JP2009090750A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2009090750A
JP2009090750A JP2007261587A JP2007261587A JP2009090750A JP 2009090750 A JP2009090750 A JP 2009090750A JP 2007261587 A JP2007261587 A JP 2007261587A JP 2007261587 A JP2007261587 A JP 2007261587A JP 2009090750 A JP2009090750 A JP 2009090750A
Authority
JP
Japan
Prior art keywords
rib
shaped land
land portion
resonator
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007261587A
Other languages
Japanese (ja)
Other versions
JP5193550B2 (en
Inventor
Hide Nagai
秀 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2007261587A priority Critical patent/JP5193550B2/en
Publication of JP2009090750A publication Critical patent/JP2009090750A/en
Application granted granted Critical
Publication of JP5193550B2 publication Critical patent/JP5193550B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic tire having improved quietness, controllability and stability, and uneven wear resistance while reducing columnar resonance during traveling by optimizing the shapes of a resonator and a rib-shaped land part. <P>SOLUTION: In the pneumatic tire, a tread surface of a tread part has at least two circumferential grooves extended to the tire circumferential direction and the rib-shaped land part defined and formed by the circumferential grooves. The rib-shaped land part has the resonator opened on a road surface grounding region to reduce noise generated by resonance inside columns formed by the circumferential grooves and the road surface. The resonator has a branch groove part branched and extended from the circumferential groove and an air chamber part connected to the branch groove part and having a cross section orthogonal to the extended direction larger than that of the branch groove part. The rib-shaped land part comprises a narrow width rib-shaped land part and a wide width rib-shaped land part having width wider than that of the narrow width rib-shaped land part, and the air chamber part of the resonator is arranged within the wide width rib-shaped land part. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、トレッド部踏面に、タイヤ周方向に延びる少なくとも2本の周方向溝、及び、周方向溝により区画形成してなるリブ状陸部を具え、リブ状陸部は、周方向溝と路面とで形成される管内の共鳴により発生する騒音を低減するために路面接地域に開口した共鳴器を有し、共鳴器は、周方向溝から分岐して延びる枝溝部及び、枝溝部につながり、延在方向に直交する断面の面積が枝溝部のそれよりも大きい気室部を具える空気入りタイヤに関するものであり、かかる空気入りタイヤから発生する気柱共鳴音を低減しつつも、静粛性、操縦安定性及び耐偏摩耗性の向上を図る。   The present invention comprises, on the tread portion tread, at least two circumferential grooves extending in the tire circumferential direction, and rib-like land portions formed by partitioning with the circumferential grooves. In order to reduce noise generated by resonance in the pipe formed by the road surface, the resonator has a resonator opened in a road contact area, and the resonator is connected to a branch groove portion extending from a circumferential groove and a branch groove portion. In addition, the present invention relates to a pneumatic tire having an air chamber portion whose cross-sectional area perpendicular to the extending direction is larger than that of the branch groove portion, and is quiet while reducing air column resonance generated from such a pneumatic tire. To improve performance, steering stability and uneven wear resistance.

近年、車両の静粛化に伴って、空気入りタイヤの負荷転動に起因した自動車騒音に対する寄与が大きくなり、その低減が求められている。中でも、高周波数、特に、1000Hz周辺のタイヤノイズが車外騒音の主たる原因となっており、環境問題への対応からも、その低減対策が求められている。   In recent years, with the quietness of vehicles, the contribution to automobile noise resulting from load rolling of pneumatic tires has increased, and reduction thereof has been demanded. Among them, tire noise at a high frequency, particularly around 1000 Hz, is a main cause of noise outside the vehicle, and measures to reduce it are also required in response to environmental problems.

この1000Hz周辺のタイヤノイズは、主に気柱共鳴音により発生する。気柱共鳴音とは、トレッド部踏面の周方向に連続して延びる周方向溝と、路面とによって囲曉される管内の空気の共鳴により発生する騒音であり、一般的な乗用車では800〜1200Hz程度に観測されることが多く、ピークの音圧レベルが高く、周波数帯域が広いことから、空気入りタイヤから発生する騒音の大部分を占めている。   The tire noise around 1000 Hz is mainly generated by air column resonance. The air column resonance sound is noise generated by resonance of air in a pipe surrounded by a circumferential groove continuously extending in the circumferential direction of the tread portion tread surface and a road surface, and is 800 to 1200 Hz in a general passenger car. It is often observed to a certain extent, and since the peak sound pressure level is high and the frequency band is wide, it accounts for most of the noise generated from pneumatic tires.

また、人間の聴覚は、1000Hz周辺の周波数帯域(A特性)で特に敏感であることから、走行時のフィーリング面での静粛性を向上させる上でも、このような気柱共鳴音の低減は有効である。   In addition, since human hearing is particularly sensitive in the frequency band (A characteristic) around 1000 Hz, the reduction of such air column resonance sound is also effective in improving the quietness of the feeling during running. It is valid.

そこで、かかる気柱共鳴音の低減を目的として、周方向溝の配設本数や容積を減じることが広く行われている他、特許文献1に開示されているように、一端だけが周方向溝に開口し、他端が陸部内で終端する長い横溝を設けて、その横溝内での反共振を用いて気柱共鳴音を低減させることが提案されている。しかし、周方向溝の溝容積を減少させた空気入りタイヤでは、周方向溝の溝容積が不足し、排水性能が低下する虞がある。また、特許文献1に記載の空気入りタイヤでは、長い横溝の配設が必須であることから、トレッドパターンのデザイン上の自由度が損なわれ、かつ、陸部の剛性が充分に確保されずに操縦安定性が低下する虞がある。   Therefore, in order to reduce the air column resonance noise, the number and the volume of the circumferential grooves are widely reduced, and as disclosed in Patent Document 1, only one circumferential groove is provided. It has been proposed to provide a long lateral groove that is open at the other end and terminates in the land portion at the other end, and to reduce air column resonance using anti-resonance in the lateral groove. However, in the pneumatic tire in which the groove volume of the circumferential groove is reduced, the groove volume of the circumferential groove is insufficient, and the drainage performance may be deteriorated. Further, in the pneumatic tire described in Patent Document 1, since it is essential to dispose long lateral grooves, the degree of freedom in designing the tread pattern is impaired, and the rigidity of the land portion is not sufficiently ensured. There is a possibility that the handling stability is lowered.

