JP2009089340A - Production technology for negative impedance employing dc feedback circuit - Google Patents

Production technology for negative impedance employing dc feedback circuit Download PDF

Info

Publication number
JP2009089340A
JP2009089340A JP2007280960A JP2007280960A JP2009089340A JP 2009089340 A JP2009089340 A JP 2009089340A JP 2007280960 A JP2007280960 A JP 2007280960A JP 2007280960 A JP2007280960 A JP 2007280960A JP 2009089340 A JP2009089340 A JP 2009089340A
Authority
JP
Japan
Prior art keywords
circuit
speaker
resonance frequency
servo
optical pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007280960A
Other languages
Japanese (ja)
Inventor
Yasuo Sano
泰生 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007280960A priority Critical patent/JP2009089340A/en
Publication of JP2009089340A publication Critical patent/JP2009089340A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve, at very low cost, improvement in the heavy low-pitched sound reproduction of a speaker, and traceability of an optical pickup. <P>SOLUTION: An inverse integration type DC feedback circuit 3 is combined with a differential amplifier, of which the naked gain in a low frequency domain is designed to be very large, or with a constant-voltage amplifier, having similar phase rotation around the minimum resonance frequency. Since the properties as an induced load become actual, by increasing the mechanical impedance around the minimum resonance frequency of a speaker or of an optical pickup, the voltage phase of constant-voltage amplifier output is delayed. In the inverse integration type DC feedback circuit 3, the voltage phase in the cutoff frequency or higher is led by about at 90°, so that positive feedback becomes possible, by setting the cutoff frequency around the minimum resonance frequency of the speaker or of the optical pickup. By setting a DC feedback amount to a suitable value, amplifier operation around the minimum resonance frequency is made similar to that of a constant-current amplifier, and reduction compensation of reproduced sound pressure or improvement in traceability are realized. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は電子音響装置および電子制御装置に関するものであり、特定的にはスピーカーおよび光学ピックアップの駆動時に発生する最低共振周波数を抑圧する為に必用な負性インピーダンス発生器および方法に関するものである。The present invention relates to an electroacoustic device and an electronic control device, and more particularly, to a negative impedance generator and method necessary for suppressing a minimum resonance frequency generated when a speaker and an optical pickup are driven.

スピーカーの最低共振周波数では駆動コンプライアンスが低下する事で電気インピーダンスが上昇しQポイントが発生する(図6)。最低共振周波数におけるインピーダンス上昇は定格8Ωのスピーカーの場合60Ω前後になる。スピーカーは一般的に定電圧駆動される事から最低共振周波数周辺の再生音圧は定格インピーダンス領域で発生する再生音圧の8分の1程度に減少する。At the lowest resonance frequency of the speaker, the drive impedance is lowered, so that the electrical impedance rises and Q point is generated (FIG. 6). The impedance rise at the lowest resonance frequency is around 60Ω for a speaker with a rating of 8Ω. Since the speaker is generally driven at a constant voltage, the reproduced sound pressure around the lowest resonance frequency is reduced to about one-eighth of the reproduced sound pressure generated in the rated impedance region.

入力音響信号の周波数特性を操作する事で最低共振周波数周辺での再生音圧低下を改善する方法としてトーンコントロール回路やイコライザーユニットが古くから使用されている。特殊な電力増幅器を使用する必要が無く利便性に長けるが音響信号が通過する増幅段数が増加する為、音質の変化や特性の劣化が発生する。更に入力音響信号の低音領域を増強する事からハウリングが発生する再生レベルと実使用再生レベルの差であるハウリングマージンが低下する事や最低共振周波数周辺のレベルを上昇させた事によるダイナミックレンジの低下を招く為、高忠実度再生では敬遠される傾向がある。A tone control circuit and an equalizer unit have been used for a long time as a method for improving the reproduction sound pressure drop around the lowest resonance frequency by manipulating the frequency characteristic of the input acoustic signal. Although it is not necessary to use a special power amplifier and it is convenient, the number of amplification stages through which the acoustic signal passes increases, so that the sound quality changes and the characteristics deteriorate. In addition, the bass range of the input sound signal is increased, so that the howling margin, which is the difference between the playback level at which howling occurs and the actual playback level, is reduced, and the dynamic range is reduced by increasing the level around the lowest resonance frequency. Therefore, the high fidelity reproduction tends to be avoided.

入力音響信号の周波数特性を操作せずに最低共振周波数周辺での再生音圧低下を改善する技術としてスピーカーの非直線動作をマイクロフォンやボイスコイル中に設けたセンサーコイルで検出し、増幅器に負帰還する事で特性改善を行うMFB方式(Motional Feed Back)が実用化され広く周知されている。As a technique to improve the reproduction sound pressure drop around the lowest resonance frequency without manipulating the frequency characteristics of the input acoustic signal, non-linear operation of the speaker is detected by a sensor coil provided in the microphone or voice coil, and negative feedback to the amplifier Thus, the MFB method (Motion Feed Back) for improving characteristics is put into practical use and widely known.

