon dioxide analysis cell 300 stored in the heat insulating device 400 is installed in the casing 100 on the opposite side across the central panel 102, and flow rate regulators 170 and 172, pressure gauges 180 and 182, and a pressure controller 132. , A flow rate controller 134 and the like are provided.
As the electrical components, an input board 200, an RS232C module 210, a solenoid valve 220, an ARINC converter 230, an ARINC filter 240, a storage module 250, a data logger 260, and the like are provided.
Further, a DC converter 202 is provided on the tanks 110 and 120 side, and the direct current power supplied from the airframe side is replaced with a direct current power supply for the aircraft-mounted carbon dioxide continuous measuring device 10.
In addition, a noise filter 280 that prevents noise from entering the line is also provided.

二酸化炭素分析セル300は、ケーシング310内に円筒形の分析室320を有する。
分析室320の一方の端部には赤外線発光ランプ340を有し、他方の端部には赤外線受光素子350が設けられる。赤外線受光素子350の前方には光学フィルタ360が設けられる。
分析室320の赤外線発光ランプ340の近傍には、計測対象となるガスGの供給口330が設けられ、赤外線受光素子350側には、ガスの排出口が設けられる。
The carbon dioxide analysis cell 300 has a cylindrical analysis chamber 320 in a casing 310.
The analysis chamber 320 has an infrared light emitting lamp 340 at one end, and an infrared light receiving element 350 is provided at the other end. An optical filter 360 is provided in front of the infrared light receiving element 350.
A gas G 1 supply port 330 to be measured is provided near the infrared light emitting lamp 340 in the analysis chamber 320, and a gas discharge port is provided on the infrared light receiving element 350 side.

供給されるガスG中に含まれる二酸化炭素分子COは、赤外線発光ランプ340から照射される波長4.26μm等の赤外線IRを吸収する。ガスG中に含まれる他の分子M,Mは赤外線IRを吸収しない。
そこで、赤外線発光ランプ340から照射される赤外線IRの量に比べて、赤外線受光素子350が受光する赤外線IRの量を計測することにより、CO濃度を測定することができる。
The carbon dioxide molecule CO 2 contained in the supplied gas G 1 absorbs infrared IR having a wavelength of 4.26 μm or the like irradiated from the infrared light emitting lamp 340. Other molecules M 1 and M 2 contained in the gas G 1 do not absorb infrared IR.
Therefore, the CO 2 concentration can be measured by measuring the amount of infrared IR received by the infrared light receiving element 350 as compared to the amount of infrared IR irradiated from the infrared light emitting lamp 340.

二酸化炭素分析セル300から出力される二酸化炭素濃度の値は、二酸化炭素濃度以外に、周辺温度によって大きく影響を受ける。そのため、周辺温度の変化に影響を受けない対策として、セル温度を50℃に一定に保つように、ヒーターが取付けられている。しかし、急激な周囲温度の低下が起きた場合には、セル温度を一定に保つことができない。そのため、急激な周囲温度の低下が起きた場合の対策として、セルの断熱が必要とされる。周囲の温度低下が起きた場合、二酸化炭素濃度の値は実際よりも低く指示する。また急激な変化は、標準ガスによる校正では補うことが出来ず、計測値の精度が悪くなる。   The value of the carbon dioxide concentration output from the carbon dioxide analysis cell 300 is greatly influenced by the ambient temperature in addition to the carbon dioxide concentration. Therefore, as a measure not affected by changes in the ambient temperature, a heater is attached so as to keep the cell temperature constant at 50 ° C. However, the cell temperature cannot be kept constant when a sudden drop in ambient temperature occurs. Therefore, it is necessary to insulate the cell as a countermeasure when a sudden drop in ambient temperature occurs. When the ambient temperature drop occurs, the value of carbon dioxide concentration is indicated to be lower than the actual value. In addition, the rapid change cannot be compensated for by calibration with the standard gas, and the accuracy of the measured value deteriorates.