これら問題の解決策として、特許文献2又は3に記載されているように、ヘルムホルツタイプの共鳴器を配設することによって、反共振を用いて気柱共鳴音を低減する技術も提案されている。このことにより、周方向溝の溝容積を充分に確保して、排水性能を確保しつつも、特許文献1に記載の空気入りタイヤと比較して陸部の剛性を高くすることができる。   As a solution to these problems, as described in Patent Document 2 or 3, a technique for reducing air column resonance using anti-resonance by arranging a Helmholtz type resonator has been proposed. . Accordingly, the rigidity of the land portion can be increased as compared with the pneumatic tire described in Patent Document 1, while sufficiently securing the groove volume of the circumferential groove and ensuring the drainage performance.

国際公開第04/103737号パンフレットInternational Publication No. 04/103737 Pamphlet 特開平5−338411号公報Japanese Patent Laid-Open No. 5-338411 特開2000−118207号公報JP 2000-118207 A

しかし、共鳴器を配設したいずれの空気入りタイヤにおいても、共鳴器を配設した部分のリブ状陸部の剛性が他の部分の剛性よりも低下し、かかる剛性が低下した部分における接地圧が低下する。そのことから、タイヤ負荷転動時の接地圧の変動に起因した振動、及び剛性の低下に起因した駆動力、コーナリング力の変動が発生し、静粛性、操縦安定性能及び耐偏摩耗性が低下する虞がある。   However, in any pneumatic tire provided with a resonator, the rigidity of the rib-like land portion of the portion where the resonator is provided is lower than the rigidity of the other portion, and the ground pressure in the portion where the rigidity is reduced. Decreases. As a result, vibration due to fluctuations in contact pressure during rolling of tires and fluctuations in driving force and cornering force due to a decrease in rigidity occur, resulting in a decrease in quietness, steering stability and uneven wear resistance. There is a risk of doing.

したがって、この発明の目的は、共鳴器及びリブ状陸部の形状の適正化を図ることにより、走行時の気柱共鳴音を低減しつつも、操縦安定性及び耐偏摩耗性が向上した空気入りタイヤを提供することにある。   Accordingly, an object of the present invention is to optimize the shape of the resonator and the rib-like land portion, thereby reducing air column resonance noise during traveling, while improving steering stability and uneven wear resistance. The purpose is to provide tires.

前記目的を達成するため、この発明の空気入りタイヤは、トレッド部踏面に、タイヤ周方向に延びる少なくとも2本の周方向溝、及び、周方向溝により区画形成してなるリブ状陸部を具え、リブ状陸部は、周方向溝と路面とで形成される管内の共鳴により発生する騒音を低減するために路面接地域に開口した共鳴器を有し、共鳴器は、周方向溝から分岐して延びる枝溝部及び、枝溝部につながり、延在方向に直交する断面の面積が枝溝部のそれよりも大きい気室部を具えており、リブ状陸部は細幅リブ状陸部と、細幅リブ状陸部よりも幅の大きな太幅リブ状陸部を具え、太幅リブ状陸部内に共鳴器の気室部を配設してなることを特徴とする。このような空気入りタイヤでは、タイヤ負荷転動時に、共鳴器により、気柱共鳴音を低減しつつも、共鳴器が配設されている領域にてリブ状陸部の陸部の幅が大きくなっていることから、リブ状陸部の剛性の局所的な低下を抑制し、タイヤ負荷転動時の接地圧の変動を小さくすることができるので、リブ状陸部の接地圧の変動に起因した振動と、剛性の変動に起因した駆動力、コーナリング力の変動を抑制し、静粛性、操縦安定性及び耐偏摩耗性を向上させることが可能となる。   In order to achieve the above object, a pneumatic tire according to the present invention is provided with at least two circumferential grooves extending in the tire circumferential direction on a tread portion tread surface, and a rib-like land portion formed by a circumferential groove. The rib-like land portion has a resonator opened in the road contact area to reduce noise generated by resonance in the pipe formed by the circumferential groove and the road surface, and the resonator branches from the circumferential groove. The branch groove part extending to the branch groove part, and having an air space part whose cross-sectional area perpendicular to the extending direction is larger than that of the branch groove part, the rib-like land part is a narrow rib-like land part, A wide rib-shaped land portion having a width larger than that of the narrow-width rib-shaped land portion is provided, and an air chamber portion of the resonator is disposed in the wide-width rib-shaped land portion. In such a pneumatic tire, the width of the land portion of the rib-like land portion is large in the region where the resonator is disposed while reducing the air column resonance noise by the resonator during rolling of the tire load. As a result, it is possible to suppress the local decrease in the rigidity of the rib-shaped land part and to reduce the fluctuation of the ground pressure during tire load rolling. It is possible to improve the quietness, steering stability and uneven wear resistance by suppressing the fluctuations of the driving force and the cornering force due to the vibration and the rigidity fluctuation.

