JP2009092352A - Heating furnace system - Google Patents

Heating furnace system Download PDF

Info

Publication number
JP2009092352A
JP2009092352A JP2007265985A JP2007265985A JP2009092352A JP 2009092352 A JP2009092352 A JP 2009092352A JP 2007265985 A JP2007265985 A JP 2007265985A JP 2007265985 A JP2007265985 A JP 2007265985A JP 2009092352 A JP2009092352 A JP 2009092352A
Authority
JP
Japan
Prior art keywords
hot air
target temperature
duct
heated
drying furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007265985A
Other languages
Japanese (ja)
Other versions
JP4701224B2 (en
Inventor
光治 ▲高▼畑
Koji Takahata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CT TAKAHATA Ltd
Original Assignee
CT TAKAHATA Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CT TAKAHATA Ltd filed Critical CT TAKAHATA Ltd
Priority to JP2007265985A priority Critical patent/JP4701224B2/en
Publication of JP2009092352A publication Critical patent/JP2009092352A/en
Application granted granted Critical
Publication of JP4701224B2 publication Critical patent/JP4701224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating furnace system capable of extensively reducing fuel consumption by shortening a heating time (a drying time), and evenly carrying out heating without temperature difference in a vertical direction regardless of the size or shape of a heated object. <P>SOLUTION: In the heating furnace system, after continuously jetting hot air generated by a hot air generator 2 on the heated object 9 in a drying furnace 3 at a high speed and high pressure, the hot air is returned to the hot air generator 2 through a return duct 1. It has a target temperature control means 7 for controlling the hot air supplied to the drying furnace 3 to a target temperature, a blowout duct 11 installed so as to hold the heated object 9 in the drying furnace 3 from both sides, and a return fan 4 provided in the return duct to forcibly return the hot air exhausted from the drying furnace 3 to the hot air generator 2. Blowout nozzles 11a jetting out the hot air controlled to the target temperature by the target temperature control means 7 in cone shapes are plurally scattered on a face facing the heated object 9 of the blowout duct 11. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、乾燥炉内へ熱風発生器で発生した熱風を目標温度にして高圧で供給し、乾燥炉内で高圧噴射して被加熱物(被乾燥物)を効率的に乾燥させる加熱炉システムに関する。   The present invention provides a heating furnace system that efficiently supplies hot air generated by a hot air generator into a drying furnace at a target temperature at a high pressure, and efficiently injects the object to be heated (to-be-dried object) by high-pressure injection in the drying furnace. About.

従来、雰囲気型熱風乾燥炉は、熱風発生器で発生した熱風を循環ファンにより循環ダクトから乾燥炉内に吹出し、乾燥炉内の温度を所定の雰囲気温度に到達させてから被乾燥物を乾燥する乾燥炉システムである。乾燥炉内には、温度センサーが設置され、該温度センサーにより検知する温度により乾燥炉内の温度をコントロールしている。   Conventionally, an atmosphere type hot air drying furnace blows hot air generated by a hot air generator from a circulation duct into a drying furnace by a circulation fan, and the temperature in the drying furnace reaches a predetermined atmospheric temperature before drying an object to be dried. It is a drying furnace system. A temperature sensor is installed in the drying furnace, and the temperature in the drying furnace is controlled by the temperature detected by the temperature sensor.

また、他の熱風乾燥炉として、例えば、特許文献1〜特許文献4に記載の技術があるが、いずれも、乾燥炉内へ熱風を供給し、内部の被乾燥物を乾燥する技術である。
特開平6−269723号公報 特開平9−262529号公報 特開2004−141759号公報 特開2006−247642号公報
Further, as other hot air drying furnaces, for example, there are techniques described in Patent Documents 1 to 4, but all are techniques for supplying hot air into the drying furnace and drying an object to be dried.
JP-A-6-269723 Japanese Patent Laid-Open No. 9-262529 JP 2004-141759 A JP 2006-247642 A

しかしながら、上記雰囲気型熱風乾燥炉や上記特許文献1〜4に記載の熱風乾燥炉にあっては、炉体自体および内部空気全体を設定温度に到達するまでは乾燥作業が行えず、また、初期昇温で炉内を設定温度にまで高めるのに時間を要し、さらに、被加熱物への熱伝達による熱吸収率が悪いため、加熱に時間がかかり、結局、生産性が低下するばかりか、燃料費も嵩張るという問題があった。また、炉体内の高さ位置によって雰囲気温度にばらつきが生じやすいため、背高い被乾燥物は温度ムラによる加熱不良が起きやすいという問題があった。またさらに、炉体のライン方向に沿っても雰囲気温度のばらつきが生じるので、特に長尺物の場合には被加熱物を均一加熱することができないといった問題があった。   However, in the atmosphere type hot air drying furnace and the hot air drying furnaces described in Patent Documents 1 to 4, the furnace body itself and the entire internal air cannot be dried until the set temperature is reached. It takes time to raise the temperature of the furnace to the set temperature by raising the temperature, and furthermore, the heat absorption rate due to heat transfer to the object to be heated is poor, so it takes time to heat up. There was a problem that the fuel cost was also bulky. In addition, since the atmospheric temperature is likely to vary depending on the height position in the furnace body, there is a problem that tall objects to be dried are liable to be heated due to temperature unevenness. Furthermore, since the atmospheric temperature varies even along the line direction of the furnace body, there is a problem that the object to be heated cannot be uniformly heated particularly in the case of a long object.

本発明は、このような問題点を解決するためになされたものであって、コンパクトに形成した乾燥炉内の被加熱物へ直接に設定温度の熱風を高圧噴射させることで、加熱時間(乾燥時間)を上記従来の雰囲気型熱風乾燥炉に比べて略半分に短縮し、被加熱物の大きさ、形状に左右されることなく上下の温度差なく均一に加熱し、これら相乗効果により消費燃料量を大幅に低減し、乾燥炉の小型化により作業スペースを有効活用しうる加熱炉システムを提供することを目的とする。   The present invention has been made in order to solve such a problem, and by heating hot air at a set temperature directly onto a heated object in a compactly formed drying furnace, a heating time (drying) is achieved. Time) is shortened to about half compared to the conventional atmospheric hot air drying furnace, and it is heated evenly without temperature difference regardless of the size and shape of the object to be heated. An object of the present invention is to provide a heating furnace system that can greatly reduce the amount and can effectively use the work space by downsizing the drying furnace.

本発明は、以下の手段によって、上記課題を解決したものである。   The present invention solves the above problems by the following means.

すなわち、(1)本発明は、熱風発生器で発生した熱風を、乾燥炉内の被加熱物に高速で連続的に高圧噴射させた後、循環ダクトを通して前記熱風発生器へ環流させて再利用する加熱炉システムであって、前記乾燥炉に供給される熱風を目標温度に制御する目標温度制御手段と、前記乾燥炉内の被加熱物を両側から挟むように設置される吹出しダクトと、前記循環ダクトに設けられ前記乾燥炉から排出される熱風を前記熱風発生器へ強制循環させる循環ファンとを有し、前記吹出しダクトの前記被加熱物に対向する面に、前記目標温度制御手段で目標温度に制御された熱風を略円錐状に噴射する吹出しノズルを複数個点在して形成したことを特徴とする。   That is, (1) The present invention recycles hot air generated by a hot air generator after it is continuously injected at a high speed to a heated object in a drying furnace at a high speed and then circulated to the hot air generator through a circulation duct. A heating furnace system, the target temperature control means for controlling the hot air supplied to the drying furnace to a target temperature, the blowout duct installed so as to sandwich the object to be heated in the drying furnace from both sides, A circulation fan that is provided in a circulation duct and forcibly circulates the hot air discharged from the drying furnace to the hot air generator, and the target temperature control means sets a target on the surface of the blowout duct facing the object to be heated. A plurality of blowing nozzles for spraying hot air controlled by temperature in a substantially conical shape are formed.