入力音響信号の周波数特性を操作せずに最低共振周波数周辺での再生音圧低下を改善する技術としてスピーカーを定電流駆動する事で特性改善を行う方法が広く周知されている。As a technique for improving the reproduction sound pressure drop around the lowest resonance frequency without manipulating the frequency characteristic of the input acoustic signal, a method of improving the characteristic by driving the speaker at a constant current is widely known.

最低共振周波数周辺での再生音圧低下を補償せず増幅器から見た負荷インピーダンスのみを補正する方式も考案され周知されている(図5)。A method of correcting only the load impedance viewed from the amplifier without compensating for a decrease in reproduced sound pressure around the lowest resonance frequency has been devised and well known (FIG. 5).

光学ディスク式再生機器および記録再生機器に使用される光学ピックアップ中のアクチュエーターもスピーカーと類似構造の為、最低共振周波数によるQポイントが発生する。Since the actuator in the optical pickup used in the optical disk type reproducing apparatus and recording / reproducing apparatus has a similar structure to the speaker, a Q point is generated at the lowest resonance frequency.

Qポイントによるトレーサビリティー低下はサーボループ中で抑圧可能な範囲であるが高速アクセスや高密度記録再生の為にディスクを高速回転させた場合に発生する見かけ上のQポイント周波数低下や可動部の支持に金属製の板バネを使用したアクチュエーター(通称:マイクロn軸)を使用した場合にはトレーサビリティー低下が無視出来なくなる事から低域等価補正を行なう。Traceability degradation due to Q point is within the range that can be suppressed in the servo loop, but apparent Q point frequency degradation and support of moving parts that occur when the disk is rotated at high speed for high-speed access and high-density recording / reproduction. When an actuator using a metal leaf spring (common name: micro n-axis) is used, the low-frequency equivalent correction is performed because the traceability degradation cannot be ignored.

サーボループの直線性から考えた場合、エラー信号の駆動回路はリニアな特性が最良であって等価補正の為の周波数強調は過渡的な過大エラー信号入力時におけるサーボループの非直線応答量(駆動回路の出力が歪む事)を上昇させサーボループの収束時間を長くしてしまう、この低域等価補正の悪影響はディジタル信号処理による補正であっても同様である。又、マイクロn軸構造以外のアクチュエーターにおいてもQポイントの抑圧はトレーサビリティーの一層の向上に繋がるものである。Considering the linearity of the servo loop, the error signal drive circuit has the best linear characteristics, and the frequency enhancement for equivalent correction is the nonlinear response amount of the servo loop (drive) when a transient excessive error signal is input. The adverse effect of this low-frequency equivalent correction, which increases the output time of the circuit and lengthens the convergence time of the servo loop, is similar to the correction by digital signal processing. Further, even in actuators other than the micro n-axis structure, suppression of the Q point leads to further improvement of traceability.

この為、一部メーカーのアクチュエーター駆動ICにおいては負荷の定電流駆動を行なうものが発表されている。しかし駆動ICの出力ラインが高抵抗となる事から安定度に問題があり一般的な駆動回路はスピーカーの場合と同様に定電圧駆動が主流となっている。スピーカーにおける定電流増幅器の使用も同様で古くから検討されているが制動率の低下や安定度の問題等から一般化していない。For this reason, some of the actuator drive ICs of some manufacturers have been announced to perform constant current drive of the load. However, since the output line of the driving IC has a high resistance, there is a problem in stability, and a general driving circuit is mainly driven at a constant voltage as in the case of a speaker. The use of a constant current amplifier in a speaker is also the same, and has been studied for a long time, but it has not been generalized due to problems such as a decrease in braking rate and stability.

負性インピーダンスとは発振回路等に用いられる概念で負荷抵抗値と駆動電流値が比例関係となる様に制御する事で生成するインピーダンス成分である。The negative impedance is a concept used in an oscillation circuit or the like, and is an impedance component generated by controlling the load resistance value and the drive current value to have a proportional relationship.

音響用増幅器において高い制動率は性能を表す一つの目安とされている。しかし定電流増幅器を使用した場合の制動率は、その動作上きわめて低くなる。MFB増幅器の場合は、定電圧増幅器に専用回路を付加する形で実現する事が一般的であり、この場合、制動率は向上するが通常の定電圧増幅器に比較して回路の規模が大きくなり安定度の点でも不利になる。In an acoustic amplifier, a high braking rate is regarded as a measure of performance. However, the braking rate when the constant current amplifier is used is extremely low in its operation. In the case of an MFB amplifier, it is common to implement it by adding a dedicated circuit to the constant voltage amplifier. In this case, although the braking rate is improved, the circuit scale becomes larger than that of a normal constant voltage amplifier. It is also disadvantageous in terms of stability.