なお、共鳴器の種類は限定されないが、例えばヘルムホルツタイプの共鳴器とすることができる。この場合、その共鳴周波数fは、一般に図1に示すような形状として表され、枝溝部2の半径をr、長さをl、枝溝部の断面積をSとし、気室部3の容積をV、音速をcとしたとき、

Figure 2009090750
として表すことができる。なお、上記式中における枝溝部2端の補正は、通常は、実験によって求められるものであり、その値は、文献によって相違することになるも、ここでは、1.3rを用いるものとする。この場合、枝溝部2の断面が円形でないときは、枝溝部2の断面積から円形を仮定したrを算出して使用するものとする。従って、共鳴器1の共鳴周波数fは、枝溝部2の断面積S、気室部3の容積V等を選択することで、所要に応じて変化させることができる。 In addition, although the kind of resonator is not limited, For example, it can be set as a Helmholtz type resonator. In this case, the resonance frequency f 0 is generally expressed as a shape as shown in FIG. 1. The radius of the branch groove 2 is r, the length is l 0 , the cross-sectional area of the branch groove is S, and the air chamber 3 When the volume is V and the sound velocity is c,
Figure 2009090750
Can be expressed as Note that the correction of the end of the branch groove portion 2 in the above formula is usually obtained by experiments, and the value thereof varies depending on the literature, but 1.3r is used here. In this case, when the cross section of the branch groove portion 2 is not circular, r assuming the circular shape from the cross sectional area of the branch groove portion 2 is used. Therefore, the resonance frequency f 0 of the resonator 1, by selecting the branch groove 2 cross-sectional area S, volume V and the like of the air chamber portion 3, can be changed if desired.

また、図2に示すように、共鳴器1の気室部3及び枝溝部2をそれぞれ第1管路4、第2管路5とみなして、それらを相互に連結した連結管路からなる段付きタイプの共鳴器とすることもでき、この場合の共鳴周波数fは、以下のようにして求めることができる。 Further, as shown in FIG. 2, the air chamber portion 3 and the branch groove portion 2 of the resonator 1 are regarded as the first conduit 4 and the second conduit 5, respectively, and are connected to each other. It is also possible to use an attached type resonator, and the resonance frequency f 0 in this case can be obtained as follows.

段付きタイプの共鳴器につき、第1管路のタイヤ周方向断面積をS、第2管路のタイヤ周方向断面積をS、境界における第1管路4側の音響インピーダンスをZ12、境界における第2管路5側の音響インピーダンスをZ21とすると、連続の条件から次式が導かれる。
21=(S/S)・Z12
第2管路5の音圧分布P は、境界条件を、第1管路の周方向溝に開口している部分からの距離をxとすると、x=0でV=Vjwtとし、x=lでP/V=Z としたとき、次式により導かれる。
=Z・{{Z21cos(k(l−x))+jZsin(k(l−x))}/{Zcos(kl)+ jZ21 sin(kl)}}・V0jwt
このとき、Vは第2管路5の粒子速度分布を、V0は入力点の粒子速度を、jは虚数単位を、Zcはρc(ρ:空気の密度、c:音速)を夫々示している。
第1管路4の音圧分布Pは、境界条件を、x=l1でV1=0とし、x=lでP/V=Z21としたとき、次式により導かれる。
=Z・[{Z21cos(k(l−x))}/{cos(kl1)・{Zco(kl)+jZ21 sin(kl)}}]・Vjwt
For the stepped resonator, the tire circumferential cross-sectional area of the first pipeline is S 1 , the tire circumferential cross-sectional area of the second pipeline is S 2 , and the acoustic impedance on the first pipeline 4 side at the boundary is Z 12. When the acoustic impedance of the second conduit 5 side at the boundary and Z 21, the following expression is derived from a continuous condition.
Z 21 = (S 2 / S 1 ) · Z 12
The sound pressure distribution P 2 of the second conduit 5, a boundary condition, and the distance from an opening portion in the circumferential groove of the first conduit and x, V 2 = V 0 at x = 0 e jwt When x = l 2 and P 2 / V 2 = Z 2 , the following equation is derived.
P 2 = Z s · {{ Z 21 cos (k (l 2 -x)) + jZ c sin (k (l 2 -x))} / {Z c cos (kl 2) + jZ 21 sin (kl 2) }} ・ V 0 e jwt
At this time, V 2 represents the particle velocity distribution of the second pipe 5, V 0 represents the particle velocity at the input point, j represents the imaginary unit, and Zc represents ρc (ρ: density of air, c: sound velocity). ing.
The sound pressure distribution P 1 of the first pipeline 4 is derived by the following equation when the boundary conditions are x = l 1 and V 1 = 0, and x = l 2 and P 2 / V 2 = Z 21. .
P 1 = Z s · [{ Z 21 cos (k (l 2 -x))} / {cos (kl 1) · {Z c co (kl 2) + jZ 21 sin (kl 2)}}] · V 0 e jwt

よって、共鳴周波数fの条件式は、共鳴の条件をx=0でP2=0とした場合に、次式として導かれる。この共鳴の条件式に基づいてk、l、l、S、S、cを決定して共鳴周波数fを求めることができる。
tan(kl1)tan(kl2)−(S2/S1)=0(ただし、k=2πf/c)
Therefore, the conditional expression of the resonance frequency f 0 is derived as the following expression when the resonance condition is x = 0 and P 2 = 0. Based on this resonance conditional expression, k, l 1 , l 2 , S 2 , S 1 , and c can be determined to obtain the resonance frequency f 0 .
tan (kl 1 ) tan (kl 2 ) − (S 2 / S 1 ) = 0 (where k = 2πf 0 / c)

また、リブ状陸部の幅は、太幅リブ状陸部にて、細幅リブ状陸部と太幅リブ状陸部との連結位置から、気室部のタイヤ周方向中央位置に向かって所定の総幅まで漸増していることが好ましい。ここでいう「連結位置」とは、細幅リブ状陸部と太幅リブ状陸部との境界位置をいうものである。   Further, the width of the rib-shaped land portion is from the connecting position between the narrow rib-shaped land portion and the wide rib-shaped land portion toward the center position in the tire circumferential direction of the air chamber portion. It is preferable that the width gradually increases to a predetermined total width. Here, the “connection position” refers to the boundary position between the narrow rib-shaped land portion and the wide rib-shaped land portion.