航空機搭載型二酸化炭素連続測定装置10が搭載される前方貨物室は、与圧され、かつ一部温度制御されているものの、客室内と違い機外温度の変化を受けやすい場所である。航空機搭載型二酸化炭素連続測定装置10が取付けられている場所は、最低温度が5℃ぐらいになることがある。   The front cargo compartment in which the aircraft-mounted carbon dioxide continuous measurement device 10 is mounted is a place that is susceptible to a change in the outside temperature unlike the cabin, although it is pressurized and partly temperature controlled. The place where the aircraft-mounted carbon dioxide continuous measurement device 10 is attached may have a minimum temperature of about 5 ° C.

航空機搭載型二酸化炭素連続測定装置10を搭載する前方貨物室内の温度変化を測定したところ、最大で±0.6℃/min(上昇中が−0.6℃/min、下降中+0.6℃/min)の変化があることがわかった。
そこで、温度変化の目安を±0.6℃/minと設定し、断熱装置400を設計し、二酸化炭素分析セル300を覆う構造とした。
When the temperature change in the front cargo compartment equipped with the aircraft-mounted carbon dioxide continuous measurement device 10 was measured, the maximum was ± 0.6 ° C / min (-0.6 ° C / min during the rise, + 0.6 ° C during the descent) / Min).
Therefore, the standard of the temperature change is set to ± 0.6 ° C./min, the heat insulating device 400 is designed, and the carbon dioxide analysis cell 300 is covered.

図7は、断熱装置400の部品構成を示す斜視図である。
断熱装置400は、二酸化炭素分析セル300を収納するケース410と、ケース410を相手部材に固定するための支持部材420を有し、ねじ部材Fにより固定される。二酸化炭素分析ボード430には、コネクター432等が装備される。
二酸化炭素分析セル300は、ケース410内に4個の断熱材450、452、454、456で覆われた状態で収容され、ケース410の蓋412が閉じられる。
第1の断熱材450は、二酸化炭素分析セル300の下面及び両端部を覆う形状を有する。
第2の断熱材452と第3の断熱材454は、板状のものであって、二酸化炭素分析セル300の裏面と正面を覆う。そして、第4の断熱材456は、二酸化炭素分析セル300の上面を覆う形状を有する。
上述した構造を備えた断熱装置400内に二酸化炭素分析セル300を収容することにより、所定の断熱効果を得ることが実験により確認された。
FIG. 7 is a perspective view showing a component configuration of the heat insulating device 400.
Insulating device 400 includes a case 410 for housing the carbon dioxide analysis cell 300 has a support member 420 for fixing the case 410 to the mating member, it is fixed by a screw member F 1. The carbon dioxide analysis board 430 is equipped with a connector 432 and the like.
The carbon dioxide analysis cell 300 is accommodated in the case 410 while being covered with four heat insulating materials 450, 452, 454, 456, and the lid 412 of the case 410 is closed.
The first heat insulating material 450 has a shape that covers the lower surface and both ends of the carbon dioxide analysis cell 300.
The second heat insulating material 452 and the third heat insulating material 454 are plate-shaped and cover the back surface and the front surface of the carbon dioxide analysis cell 300. The fourth heat insulating material 456 has a shape that covers the upper surface of the carbon dioxide analysis cell 300.
It has been confirmed by experiments that a predetermined heat insulating effect is obtained by housing the carbon dioxide analysis cell 300 in the heat insulating device 400 having the above-described structure.

次に、2種類の標準ガスが充填されたタンク110,120は高圧ガス容器(シリンダーと呼ばれる)であって、日本の高圧ガス保安法と米国の高圧ガス法の両方に適合することが必要である。
本発明の航空機搭載型二酸化炭素連続測定装置10に搭載されるタンク110,120は上述した条件に適合する性能を備えている。
また、タンク110,120の頂部にとりつけられるバルブ500も日本及び米国の法制度に適合するものが新たに開発された。
Next, the tanks 110 and 120 filled with two kinds of standard gases are high-pressure gas containers (called cylinders) and must be compatible with both the Japanese high-pressure gas safety law and the US high-pressure gas law. is there.
The tanks 110 and 120 mounted on the aircraft-mounted carbon dioxide continuous measurement apparatus 10 of the present invention have performance that meets the above-described conditions.
In addition, a valve 500 that can be attached to the tops of the tanks 110 and 120 has been newly developed to comply with Japanese and US legal systems.