光学ピックアップのアクチュエーターではトレーサビリティーを向上する為にQポイントの抑圧は重要であるが定電流増幅器やMFBを使用した場合にはスピーカーのQポイント抑圧時と同様の問題が生じる。低域等価補正もスピーカーにおけるトーンコントロール回路やイコライザーユニットの使用と同様にサーボループでのダイナミックレンジの低下を招いてしまう。In an optical pickup actuator, suppression of the Q point is important in order to improve traceability. However, when a constant current amplifier or MFB is used, a problem similar to that at the time of suppression of the Q point of the speaker occurs. Similar to the use of a tone control circuit or an equalizer unit in a speaker, the low-frequency equivalent correction also causes a decrease in the dynamic range in the servo loop.

本発明は一般的に用いられる高負帰還型の定電圧電力増幅器と、出力オフセット電圧除去の為に利用される直流帰還回路の定数を再検討する事で定電圧増幅器の特徴である高い制動率を低下させずにスピーカーや光学ピックアップのQポイント周辺の電力変換効率低下を補償する事を基本とする。The present invention is a high-feedback constant voltage power amplifier that is generally used and a high braking rate that is a feature of the constant voltage amplifier by reexamining the constants of the DC feedback circuit used for removing the output offset voltage. The basic principle is to compensate for a decrease in power conversion efficiency around the Q point of the speaker or optical pickup without lowering.

発展形態としてオーバーオール負帰還を行なわない定電圧電力増幅器やディジタル増幅器、アクチュエーター駆動ICにおいても同様の補償結果を実現するものであり、重低音再生が可能な高品位音響増幅器や高トレーサビリティーを有する光学ディスク式再生機器および記録再生機器を安価に提供するものである。As an advanced form, the same compensation results can be achieved even in constant voltage power amplifiers, digital amplifiers, and actuator drive ICs that do not perform overall negative feedback. High-quality acoustic amplifiers capable of reproducing deep bass and high-traceability optics Disc-type playback equipment and recording / playback equipment are provided at low cost.

従来の技術によるスピーカーの最低共振周波数周辺における再生音圧低下を補償する手段としては定電流増幅器の使用、MFBの使用、トーンコントロール回路やイコライザーユニットの使用が一般的である。As means for compensating for a decrease in reproduced sound pressure around the lowest resonance frequency of a speaker according to a conventional technique, use of a constant current amplifier, use of MFB, use of a tone control circuit and an equalizer unit are generally used.

定電流増幅器の使用で得られる再生音圧は定電圧増幅器の逆特性となる為、最低共振周波数における再生音圧の低下が補償出来ても総合的な再生周波数特性はスピーカー設計時に期待した特性とならず、この為に周波数特性補償用の専用イコライザーを兼用する事が一般的である。又、定電圧増幅器に比較し制動率が極端に低下する事から聴感上も違和感が多いと言われている。The reproduction sound pressure obtained by using the constant current amplifier is the reverse characteristic of the constant voltage amplifier. Therefore, even if the decrease in the reproduction sound pressure at the lowest resonance frequency can be compensated, the total reproduction frequency characteristic is the characteristic expected when designing the speaker. For this purpose, it is common to use a dedicated equalizer for frequency characteristic compensation. In addition, it is said that there is much discomfort in terms of hearing because the braking rate is extremely lower than that of a constant voltage amplifier.

MFBの利用はサブウーハーを中心に普及しているが構成が複雑になる事や、やはり聴感上の違和感があり専用のイコライザーを兼用する事が一般的である。以上の問題は光学ピックアップのアクチュエーターを駆動する場合も全く同様である。Although the use of MFB is prevalent mainly in subwoofers, it is common that the structure becomes complicated and that there is also a sense of incongruity in hearing and that a dedicated equalizer is also used. The above problem is exactly the same when the actuator of the optical pickup is driven.

本発明ではオーバーオール負帰還を使用した差動増幅器が本質的に内包している位相回転の問題を積極的に利用する事で定電圧増幅器の特徴である広帯域、高制動率を維持しながらスピーカーや光学ピックアップの最低共振周波数周辺における再生音圧低下、駆動力低下を効果的に補償している。又、オーバーオール負帰還を行なわない定電圧電力増幅器やディジタル増幅器では移相器(21)の利用により最低共振周波数周辺での位相遅れを90度前後に設定する事で同様の効果を実現している。The present invention actively utilizes the phase rotation problem inherent in the differential amplifier using the overall negative feedback, thereby maintaining the wideband and high braking rate characteristic of the constant voltage amplifier, The reproduction sound pressure drop and the driving force drop in the vicinity of the lowest resonance frequency of the optical pickup are effectively compensated. Further, in a constant voltage power amplifier or digital amplifier that does not perform overall negative feedback, the same effect is realized by setting the phase delay around the lowest resonance frequency to around 90 degrees by using the phase shifter (21). .