更に、リブ状陸部の陸部部分の幅が一定であることが好ましい。ここでいう「リブ状陸部の陸部部分の幅」とは、具体的には、リブ状陸部の気室部が配設されていない部分では、リブ状陸部をタイヤ幅方向に沿って計った幅をいい、気室部が配設されている部分では、気室部を除いた陸部部分の幅をタイヤ幅方向に沿って計った幅をいうものである。   Furthermore, it is preferable that the width of the land portion of the rib-like land portion is constant. Specifically, the “width of the land portion of the rib-shaped land portion” specifically refers to the rib-shaped land portion along the tire width direction in the portion where the air chamber portion of the rib-shaped land portion is not disposed. In the portion where the air chamber portion is arranged, the width measured in the tire width direction is the width of the land portion excluding the air chamber portion.

この発明によれば、共鳴器及びリブ状陸部の形状の適正化を図ることにより、走行時の気柱共鳴音を低減しつつも、静粛性、操縦安定性及び耐偏摩耗性が向上した空気入りタイヤを提供することが可能となる。   According to the present invention, by optimizing the shape of the resonator and the rib-like land portion, quietness, steering stability and uneven wear resistance are improved while reducing air column resonance noise during traveling. It becomes possible to provide a pneumatic tire.

以下、図面を参照しつつこの発明の実施の形態を説明する。図3は、この発明に従う代表的な空気入りタイヤ(以下「タイヤ」という。)のトレッド部の一部の展開図であり、図4及び5はこの発明に従うその他の代表的なタイヤのトレッド部の一部の展開図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 3 is a development view of a part of a tread portion of a typical pneumatic tire (hereinafter referred to as “tire”) according to the present invention, and FIGS. 4 and 5 are tread portions of other typical tires according to the present invention. FIG.

この発明の空気入りタイヤは、図3に示すように、トレッド部踏面6に、タイヤ周方向に延びる2本の周方向溝7、及び、周方向溝7により区画形成してなるリブ状陸部8を具え、リブ状陸部8は、周方向溝7と路面とで形成される管内の共鳴により発生する騒音を低減するために路面接地域に開口した共鳴器1を有し、共鳴器1は、周方向溝7から分岐して延びる枝溝部2及び、枝溝部2につながり、延在方向に直交する断面の面積が枝溝部2のそれよりも大きい気室部3を具えている。かかる構成により、枝溝部2が連通する側の周方向溝7にて発生する気柱共鳴音は、共鳴器1を用いて反共振し、有効に低減される。また、リブ状陸部8は細幅リブ状陸部9と、細幅リブ状陸部9よりも幅の大きな太幅リブ状陸部10から構成され、かかる太幅リブ状陸部10内に共鳴器1の気室部3を配設している。従来のタイヤのように、一定の幅を有するリブ状陸部8内に共鳴器1を配設した場合には、リブ状陸部8の陸部部分の幅はリブ状陸部8の剛性と相関関係にあることから、共鳴器1を配設した部分における陸部部分の幅が減少することで、リブ状陸部8の剛性が他の部分における剛性よりも過剰に低下して、リブ状陸部8内における剛性差が大きくなる。その結果、タイヤ負荷転動時には、リブ状陸部8の接地圧が大きく変動することとなり、かかる接地圧の変動に起因した振動と、剛性の変動に起因した駆動力、コーナリング力の変動が発生し、静粛性、操縦安定性及び耐偏摩耗性が低下する。これに対し、この発明のタイヤは、共鳴器1が太幅リブ状陸部10内に配設されており、共鳴器1を囲んでリブ状陸部8の陸部の幅が大きくなっているので、共鳴器1が配設されている部分のリブ状陸部8の剛性が他の部分の剛性に比べ顕著に低下しない。そのことから、タイヤ周上にわたって剛性差が小さくなり、タイヤ負荷転動時の接地圧の変動を小さくすることができるので、リブ状陸部8の接地圧の変動に起因した振動と、剛性の変動に起因した駆動力、コーナリング力の変動を抑制し、静粛性、操縦安定性及び耐偏摩耗性を向上させることが可能となる。   As shown in FIG. 3, the pneumatic tire according to the present invention has two circumferential grooves 7 extending in the tire circumferential direction on the tread portion tread surface 6, and rib-shaped land portions formed by the circumferential grooves 7. The rib-shaped land portion 8 includes a resonator 1 opened in a road contact area in order to reduce noise generated by resonance in a pipe formed by the circumferential groove 7 and the road surface. Includes a branch groove portion 2 extending from the circumferential groove 7 and an air chamber portion 3 connected to the branch groove portion 2 and having a cross-sectional area perpendicular to the extending direction larger than that of the branch groove portion 2. With this configuration, air column resonance generated in the circumferential groove 7 on the side where the branch groove portion 2 communicates is anti-resonated using the resonator 1 and is effectively reduced. The rib-shaped land portion 8 includes a narrow rib-shaped land portion 9 and a wide rib-shaped land portion 10 having a width wider than that of the narrow-width rib-shaped land portion 9. An air chamber 3 of the resonator 1 is disposed. When the resonator 1 is disposed in the rib-like land portion 8 having a certain width as in the conventional tire, the width of the land portion of the rib-like land portion 8 is equal to the rigidity of the rib-like land portion 8. Since there is a correlation, the width of the land portion in the portion where the resonator 1 is disposed decreases, so that the rigidity of the rib-like land portion 8 is excessively lowered than the rigidity in the other portions, resulting in a rib-like shape. The difference in rigidity in the land portion 8 is increased. As a result, at the time of tire load rolling, the ground contact pressure of the rib-like land portion 8 greatly fluctuates, and vibrations due to such ground pressure fluctuations and fluctuations in driving force and cornering force due to stiffness fluctuations are generated. However, quietness, handling stability and uneven wear resistance are reduced. On the other hand, in the tire according to the present invention, the resonator 1 is disposed in the wide rib-shaped land portion 10, and the width of the land portion of the rib-shaped land portion 8 is increased to surround the resonator 1. Therefore, the rigidity of the rib-like land portion 8 where the resonator 1 is disposed does not significantly decrease compared to the rigidity of other portions. Therefore, the difference in rigidity is reduced over the tire circumference, and the fluctuation of the contact pressure at the time of tire load rolling can be reduced. Therefore, the vibration caused by the change in the contact pressure of the rib-like land portion 8 and the rigidity It is possible to suppress fluctuations in driving force and cornering force due to fluctuations, and to improve quietness, steering stability, and uneven wear resistance.