本発明では、熱風発生器で発生する熱風の温度は目標温度制御手段により目標温度に設定され、それが乾燥炉(熱風炉)内の吹出しダクトへ供給される。吹出しダクトの吹出しノズルからは、被加熱物に対して直接に高圧の目標温度に設定された熱風が連続的に噴射されるが、このとき、熱風は吹出しノズルからほぼ円錐状に吹き出される。このとき、複数個の吹出しノズルから円錐状で吹き出される熱風は、互いに重なり合った状態で面状をなす均一な風速分布により被加熱物に当たる。この結果、乾燥炉内の全体が上記の目標温度に到達しなくても、熱風発生器、乾燥炉、およびこれらを連通する循環ダクトでなる循環系統を流れる熱風そのものが目標設定温度に到達し、それを直接に被加熱物へ吹き付けて加熱することが可能となる。   In the present invention, the temperature of the hot air generated by the hot air generator is set to the target temperature by the target temperature control means, which is supplied to the blowout duct in the drying furnace (hot air furnace). Hot air set at a high target temperature is directly sprayed directly from the outlet nozzle of the outlet duct to the object to be heated. At this time, the hot air is blown out substantially conically from the outlet nozzle. At this time, the hot air blown out in a conical shape from the plurality of blowing nozzles hits the object to be heated by a uniform wind speed distribution that forms a planar shape in a state of overlapping each other. As a result, even if the entire inside of the drying furnace does not reach the target temperature, the hot air itself flowing through the circulation system composed of the hot air generator, the drying furnace, and the circulation duct that communicates these reaches the target set temperature, It can be heated by spraying it directly onto the object to be heated.

このように、設定温度に制御された熱風をシャワーのように連続して被加熱物に対して温度ムラがないように直接的に吹き付けるので、被加熱物は高い熱吸収効率(例えば90%以上の熱吸収率)で早期に昇温する。したがって、雰囲気型乾燥炉と同じ温度でも極めて短時間(例えば約半分時間)で被加熱物を加熱でき、熱風発生器で消費するエネルギー消費量を節約することができ、加熱作業時間の短縮化、ひいては生産性の向上、乾燥作業コストの大幅な低減に効果的である。   Thus, since the hot air controlled to the set temperature is blown directly like a shower so that there is no temperature unevenness, the heated object has a high heat absorption efficiency (for example, 90% or more). Heat absorption rate). Therefore, the object to be heated can be heated in an extremely short time (for example, about half an hour) even at the same temperature as the atmosphere-type drying furnace, the energy consumption consumed by the hot air generator can be saved, the heating work time can be shortened, As a result, it is effective in improving productivity and drastically reducing the cost of drying operations.

(2)本発明はまた、前記吹出しダクトは、前記乾燥炉の床からほぼ垂直に立設され、かつ、該吹出しダクトを前記被加熱物が配列される方向に沿って被加熱物の両側に間隔を存して複数本配列したことを特徴とする前記(1)記載の加熱炉システムである。   (2) In the present invention, the blowing duct is erected substantially vertically from the floor of the drying furnace, and the blowing duct is disposed on both sides of the heated object along the direction in which the heated objects are arranged. The heating furnace system according to (1), wherein a plurality of the arrays are arranged at intervals.

係る発明では、乾燥炉の床に複数本の吹出しダクトを所定間隙を存して被加熱物の両側に配列する。換言すると、吹出しダクトを多段に配列している。この結果、背の高い被加熱物でもこれら吹出しダクトの吹出しノズルから均一な風速分布をなす熱風を噴射できる。そのため、上下に温度ムラを生じることなく被加熱物を加熱し、安定した製品を製作することが可能となる。また、被加熱物が長尺物であっても、水平型の乾燥炉で生産が可能となる。   In such an invention, a plurality of blowing ducts are arranged on both sides of the object to be heated with a predetermined gap on the floor of the drying furnace. In other words, the blowout ducts are arranged in multiple stages. As a result, even hot objects to be heated can be injected with hot air having a uniform wind speed distribution from the blowing nozzles of these blowing ducts. Therefore, it becomes possible to manufacture a stable product by heating an object to be heated without causing temperature unevenness in the vertical direction. Moreover, even if the object to be heated is a long object, it can be produced in a horizontal drying furnace.

(3)本発明はまた、前記吹出しダクトの流入側に、熱風の流動量を調整する熱風調整用ダンパーを設けたことを特徴とする前記(1)または(2)記載の加熱炉システムである。   (3) The present invention is also the heating furnace system according to (1) or (2), wherein a hot air adjusting damper for adjusting a flow amount of hot air is provided on an inflow side of the blowout duct. .

係る発明では、吹出しダクトに設けた熱風調整用ダンパーにより吹出しダクトの流入側の熱風流通面積を可変に設定できる。このため、熱風発生器から遠い位置にある吹出しダクトのダンパーにおける流入側の熱風流通面積を、近い位置にある吹出しダクトのそれよりも大きく設定することで、圧力損失の生じる遠い位置にある吹出しダクトへも、近い位置にある吹出しダクトに供給される熱風と略同じ圧力の熱風、すなわち、十分な量の熱風を供給することができる。したがって、奥行きのある乾燥炉にあっても、被加熱物側面に噴射される熱風の風速分布を均一に調整して供給することが可能となる。これにより、被加熱物を温度ムラのない形態で加熱することができるようになる。   In this invention, the hot air distribution area on the inflow side of the blowout duct can be variably set by the hot air adjustment damper provided in the blowout duct. For this reason, by setting the hot air flow area on the inflow side in the damper of the blowout duct located far from the hot air generator to be larger than that of the blowout duct located in the close position, the blowout duct located far from where the pressure loss occurs Also, the hot air having substantially the same pressure as the hot air supplied to the blowout duct located at a close position, that is, a sufficient amount of hot air can be supplied. Therefore, even in a deep drying furnace, it is possible to uniformly adjust and supply the wind speed distribution of the hot air sprayed to the heated object side surface. Thereby, a to-be-heated material can be heated with a form without temperature nonuniformity.

(4)本発明はまた、前記吹出しダクト外面に、前記吹出しノズルに対応する位置に調整孔を穿った調整板をスライド可能に設けたことを特徴とする前記(1)〜(3)のいずれかに記載の加熱炉システムである。   (4) The present invention is also characterized in that an adjustment plate having an adjustment hole is slidably provided on the outer surface of the outlet duct at a position corresponding to the outlet nozzle. It is a heating furnace system described in the above.

係る発明では、調整板部をスライドさせて調整孔を吹出しノズルに対して位相をずらすと、両者の重なり具合に応じて、吹出しノズルの開口面積を変化させることができる。このため、熱風発生器から遠い位置にある吹出しダクトにおける吹出しノズルの開口面積を大きくし、近い位置にある吹出しダクトにおける吹出しノズルの開口面積を小さく絞ることで、吹出しノズルから噴射される熱風の風速分布を均一な状態で吹き出すことができ、被加熱物を温度ムラのない状態で加熱ができるようになる。更に、このように吹き出しノズルを絞り込むことで、通過する空気との間で摩擦熱を発生させることができ、この摩擦効果によって空気を昇温させることができる。この結果、加熱コストを低減することが可能になる。   In this invention, when the adjustment plate portion is slid to shift the phase of the adjustment hole with respect to the blowing nozzle, the opening area of the blowing nozzle can be changed according to the overlapping state of the two. For this reason, by increasing the opening area of the blowing nozzle in the blowing duct located far from the hot air generator and reducing the opening area of the blowing nozzle in the blowing duct located in the near position, the wind speed of the hot air injected from the blowing nozzle The distribution can be blown out in a uniform state, and the object to be heated can be heated with no temperature unevenness. Furthermore, by narrowing down the blowing nozzles in this way, frictional heat can be generated between the passing air and the temperature of the air can be raised by this frictional effect. As a result, the heating cost can be reduced.

(5)本発明はまた、前記調整板を、複数段に分割された調整板部によって構成し、各調整板部を前記吹出しダクトに対して個別にスライドさせることを特徴とする前記(1)〜(4)のいずれかに記載の加熱炉システムである。   (5) The present invention is also characterized in that the adjustment plate is constituted by an adjustment plate portion divided into a plurality of stages, and each adjustment plate portion is individually slid with respect to the blowing duct. It is a heating furnace system in any one of-(4).

係る発明では、各吹出しダクト自体においても、複数段に亘って個別に吹出しノズルの開口面積を調整できるようになっている。例えば上方と下方の2段に分割する場合であって、吹出しダクトダクトの下側から熱風が供給される場合、上方側の圧力損失を考慮して、上方の調整板部のスライドにより吹出しノズルの開口面積を大きくし、下方の調整板部のスライドにより吹出しノズルのそれを絞って小さくする。これにより、吹出しノズルから被加熱物に熱風を均一に吹き出すことができるようになる。   In such an invention, the opening area of the blowing nozzle can be individually adjusted over a plurality of stages in each blowing duct itself. For example, when the hot air is supplied from the lower side of the blowout duct duct in the case of dividing into two stages of the upper side and the lower side, considering the pressure loss on the upper side, the blower nozzle can be moved by sliding the upper adjustment plate part. The opening area is increased, and it is reduced by reducing the size of the blowing nozzle by sliding the adjustment plate portion below. Thereby, hot air can be uniformly blown from the blow nozzle to the object to be heated.

(6)本発明はまた、前記吹出しノズルと、前記調整板に形成される調整孔を略同じ大きさを有する形状に形成したことを特徴とする前記(4)または(5)記載の加熱炉システムである。   (6) The heating furnace according to (4) or (5), wherein the blow nozzle and the adjustment hole formed in the adjustment plate are formed in a shape having substantially the same size. System.

係る発明では、吹出しノズルと調整孔とを略同じ大きさに設定したので、調整板または上調整板部および下調整板部をスライドすることにより、吹出しノズルの開口面積を円滑に調整することが可能となり、その結果、目標温度に設定された熱風を被加熱物に対して均一に吹き付けることが可能となる。   In such an invention, since the blowout nozzle and the adjustment hole are set to substantially the same size, the opening area of the blowout nozzle can be smoothly adjusted by sliding the adjustment plate or the upper adjustment plate portion and the lower adjustment plate portion. As a result, the hot air set to the target temperature can be uniformly blown against the object to be heated.

(7)本発明における前記目標温度制御手段は、前記乾燥炉に供給される熱風の目標温度を設定する目標温度設定部と、前記熱風発生器で発生する熱風の温度を検知する温度センサーと、該温度センサーで検知した検知温度と前記目標温度設定部で設定した目標温度との高低を判別する目標温度制御部を備えるようにし、該目標温度制御部により前記検知温度が目標温度よりも高いと判断した場合には、前記熱風発生器への燃料供給量を減少させ、前記検知温度が目標温度よりも低いと判断した場合には、前記熱風発生器への燃料供給量を増大させるように制御することを特徴とする前記(1)〜(7)のいずれかに記載の加熱炉システムである。   (7) The target temperature control means in the present invention, a target temperature setting unit that sets a target temperature of hot air supplied to the drying furnace, a temperature sensor that detects the temperature of hot air generated by the hot air generator, A target temperature control unit for determining a level between a detected temperature detected by the temperature sensor and a target temperature set by the target temperature setting unit; and when the detected temperature is higher than the target temperature by the target temperature control unit If it is determined, the fuel supply amount to the hot air generator is decreased, and if it is determined that the detected temperature is lower than the target temperature, the fuel supply amount to the hot air generator is increased. The heating furnace system according to any one of (1) to (7), wherein:

係る構成では、目標温度制御手段における目標温度制御部により、熱風の目標温度管理を効率的に行えるので、熱風発生器での熱風発生のために消費されるLPG(液化石油ガス)、都市ガス、電気ヒーター、あるいは蒸気、重油、灯油等のエネルギー消費量を大幅に低減できるようになる。また、目標温度を低温に設定することで、低温乾燥が可能となり、乾燥工程の次工程における組み立てや梱包など作業が行いやすくなる。さらには、熱風の温度と吹出し量、吹出しノズルからの吹出し流速等を適宜制御して乾燥プログラムを自由に調整することができるようになる。   In such a configuration, the target temperature control unit in the target temperature control means can efficiently manage the target temperature of the hot air, so LPG (liquefied petroleum gas), city gas, consumed for generating hot air in the hot air generator, Energy consumption of electric heaters, steam, heavy oil, kerosene, etc. can be greatly reduced. In addition, by setting the target temperature to a low temperature, low temperature drying is possible, and operations such as assembly and packaging in the next process of the drying process are facilitated. Furthermore, the drying program can be freely adjusted by appropriately controlling the temperature and amount of blown hot air, the blowing flow rate from the blowing nozzle, and the like.

本発明に係る加熱炉システムによれば、乾燥炉を小型化してその設置スペースを有効活用でき、炉内全体が設定温度(目標温度)にならなくても熱風の循環系統における熱風が設定温度に到達すれば使用することができ、これにより被加熱物の昇温を短時間で行え、しかも、従来の雰囲気型乾燥炉と同じ温度でもその約半分の時間で被加熱物を加熱でき、省エネルギー型の乾燥炉を得ることができる。   According to the heating furnace system according to the present invention, the drying furnace can be downsized and its installation space can be effectively utilized, and the hot air in the hot air circulation system is kept at the set temperature even if the entire furnace does not reach the set temperature (target temperature). It can be used as soon as it reaches, so that the temperature of the object to be heated can be increased in a short time, and the object to be heated can be heated in about half the time even at the same temperature as a conventional atmospheric drying furnace The drying oven can be obtained.

以下、本発明に係る加熱炉システムの一実施形態を、図を参照して詳述する。加熱炉システムの概要構成は、図1に示すように、循環ダクト1に設けた熱風発生器2と、熱風発生器2で発生した熱風が供給(送給)される乾燥炉3と,乾燥炉3から排出される熱風を吸引して再び熱風発生器2へ所定の高圧下で循環させる循環ファン4と、LPG、都市ガス等の燃料を供給する供給部(燃料タンク)5と、熱風発生器2の出口近傍に設けられた、熱風の温度を検知する温度センサー6と、温度センサー6の検知信号に基づいて熱風発生器2で発生する熱風の目標温度(設定温度)を制御する目標温度制御手段7と、目標温度制御手段7で演算処理された結果に基づいて熱風発生器2内で燃焼される燃料の供給量を制御する燃料供給電磁弁8との構成要素で成る。以下、上記各構成要素を具体的に説明していく。なお、図1における矢印は熱風の流れ方向を示す。   Hereinafter, an embodiment of a heating furnace system according to the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the schematic configuration of the heating furnace system includes a hot air generator 2 provided in the circulation duct 1, a drying furnace 3 to which hot air generated by the hot air generator 2 is supplied (sent), and a drying furnace. A circulation fan 4 that sucks hot air discharged from the air 3 and circulates it again to the hot air generator 2 under a predetermined high pressure, a supply unit (fuel tank) 5 that supplies fuel such as LPG and city gas, and a hot air generator 2, a temperature sensor 6 that detects the temperature of the hot air, and a target temperature control that controls the target temperature (set temperature) of the hot air generated by the hot air generator 2 based on the detection signal of the temperature sensor 6. It comprises constituent elements of means 7 and a fuel supply electromagnetic valve 8 for controlling the supply amount of fuel combusted in the hot air generator 2 based on the result of calculation processing by the target temperature control means 7. Hereafter, each said component is demonstrated concretely. In addition, the arrow in FIG. 1 shows the flow direction of hot air.

熱風発生器2は、供給部5からの燃料と、図示されない入気ブロアからの空気とが供給されて燃焼され、そのときの燃焼エネルギーにより発生した熱風を下流の乾燥炉3へ循環ファン4により圧送される。このとき、乾燥炉3へは、後述する目標温度制御手段7により所望の目標温度に設定された温度の熱風が供給されるようになっている。本実施形態では、熱風発生器2で50〜350℃の範囲の熱風が発生し、乾燥炉3へ供給される。   The hot air generator 2 is supplied with fuel from the supply unit 5 and air from an inlet blower (not shown) and burns, and the hot air generated by the combustion energy at that time is supplied to the downstream drying furnace 3 by a circulation fan 4. Pumped. At this time, hot air having a temperature set to a desired target temperature is supplied to the drying furnace 3 by a target temperature control means 7 described later. In the present embodiment, hot air in the range of 50 to 350 ° C. is generated by the hot air generator 2 and supplied to the drying furnace 3.

乾燥炉3は、図1〜図3に示すように、その内部空間が直方体をなし、その床部3aの下部で奥行き方向(図1の紙面に垂直方向)に沿ってチャンバー3bが形成される。チャンバー3bには、熱風発生器2で発生した熱風が供給され、熱風が高圧状態で一時的に滞留する状態にする。また、天井部の央部には奥行き方向に被加熱物9を吊り下げて移動可能なように形成したコンベア3cが設けられている。   As shown in FIGS. 1 to 3, the drying furnace 3 has a rectangular parallelepiped inner space, and a chamber 3b is formed along the depth direction (perpendicular to the paper surface of FIG. 1) below the floor portion 3a. . Hot air generated by the hot air generator 2 is supplied to the chamber 3b so that the hot air is temporarily retained in a high pressure state. Moreover, the conveyor 3c formed so that the to-be-heated material 9 could be suspended and moved to the depth direction was provided in the center part of the ceiling part.

被加熱物9の両側には、熱風調整用のダンパー10を介して、床部3aに略垂直上方に複数本の長尺箱状の吹出しダクト11が所定の間隔で列をなして立設される、換言すると、吹出しダクト11はダンパー10を介してチャンバー3bに連通するように多段に配列される。ダンパー10は図3(a)で示すように、ダンパーダクト10aに軸支される支軸10bと一体回動できるように設けられる。ダンパー10の回動位置は角度固定ボルト10cを締付けることで位置決めされ、これにより吹出しダクト11の熱風流入側の通路開口面積が全閉状態と全開状態との間で適宜に開き角度を調整され、熱風の通過流量を制御できるようになっている。   On both sides of the object to be heated 9, a plurality of long box-shaped blowout ducts 11 are erected in a row at predetermined intervals substantially vertically above the floor 3 a via dampers 10 for adjusting hot air. In other words, the blow-out ducts 11 are arranged in multiple stages so as to communicate with the chamber 3b via the damper 10. As shown in FIG. 3A, the damper 10 is provided so as to be able to rotate integrally with a support shaft 10b pivotally supported by the damper duct 10a. The rotation position of the damper 10 is positioned by tightening the angle fixing bolt 10c, whereby the opening angle of the passage opening area on the hot air inflow side of the blowout duct 11 is appropriately adjusted between the fully closed state and the fully open state, The flow rate of hot air can be controlled.

上記のダンパー10の開き角度は、熱風発生器2から遠いチャンバー3bにおける熱風の圧力ほど低下傾向にあるので、熱風発生器2からの距離が離れるに応じて吹出しダクト11のダンパー10における開き角度を次第に大きくなるように角度設定している。これにより、遠方にある吹出しダクト11への熱風供給量が低下しないように図っており、これにより各吹出しダクト11へは均一に熱風が供給できるように配慮されている。なお、ダンパー10の角度設定はこれに限定されることはなく、被加熱物9、乾燥速度等に応じて適宜に設定して使用してもよいことは言うまでもない。   Since the opening angle of the damper 10 tends to decrease as the pressure of the hot air in the chamber 3b far from the hot air generator 2 increases, the opening angle of the blower duct 11 in the damper 10 increases as the distance from the hot air generator 2 increases. The angle is set so that it gradually increases. Thus, the amount of hot air supplied to the blowout ducts 11 at a distant location is prevented from decreasing, and consideration is given so that hot air can be supplied uniformly to each of the blowout ducts 11. It should be noted that the angle setting of the damper 10 is not limited to this, and it is needless to say that the damper 10 may be appropriately set according to the object 9 to be heated, the drying speed, and the like.

吹出しダクト11は、被加熱物9に対向する側の面に、多数の吹出しノズル11aが穿たれ、そこから内部の熱風が被加熱物9に向かって吹き出す、すなわち、噴射するようになっている。吹出しノズル11aの流通開口の形状は、丸孔、長円形、楕円形、長方形等の種々の形状のものが採用可能である。   The blowout duct 11 has a large number of blowout nozzles 11a formed on the surface on the side facing the article 9 to be heated, and the hot air inside blows out toward the article 9 to be heated, that is, jets. . As the shape of the flow opening of the blow nozzle 11a, various shapes such as a round hole, an oval, an ellipse, and a rectangle can be adopted.

吹出しノズル11aから噴射される熱風は、図1,図2の点線で示すように、略円錐状をなして吹き出され、かつ、隣接する吹出しノズル11aから吹き出される熱風とが相互に重なり合う状態となるように穿たれる。勿論、特に噴射される熱風同士が相互に重なり合うようにしなくても良いように設定することも可能である。   As shown by the dotted lines in FIGS. 1 and 2, the hot air jetted from the blowout nozzle 11a is blown out in a substantially conical shape, and the hot air blown out from the adjacent blowout nozzles 11a overlaps each other. It is worn like this. Of course, it is possible to set so that the hot air to be jetted does not have to overlap each other.

吹出しダクト11の外面、すなわち、吹出しノズル11aが穿たれる側の面には、上下に微少長さにスライド可能な二枚の上調整板部12aと下調整板部12bとでなる調整板12が設けられる。各調整板部12a,12bは、吹出しノズル11aに対応した位置に、吹出しノズル11aの噴射孔と略同じ大きさに穿たれた調整孔12eを有する。各調整板部12a,12bには、長孔12c、12dが形成され、そこにボルト13が挿通される。これにより、図3(c)、(d)に示すように、吹出しノズル11a側のボルト孔11bにねじ込むことで各調整板部は一体に位置決め固定される。こうして、各調整板部12a、12bを吹出しノズル11aに対してスライド調整することで、調整孔12eと吹出しノズル11aの重なり具合によって、流通開口面積を大小に自在に調整できることとなる。なお、本実施形態では上下2枚の調整板部12a、12bが設けられる場合に限って示したが、本発明はそれに限定されず、例えば1枚の調整板部であってもよく、また例えば3枚以上の調整板部を多段配置するようにしても良い。この段数は、被加熱物の大きさによって適宜調整すればよい。   On the outer surface of the blowout duct 11, that is, on the side where the blowout nozzle 11a is bored, an adjustment plate 12 composed of two upper adjustment plate portions 12a and 12b that can be slid up and down slightly. Is provided. Each of the adjustment plate portions 12a and 12b has an adjustment hole 12e formed at a position corresponding to the discharge nozzle 11a so as to have approximately the same size as the injection hole of the discharge nozzle 11a. Long holes 12c and 12d are formed in the adjustment plate portions 12a and 12b, and bolts 13 are inserted therethrough. As a result, as shown in FIGS. 3C and 3D, the adjustment plate portions are integrally positioned and fixed by screwing into the bolt holes 11b on the blowing nozzle 11a side. In this way, by adjusting the slides of the adjustment plate portions 12a and 12b with respect to the blowing nozzle 11a, the flow opening area can be freely adjusted to be large or small depending on the overlapping state of the adjusting hole 12e and the blowing nozzle 11a. In the present embodiment, the upper and lower two adjustment plate portions 12a and 12b are shown. However, the present invention is not limited thereto, and may be, for example, one adjustment plate portion. Three or more adjustment plate portions may be arranged in multiple stages. The number of stages may be adjusted as appropriate depending on the size of the object to be heated.

上記の吹出しノズル11aにおける流通開口面積の調整は、ダンパー10から遠い上方ほど圧力損失により熱風の圧力は低下する傾向となるので、上調整板部12aにより吹出しノズル11aの流通開口面積が大きくなるように位置決め調整して取り付け、下調整板部12bによる流通開口面積を小さくするように位置決め固定して行うのが好ましい。これにより、上調整板部12aに対峙する吹出しノズル11aから噴出する熱風の量、すなわち、その流速と、下調整板部12bに対峙する吹出しノズル11aから噴出する熱風の量、すなわち、その流速とを略均一な状態で被加熱物9へ噴出するように配慮することができる。既に述べたように、高い風速(好ましくは10m/秒〜30m/秒)で吹出しダクト11内を熱風が移動することと、この各調整板部12a、12bの微調整の作用が相乗的に作用して、極めて均一化された熱風を吹出しノズル11aから噴出することが可能となる。なお、調整板12のスライド調整による吹出しノズル11aの流通開口面積の調整は、上記ダンパー10の場合と同様に、これに限定されることはなく、被加熱物9、乾燥速度等に応じて適宜に設定して使用してもよいことは言うまでもない。   In the adjustment of the flow opening area in the blow nozzle 11a, the pressure of hot air tends to decrease due to pressure loss as it is farther from the damper 10, so that the flow opening area of the blow nozzle 11a is increased by the upper adjustment plate portion 12a. It is preferable that the positioning adjustment is carried out by positioning and fixing so as to reduce the flow opening area by the lower adjustment plate portion 12b. Thereby, the amount of hot air ejected from the blowing nozzle 11a facing the upper adjustment plate portion 12a, that is, the flow velocity thereof, and the amount of hot air ejected from the blowing nozzle 11a opposed to the lower adjustment plate portion 12b, ie, the flow velocity thereof. Can be considered to be ejected to the article 9 to be heated in a substantially uniform state. As already described, the hot air moves in the blowout duct 11 at a high wind speed (preferably 10 m / sec to 30 m / sec) and the fine adjustment of the adjustment plate portions 12a and 12b synergistically works. Thus, it is possible to blow out the hot air that has been made extremely uniform from the blowout nozzle 11a. The adjustment of the flow opening area of the blowing nozzle 11a by adjusting the slide of the adjusting plate 12 is not limited to this as in the case of the damper 10, and is appropriately determined according to the object 9 to be heated, the drying speed, and the like. Needless to say, it may be set to be used.

こうして、ダンパー10の角度調整による流入熱風量の流量調整および調整板12のスライド調整による吹出しノズル11aの流通開口面積の調整(制御)を行うことで、被加熱物9に対して上下、奥行き方向に常に均一な流速(風速)を有する熱風を吹き付けることができ、被加熱物9を短時間で加熱処理することができるようになる。   Thus, by adjusting the flow rate of the incoming hot air flow by adjusting the angle of the damper 10 and adjusting (controlling) the flow opening area of the blowing nozzle 11a by adjusting the slide of the adjusting plate 12, the vertical direction and depth direction with respect to the object 9 to be heated are adjusted. Therefore, it is possible to blow hot air having a uniform flow velocity (wind speed) at all times, and to heat the article 9 to be heated in a short time.

循環ファン4は循環ダクト1に設けられ、吹出しノズル11aから吹き出される熱風の風速が例えば、10m〜30m/秒の範囲で、0.9807kPa〜2.942kPaの静圧で運転される。例えば、長さ10mの吹出しダクト11に対して、風速10m/秒で熱風を送り込むと、先端まで約1秒で熱風が到達するので、温度変化のない均一な熱風を吹き出すことが可能となる。加熱処理を終えた熱風は、循環ファン4の吸引効果により乾燥炉3から排出され、循環ダクト1を経由して再び熱風発生器2に環流されるようになっている。   The circulation fan 4 is provided in the circulation duct 1 and is operated at a static pressure of 0.9807 kPa to 2.942 kPa in the range of 10 to 30 m / sec. For example, when hot air is sent to the blowing duct 11 having a length of 10 m at a wind speed of 10 m / sec, the hot air reaches the tip in about 1 second, and thus it is possible to blow out uniform hot air with no temperature change. The hot air that has been subjected to the heat treatment is discharged from the drying furnace 3 by the suction effect of the circulation fan 4 and is circulated back to the hot air generator 2 via the circulation duct 1.

次に、目標温度制御手段7を説明する。目標温度制御手段7は、乾燥炉3に供給される熱風の目標温度を設定する目標温度設定部7aと、熱風発生器2で発生する熱風の温度を検知する温度センサー6と、この温度センサー6で検知した検知温度と目標温度設定部7aで設定した目標温度との高低を判別(比較演算)する目標温度制御部7bと、この演算処理結果に基づき燃料供給電磁弁8へ開閉制御信号を出力する駆動部7cとで構成される。   Next, the target temperature control means 7 will be described. The target temperature control means 7 includes a target temperature setting unit 7 a that sets a target temperature of hot air supplied to the drying furnace 3, a temperature sensor 6 that detects the temperature of hot air generated by the hot air generator 2, and the temperature sensor 6. A target temperature control unit 7b for determining (comparison calculation) between the detected temperature detected in step 1 and the target temperature set by the target temperature setting unit 7a, and an open / close control signal is output to the fuel supply electromagnetic valve 8 based on the calculation processing result. And a driving unit 7c.

該目標温度制御部7bは、温度センサー6で検知された検知温度が目標温度よりも高いと判断した場合には、熱風発生器2への燃料供給量を減少させることで、熱風の温度を下げるようにし、検知温度が目標温度よりも低いと判断した場合には、熱風発生器2への燃料供給量を増大させて熱風の温度を目標温度に到達するように上げ、燃料供給電磁弁8を開閉制御する。これにより、乾燥炉3へは常に一定の設定温度の熱風が熱風発生器2から供給できるようになっている。   When the target temperature control unit 7b determines that the detected temperature detected by the temperature sensor 6 is higher than the target temperature, the target temperature control unit 7b decreases the temperature of the hot air by reducing the amount of fuel supplied to the hot air generator 2. When it is determined that the detected temperature is lower than the target temperature, the amount of fuel supplied to the hot air generator 2 is increased to raise the temperature of the hot air so as to reach the target temperature, and the fuel supply electromagnetic valve 8 is turned on. Open / close control. As a result, hot air having a constant set temperature can always be supplied from the hot air generator 2 to the drying furnace 3.

上記構成を有する加熱炉システムの作用を説明すると、供給部から供給される燃料が熱風発生器2内で燃焼されると、目標温度設定部7aで温度設定された熱風が発生し、図1の矢印で示すように、チャンバー3bに圧送される。チャンバー3bに流入した熱風は、所定の開角度で開いたダンパー10を経由して吹出しダクト11内へ流入する。上調整板部12aおよび下調整板部12bにより所定の流通開口面積に設定された吹出しノズル11aから、目標(設定)温度の熱風が被加熱物9の左右両側から直接吹き付けられる。このとき、各吹出しノズル11aから吹き出される熱風はほぼ円錐状に重なり合い、面状になって、被加熱物9側面に均一に吹きつけられ、被加熱物9を加熱及び乾燥させる。乾燥炉3内に吹き出された熱風は、その後、循環ファン4の吸引作用を受けて循環ダクト1に排出され、循環ファン4を経由して熱風発生器2に流入され、熱風として再利用される。   The operation of the heating furnace system having the above configuration will be described. When the fuel supplied from the supply unit is combusted in the hot air generator 2, hot air whose temperature is set by the target temperature setting unit 7a is generated, and FIG. As indicated by the arrow, the pressure is fed to the chamber 3b. The hot air flowing into the chamber 3b flows into the blowout duct 11 via the damper 10 opened at a predetermined opening angle. Hot air at a target (set) temperature is directly blown from the left and right sides of the article 9 to be heated from the blowout nozzle 11a set to a predetermined flow opening area by the upper adjustment plate 12a and the lower adjustment plate 12b. At this time, the hot air blown out from each blowing nozzle 11a overlaps in a substantially conical shape, becomes a plane, and is uniformly blown to the side of the article 9 to be heated and dried. The hot air blown into the drying furnace 3 is then sucked by the circulation fan 4 and discharged to the circulation duct 1, flows into the hot air generator 2 via the circulation fan 4, and is reused as hot air. .

また、目標温度制御手段7における目標温度制御部7bが、設定された熱風の温度が設定温度よりも低いと判断した場合には、駆動部7cから燃料供給電磁弁8が供給燃料を増量するように作動し、熱風の温度が設定温度よりも高いと判断した場合には、供給燃料を減量するように作動する。熱風が設定温度にあると判断された場合には、燃料供給電磁弁8は現状を維持する。このようにして、目標温度制御手段7により、電磁弁8の開弁が制御されることで、熱風の温度が制御され、常に乾燥炉3へ一定の所望温度の熱風が供給される。   When the target temperature control unit 7b in the target temperature control means 7 determines that the set hot air temperature is lower than the set temperature, the fuel supply electromagnetic valve 8 from the drive unit 7c increases the supplied fuel. When it is determined that the temperature of the hot air is higher than the set temperature, the fuel supply is reduced. If it is determined that the hot air is at the set temperature, the fuel supply solenoid valve 8 maintains the current state. In this way, the target temperature control means 7 controls the opening of the electromagnetic valve 8, whereby the temperature of the hot air is controlled and the hot air having a constant desired temperature is always supplied to the drying furnace 3.

本実施形態によれば、ダンパー10による吹出しノズル11aの流入通路の開口断面積の制御、および、調整板12のスライドによる吹出しノズル11aの噴射通路の開口断面積の制御を通じて、被加熱物9へ均一で高速の熱風を連続的に噴射させることにより、被加熱物9を効率的に加熱することができる。特に、雰囲気温度をを制御するのではなく、目標(設定)温度に制御された熱風を、被加熱物に直接吹き付けることにより効率的に熱を伝達する構造であるので、被加熱物を高速で昇温させることができる。また、設定温度の熱風を被加熱物に吹き付けるので、加熱オーバーや加熱ダウンを低減することができる。   According to this embodiment, through the control of the opening cross-sectional area of the inflow passage of the blowing nozzle 11 a by the damper 10 and the control of the opening cross-sectional area of the injection passage of the blowing nozzle 11 a by sliding of the adjusting plate 12, the object 9 is heated. By continuously injecting uniform and high-speed hot air, the article to be heated 9 can be efficiently heated. In particular, it is a structure that efficiently transfers heat by directly blowing hot air controlled to the target (set) temperature to the object to be heated instead of controlling the ambient temperature. The temperature can be raised. In addition, since hot air having a set temperature is blown onto the object to be heated, overheating and heating down can be reduced.

また、フッ素系樹脂を塗布した被加熱物を例に挙げて実験したところ、図4に示す結果を得た。これによれば、乾燥炉3内の温度を280℃に設定し、炉内に被加熱物9を投入した場合に、乾燥炉3内の温度が280℃に到達するには約22分要するのに対し、被加熱物9は約7〜8分で250℃に到達することが判明した。このことから、90%以上の熱が被加熱物9に7〜8分間の間に吸収されていることとなる。したがって、乾燥炉3全体が設定温度に至らなくても、循環系統を流動する熱風が設定温度になりさえすれば、乾燥炉3を使用して乾燥作業を開始することが可能となり、それだけ生産性を大幅に向上できる。   Further, when an experiment was conducted by taking an object to be heated coated with a fluorine resin as an example, the result shown in FIG. 4 was obtained. According to this, when the temperature in the drying furnace 3 is set to 280 ° C. and the article 9 to be heated is put into the furnace, it takes about 22 minutes for the temperature in the drying furnace 3 to reach 280 ° C. On the other hand, it was found that the article to be heated 9 reached 250 ° C. in about 7 to 8 minutes. From this, 90% or more of heat is absorbed by the article 9 to be heated for 7 to 8 minutes. Therefore, even if the entire drying furnace 3 does not reach the set temperature, the drying operation can be started using the drying furnace 3 as long as the hot air flowing through the circulation system reaches the set temperature, and the productivity is increased accordingly. Can be greatly improved.

また、設定温度に制御された熱風が連続して高圧で吹出しノズル11aから被加熱物9に噴射されるので、短時間で被加熱物9を昇温させることが可能となり、従来の雰囲気型乾燥炉と同じ温度でも半分の時間で加熱及び乾燥が可能となり、省エネルギー型の加熱炉システムを実現できる。   In addition, since the hot air controlled to the set temperature is continuously sprayed from the blowing nozzle 11a to the heated object 9 at a high pressure, the heated object 9 can be heated in a short time, and the conventional atmosphere-type drying is performed. Heating and drying can be performed in half the time even at the same temperature as the furnace, and an energy-saving heating furnace system can be realized.

また、循環ファン4の運転だけでも吹出しノズル11aに摩擦熱が生じることとなり、それだけで乾燥炉3を50℃近くも昇温できる効果があり、この点でも省エネルギー化、ひいては地球温暖化防止対策に有利となる。   In addition, frictional heat is generated in the blowout nozzle 11a only by the operation of the circulation fan 4, and this alone has the effect of raising the temperature of the drying furnace 3 to nearly 50 ° C. In this respect as well, it can save energy and, as a result, prevent global warming. It will be advantageous.

また、目標温度制御手段7により燃料供給電磁弁8を制御することで、熱風の温度管理を行っているため、燃料費を大幅に低減できる効果もある。また、熱風の高圧噴射により、目標温度を低温に設定することで、低温乾燥が可能となり、乾燥工程の次工程における組み立てや梱包など作業が行いやすくなる。さらには、熱風の温度と吹出し量、吹出しノズルからの吹出し流速等を適宜制御することで、乾燥プログラムを自由に調整することができる利点もある。   Further, since the temperature control of the hot air is performed by controlling the fuel supply electromagnetic valve 8 by the target temperature control means 7, there is also an effect that the fuel cost can be greatly reduced. In addition, by setting the target temperature to a low temperature by high-pressure injection of hot air, low-temperature drying is possible, and operations such as assembly and packaging in the next process of the drying process are facilitated. Furthermore, there is also an advantage that the drying program can be adjusted freely by appropriately controlling the temperature and amount of hot air, the blowing flow rate from the blowing nozzle, and the like.

また、吹出しノズル11aからは、熱風を高速で連続的に被加熱物9に吹き付けるように噴射するため、温度不良が生じることがなく、背の高い被加熱物9でも上下にムラなく加熱でき、安定した製品を得ることが可能となり、長尺の被加熱物でも水平型乾燥炉で生産が可能となる。   Moreover, since the hot air is sprayed from the blow nozzle 11a so as to continuously blow the hot air onto the article 9 to be heated, no temperature failure occurs, and even the tall article 9 to be heated can be heated up and down evenly, A stable product can be obtained, and even a long object to be heated can be produced in a horizontal drying furnace.

また、本実施形態では、乾燥炉3内へ吹き出した熱風は、循環ファン4によりリターン側の循環ダクト1に導いて回収し、それを再度、熱風発生器2に戻して再燃焼する循環システムに構成しているので、燃料消費率を低減できるので有利である。   In the present embodiment, the hot air blown into the drying furnace 3 is collected by being guided to the return-side circulation duct 1 by the circulation fan 4 and returned to the hot air generator 2 to be recombusted. This configuration is advantageous because the fuel consumption rate can be reduced.

以上、本発明を実施形態により詳述してきたが、具体的な構成はこの実施形態に限られるものでなく、本発明の要旨を逸脱しない範囲の設計変更等も本発明の範囲に含まれるものである。   Although the present invention has been described in detail with reference to the embodiment, the specific configuration is not limited to this embodiment, and design changes and the like within the scope of the present invention are also included in the scope of the present invention. It is.

例えば、上記の実施形態では、ダンパー10を支軸10bを中心にして回動することで吹出しダクト11への熱風の流入量を調整したが、この代わりに、図5に示す変形例の構成とすることもできる。すなわち、ダンパーダクト10aにフランジ状のガイド10dを設け、平板状のダンパーである風量調整板14をガイド10dに挟まれるように設ける。風量調整板14をガイド10dに沿ってスライドすることで、ダンパーダクト10aの熱風が流通する開口部10eを可変制御し、その横断面積を変化するように制御する構成にしてもよい。なお、風量調整板14には折曲げフランジ14aが形成され、これを摘んでスライドすると便利である。   For example, in the above embodiment, the amount of hot air flowing into the blowout duct 11 is adjusted by rotating the damper 10 about the support shaft 10b. Instead, the configuration of the modification shown in FIG. You can also That is, the flange-shaped guide 10d is provided in the damper duct 10a, and the air volume adjusting plate 14 that is a flat plate-like damper is provided so as to be sandwiched between the guides 10d. By sliding the air volume adjusting plate 14 along the guide 10d, the opening 10e through which the hot air flows through the damper duct 10a may be variably controlled so that the cross-sectional area thereof is changed. The air volume adjusting plate 14 is formed with a bent flange 14a, and it is convenient to pick and slide it.

係る変形例の構成により、上記の実施形態と同様に、吹出しダクト11へ流入する熱風の量を大小に変化させることができる。   With the configuration of such a modified example, the amount of hot air flowing into the blowout duct 11 can be changed to a large or small size as in the above embodiment.

また、上記実施形態や変形例では、吹出しダクト11を被加熱物9の左右両側に対向配列させた場合について説明したが、上下方向から熱風を被加熱物9に吹き出す態様にしたり、上下左右の4方向から熱風を吹き出す態様にしたり、更には上下左右前後の6方向から熱風を吹き出す態様にしたりすることも可能である。   Moreover, although the said embodiment and the modification demonstrated the case where the blowing duct 11 was arranged facing both the right and left sides of the to-be-heated object 9, it was set as the aspect which blows off hot air to the to-be-heated object 9 from an up-down direction, It is also possible to use a mode in which hot air is blown out from four directions, or a mode in which hot air is blown out from six directions, top, bottom, left, and right.

また、上記実施形態では、目標温度制御手段7により燃料供給電磁弁8を開閉制御して供給燃料の多少を制御することで、熱風の温度管理を行ったが、これ以外に、あるいはこれと併用して循環ファン4の駆動回転数、熱風発生器2へ供給する空気量の調整などを制御することで設定温度を制御することも可能である。   In the above embodiment, the temperature control of the hot air is performed by controlling the opening and closing of the fuel supply electromagnetic valve 8 by the target temperature control means 7 to control the amount of the supplied fuel. The set temperature can be controlled by controlling the rotational speed of the circulation fan 4 and adjusting the amount of air supplied to the hot air generator 2.

また、熱風発生器2では、LPGや都市ガスを燃焼させて熱風を発生させたが、熱風発生器2内に電気ヒーターを配したり、蒸気、重油及び灯油等による熱交換器を配したりすることで、そこに空気を流動させて熱伝達により空気を昇温することで熱風を得る構成としてもよい。   In the hot air generator 2, hot air is generated by burning LPG or city gas. However, an electric heater is provided in the hot air generator 2, or a heat exchanger such as steam, heavy oil, or kerosene is provided. By doing so, it is good also as a structure which obtains a hot air by flowing air there and heating up air by heat transfer.

本発明は、金属、セラミックス、プラスチック、印刷等の製品の加熱、水切り等における加熱炉システムとして利用できる。   The present invention can be used as a heating furnace system in heating, draining and the like of products such as metal, ceramics, plastic, and printing.

本発明の実施形態に係る加熱炉システムを示す全体構成図である。It is a whole lineblock diagram showing the heating furnace system concerning the embodiment of the present invention. 同じく、乾燥炉の内部構成を示す外観図である。Similarly, it is an external view which shows the internal structure of a drying furnace. 同じく、吹出しダクトおよびダンパーの構成に係り、(a)は(c)のB−B線における矢視断面図、(b)は吹出しダクトを分解して示した外観分解図、(c)は吹出しダクトおよびダンパーの外観図、(d)は(c)のA−A線における矢視断面図である。Similarly, it is related with the structure of a blowout duct and a damper, (a) is an arrow sectional view in the BB line of (c), (b) is an appearance exploded view which exploded and showed a blowout duct, (c) is a blowout The external view of a duct and a damper, (d) is an arrow directional cross-sectional view in the AA line of (c). 同じく、フッ素系樹脂をコーティングした被加熱物の加熱処理における温度と加熱時間との関係を示すグラフである。Similarly, it is a graph which shows the relationship between the temperature in the heat processing of the to-be-heated material coated with the fluororesin, and heating time. 上記実施形態の変形例に係り、(a)は吹出しダクト11および風量調整板との関係を示す外観図、(b)は風量調整板をダンパーダクトから引き抜いた状態を示す外観図、(c)は(a)のC−C線における矢視図、(d)は(c)の矢視D−D線における断面図、(e)は風量調整板の外観図である。(A) is an external view showing the relationship between the blowout duct 11 and the air volume adjusting plate, (b) is an external view showing a state where the air volume adjusting plate is pulled out from the damper duct, and (c). (A) is a sectional view taken along the line CC of (a), (d) is a sectional view taken along the line DD of (c), and (e) is an external view of the air volume adjusting plate.

符号の説明Explanation of symbols

1 循環ダクト
2 熱風発生器
3 乾燥炉
3a 床部
3b チャンバー
3c コンベア
4 循環ファン
5 供給部
6 温度センサー
7 目標温度制御手段
7a 目標温度設定部
7b 目標温度制御部
7c 駆動部
8 燃料供給電磁弁
9 被加熱物
10 ダンパー
10a ダンパーダクト
10b 支軸
10c 角度固定ボルト
10d ガイド
10e 開口部
11 吹出しダクト
11a 吹出しノズル
11b ボルト孔
12 調整板
12a 上調整板部
12b 下調整板部
12c、12d 長孔
12e 調整孔
13 ボルト
14 風量調整板(ダンパー)
DESCRIPTION OF SYMBOLS 1 Circulation duct 2 Hot air generator 3 Drying furnace 3a Floor part 3b Chamber 3c Conveyor 4 Circulation fan 5 Supply part 6 Temperature sensor 7 Target temperature control means 7a Target temperature setting part 7b Target temperature control part 7c Drive part 8 Fuel supply solenoid valve 9 Object to be heated 10 damper 10a damper duct 10b support shaft 10c angle fixing bolt 10d guide 10e opening
11 Blowout duct 11a Blowout nozzle 11b Bolt hole
12 adjustment plate 12a upper adjustment plate portion 12b lower adjustment plate portion 12c, 12d long hole 12e adjustment hole 13 bolt 14 air volume adjustment plate (damper)

Claims (7)