あらゆる応用における基本構成は図1であり最良の形態となる。回路2、回路3が十分な裸利得を持ち十分に安定な設計であれば、あらゆるスピーカー駆動回路に利用可能である。従来回路の定数変更のみで新たな回路動作を追加している為、安価で小型に実現可能であるが高品位な重低音再生を極めて安定に実現可能な事から映画館や劇場での業務用機器への利用を期待するものである。The basic configuration for all applications is shown in FIG. 1 and is the best mode. If the circuit 2 and the circuit 3 have a sufficient bare gain and a sufficiently stable design, they can be used for any speaker driving circuit. New circuit operation is added only by changing the constants of the conventional circuit, so it can be realized at low cost and in small size, but high-quality heavy bass reproduction can be realized extremely stably. It is expected to be used for equipment.

アクチュエーター駆動ICは設計時に駆動ICのゲインが決定される事が多く、この事から使用するアクチュエーター駆動ICによって位相回転量が一定とならない。従って光学ピックアップの駆動時には実測によって図13か図14の使用を判断する。光学ピックアップへの応用ではディフェクトやリードインでのトレーサビリティー向上が大きく、結果としてシステムの高効率化が可能である為、あらゆる光学ディスク式再生機器および記録再生機器への応用を期待するものである。The actuator drive IC often determines the gain of the drive IC at the time of design. Therefore, the amount of phase rotation is not fixed by the actuator drive IC used. Therefore, the use of FIG. 13 or FIG. 14 is determined by actual measurement when the optical pickup is driven. In application to optical pickup, the traceability improvement at defect and lead-in is great, and as a result, the system can be made highly efficient, so it is expected to be applied to all optical disc type reproduction equipment and recording / reproduction equipment. .

図1の例では回路2での位相反転を補償する位相反転器(1)、駆動電力を発生させる反転型定電圧電力増幅器(2)、電力増幅器で発生する出力オフセット電圧を除去する反転積分型直流帰還回路(3)で構成される。反転型定電圧電力増幅器(2)は裸利得が十分大きな差動増幅器として設計し、かつ図4の容量性負荷補償回路(11)や誘導性負荷補償回路(12)を用いずに容量性負荷や誘導性負荷を安定に駆動可能な位相余裕度を有した回路構成とし、オーバーオール負帰還の使用で利得を設定する。In the example of FIG. 1, a phase inverter (1) that compensates for phase inversion in the circuit 2, an inversion type constant voltage power amplifier (2) that generates drive power, and an inversion integration type that eliminates an output offset voltage generated in the power amplifier. It consists of a DC feedback circuit (3). The inverting constant voltage power amplifier (2) is designed as a differential amplifier having a sufficiently large bare gain, and does not use the capacitive load compensation circuit (11) or the inductive load compensation circuit (12) shown in FIG. And a circuit configuration having a phase margin capable of stably driving an inductive load, and a gain is set by using an overall negative feedback.

安定に設計され、オーバーオール負帰還を使用した差動増幅器では出力電流と出力電圧の位相差を吸収し出力電圧を入力電圧と同位相となる様に制御する。現実の差動増幅器では回路構成に伴う位相余裕度や利得余裕度の問題から誘導性負荷や容量性負荷を駆動する場合は、その値に応じて増幅器の位相余裕範囲内で位相差が発生する事になる。A differential amplifier that is designed stably and that uses overall negative feedback absorbs the phase difference between the output current and the output voltage and controls the output voltage to be in phase with the input voltage. In actual differential amplifiers, when inductive or capacitive loads are driven due to problems of phase margin and gain margin associated with the circuit configuration, a phase difference occurs within the amplifier's phase margin range depending on the value. It will be a thing.

反転型定電圧電力増幅器(2)として確認実験に使用した回路を図11に示す。この回路を用いて負荷5と5Aを駆動した場合、最低共振周波数周辺の駆動電流の振幅と位相は図7の様になり純抵抗負荷である負荷5Aに比較しスピーカーの簡略等価回路である負荷5では電流と電圧の積である再生電力が低下する事が確認出来る。FIG. 11 shows a circuit used for the confirmation experiment as the inverting constant voltage power amplifier (2). When the loads 5 and 5A are driven using this circuit, the amplitude and phase of the drive current around the lowest resonance frequency are as shown in FIG. 7, and the load is a simplified equivalent circuit of the speaker as compared with the load 5A which is a pure resistance load. 5 confirms that the regenerative power, which is the product of current and voltage, decreases.