また、図4に示すように、リブ状陸部8の幅は、太幅リブ状陸部10にて、細幅リブ状陸部9と太幅リブ状陸部10との連結位置11から、気室部3のタイヤ周方向中央位置に向かって所定の総幅まで漸増していることが好ましい。なぜなら、かかる構成を採用することにより、連結位置11から、気室部3のタイヤ周方向中央位置にかけてリブ状陸部8の形状が、ウェット路面走行時に周方向溝7内を流れる水が円滑に流れる形状となっているため、図3に示すような、周方向溝7内を流れる水の流れに抗する形状となって耐ハイドロプレーニング性を低下させることなく、耐ハイドロプレーニング性を充分に確保することができるからである。なお、上記漸増しているリブ状陸部8部分は太幅リブ状陸部10である。   Further, as shown in FIG. 4, the width of the rib-shaped land portion 8 is determined from the connecting position 11 of the narrow rib-shaped land portion 9 and the thick rib-shaped land portion 10 at the wide rib-shaped land portion 10. It is preferable that the air chamber part 3 gradually increases to a predetermined total width toward the center in the tire circumferential direction. This is because, by adopting such a configuration, the shape of the rib-like land portion 8 from the connecting position 11 to the center position in the tire circumferential direction of the air chamber portion 3 allows the water flowing in the circumferential groove 7 to smoothly flow when traveling on a wet road surface. Since it has a flowing shape, it resists the flow of water flowing in the circumferential groove 7 as shown in FIG. 3 and sufficiently secures the hydroplaning resistance without deteriorating the hydroplaning resistance. Because it can be done. The gradually increasing rib-shaped land portion 8 is a wide-width rib-shaped land portion 10.

更に、リブ状陸部8の陸部部分の幅が一定であることが好ましく、図5に示すように、細幅リブ状陸部9における陸部部分の幅W1と、太幅リブ状陸部10における陸部部分の幅W2、W3を合算した幅とが同一となっていることをいう。なぜなら、かかるリブ状陸部8の陸部部分の幅を一定とすることにより、共鳴器1を配設したとしてもリブ状陸部8の剛性をタイヤ周上にわたってより均一とすることができ、タイヤ負荷転動時の接地圧の変動が更に小さくなるので、リブ状陸部8の接地圧の変動に起因した振動と、剛性の変動に起因した駆動力、コーナリング力の変動をより一層抑制し、静粛性、操縦安定性及び耐偏摩耗性の更なる向上を図ることができるからである。   Furthermore, it is preferable that the width of the land portion of the rib-shaped land portion 8 is constant. As shown in FIG. 5, the width W1 of the land portion in the narrow rib-shaped land portion 9 and the wide-ribbed land portion That is, the sum of the widths W2 and W3 of the land portion at 10 is the same. Because, by making the width of the land portion of the rib-like land portion 8 constant, the rigidity of the rib-like land portion 8 can be made more uniform over the tire circumference even if the resonator 1 is disposed. Since the fluctuation of the contact pressure at the time of tire load rolling is further reduced, the vibration caused by the fluctuation of the contact pressure of the rib-like land portion 8 and the fluctuation of the driving force and the cornering force caused by the fluctuation of the rigidity are further suppressed. This is because silence, steering stability, and uneven wear resistance can be further improved.

なお、上述したところはこの発明の実施形態の一部を示したに過ぎず、この発明の趣旨を逸脱しない限り、これらの構成を交互に組み合わせたり、種々の変更を加えたりすることができる。例えば、図示していないが、気室部の形状を楕円形状として、リブ状陸部の陸部部分の幅を一定とすることもできる。   The above description shows only a part of the embodiment of the present invention, and these configurations can be combined alternately or various changes can be made without departing from the gist of the present invention. For example, although not shown, the shape of the air chamber portion may be elliptical, and the width of the land portion of the rib-like land portion may be constant.

次に、図6に示すようなリブ状陸部に共鳴器を配設した従来技術のタイヤ(従来例タイヤ)並びに、細幅リブ状陸部及び太幅リブ状陸部によりリブ状陸部が構成され、太幅リブ状陸部内に共鳴器が配設されたこの発明のタイヤ(実施例タイヤ1〜6)を、タイヤサイズ225/55R17の乗用車用ラジアルタイヤとして、夫々試作し、性能評価を行ったので、以下に説明する。   Next, a conventional tire (conventional example tire) in which a resonator is disposed in a rib-shaped land portion as shown in FIG. 6, and a rib-shaped land portion is formed by a narrow rib-shaped land portion and a wide rib-shaped land portion. The tires of the present invention (example tires 1 to 6) configured and having resonators disposed in the wide rib-shaped land portion were prototyped as radial tires for passenger cars having a tire size of 225 / 55R17, and performance evaluation was performed. Since it went, it demonstrates below.