熱風発生器で発生した熱風を、乾燥炉内の被加熱物に高速で連続的に高圧噴射させた後、循環ダクトを通して前記熱風発生器へ環流させて再利用する加熱炉システムであって、前記乾燥炉に供給される熱風を目標温度に制御する目標温度制御手段と、前記乾燥炉内の被加熱物を両側から挟むように設置される吹出しダクトと、前記循環ダクトに設けられ前記乾燥炉から排出される熱風を前記熱風発生器へ強制循環させる循環ファンとを有し、前記吹出しダクトの前記被加熱物に対向する面に、前記目標温度制御手段で目標温度に制御された熱風を略円錐状に噴射する吹出しノズルを複数個点在して形成したことを特徴とする加熱炉システム。   A heating furnace system in which hot air generated by a hot air generator is continuously injected at a high speed into a heated object in a drying furnace at a high speed and then recirculated to the hot air generator through a circulation duct for reuse. Target temperature control means for controlling the hot air supplied to the drying furnace to a target temperature, a blow-out duct installed so as to sandwich an object to be heated in the drying furnace from both sides, a circulation duct provided in the circulation duct from the drying furnace A circulation fan that forcibly circulates the discharged hot air to the hot air generator, and the hot air controlled to the target temperature by the target temperature control means is substantially conical on the surface of the outlet duct facing the object to be heated. A heating furnace system characterized in that a plurality of spray nozzles that are jetted in the form of dots are formed. 前記吹出しダクトは、前記乾燥炉の床からほぼ垂直に立設され、かつ、該吹出しダクトを前記被加熱物が配列される方向に沿って被加熱物の両側に間隔を存して複数本配列したことを特徴とする請求項1記載の加熱炉システム。   The blowout duct is erected substantially vertically from the floor of the drying furnace, and a plurality of the blowout ducts are arranged at intervals on both sides of the heated object along a direction in which the heated object is arranged. The heating furnace system according to claim 1, wherein 前記吹出しダクトの流入側に、熱風の流動量を調整する熱風調整用ダンパーを設けたことを特徴とする請求項1または2記載の加熱炉システム。   The heating furnace system according to claim 1 or 2, wherein a hot air adjusting damper for adjusting a flow amount of hot air is provided on an inflow side of the blowout duct. 前記吹出しダクト外面に、前記吹出しノズルに対応する位置に調整孔を穿った調整板をスライド可能に設けたことを特徴とする請求項1〜3のいずれか一項に記載の加熱炉システム。   The heating furnace system according to any one of claims 1 to 3, wherein an adjustment plate having an adjustment hole formed at a position corresponding to the blowing nozzle is slidably provided on the outer surface of the blowing duct. 前記調整板を、複数段に分割された調整板部によって構成し、各調整板部を前記吹出しダクトに対して個別にスライドさせることを特徴とする請求項1〜4のいずれか一項に記載の加熱炉システム。   The said adjustment plate is comprised by the adjustment plate part divided | segmented into the multistage, and each adjustment plate part is individually slid with respect to the said blowing duct, The any one of Claims 1-4 characterized by the above-mentioned. Heating furnace system. 前記吹出しノズルと、前記調整板に形成される調整孔を略同じ大きさを有する形状に形成したことを特徴とする請求項4または5記載の加熱炉システム。   The heating furnace system according to claim 4 or 5, wherein the blowout nozzle and the adjustment hole formed in the adjustment plate are formed in a shape having substantially the same size. 前記目標温度制御手段は、前記乾燥炉に供給される熱風の目標温度を設定する目標温度設定部と、前記熱風発生器で発生する熱風の温度を検知する温度センサーと、該温度センサーで検知した検知温度と前記目標温度設定部で設定した目標温度の高低を判別する目標温度制御部を備えるようにし、
該目標温度制御部により前記検知温度が目標温度よりも高いと判断した場合には、前記熱風発生器への燃料供給量を減少させ、前記検知温度が目標温度よりも低いと判断した場合には、前記熱風発生器への燃料供給量を増大させるように制御することを特徴とする請求項1〜7のいずれか一項に記載の加熱炉システム。
The target temperature control means is configured to detect a target temperature setting unit that sets a target temperature of hot air supplied to the drying furnace, a temperature sensor that detects a temperature of hot air generated by the hot air generator, and the temperature sensor. A target temperature control unit for determining the detected temperature and the level of the target temperature set by the target temperature setting unit;
When the target temperature control unit determines that the detected temperature is higher than the target temperature, the amount of fuel supplied to the hot air generator is decreased, and when the detected temperature is determined to be lower than the target temperature The heating furnace system according to any one of claims 1 to 7, wherein control is performed so as to increase a fuel supply amount to the hot air generator.
JP2007265985A 2007-10-12 2007-10-12 Furnace system Active JP4701224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007265985A JP4701224B2 (en) 2007-10-12 2007-10-12 Furnace system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007265985A JP4701224B2 (en) 2007-10-12 2007-10-12 Furnace system

Publications (2)

Publication Number Publication Date
JP2009092352A true JP2009092352A (en) 2009-04-30
JP4701224B2 JP4701224B2 (en) 2011-06-15

Family

ID=40664502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007265985A Active JP4701224B2 (en) 2007-10-12 2007-10-12 Furnace system

Country Status (1)

Country Link
JP (1) JP4701224B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072633A (en) * 2010-11-30 2011-05-25 黄天宙 Variable air volume heating method with feedback and device thereof
JP2012192596A (en) * 2011-03-16 2012-10-11 Seiko Epson Corp Recording apparatus
JP2019113215A (en) * 2017-12-21 2019-07-11 株式会社和泉工業 Heating furnace, and heating method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6741295B2 (en) * 2017-10-02 2020-08-19 株式会社桂精機製作所 Dryer
JP7161242B1 (en) * 2021-04-07 2022-10-26 株式会社ヒートエナジーテック drying equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930959A (en) * 1972-07-15 1974-03-19
JPS5336069A (en) * 1976-09-14 1978-04-04 Fujimi Toshiharu Wood drying apparatus
JPS5642082A (en) * 1979-07-02 1981-04-20 Escher Wyss Gmbh Material web dryer
JPS6262178A (en) * 1985-09-13 1987-03-18 トリニテイ工業株式会社 Drying furnace for painting
JPS6230719Y2 (en) * 1982-02-18 1987-08-06

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930959A (en) * 1972-07-15 1974-03-19
JPS5336069A (en) * 1976-09-14 1978-04-04 Fujimi Toshiharu Wood drying apparatus
JPS5642082A (en) * 1979-07-02 1981-04-20 Escher Wyss Gmbh Material web dryer
JPS6230719Y2 (en) * 1982-02-18 1987-08-06
JPS6262178A (en) * 1985-09-13 1987-03-18 トリニテイ工業株式会社 Drying furnace for painting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072633A (en) * 2010-11-30 2011-05-25 黄天宙 Variable air volume heating method with feedback and device thereof
JP2012192596A (en) * 2011-03-16 2012-10-11 Seiko Epson Corp Recording apparatus
JP2019113215A (en) * 2017-12-21 2019-07-11 株式会社和泉工業 Heating furnace, and heating method

Also Published As

Publication number Publication date
JP4701224B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP4701224B2 (en) Furnace system
JP5646847B2 (en) Convection combustion furnace
US8959793B2 (en) Pin oven with a continuous U-shaped duct
US7264467B1 (en) Convection oven with turbo flow air nozzle to increase air flow and method of using same
KR20130093502A (en) Grain-drying facility
JP5897350B2 (en) Hot air heater using heated steam
US20140202444A1 (en) Vortex shedding heat transfer method and apparatus
JP2010267533A (en) Enameled wire baking device
JP5129249B2 (en) Hybrid heat treatment machine and method thereof
JP2015141013A (en) grain dryer
US10859315B2 (en) System with a ceiling fan and return plenum for heating, drying or curing an object
JP2009285572A (en) Fuel-saving type coating booth with improved hot air circulation manner
KR101915972B1 (en) Energy saving heat treatment furnace
KR101435131B1 (en) Hot Air Generator using Superheated Steam
KR100792346B1 (en) Dry apparatus for ship coating direct fire
KR100875907B1 (en) Aging apparatus with heat air supply means for center of display panel
CN202048599U (en) Combustion appliance
JP5295867B2 (en) Steam cooker
JP4972489B2 (en) Ejector or air curtain structure with air blowing nozzles installed in the laver drying building
CN205718448U (en) A kind of efficient heating stove
KR101408645B1 (en) Gas feeding adjust module for gas burner
WO2016171164A1 (en) Gas burner
JP2020173061A (en) Hot air drying furnace
JP5189430B2 (en) Air curtain heating method and air curtain device
JPH0718192U (en) Heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100823

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

R150 Certificate of patent or registration of utility model

Ref document number: 4701224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250