出力オフセット電圧を除去する反転積分型直流帰還回路(3)の遮断周波数は一般的に下限可聴音とされる20Hzよりも十分に低い周波数(通常1Hz以下)に設定する。図2の回路構成において反転積分型直流帰還回路(3)の遮断周波数をスピーカーの最低共振周波数周辺に設定した場合のD点とC点間の電圧位相は図8の様になる。従って同条件時の図1では帰還経路が閉じている為、A点とB点間の電圧位相は図9の様に同位相状態と等価となり正帰還が成立する。The cutoff frequency of the inverting integration type DC feedback circuit (3) for removing the output offset voltage is set to a frequency (usually 1 Hz or less) sufficiently lower than 20 Hz, which is generally regarded as the lower limit audible sound. The voltage phase between point D and point C when the cutoff frequency of the inverting integral type DC feedback circuit (3) is set around the lowest resonance frequency of the speaker in the circuit configuration of FIG. 2 is as shown in FIG. Therefore, since the feedback path is closed in FIG. 1 under the same conditions, the voltage phase between the point A and the point B is equivalent to the same phase state as shown in FIG. 9, and positive feedback is established.

通常R1、R2は直流帰還の収束を安定化する分圧器を構成する。回路3の裸利得が十分に大きな場合は回路2の利得の逆数以下を分圧値とする事が一般的である。図1ではR1、R2で正帰還量の調整を兼用している。Usually, R1 and R2 constitute a voltage divider that stabilizes the convergence of the DC feedback. When the bare gain of the circuit 3 is sufficiently large, the divided value is generally equal to or less than the inverse of the gain of the circuit 2. In FIG. 1, R1 and R2 are also used to adjust the positive feedback amount.

正帰還が成立する周波数は回路3の遮断周波数以上であり、その時の正帰還成分は図8の様に10dB程度減衰する。従って正帰還量は1未満となり図1の回路構成は発振せずに定電流増幅器(図10)と類似の動作をする事が理解出来る。The frequency at which the positive feedback is established is equal to or higher than the cutoff frequency of the circuit 3, and the positive feedback component at that time is attenuated by about 10 dB as shown in FIG. Accordingly, the positive feedback amount is less than 1, and it can be understood that the circuit configuration of FIG. 1 operates similarly to the constant current amplifier (FIG. 10) without oscillation.

光学ピックアップのアクチュエーターを駆動する場合は、図13、図14の回路を用いる事でQポイントの低下が可能になる。アクチュエーター駆動ICは設計時に駆動ICのゲインが決定される事が多く、製品により位相回転量が異なるのでサーボループを切断した状態(サーボがロックした状態では位相回転が吸収される為)でQポイントを駆動し、出力電圧が90度以上遅れる場合は図13、出力電圧が90度未満の遅れとなる場合は図14を使用する。When driving the actuator of the optical pickup, the Q point can be lowered by using the circuits of FIGS. Actuator drive IC often determines the gain of the drive IC at the time of design, and the amount of phase rotation varies depending on the product, so the Q loop is in a state where the servo loop is disconnected (the phase rotation is absorbed when the servo is locked) When the output voltage is delayed by 90 degrees or more, FIG. 13 is used, and when the output voltage is delayed by less than 90 degrees, FIG. 14 is used.

光学ピックアップは過渡的に直流からのサーボ帯域が必用となる事あり直流帰還回路によりリードインやフォーカスジャンプが不能となる場合があるので図13、図14では回路23によって直流帰還を停止可能な構成としている。回路24は駆動ICで多くの場合は単電源動作であるが正負電源動作表記とする事で図面全体を簡易なものとしている。回路25は回路3の出力とエラー信号の干渉を低減する加算抵抗、回路26は光学ピックアップの簡易表現である。スピーカー駆動時の実施例は図1、図12であり光学ピックアップ駆動時の実施例は図13、図14である。The optical pickup may require a servo band from DC transiently, and lead-in and focus jump may be disabled by the DC feedback circuit. Therefore, in FIG. 13 and FIG. 14, the circuit 23 can stop DC feedback. It is said. The circuit 24 is a driving IC, and in many cases is a single power supply operation, but the positive / negative power supply operation notation is used to simplify the entire drawing. The circuit 25 is an addition resistor that reduces interference between the output of the circuit 3 and an error signal, and the circuit 26 is a simple expression of an optical pickup. FIGS. 1 and 12 show examples when the speaker is driven, and FIGS. 13 and 14 show examples when the optical pickup is driven.

又、請求項2、請求項4の様に制動率を可変する事による音質制御はダンピングファクター・コントロールの名で市販製品に採用され愛好家の間では周知の効果であり、請求項7、請求項8の様なサーボ回路における動作電流が音響回路や映像回路に影響を与える事実も愛好家の間では周知されている。サーボ回路による音質への影響としては艶やかさや粘り感の変化が、映像への変化としては色のりの良さや画面の歪みが知られている。Further, the sound quality control by varying the braking rate as in claims 2 and 4 is adopted in a commercial product under the name of damping factor control, and is a well-known effect among enthusiasts. The fact that the operating current in the servo circuit as in Item 8 affects the audio circuit and the video circuit is also well known among enthusiasts. Changes in glossiness and stickiness are known as the influence on the sound quality by the servo circuit, and good color and distortion of the screen are known as changes in the image.