従来例タイヤは、4本の周方向溝、及び、かかる周方向溝により区画形成され、周上にわたって幅が一定である3本のリブ状陸部を具え、かかるリブ状陸部に共鳴器が配設されており、表1に示す諸元を有する。また、実施例タイヤ1〜5は、4本の周方向溝、並びに、かかる周方向溝により区画形成され、夫々細幅リブ状陸部及び太幅リブ状陸部により構成される3本のリブ状陸部を具え、かかる太幅リブ状陸部に共鳴器が配設されており、夫々表1に示す諸元を有する。なお、実施例タイヤ1〜5は、図3に示すような、太幅リブ状陸部の幅が連結位置にて急激に大きくなる形状を有し、実施例タイヤ6は、図4に示すような、リブ状陸部が連結位置から太幅リブ状陸部の気室部のタイヤ周方向中央位置にかけて漸増する形状を有する。表2に示す「太幅リブ状陸部幅」とは、気室部が配設されている部分におけるリブ状陸部の最大幅をいうものである。   The conventional tire includes four circumferential grooves and three rib-like land portions that are defined by the circumferential grooves and have a constant width over the circumference, and a resonator is provided on the rib-like land portions. It has the specifications shown in Table 1. In addition, Example tires 1 to 5 are divided into four circumferential grooves, and three ribs each formed by a narrow rib-shaped land portion and a wide rib-shaped land portion. Each of the thick rib-shaped land portions is provided with resonators and each has the specifications shown in Table 1. In addition, Example tire 1-5 has a shape where the width | variety of a wide rib-shaped land part becomes large suddenly in a connection position as shown in FIG. 3, and Example tire 6 is as shown in FIG. In addition, the rib-like land portion has a shape that gradually increases from the connecting position to the center position in the tire circumferential direction of the air chamber portion of the wide rib-like land portion. The “thick width rib-shaped land portion width” shown in Table 2 refers to the maximum width of the rib-shaped land portion in the portion where the air chamber portion is disposed.

Figure 2009090750
Figure 2009090750

これら各供試タイヤをサイズ7.5×17のリムに取付けてタイヤ車輪とし、空気圧:220kPa(相対圧)を充填し、各種試験に供した。   Each of these test tires was attached to a rim of size 7.5 × 17 to form a tire wheel, filled with air pressure: 220 kPa (relative pressure), and subjected to various tests.

気柱共鳴音の低減は、二名乗車相当の負荷荷重を適用し、時速80km/hにて、タイヤ車輪を室内ドラム試験機で走行させた際のタイヤ側方音をJASO C606規格にて定める条件で測定して、1/3オクターブ中心周波数800−1000−1200Hz帯域における、パーシャルオーバーオール値を演算して、気柱共鳴音を評価した。実施例中の共鳴器の共鳴周波数は、ヘルムホルツタイプの共鳴器として捉えて、音速cの条件を343.7m/sとして計算したものである。   Reducing air column resonance noise is a condition defined by the JASO C606 standard when applying a load equivalent to two passengers and running tire wheels with an indoor drum tester at a speed of 80 km / h. The partial overall value in the 1/3 octave center frequency 800-1000-1200 Hz band was calculated, and the air column resonance was evaluated. The resonance frequency of the resonator in the embodiment is calculated as a Helmholtz type resonator with a sound speed c condition of 343.7 m / s.

静粛性は、二名乗車相当の負荷荷重を適用し、タイヤ車輪をトヨタ自動車の車種:セルシオ(登録商標)に装着し、プロのドライバーが上記車両を、長い直線路を含む周回路及び緩やかなカーブの多いハンドリング評価路などからなるテストコース内で低速から時速100km/h程度にて走行させて、騒音の聞こえ易さ、気になり易さを10点満点でフィーリングにより評価した。その評価結果を表2に示す。   Silence is applied by applying a load equivalent to a two-seater ride, tire wheels are mounted on a Toyota model: Celsior (registered trademark), and a professional driver puts the vehicle on the circuit including a long straight road and a gentle curve. The vehicle was run from a low speed to about 100 km / h in a test course consisting of a lot of handling evaluation roads, etc., and the ease of hearing noise and ease of concern were evaluated by feeling on a full scale of 10 points. The evaluation results are shown in Table 2.

操縦安定性は、二名乗車相当の負荷荷重を適用し、タイヤ車輪をトヨタ自動車の車種:セルシオに装着し、プロのドライバーが上記車両を、長い直線路を含む周回路及び緩やかなカーブの多いハンドリング評価路などからなるテストコース内で低速から時速100km/h程度にて走行させて、ドライ路面における操縦安定性をフィーリングにより10点満点で評価した。なお、数値が大きいほど操縦安定性に優れていることを示し、その評価結果は表2に示す。   Steering stability applies load equivalent to two passengers, tire wheels are mounted on Toyota's car model: Celsior, and professional drivers handle the above vehicles with a long circuit and a rounded circuit including a long straight road. The vehicle was run from a low speed to about 100 km / h in a test course consisting of an evaluation road and the like, and the steering stability on the dry road surface was evaluated to a maximum of 10 points by feeling. In addition, it shows that it is excellent in steering stability, so that a numerical value is large, and the evaluation result is shown in Table 2.