図8は、バルブ500の構造を示す断面図である。
バルブ500は、弁本体510を有し、ねじ部511によりタンクの頂部に螺合される。弁本体510は、タンクに通ずる通路512と、ラインL,Lに通ずる通路514を有し、両通路512,514の間に弁座513が設けられる。
弁座513に対向して弁本体510内に挿入される弁体520は、パッキン材524を有し、弁座513に当接される。弁本体510にねじ部531を介してとりつけられるキャップ部材530は、内ねじ部534を有し、ねじ部材550が螺合される。ねじ部材550は、ノブ540により回動操作される。
FIG. 8 is a cross-sectional view showing the structure of the valve 500.
The valve 500 has a valve main body 510 and is screwed to the top of the tank by a screw portion 511. The valve main body 510 has a passage 512 that communicates with the tank and a passage 514 that communicates with the lines L 1 and L 2, and a valve seat 513 is provided between both the passages 512 and 514.
A valve body 520 that is inserted into the valve main body 510 so as to face the valve seat 513 has a packing material 524 and is in contact with the valve seat 513. A cap member 530 attached to the valve main body 510 via a screw portion 531 has an inner screw portion 534, and the screw member 550 is screwed together. The screw member 550 is rotated by the knob 540.

ねじ部材550は、受け部材554を介して弁体520を押圧する。弁体520の外側には戻しスプリング522が配設され、弁体520を常時開弁方向に付勢する。弁本体510のタンクに連通する通路512と弁本体510の外部を結ぶバイパス通路516が設けられ、袋ナット部材560で覆われる。バイパス通路516の出口は破裂板570で封止される。   The screw member 550 presses the valve body 520 through the receiving member 554. A return spring 522 is disposed outside the valve body 520, and always biases the valve body 520 in the valve opening direction. A bypass passage 516 that connects the passage 512 communicating with the tank of the valve body 510 and the outside of the valve body 510 is provided, and is covered with a cap nut member 560. The outlet of the bypass passage 516 is sealed with a rupturable plate 570.

この破裂板570は、タンク内のガス圧が所定の値以上に上昇したときに破裂してガスを通路562から外部へ放出する安全弁として機能する。
この破裂板570が破壊される圧力は、日本の高圧ガス保安法と米国の高圧ガス法の規定に基いて設定される。
具体的には、破裂板の破裂圧が今回採用したタンク110、120の耐圧試験圧力23.0MPaの80%を超えないこと、かつ、その90%より小さくないことが要求される。
そこで、定格圧力を23.0MPaの0.8倍に相当する18.4MPaと設定し、16.6MPa(18.4MPa×0.9)から18.4MPaで破裂する破裂板570を製作した。
The rupture disc 570 functions as a safety valve that ruptures and discharges gas from the passage 562 to the outside when the gas pressure in the tank rises above a predetermined value.
The pressure at which the rupturable plate 570 is broken is set based on the regulations of the Japanese High Pressure Gas Safety Law and the US High Pressure Gas Law.
Specifically, it is required that the burst pressure of the rupturable plate does not exceed 80% of the pressure resistance test pressure 23.0 MPa of the tanks 110 and 120 employed this time, and not less than 90%.
Therefore, the rated pressure was set to 18.4 MPa corresponding to 0.8 times 23.0 MPa, and a rupture plate 570 that ruptures from 16.6 MPa (18.4 MPa × 0.9) to 18.4 MPa was manufactured.

図9は、本発明の航空機搭載型二酸化炭素連続測定装置の作用を示す説明図である。
本発明の航空機搭載型二酸化炭素連続測定装置にあっては、予め二酸化炭素濃度を既知の値に検定してある2種類の標準ガスが用意されている。そして、大気の測定中の一定間隔毎にその標準ガスを二酸化炭素分析セルに流して、二酸化炭素を測定する。測定した標準ガスの二酸化炭素濃度を基準として、測定した大気中の二酸化炭素濃度を補正することで、精度の高い測定値が得ることができるように全体の装置が構成されている。
FIG. 9 is an explanatory diagram showing the operation of the aircraft-mounted carbon dioxide continuous measurement apparatus of the present invention.
In the aircraft-mounted continuous carbon dioxide measuring apparatus of the present invention, two types of standard gases are prepared in which the carbon dioxide concentration is previously verified to a known value. Then, the standard gas is allowed to flow through the carbon dioxide analysis cell at regular intervals during the measurement of the atmosphere, and carbon dioxide is measured. The entire apparatus is configured so that a highly accurate measurement value can be obtained by correcting the measured carbon dioxide concentration in the atmosphere with reference to the measured carbon dioxide concentration of the standard gas.

本発明の航空機搭載型二酸化炭素連続測定装置10は、2種類の標準ガスGK、GKが充填されたタンク110、120を備える。第1のタンク110には、測定対象の大気中に含まれる二酸化炭素濃度の上限値より高いと想定される二酸化炭素濃度に検定された第1の標準ガスGKを充填する。 The aircraft-mounted carbon dioxide continuous measurement apparatus 10 of the present invention includes tanks 110 and 120 filled with two kinds of standard gases GK 1 and GK 2 . The first tank 110 is filled with the first standard gas GK 1 that has been verified to have a carbon dioxide concentration that is assumed to be higher than the upper limit value of the carbon dioxide concentration contained in the air to be measured.

この第1の標準ガスGKは、例えば二酸化炭素濃度が390ppmに検定される。
第2のタンク120には、測定対象の大気中の二酸化炭素濃度の下限値よりも低いと想定される二酸化炭素濃度に検定された第2の標準ガスGKを充填する。
この第2の標準ガスGKは、例えば二酸化炭素濃度が340ppmに検定される。測定開始時には、電磁弁220は、まず、第1の標準ガスGKが流れる第1のラインLを開き、第1の標準ガスGKを二酸化炭素分析セル300へ送る。この時間は例えば50秒に設定される。二酸化炭素分析セル300は、この第1の標準ガスGKを分析し、その二酸化炭素濃度の測定結果Kを390ppmとして記録する。
This first standard gas GK 1 is calibrated to a carbon dioxide concentration of 390 ppm, for example.
The second tank 120 is filled with the second standard gas GK 2 that has been verified to have a carbon dioxide concentration that is assumed to be lower than the lower limit value of the carbon dioxide concentration in the air to be measured.
The second standard gas GK 2 is calibrated to a carbon dioxide concentration of 340 ppm, for example. At the start of measurement, the electromagnetic valve 220 first opens the first line L 1 through which the first standard gas GK 1 flows, and sends the first standard gas GK 1 to the carbon dioxide analysis cell 300. This time is set to 50 seconds, for example. The carbon dioxide analysis cell 300 analyzes the first standard gas GK 1 and records the measurement result K 1 of the carbon dioxide concentration as 390 ppm.

次に、電磁弁220は第1のラインLの回路を閉じ、第2の標準ガスGKを供給する第2のラインLを開く。二酸化炭素分析セルは第2の標準ガスGKを分析し、その測定結果Kを340ppmとして記録する。
この標準ガスの分析が完了すると、電磁弁220は、第1のラインL、第2のラインLの回路を閉じ、航空機外から採取した大気を二酸化炭素分析セル300へ送る第3のラインLを開く。
Next, the solenoid valve 220 closes the circuit of the first line L 1, opening the second line L 2 and supplies the second standard gas GK 2. The carbon dioxide analysis cell analyzes the second standard gas GK 2 and records the measurement result K 2 as 340 ppm.
When the analysis of the standard gas is completed, the solenoid valve 220 closes the circuits of the first line L 1 and the second line L 2 , and sends the air collected from outside the aircraft to the carbon dioxide analysis cell 300. opening the L 3.

第3のラインL中には、採取した大気中の水分を除去する乾燥器140や大気を加圧するポンプ160等が挿入される。大気が供給された二酸化炭素分析セル300は、大気中の二酸化炭素濃度を連続的に分析し、その測定結果Mを記録する。
その連続測定時間は、例えば10分間とする。この連続測定が終了すると、航空機搭載型二酸化炭素連続測定装置10は、再度標準ガスを分析するサイクルに戻り、標準ガスの二酸化炭素濃度の基準値を記録する。
この標準ガス測定サイクルの後に、大気の二酸化炭素濃度の連続測定サイクルに戻る。
During the third line L 3, the pump 160 or the like for pressurizing the dryer 140 and air to remove moisture collected in the air is inserted. Carbon dioxide analysis cell 300 which air is supplied, the concentration of carbon dioxide in the atmosphere continuously analyzed, records the measurement results M 1.
The continuous measurement time is, for example, 10 minutes. When this continuous measurement is completed, the aircraft-mounted carbon dioxide continuous measurement device 10 returns to the cycle of analyzing the standard gas again, and records the reference value of the carbon dioxide concentration of the standard gas.
After this standard gas measurement cycle, we return to a continuous measurement cycle of atmospheric carbon dioxide concentration.

本発明の航空機搭載型二酸化炭素連続測定装置10は、上述したサイクルをくり返すことにより、航空機が飛行するルート上の大気のCO濃度を連続的に測定することができる。
飛行ルートや高度のデータは、ARINCコンバータ230を介して、航空機のARINCバスから航空機搭載型二酸化炭素連続測定装置10内にとり込まれる。
本発明によれば、航空機の全飛行ルート上の大気中の二酸化炭素濃度を連続的に測定し、記録することができる。
The aircraft-mounted continuous carbon dioxide measuring apparatus 10 of the present invention can continuously measure the CO 2 concentration in the atmosphere on the route on which the aircraft flies by repeating the above-described cycle.
The flight route and altitude data are taken into the airborne carbon dioxide continuous measurement device 10 from the ARINC bus of the aircraft via the ARINC converter 230.
According to the present invention, the carbon dioxide concentration in the atmosphere on the entire flight route of an aircraft can be continuously measured and recorded.

本発明の航空機搭載型二酸化炭素連続測定装置を搭載する航空機の概要を示す説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which shows the outline | summary of the aircraft carrying the aircraft-mounted type carbon dioxide continuous measuring apparatus of this invention. 図1のA部の断面図。Sectional drawing of the A section of FIG. 本発明の航空機搭載型二酸化炭素連続測定装置の概要を示す一方向からみた斜視図。BRIEF DESCRIPTION OF THE DRAWINGS The perspective view seen from one direction which shows the outline | summary of the aircraft mounting type carbon dioxide continuous measuring apparatus of this invention. 本発明の航空機搭載型二酸化炭素連続測定装置の概要を示す他方側からみた斜視図。The perspective view seen from the other side which shows the outline | summary of the aircraft mounting type carbon dioxide continuous measuring apparatus of this invention. 筐体の説明図。Explanatory drawing of a housing | casing. 二酸化炭素分析セルの概要を示す説明図。Explanatory drawing which shows the outline | summary of a carbon dioxide analysis cell. 断熱装置の部品構成を示す斜視図。The perspective view which shows the components structure of a heat insulation apparatus. バルブの構造を示す断面図。Sectional drawing which shows the structure of a valve | bulb. 本発明の航空機搭載型二酸化炭素連続測定装置の作用を示す説明図。Explanatory drawing which shows the effect | action of the airborne carbon dioxide continuous measuring apparatus of this invention.

符号の説明Explanation of symbols

1 航空機
10 航空機搭載型二酸化炭素連続測定装置
100 筐体
110 第1のタンク
120 第2のタンク
200 入力ボード
230 ARINCコンバータ
300 二酸化炭素分析セル
400 断熱装置
500 バルブ
DESCRIPTION OF SYMBOLS 1 Aircraft 10 Airplane-mounted carbon dioxide continuous measuring apparatus 100 Housing | casing 110 1st tank 120 2nd tank 200 Input board 230 ARINC converter 300 Carbon dioxide analysis cell 400 Heat insulation apparatus 500 Valve

Claims (2)

航空機の収納スペース内に着脱自在に搭載される航空機搭載型二酸化炭素連続測定装置であって、
ハニカムパネル製の中央パネルと中央パネルの上下部に中央部が固定される上部パネル及び下部パネルにより構成される筐体と、筐体の中央パネルの一方の壁面側に装備される二酸化炭素の濃度が予め検定された2種類の標準ガスが充填された2本のタンクと、筐体の中央パネルの他方の壁面側に装備される二酸化炭素の濃度を分析する二酸化炭素分析セルと、二酸化炭素分析セルを流れる気体の流量を一定に保つ流量調整器と、二酸化炭素分析セル内の圧力を一定に保つ圧力調整器と、2種類の標準ガスと外気とを交互に二酸化炭素分析セルに供給する電磁弁と、二酸化炭素分析セルを収容する断熱装置を備えることを特徴とする航空機搭載型二酸化炭素連続測定装置。
An aircraft-mounted carbon dioxide continuous measurement device that is detachably mounted in an aircraft storage space,
A central panel made of honeycomb panel, a casing composed of an upper panel and a lower panel whose central part is fixed to the upper and lower parts of the central panel, and a concentration of carbon dioxide provided on one wall side of the central panel of the casing Two tanks filled with two kinds of standard gases that have been verified in advance, a carbon dioxide analysis cell for analyzing the concentration of carbon dioxide provided on the other wall surface of the central panel of the housing, and carbon dioxide analysis A flow regulator that keeps the flow rate of gas flowing through the cell constant, a pressure regulator that keeps the pressure inside the carbon dioxide analysis cell constant, and an electromagnetic that alternately supplies two types of standard gas and outside air to the carbon dioxide analysis cell An aircraft-mounted continuous carbon dioxide measuring device, comprising a valve and a heat insulating device that houses a carbon dioxide analysis cell.
タンクに装備されるバルブは、タンク内のガス圧力が所定の圧力を超えたときに破裂してガスを逃がす破裂板を有する安全弁機能を備え、破裂板は、日本の高圧ガス保安法と米国の高圧ガス法の規定を同時に満足する特性を有する請求項1記載の航空機搭載型二酸化炭素連続測定装置。   The valve installed in the tank has a safety valve function that has a rupture disk that ruptures and escapes gas when the gas pressure in the tank exceeds a predetermined pressure. The aircraft-mounted carbon dioxide continuous measurement apparatus according to claim 1, which has characteristics satisfying the provisions of the high-pressure gas method at the same time.
JP2007266386A 2007-10-12 2007-10-12 Aircraft loading type carbon dioxide continuous measuring device Pending JP2009092630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007266386A JP2009092630A (en) 2007-10-12 2007-10-12 Aircraft loading type carbon dioxide continuous measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007266386A JP2009092630A (en) 2007-10-12 2007-10-12 Aircraft loading type carbon dioxide continuous measuring device

Publications (1)

Publication Number Publication Date
JP2009092630A true JP2009092630A (en) 2009-04-30

Family

ID=40664748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007266386A Pending JP2009092630A (en) 2007-10-12 2007-10-12 Aircraft loading type carbon dioxide continuous measuring device

Country Status (1)

Country Link
JP (1) JP2009092630A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092631A (en) * 2007-10-12 2009-04-30 National Institute For Environmental Studies Aircraft loading type automatic air flask-sampling device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04303743A (en) * 1991-03-30 1992-10-27 Shimadzu Corp Carbon-dioxide-gas measuring apparatus
JPH0666724A (en) * 1992-07-16 1994-03-11 Gaztech Internatl Corp Improvement of diffusion type gas sample chamber
JPH0618954U (en) * 1992-08-11 1994-03-11 日新電機株式会社 Gas concentration measuring device
JPH08247889A (en) * 1995-03-15 1996-09-27 Anritsu Corp Gas concentration measurement device
JPH10148680A (en) * 1996-09-20 1998-06-02 Fujitsu Ltd Measuring method and system for the gases
JPH11101745A (en) * 1997-09-26 1999-04-13 Shimadzu Corp Gas concentration measuring apparatus
JPH11101721A (en) * 1997-09-27 1999-04-13 Horiba Ltd Pipe-cooling structure of pre-treatment device of gas analyzer
JP2005147230A (en) * 2003-11-13 2005-06-09 Neriki:Kk Safety valve for compressed gas cylinder
JP2006284508A (en) * 2005-04-04 2006-10-19 Horiba Ltd On-vehicle exhaust gas analyzer
JP2007248369A (en) * 2006-03-17 2007-09-27 Horiba Ltd Gas analyzer and analysis method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04303743A (en) * 1991-03-30 1992-10-27 Shimadzu Corp Carbon-dioxide-gas measuring apparatus
JPH0666724A (en) * 1992-07-16 1994-03-11 Gaztech Internatl Corp Improvement of diffusion type gas sample chamber
JPH0618954U (en) * 1992-08-11 1994-03-11 日新電機株式会社 Gas concentration measuring device
JPH08247889A (en) * 1995-03-15 1996-09-27 Anritsu Corp Gas concentration measurement device
JPH10148680A (en) * 1996-09-20 1998-06-02 Fujitsu Ltd Measuring method and system for the gases
JPH11101745A (en) * 1997-09-26 1999-04-13 Shimadzu Corp Gas concentration measuring apparatus
JPH11101721A (en) * 1997-09-27 1999-04-13 Horiba Ltd Pipe-cooling structure of pre-treatment device of gas analyzer
JP2005147230A (en) * 2003-11-13 2005-06-09 Neriki:Kk Safety valve for compressed gas cylinder
JP2006284508A (en) * 2005-04-04 2006-10-19 Horiba Ltd On-vehicle exhaust gas analyzer
JP2007248369A (en) * 2006-03-17 2007-09-27 Horiba Ltd Gas analyzer and analysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092631A (en) * 2007-10-12 2009-04-30 National Institute For Environmental Studies Aircraft loading type automatic air flask-sampling device

Similar Documents

Publication Publication Date Title
EP1461553B1 (en) On-board fuel inerting system
May Open‐path, near‐infrared tunable diode laser spectrometer for atmospheric measurements of H2O
EP3118121B1 (en) Condition monitoring for an air separation module
US10048195B2 (en) Oxygen analysis system and method for measuring, monitoring and recording oxygen concentration in aircraft fuel tanks
US7632336B2 (en) Batch degassing of dielectric oil with vacuum sonication
US20070193650A1 (en) Method and apparatus for accurately delivering a predetermined amount of fuel to a vehicle
US7007893B2 (en) Methods and systems for controlling flammability control systems in aircraft and other vehicles
EP2036413B1 (en) Housing and method for keeping dry an electronic circuit
US10060781B2 (en) Methods and systems for direct fuel quantity measurement
JP2009092630A (en) Aircraft loading type carbon dioxide continuous measuring device
Volz-Thomas et al. Measurements of total odd nitrogen (NO y) aboard MOZAIC in-service aircraft: instrument design, operation and performance
Kloss et al. Airborne mid-infrared cavity enhanced absorption spectrometer (AMICA)
JPWO2017037933A1 (en) Sealability inspection device
CN208888009U (en) Vacuum sampling box
CN109178357B (en) Space life support device
Perkins et al. An automated atmospheric sampling system operating on 747 airliners
EP3370057A1 (en) Gas concentration sensor with improved accuracy
EP3117888A1 (en) Oxygen sensor protection
Piesch et al. The mechanical and thermal setup of the GLORIA spectrometer
US11067551B2 (en) Device for measuring the amount of oxygen present in a gas, and air-separation module comprising such a measurement device
Villar Mid-infrared absorption spectrometer for multi-species detection using LEDs for space applications: Development and flight testing
US20200061400A1 (en) Device for measuring the leakage rate of at least one element of a protective breathing mask
RU2271319C2 (en) Method of support of thermal conditions and purity of space rocket head module and device for realization of this method
Graf Balloon-borne Atmospheric Water Vapor Measurement by Laser Absorption Spectroscopy
JP6305943B2 (en) Valve opening pressure inspection device and valve opening pressure inspection method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005