本発明はスピーカーの最低共振周波数で発生するQポイント周辺の電力変換効率低下を補償する為の技術として開発し、その発展形態として光学ピックアップへの応用を確認したものである。The present invention has been developed as a technique for compensating for a decrease in power conversion efficiency around the Q point generated at the lowest resonance frequency of a speaker, and its application to an optical pickup has been confirmed as its development form.

しかし光学ピックアップへの応用確認において直流帰還を遮断制御する事でQポイント周辺の電力変換効率低下を補償しながらも直流帰還回路遮断周波数以下の帯域幅を有する信号を安定に負荷へ供給可能な事を確認した。However, it is possible to stably supply a signal having a bandwidth equal to or lower than the cutoff frequency of the DC feedback circuit to the load while compensating for a decrease in power conversion efficiency around the Q point by controlling cutoff of the DC feedback in application confirmation to the optical pickup. It was confirmed.

従ってあらゆる誘導性負荷の高効率駆動、とりわけロボット制御や電磁ソレノイド制御への有効利用が可能と思われる。Therefore, it seems possible to use it effectively for high-efficiency driving of all inductive loads, especially for robot control and electromagnetic solenoid control.

本発明の実施例である。It is an Example of this invention. 図1の構成中、負荷である回路5を変更したものである。In the configuration of FIG. 1, the circuit 5 as a load is changed. 図1のブロック図表記である。It is a block diagram notation of FIG. 一般的な増幅器の構成例である。It is a structural example of a general amplifier. 最低共振周波数周辺でのインピーダンス上昇を相殺する補償回路例である。It is an example of a compensation circuit that cancels out an increase in impedance around the lowest resonance frequency. 最低共振周波数によるスピーカーのインピーダンス上昇例である。This is an example of speaker impedance increase due to the lowest resonance frequency. 最低共振周波数周辺でのスピーカー駆動電流と純抵抗負荷時の駆動電流比較例である。This is a comparative example of the speaker drive current around the lowest resonance frequency and the drive current at the time of pure resistance load. 反転積分型直流帰還回路(3)の遮断周波数以上で発生する位相差である。This is a phase difference that occurs at a frequency equal to or higher than the cutoff frequency of the inverting integral type DC feedback circuit (3). 反転積分型直流帰還回路(3)の遅れ位相相殺例である。It is an example of delay phase cancellation of an inverting integral type DC feedback circuit (3). 負荷電流帰還型の定電流電力増幅器構成例である。2 is a configuration example of a constant current power amplifier of a load current feedback type. 特性確認に使用した反転型定電圧電力増幅器(2)と反転積分型直流帰還回路の詳細図である。It is a detailed view of an inverting constant voltage power amplifier (2) and an inverting integral type DC feedback circuit used for characteristic confirmation. ディジタル増幅器やオーバーオール負帰還を行わない増幅器等、図9の位相関係が成立しない場合の応用例である。This is an application example when the phase relationship of FIG. 9 is not established, such as a digital amplifier or an amplifier that does not perform overall negative feedback. 光学ピックアップのQポイント駆動時に出力電圧に90度以上の遅れが発生する場合の応用例である。This is an application example when a delay of 90 degrees or more occurs in the output voltage when the optical pickup is driven at Q point. 光学ピックアップのQポイント駆動時に出力電圧に90度未満の遅れが発生する場合の応用例である。This is an application example when a delay of less than 90 degrees occurs in the output voltage when the optical pickup is driven at the Q point.

符号の説明Explanation of symbols

1 位相反転器
2 反転型定電圧電力増幅器(パワーアンプ)
3 反転積分型直流帰還回路
4 スピーカー端子
5 スピーカー簡略等価回路
5A 純抵抗負荷
6 位相反転器のブロック図表記
7 反転型定電圧電力増幅器(パワーアンプ)のブロック図表記
8 スピーカー端子のブロック図表記
9 スピーカー簡略等価回路のブロック図表記
10 反転積分型直流帰還回路のブロック図表記
11 容量性負荷補償回路
12 誘導性負荷補償回路
13 最低共振周波数インピーダンス補正回路
14 回路5の最低共振周波数を図2に入力時、回路5Aに流れる電流波形
15 回路5の最低共振周波数を図1に入力時、回路5に流れる電流波形
16 図2、C点の波形
17 図2、D点の波形
18 回路5の最低共振周波数を図1に入力時のA点波形
19 回路5の最低共振周波数を図1に入力時のB点波形
20 電流検出抵抗
21 移相器
22 ディジタル増幅器等オーバーオール負帰還を行わない定電圧増幅器
23 直流帰還ON/OFFによるサーボループの有効帯域切り替え回路
24 アクチュエーター駆動IC(パワードライバーIC)
25 エラー信号の干渉を低減する加算抵抗
26 光学ピックアップ
A 回路5の最低共振周波数を図1に入力時の回路3出力
B 回路5の最低共振周波数を図1に入力時の回路2出力
C 回路5の最低共振周波数を図2に入力時の回路2出力
D 回路5の最低共振周波数を図2に入力時の回路3出力
R1 直流帰還回路の接地抵抗
R2 直流帰還回路の帰還抵抗
R3 スピーカーの純抵抗成分
R4 スピーカーの定格インピーダンス値
1 Phase inverter 2 Inverted constant voltage power amplifier (power amplifier)
3 Inverting Integral Type DC Feedback Circuit 4 Speaker Terminal 5 Speaker Simplified Equivalent Circuit 5A Pure Resistive Load 6 Phase Inverter Block Diagram Notation 7 Inverting Constant Voltage Power Amplifier (Power Amplifier) Block Diagram Notation 8 Speaker Terminal Block Diagram Notation 9 Block diagram notation of simplified speaker equivalent circuit 10 Block diagram notation of inverting integration type DC feedback circuit 11 Capacitive load compensation circuit 12 Inductive load compensation circuit 13 Minimum resonance frequency impedance correction circuit 14 Minimum resonance frequency of circuit 5 is input to FIG. Current waveform 15 flowing through the circuit 5A when the lowest resonance frequency of the circuit 5 is input to FIG. 1, current waveform 16 flowing through the circuit 5 FIG. 2, waveform C at the point 17 FIG. 2, waveform D at the point 18 lowest resonance of the circuit 5 The frequency A point waveform 19 at the time of input in FIG. 1 The lowest resonance frequency of the circuit 5 at the point B waveform 20 at the time of input in FIG. Vessel 22 digital amplifier or the like effective band switching circuit 24 actuator drive IC of the servo loop by the constant voltage amplifier 23 DC feedback ON / OFF is not performed overall negative feedback (power driver IC)
25 Adder resistor 26 to reduce error signal interference 26 Optical pickup A The minimum resonance frequency of the circuit 5 is the output of the circuit 3 at the time of input B. The minimum resonance frequency of the circuit 5 is the output of the circuit 2 at the input of FIG. 2 is the circuit 2 output D at the time of input in FIG. 2 The circuit 3 output R1 at the time of input in FIG. 2 is the circuit 3 output R1 The ground resistance R2 of the DC feedback circuit The feedback resistance R3 of the DC feedback circuit The pure resistance of the speaker Component R4 Rated impedance value of the speaker

Claims (8)