耐偏摩耗性は、二名乗車相当の負荷荷重を適用し、タイヤ車輪をトヨタ自動車の車種:セルシオに装着し、プロのドライバーが上記車両を一般道、高速道路、山道を含むコースを10000km走行させて、ブロック陸部内における最も摩耗している部分と摩耗していない部分の摩耗差をその平均値で比較することにより評価した。なお、摩耗差が小さいことは耐偏摩耗性に優れていることを示し、その評価結果を表2に示す。   Uneven wear resistance applies a load equivalent to two passengers, tire wheels are mounted on Toyota's model: Celsior, and a professional driver runs the above vehicle on a course including ordinary roads, highways, and mountain roads for 10,000 km. The difference in wear between the most worn and unworn parts in the block land was evaluated by comparing the average values. In addition, it is shown that it is excellent in uneven wear resistance that an abrasion difference is small, and the evaluation result is shown in Table 2.

耐ハイドロプレーニング性は、二名乗車相当の負荷荷重を適用し、タイヤ車輪をトヨタ自動車の車種:セルシオに装着し、プロのドライバーが上記車両を、水深10mmの濡れたサーキット路にて走行させて、タイヤの路面に対するスリップ率が15%に達した速度を比較することにより評価した。このとき、従来例タイヤの耐ハイドロプレーニング性を100として換算し、その他のタイヤを相対評価した。なお、数値が大きいほど耐ハイドロプレーニング性に優れていることを示し、その評価結果は表2に示す。   Hydroplaning resistance applies load equivalent to two passengers, tire wheels are mounted on Toyota's model: Celsior, and a professional driver runs the vehicle on a wet circuit road with a water depth of 10 mm. Evaluation was made by comparing the speed at which the slip ratio on the road surface of the tire reached 15%. At this time, the hydroplaning resistance of the conventional tire was converted to 100, and the other tires were relatively evaluated. In addition, it shows that it is excellent in hydroplaning resistance, so that a numerical value is large, and the evaluation result is shown in Table 2.

Figure 2009090750
Figure 2009090750

表2の結果から明らかなように、実施例タイヤ1〜6は、従来例タイヤと比較して、静粛性、操縦安定性及び耐偏摩耗性のいずれも向上していた。このとき、実施例タイヤ3及び6において、静粛性、操縦安定性及び耐偏摩耗性のいずれもがバランスよく向上していた。加えて、実施例タイヤ1及び6は、耐ハイドロプレーニング性の低下が有効に抑制されており、実施例タイヤと同等の耐ハイドロプレーニング性を確保していた。それらのことから、耐ハイドロプレーニング性を確保しつつ、静粛性、操縦安定性及び耐偏摩耗性がバランスよく向上しているのは実施例タイヤ6であった。また、実施例タイヤ1〜6は、従来例タイヤと同程度に気柱共鳴音が低減していた。   As is apparent from the results in Table 2, all of the tires 1 to 6 were improved in quietness, steering stability, and uneven wear resistance as compared with the conventional tires. At this time, in Example tires 3 and 6, all of quietness, steering stability, and uneven wear resistance were improved in a well-balanced manner. In addition, in Example tires 1 and 6, the decrease in hydroplaning resistance was effectively suppressed, and the same hydroplaning resistance as in Example tires was ensured. From these, it was Example tire 6 that improved quietness, steering stability and uneven wear resistance in a well-balanced manner while ensuring hydroplaning resistance. Further, in the example tires 1 to 6, the air column resonance noise was reduced to the same extent as that of the conventional example tire.

以上のことから明らかなように、この発明により、共鳴器及びリブ状陸部の形状の適正化を図ることにより、走行時の気柱共鳴音を低減しつつも、静粛性、操縦安定性及び耐偏摩耗性が向上した空気入りタイヤを提供することが可能となった。   As is clear from the above, the present invention optimizes the shape of the resonator and the rib-like land portion to reduce air column resonance noise during traveling, while reducing silence, steering stability and It has become possible to provide a pneumatic tire with improved uneven wear resistance.

ヘルムホルツタイプの共鳴器を模式的に示す図である。It is a figure which shows typically a Helmholtz type resonator. 段付きタイプの共鳴器を模式的に示す図である。It is a figure which shows a stepped type resonator typically. この発明に従う代表的なタイヤのトレッド部の一部の展開図である。1 is a development view of a part of a tread portion of a typical tire according to the present invention. この発明に従うその他の代表的なタイヤのトレッド部の一部の展開図である。FIG. 5 is a development view of a part of a tread portion of another typical tire according to the present invention. この発明に従うその他の代表的なタイヤのトレッド部の一部の展開図である。FIG. 5 is a development view of a part of a tread portion of another typical tire according to the present invention. 従来例タイヤのトレッド部の一部の展開図である。FIG. 6 is a development view of a part of a tread portion of a conventional tire.

符号の説明Explanation of symbols

1 共鳴器
2 枝溝部
3 気室部
4 第1管路
5 第2管路
6 トレッド部踏面
7 周方向溝
8 リブ状陸部
9 細幅リブ状陸部
10 太幅リブ状陸部
11 連結位置
W1 細幅リブ状陸部の陸部部分の幅
W2、W3 太幅リブ状陸部の陸部部分の幅
DESCRIPTION OF SYMBOLS 1 Resonator 2 Branch groove part 3 Air chamber part 4 1st pipe line 5 2nd pipe line 6 Tread part tread 7 Circumferential groove 8 Rib-like land part 9 Narrow rib-like land part 10 Thick-width rib-like land part 11 Connection position W1 Width of land portion of narrow rib-like land portion W2, W3 Width of land portion of wide rib-like land portion

Claims (3)