図1の回路構成を用いた結果として、定電圧電力増幅器の特徴である高制動率を維持しながらも、極めて安定にスピーカーの最低共振周波数付近における再生音圧の低下を補正する事を特徴とする音響機器付加回路および装置。As a result of using the circuit configuration of FIG. 1, it is characterized by correcting the decrease in the reproduced sound pressure near the lowest resonance frequency of the speaker while maintaining the high braking rate that is characteristic of the constant voltage power amplifier. Audio equipment additional circuit and device to perform. 請求項1の回路構成を用いた結果として実現される定電圧電力増幅器において、スピーカー駆動時の低音領域における制動率を可変する事で再生される音質を変更する事を特徴とする音響機器付加回路および装置。A constant voltage power amplifier realized as a result of using the circuit configuration according to claim 1, wherein the sound quality to be reproduced is changed by changing a braking rate in a low sound region when the speaker is driven. And equipment. 図12の回路構成を用いた結果として、オーバーオール負帰還を行なわない定電圧電力増幅器やディジタル増幅器の特徴的な音質を維持しながらも、極めて安定にスピーカーの最低共振周波数付近における再生音圧の低下を補正する事を特徴とする音響機器付加回路および装置。As a result of using the circuit configuration of FIG. 12, the reproduced sound pressure drop near the lowest resonance frequency of the speaker is extremely stable while maintaining the characteristic sound quality of constant voltage power amplifiers and digital amplifiers that do not perform overall negative feedback. An audio equipment additional circuit and device characterized by correcting the above. 請求項3の回路構成を用いた結果として実現される定電圧電力増幅器において、スピーカー駆動時の低音領域における制動率を可変する事で再生される音質を変更する事を特徴とする音響機器付加回路および装置。A constant voltage power amplifier realized as a result of using the circuit configuration according to claim 3, wherein the sound quality to be reproduced is changed by changing a braking rate in a low sound region when the speaker is driven. And equipment. 図13の回路構成を用いた結果として、光学ピックアップの最低共振周波数付近におけるトレーサビリティーを向上させる事、およびサーボ回路の低域等価補正量を低下させる事で過渡的な過大エラー信号入力時におけるサーボループの非直線応答量を低下させサーボループの収束を早める事を特徴とする光学ピックアップ付加回路および装置。As a result of using the circuit configuration of FIG. 13, the servo at the time of transient excessive error signal input is improved by improving the traceability in the vicinity of the lowest resonance frequency of the optical pickup and by reducing the low frequency equivalent correction amount of the servo circuit. An optical pickup additional circuit and device characterized in that the nonlinear response amount of the loop is reduced and the convergence of the servo loop is accelerated. 図14の回路構成を用いた結果として、光学ピックアップの最低共振周波数付近におけるトレーサビリティーを向上させる事、およびサーボ回路の低域等価補正量を低下させる事で過渡的な過大エラー信号入力時におけるサーボループの非直線応答量を低下させサーボループの収束を早める事を特徴とする光学ピックアップ付加回路および装置。As a result of using the circuit configuration of FIG. 14, the servo at the time of transient excessive error signal input is improved by improving the traceability near the lowest resonance frequency of the optical pickup and by reducing the low-frequency equivalent correction amount of the servo circuit. An optical pickup additional circuit and device characterized in that the nonlinear response amount of the loop is reduced and the convergence of the servo loop is accelerated. 図13の回路構成を用いたサーボ回路を使用してフォーカスコイル、トラッキングコイル、ティルトコイル等のアクチュエーター駆動時の低域における制動率を可変しサーボ回路へ流れる電流モードおよび電源回路へ流れる電流モードを変更する事で記録、再生される音質、画質に微妙な変化を与える事を特徴とする光学ディスク式再生機器および記録再生機器。The servo circuit using the circuit configuration of FIG. 13 is used to vary the braking rate in the low range when driving an actuator such as a focus coil, tracking coil, tilt coil, etc., and the current mode flowing to the servo circuit and the current mode flowing to the power circuit Optical disk playback equipment and recording / playback equipment characterized by giving subtle changes to the sound quality and image quality of recording and playback when changed. 図14の回路構成を用いたサーボ回路を使用してフォーカスコイル、トラッキングコイル、ティルトコイル等のアクチュエーター駆動時の低域における制動率を可変しサーボ回路へ流れる電流モードおよび電源回路へ流れる電流モードを変更する事で記録、再生される音質、画質に微妙な変化を与える事を特徴とする光学ディスク式再生機器および記録再生機器。The servo mode using the circuit configuration of FIG. 14 is used to vary the braking rate in the low range when driving an actuator such as a focus coil, tracking coil, tilt coil, etc., and the current mode that flows to the servo circuit and the current mode that flows to the power circuit Optical disk playback equipment and recording / playback equipment characterized by giving subtle changes to the sound quality and image quality of recording and playback when changed.
JP2007280960A 2007-10-01 2007-10-01 Production technology for negative impedance employing dc feedback circuit Pending JP2009089340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007280960A JP2009089340A (en) 2007-10-01 2007-10-01 Production technology for negative impedance employing dc feedback circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007280960A JP2009089340A (en) 2007-10-01 2007-10-01 Production technology for negative impedance employing dc feedback circuit

Publications (1)

Publication Number Publication Date
JP2009089340A true JP2009089340A (en) 2009-04-23

Family

ID=40662072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007280960A Pending JP2009089340A (en) 2007-10-01 2007-10-01 Production technology for negative impedance employing dc feedback circuit

Country Status (1)

Country Link
JP (1) JP2009089340A (en)

Similar Documents

Publication Publication Date Title
US10547942B2 (en) Control of electrodynamic speaker driver using a low-order non-linear model
JP5394905B2 (en) Automatic level control circuit, audio digital signal processor and variable gain amplifier gain control method using the same
US20130077795A1 (en) Over-Excursion Protection for Loudspeakers
US20130077796A1 (en) Thermal Protection for Loudspeakers
US7053705B2 (en) Mixed-mode (current-voltage) audio amplifier
US8189817B2 (en) System for amplifiers with low distortion and low output impedance
JP4805749B2 (en) Speaker device
WO2018116861A1 (en) Sound processing device, method, and program
JP6038135B2 (en) Signal processing device
JP2005333601A (en) Negative feedback amplifier driving loudspeaker unit
JP4356625B2 (en) Digital amplifier
US20100318205A1 (en) Signal processing apparatus and signal processing method
WO2011001591A1 (en) Class d amplification device
CN107005207B (en) Amplifier with adjustable ramp-up/ramp-down gain to minimize or eliminate pop noise
US9667213B2 (en) Audio signal processing device for adjusting volume
JP2009089340A (en) Production technology for negative impedance employing dc feedback circuit
JP6817567B2 (en) Digital amplifier
US8054979B2 (en) Audio system for improving a signal to noise ratio
JP2008061212A (en) Technology for forming negative impedance using dc feedback circuit
JP2012134687A (en) Acoustic system
JP3147662B2 (en) Sound reproduction device
JP6213701B1 (en) Acoustic signal processing device
KR101959662B1 (en) System and method for fuzzy logic feedback control of speaker excursion
JP2012109692A (en) Switchable gain amplifier and audio apparatus using the same
WO2008099679A1 (en) Electro-acoustic converter distortion reduction method