トレッド部踏面に、タイヤ周方向に延びる少なくとも2本の周方向溝、及び、該周方向溝により区画形成してなるリブ状陸部を具え、該リブ状陸部は、該周方向溝と路面とで形成される管内の共鳴により発生する騒音を低減するために路面接地域に開口した共鳴器を有し、該共鳴器は、該周方向溝から分岐して延びる枝溝部及び、該枝溝部につながり、延在方向に直交する断面の面積が該枝溝部のそれよりも大きい気室部を具える空気入りタイヤにおいて、
前記リブ状陸部は、細幅リブ状陸部と、該細幅リブ状陸部よりも幅の大きな太幅リブ状陸部を具え、該太幅リブ状陸部内に前記共鳴器の気室部を配設してなることを特徴とするタイヤ。
The tread portion tread includes at least two circumferential grooves extending in the tire circumferential direction, and rib-shaped land portions formed by partitioning the circumferential grooves. The rib-shaped land portions include the circumferential grooves and the road surface. In order to reduce noise generated by resonance in the pipe, and the resonator has an opening in a road contact area, the resonator branching from the circumferential groove, and the branching groove In a pneumatic tire having an air chamber portion that has a cross-sectional area perpendicular to the extending direction and larger than that of the branch groove portion,
The rib-shaped land portion includes a narrow rib-shaped land portion and a wide rib-shaped land portion having a width larger than that of the narrow rib-shaped land portion, and the air chamber of the resonator is disposed in the wide rib-shaped land portion. A tire characterized by comprising a portion.
前記リブ状陸部の幅は、前記太幅リブ状陸部にて、前記細幅リブ状陸部と該太幅リブ状陸部との連結位置から、該気室部のタイヤ周方向中央位置に向かって所定の総幅まで漸増している、請求項1に記載の空気入りタイヤ。   The width of the rib-shaped land portion is the center position in the tire circumferential direction of the air chamber portion from the connection position of the narrow rib-shaped land portion and the wide rib-shaped land portion at the wide rib-shaped land portion. The pneumatic tire according to claim 1, which gradually increases to a predetermined total width. 前記リブ状陸部の陸部部分の幅が一定である、請求項1又は2に記載の空気入りタイヤ。   The pneumatic tire according to claim 1 or 2, wherein a width of a land portion of the rib-like land portion is constant.
JP2007261587A 2007-10-05 2007-10-05 Pneumatic tire Expired - Fee Related JP5193550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007261587A JP5193550B2 (en) 2007-10-05 2007-10-05 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007261587A JP5193550B2 (en) 2007-10-05 2007-10-05 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2009090750A true JP2009090750A (en) 2009-04-30
JP5193550B2 JP5193550B2 (en) 2013-05-08

Family

ID=40663178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007261587A Expired - Fee Related JP5193550B2 (en) 2007-10-05 2007-10-05 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP5193550B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116112A (en) * 2008-11-14 2010-05-27 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2012183962A (en) * 2011-03-07 2012-09-27 Bridgestone Corp Tire
KR101329007B1 (en) 2012-05-31 2013-11-12 삼성에스디에스 주식회사 Apparatus and method for generating secret key for encryption system based on id and recording medium storing program for executing method of the same in computer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03136909A (en) * 1989-10-23 1991-06-11 Bridgestone Corp Pneumatic tire with reduced noise characteristic
JPH05338411A (en) * 1992-06-10 1993-12-21 Hino Motors Ltd Low noise rib tire
JPH08290707A (en) * 1995-02-24 1996-11-05 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2004058946A (en) * 2002-07-31 2004-02-26 Bridgestone Corp Pneumatic tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03136909A (en) * 1989-10-23 1991-06-11 Bridgestone Corp Pneumatic tire with reduced noise characteristic
JPH05338411A (en) * 1992-06-10 1993-12-21 Hino Motors Ltd Low noise rib tire
JPH08290707A (en) * 1995-02-24 1996-11-05 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2004058946A (en) * 2002-07-31 2004-02-26 Bridgestone Corp Pneumatic tire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116112A (en) * 2008-11-14 2010-05-27 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2012183962A (en) * 2011-03-07 2012-09-27 Bridgestone Corp Tire
KR101329007B1 (en) 2012-05-31 2013-11-12 삼성에스디에스 주식회사 Apparatus and method for generating secret key for encryption system based on id and recording medium storing program for executing method of the same in computer

Also Published As

Publication number Publication date
JP5193550B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5231405B2 (en) Pneumatic tire
JP4410453B2 (en) Pneumatic tire
JP5350874B2 (en) Pneumatic tire
JP5291739B2 (en) Pneumatic tire
JP4262286B1 (en) Pneumatic tire
JP6125142B2 (en) Pneumatic tire
JP4976214B2 (en) Pneumatic tire
JP5030753B2 (en) Pneumatic tire
JP2010064514A (en) Pneumatic tire
JP2016222207A (en) Pneumatic tire
JP5193549B2 (en) Pneumatic tire
JP4787564B2 (en) Pneumatic tire
US20120067479A1 (en) Method of designing resonator and pneumatic tire having the resonator
US9056530B2 (en) Pneumatic tire
JP5134901B2 (en) Pneumatic tire
JP5103042B2 (en) Pneumatic tire
JP5060790B2 (en) Pneumatic tire
JP2006151309A (en) Pneumatic tire
JP5193550B2 (en) Pneumatic tire
JP4755163B2 (en) Pneumatic tire
JP5364369B2 (en) Pneumatic tire
JP4939969B2 (en) Pneumatic tire
JP4939972B2 (en) Pneumatic tire
JP5103069B2 (en) Pneumatic tire
JP6591206B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

R150 Certificate of patent or registration of utility model

Ref document number: 5193550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees