JP2009088026A - Apparatus and method for surface inspection of semiconductor wafer - Google Patents

Apparatus and method for surface inspection of semiconductor wafer Download PDF

Info

Publication number
JP2009088026A
JP2009088026A JP2007252539A JP2007252539A JP2009088026A JP 2009088026 A JP2009088026 A JP 2009088026A JP 2007252539 A JP2007252539 A JP 2007252539A JP 2007252539 A JP2007252539 A JP 2007252539A JP 2009088026 A JP2009088026 A JP 2009088026A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
foreign matter
defect
size
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007252539A
Other languages
Japanese (ja)
Inventor
Toyoji Iwakiri
豊志 岩切
Noritomo Mitsugi
伯知 三次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Sumco Techxiv Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Techxiv Corp filed Critical Sumco Techxiv Corp
Priority to JP2007252539A priority Critical patent/JP2009088026A/en
Publication of JP2009088026A publication Critical patent/JP2009088026A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for surface inspection of a semiconductor wafer capable of improving the efficiency of an inspection process of the semiconductor wafer. <P>SOLUTION: The apparatus for surface inspection of a semiconductor wafer includes a light-irradiating means 2, a light receiving means, a photoelectric conversion means 6, a signal amplifying means 26, a measuring means 22 and a counting means 23. The apparatus includes a reliable section width storage means 25, in which a reliable section width set, according to a size of foreign matter or a defect on a surface of the semiconductor wafer calculated in advance by specimen measurement, when an amplification factor is fixed by the signal amplifying means 26 and a determination means 24 for fixing the amplification factor by the signal amplifying means 26; calculating the size of the foreign matter or the defect on the surface of the semiconductor wafer measured by the measuring means 22 based on the reliable section width, according to the size of the foreign matter or the defect; and determining whether the surface of the semiconductor wafer is proper from a counted value, according to the size of the foreign matter or the defect on the surface of the semiconductor wafer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体ウェハの表面検査装置、及び半導体ウェハの表面検査方法に関する。   The present invention relates to a semiconductor wafer surface inspection apparatus and a semiconductor wafer surface inspection method.

従来、半導体ウェハ表面の微細な欠陥や異物の有無を検査する方法として、半導体ウェハ表面にレーザ光を照射し、欠陥等にレーザ光が照射された際の微弱な光散乱を、光電子増倍管を用いて増幅して電気信号として検出し、検出された欠陥の大きさがどの程度のものであるかを把握し、その数を計数して、ウェハの良否判定を行う方法が知られている(例えば、特許文献1参照)。
一方、半導体デバイス製造業者からの半導体ウェハの要求品質としては、例えば、半導体ウェハの外周から3mmより内側で、0.12μm〜0.30μmのサイズの欠陥がいくつ以下であること等が挙げられる。
Conventionally, as a method for inspecting the surface of a semiconductor wafer for minute defects and foreign matter, a laser beam is irradiated on the surface of the semiconductor wafer, and the weak light scattering when the laser beam is irradiated on the defect or the like is a photomultiplier tube. There is known a method for performing a wafer pass / fail judgment by detecting the magnitude of the detected defect by counting the number of detected defects as an electric signal by amplification using (For example, refer to Patent Document 1).
On the other hand, the required quality of the semiconductor wafer from the semiconductor device manufacturer includes, for example, the number of defects having a size of 0.12 μm to 0.30 μm within 3 mm from the outer periphery of the semiconductor wafer.

特開2001−264264号公報JP 2001-264264 A

しかしながら、このような光電子増倍管により増幅する方法では、光電子増倍管をある一定の増幅倍率(ゲイン)に固定し、小さな欠陥から大きな欠陥までを検出することは困難である。
これは、ある増幅倍率で検出できる欠陥の大きさが、光電子増倍管の増幅倍率によって異なっており、一定の増幅倍率に固定して検出することは、半導体ウェハの表面検査装置を製造する側では保証していないからである。
また、光電子増倍管による検出においては、半導体ウェハのエッジ近傍で生じるハレーション、半導体ウェハの表面の高Hazeや、表面検査装置の電気信号処理におけるシステムノイズ等のバックグラウンドノイズ等により、高精度に半導体ウェハ表面の欠陥を検出することが困難である。
このため、従来、この種の表面検査においては、各ゲインで保証されたサイズの欠陥の数を計数し、これが要求品質を満たすかどうかによってウェハの良否判定を行っていた。この場合、上記理由により検出が保証された欠陥の大きさの範囲は限られているため、被検査対象となる各ウェハについてゲインを変更して複数回の欠陥の計数を行わなければならず、検査工程の煩雑化を招くという問題がある。
However, in the method of amplifying with such a photomultiplier tube, it is difficult to detect a small defect to a large defect by fixing the photomultiplier tube to a certain amplification magnification (gain).
This is because the size of the defect that can be detected at a certain amplification magnification differs depending on the amplification magnification of the photomultiplier tube. Is not guaranteed.
In addition, the detection by the photomultiplier tube is highly accurate due to halation occurring near the edge of the semiconductor wafer, high haze on the surface of the semiconductor wafer, and background noise such as system noise in the electrical signal processing of the surface inspection apparatus. It is difficult to detect defects on the surface of the semiconductor wafer.
For this reason, conventionally, in this type of surface inspection, the number of defects having a size guaranteed by each gain is counted, and the quality of the wafer is determined based on whether or not this satisfies the required quality. In this case, since the range of the defect size guaranteed to be detected for the above reason is limited, the gain must be changed for each wafer to be inspected, and the defect must be counted multiple times. There is a problem that the inspection process becomes complicated.

本発明の目的は、半導体ウェハの検査工程を効率化することのできる半導体ウェハの表面検査装置、及び半導体ウェハの表面検査方法を提供することにある。   An object of the present invention is to provide a semiconductor wafer surface inspection apparatus and a semiconductor wafer surface inspection method capable of improving the efficiency of a semiconductor wafer inspection process.

本発明に係る半導体ウェハの表面検査装置は、
被検査対象物となる半導体ウェハの表面を光学的手法によって測定し、前記半導体ウェハ表面の異物又は欠陥を検出する半導体ウェハの表面検査装置であって、
前記半導体ウェハ表面に光を照射する光照射手段と、
前記半導体ウェハ表面からの反射光又は散乱光を受光する受光手段と、
前記受光手段で受光された光を、光電効果により電気信号に変換する光電変換手段と、
前記光電変換手段で変換された電気信号を増幅する信号増幅手段と、
前記信号増幅手段で増幅された電気信号に基づいて、前記半導体ウェハ表面の異物又は欠陥の大きさを計測する計測手段と、
前記計測手段で計測された異物又は欠陥の大きさに応じてその数を計数する計数手段と、
前記信号増幅手段による各増幅倍率について、予め標本測定により算出された前記半導体ウェハ表面の異物又は欠陥の大きさに応じて設定された信頼区間幅が格納された信頼区間幅格納手段と、
前記信号増幅手段による増幅倍率を固定して、前記異物又は欠陥の大きさに応じた信頼区間幅に基づいて、前記計測手段により計測された前記半導体ウェハ表面の異物又は欠陥の大きさを算出し、該半導体ウェハ表面の異物又は欠陥の大きさに応じた計数値から、前記半導体ウェハ表面の良否判定を行う良否判定手段とを備えていることを特徴とする。
A surface inspection apparatus for a semiconductor wafer according to the present invention comprises:
A semiconductor wafer surface inspection apparatus for measuring a surface of a semiconductor wafer to be inspected by an optical technique and detecting foreign matter or defects on the surface of the semiconductor wafer,
A light irradiation means for irradiating the semiconductor wafer surface with light;
A light receiving means for receiving reflected light or scattered light from the surface of the semiconductor wafer;
Photoelectric conversion means for converting light received by the light receiving means into an electrical signal by a photoelectric effect;
Signal amplifying means for amplifying the electric signal converted by the photoelectric conversion means;
Based on the electrical signal amplified by the signal amplification means, measuring means for measuring the size of the foreign matter or defect on the surface of the semiconductor wafer,
A counting means for counting the number of particles according to the size of the foreign matter or defect measured by the measuring means;
For each amplification factor by the signal amplification means, a confidence interval width storage means in which a confidence interval width set according to the size of the foreign matter or defect on the surface of the semiconductor wafer calculated in advance by sample measurement is stored;
The amplification factor by the signal amplification unit is fixed, and the size of the foreign matter or defect on the surface of the semiconductor wafer measured by the measurement unit is calculated based on the confidence interval width corresponding to the size of the foreign matter or defect. The semiconductor wafer surface is provided with quality determination means for determining quality of the semiconductor wafer surface from a count value corresponding to the size of the foreign matter or defect on the surface of the semiconductor wafer.

ここで、信頼区間幅格納手段に格納される信頼区間幅は、1枚の半導体ウェハを標本とし、信号増幅手段による増幅倍率を固定して、この半導体ウェハ表面に光照射手段により光を照射して、受光手段、信号増幅手段、及び計測手段により計測された異物又は欠陥の大きさの計測値を複数得て、一般的な統計的手法により算出することができ、例えば、標本の平均値、及び分散を用いて母平均の信頼区間を推定することにより、算出することができる。
この発明によれば、半導体ウェハの表面検査装置が信頼区間幅格納手段を備え、良否判定手段は、この信頼区間幅格納手段に格納された、半導体ウェハ表面の異物又は欠陥の大きさに応じた信頼区間幅に基づいて、半導体ウェハ表面の異物又は欠陥の大きさを算出する。そして、大きさに応じた異物又は欠陥の計数値から、半導体ウェハ表面の良否判定を行っているので、信号増幅手段による増幅倍率を固定した状態で、異物又は欠陥の大きさを計測しても、計測値から信頼区間幅を引いた下限値を基準とし、計数手段による異物又は欠陥の計数を行うことができる。
従って、異物又は欠陥の大きさに応じて信号増幅手段による増幅倍率を変更することなく、高精度に半導体ウェハ表面の異物又は欠陥の計数を行うことができ、半導体ウェハの良否判定の精度が向上するとともに、検査工程の大幅な短縮を図ることができる。
Here, the confidence interval width stored in the confidence interval width storage means uses a single semiconductor wafer as a sample, fixes the amplification magnification by the signal amplification means, and irradiates the semiconductor wafer surface with light by the light irradiation means. Obtaining a plurality of measured values of the size of the foreign matter or defect measured by the light receiving means, the signal amplifying means, and the measuring means, and can be calculated by a general statistical method, for example, the average value of the sample, And a population mean confidence interval using the variance and can be calculated.
According to the present invention, the semiconductor wafer surface inspection apparatus includes the confidence interval width storage means, and the pass / fail judgment means corresponds to the size of the foreign matter or defect on the surface of the semiconductor wafer stored in the confidence interval width storage means. Based on the confidence interval width, the size of the foreign matter or defect on the surface of the semiconductor wafer is calculated. Since the quality of the semiconductor wafer surface is judged from the count value of the foreign matter or defect according to the size, even if the size of the foreign matter or defect is measured in a state where the amplification factor by the signal amplification means is fixed. Based on the lower limit value obtained by subtracting the confidence interval width from the measured value, the foreign matter or defect can be counted by the counting means.
Therefore, it is possible to count the foreign matter or defect on the surface of the semiconductor wafer with high accuracy without changing the amplification factor by the signal amplifying means according to the size of the foreign matter or defect, and the accuracy of the quality determination of the semiconductor wafer is improved. In addition, the inspection process can be greatly shortened.

本発明に係る半導体ウェハの表面検査方法は、
被検査対象物となる半導体ウェハの表面を光学的手法によって測定し、前記半導体ウェハ表面の異物又は欠陥を検出する半導体ウェハの表面検査方法であって、
複数の前記半導体ウェハのうち、いずれか1つの半導体ウェハを標本として選択する手順と、
標本として選択された前記半導体ウェハの表面を光学的手法により測定し、電気信号に変換する手順と、
変換された電気信号を、増幅倍率を固定して増幅する手順と、
増幅された電気信号に基づいて、前記半導体ウェハ表面の異物又は欠陥の大きさを計測する手順と、
前記標本となる半導体ウェハについて、光学的手法により測定し、電気信号に変換する手順乃至前記異物又は欠陥の大きさを計測する手順を複数回繰り返し、得られた結果から前記異物又は欠陥の大きさの平均値及び分散を算出し、統計的手法により、前記異物又は欠陥の大きさに平均値に対する信頼区間幅を設定する手順と、
他の半導体ウェハの表面を、前記光学的手法により測定し、電気信号に変換するとともに、変換された電気信号を、前記固定された増幅倍率で増幅し、設定された前記信頼区間幅に基づいて、前記他の半導体ウェハ表面の異物又は欠陥の大きさを計測し、前記他の半導体ウェハ表面の異物又は欠陥の大きさに応じて、異物又は欠陥の数を計数することにより、該他の半導体ウェハの良否判定を行う手順とを実施することを特徴とする。
A method for inspecting a surface of a semiconductor wafer according to the present invention includes:
A method for inspecting a surface of a semiconductor wafer by measuring the surface of a semiconductor wafer to be inspected by an optical technique and detecting foreign matter or defects on the surface of the semiconductor wafer,
A procedure for selecting any one of the plurality of semiconductor wafers as a specimen;
A procedure for measuring the surface of the semiconductor wafer selected as a specimen by an optical method and converting it into an electrical signal;
A procedure for amplifying the converted electrical signal with a fixed amplification factor;
A procedure for measuring the size of foreign matter or defects on the surface of the semiconductor wafer based on the amplified electrical signal;
About the semiconductor wafer used as the specimen, the procedure of measuring by an optical method and converting to an electric signal or the procedure of measuring the size of the foreign matter or defect is repeated a plurality of times, and the size of the foreign matter or defect is obtained from the obtained result. Calculating a mean value and a variance of, and setting a confidence interval width for the mean value to the size of the foreign matter or defect by a statistical method;
The surface of another semiconductor wafer is measured by the optical method and converted into an electric signal. The converted electric signal is amplified by the fixed amplification factor, and based on the set confidence interval width. Measure the size of the foreign matter or defect on the surface of the other semiconductor wafer, and count the number of foreign matter or defect according to the size of the foreign matter or defect on the surface of the other semiconductor wafer. And a procedure for determining whether the wafer is good or bad.

この発明によれば、信号増幅手段による増幅倍率を固定した状態で、標本となる半導体ウェハ表面の大きさの異なる欠陥又は異物の大きさを複数回計測し、計測結果から異物又は欠陥の大きさに応じた信頼区間幅を設定し、他の半導体ウェハ表面の異物又は欠陥の数を計数するに際して、欠陥又は異物の大きさに応じた信頼区間幅を考慮して計数することができるため、異物又は欠陥の数を高精度に計数することができ、良否判定を高精度に行うことができる。その上、異物又は欠陥の大きさが異なる場合であっても、増幅倍率を変更することなく、同じ増幅倍率で計数することができ、半導体ウェハ表面の検査を迅速に行うことができる。   According to the present invention, the size of the defect or foreign matter having a different size on the surface of the semiconductor wafer to be a sample is measured a plurality of times while the amplification factor by the signal amplification means is fixed, and the size of the foreign matter or the defect is determined from the measurement result. When setting the confidence interval width according to the number of foreign particles or defects on the surface of other semiconductor wafers, it is possible to count in consideration of the confidence interval width according to the size of the defect or foreign matter. Alternatively, the number of defects can be counted with high accuracy, and pass / fail judgment can be performed with high accuracy. In addition, even if the size of the foreign matter or the defect is different, it is possible to count at the same amplification magnification without changing the amplification magnification, and the semiconductor wafer surface can be inspected quickly.

以下、本発明の実施形態を図面に基づいて説明する。
図1には、本発明の実施形態に係る半導体ウェハの表面検査装置1が示されており、この半導体ウェハの表面検査装置1は、レーザ発振器2、反射ミラー3、楕円面ミラー4、導光体5、及び光電子増倍管6を備えて構成され、楕円面ミラー4の下方に配置される半導体ウェハWの表面検査を行う装置である。
光照射手段としてのレーザ発振器2は、キャビティ内にアルゴンガスが封入された構成を具備し、キャビティ内のアルゴンガスを励起させることにより、所定波長のレーザ光を反射ミラー3に照射する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a semiconductor wafer surface inspection apparatus 1 according to an embodiment of the present invention. The semiconductor wafer surface inspection apparatus 1 includes a laser oscillator 2, a reflection mirror 3, an elliptical mirror 4, a light guide. The apparatus includes a body 5 and a photomultiplier tube 6 and performs surface inspection of a semiconductor wafer W disposed below the ellipsoidal mirror 4.
The laser oscillator 2 as light irradiation means has a configuration in which argon gas is sealed in a cavity, and irradiates the reflection mirror 3 with laser light of a predetermined wavelength by exciting the argon gas in the cavity.

反射ミラー3は、レーザ発振器2から照射されたレーザ光を反射して、楕円面ミラー4の上面に形成された開口41に導く部材である。
楕円面ミラー4は、下面が楕円曲面状の反射面とされた集光部材であり、開口41から入ったレーザ光は、下方の半導体ウェハW表面に入射する。レーザ光が半導体ウェハW表面上の異物又は欠陥に照射されると、微弱な光散乱が生じ、楕円面ミラー4の反射面によって導光体5の光入射端面に入射する。
導光体5は、光ファイバ等の束として構成され、光入射端面51側は楕円面ミラー4の幅に応じた長方形状の端面として構成され、光射出側端面側は、光電子増倍管6の光入射面に応じた円形状の端面として構成されている。そして、楕円面ミラー4のいずれかの場所で生じた散乱光は、導光体5の光入射端面51で捕捉され、内面反射を繰り返しながら、光電子増倍管6に供給される。
The reflection mirror 3 is a member that reflects the laser light emitted from the laser oscillator 2 and guides it to the opening 41 formed on the upper surface of the elliptical mirror 4.
The ellipsoidal mirror 4 is a light condensing member whose lower surface is a reflecting surface having an elliptical curved surface, and the laser light entering from the opening 41 is incident on the surface of the lower semiconductor wafer W. When the laser beam is irradiated onto the foreign matter or defect on the surface of the semiconductor wafer W, weak light scattering occurs, and the light enters the light incident end surface of the light guide 5 through the reflecting surface of the ellipsoidal mirror 4.
The light guide 5 is configured as a bundle of optical fibers, the light incident end surface 51 side is configured as a rectangular end surface corresponding to the width of the ellipsoidal mirror 4, and the light exit side end surface side is the photomultiplier tube 6. It is comprised as a circular end surface according to the light incident surface. Then, the scattered light generated at any location of the ellipsoidal mirror 4 is captured by the light incident end face 51 of the light guide 5 and supplied to the photomultiplier tube 6 while repeating internal reflection.

光電子増倍管6は、図1では図示を略したが、入射した光の光電変換を行う光電面と、光電面で変換された電子を増幅する複数の増幅電極から構成されており、導光体5から入射した散乱光は、光電効果により光電面で電子に変換され、電圧印加された複数の増幅電極によって増幅され、電気信号とされる。この光電子増倍管6による増幅倍率は、増幅電極への印加電圧を調整することにより、変更することができる。光電子増倍管6の後段には、図示を略したが、コンピュータ等の演算処理装置が設けられており、光電子増倍管6で増幅変換された電気信号は、このコンピュータで処理される。尚、増幅倍率は、光電子増倍管6と、コンピュータとの間に信号増幅器を設けることによって変更してもよい。
また、図1では図示を略したが、半導体ウェハWは、水平方向に移動自在なXYテーブル上に載置されている。そして、レーザ発振器2からレーザ光を照射しながら、このXYテーブルによって半導体ウェハWを水平方向に移動させることにより、半導体ウェハWの表面のレーザ光による走査が行われる。
Although not shown in FIG. 1, the photomultiplier tube 6 includes a photoelectric surface that performs photoelectric conversion of incident light and a plurality of amplification electrodes that amplify electrons converted by the photoelectric surface. Scattered light incident from the body 5 is converted into electrons on the photocathode by the photoelectric effect, amplified by a plurality of amplification electrodes to which a voltage is applied, and converted into an electric signal. The amplification magnification by the photomultiplier tube 6 can be changed by adjusting the voltage applied to the amplification electrode. Although not shown, an arithmetic processing unit such as a computer is provided at the subsequent stage of the photomultiplier tube 6, and the electric signal amplified and converted by the photomultiplier tube 6 is processed by this computer. The amplification factor may be changed by providing a signal amplifier between the photomultiplier tube 6 and the computer.
Although not shown in FIG. 1, the semiconductor wafer W is placed on an XY table that is movable in the horizontal direction. Then, while irradiating the laser beam from the laser oscillator 2, the semiconductor wafer W is moved in the horizontal direction by the XY table, thereby scanning the surface of the semiconductor wafer W with the laser beam.

図2には、前述した半導体ウェハの表面検査装置1を制御するコンピュータ20が示されており、このコンピュータ20は、A/D変換器21、計測手段22、計数手段23、良否判定手段24、信頼区間幅格納手段25、増幅倍率切替手段26、電圧印加制御手段27、制御手段28、表示制御手段29、及びディスプレイ30を備えて構成される。
A/D変換器21は、光電子増倍管6から出力されたアナログ電気信号をコンピュータ20で処理可能なデジタル電気信号に変換する部分である。
計測手段22は、光電子増倍管6で検出された電気信号からLPDの大きさから異物又は欠陥の大きさを計測する部分であり、計測された異物又は欠陥の大きさを良否判定手段24に出力する。
計数手段23は、ある範囲の大きさの異物又は欠陥を計数する部分であり、計数された異物又は欠陥の数を良否判定手段24に出力する。
FIG. 2 shows a computer 20 that controls the above-described semiconductor wafer surface inspection apparatus 1. The computer 20 includes an A / D converter 21, a measuring means 22, a counting means 23, a pass / fail judgment means 24, A confidence interval width storage unit 25, an amplification factor switching unit 26, a voltage application control unit 27, a control unit 28, a display control unit 29, and a display 30 are provided.
The A / D converter 21 is a part that converts the analog electrical signal output from the photomultiplier tube 6 into a digital electrical signal that can be processed by the computer 20.
The measuring means 22 is a part that measures the size of the foreign matter or defect from the magnitude of the LPD from the electrical signal detected by the photomultiplier tube 6. The measured size of the foreign matter or defect is passed to the pass / fail judgment means 24. Output.
The counting means 23 is a part that counts foreign matter or defects having a certain range of sizes, and outputs the counted number of foreign matters or defects to the pass / fail judgment means 24.

良否判定手段24は、計測手段22で計測された異物又は欠陥の大きさ、及び計数手段23で計数された異物又は欠陥の数に基づいて、被検査対象物である半導体ウェハWの良否判定を行う部分である。
この際、良否判定手段24は、増幅倍率切替手段26で設定された電気信号の増幅倍率に基づいて、信頼区間幅格納手段25に格納された異物又は欠陥の大きさの範囲に応じて設定された信頼区間幅を参照し、計測手段22で計測された異物又は欠陥の大きさよりも信頼区間幅分内側設定された大きさの異物又は欠陥を、計数手段23で計数させる。
信頼区間幅格納手段25に格納された異物又は欠陥の大きさの範囲に応じて設定された信頼区間幅の設定方法については後述する。
The pass / fail determination means 24 determines pass / fail of the semiconductor wafer W that is the inspection target based on the size of the foreign matter or defect measured by the measuring means 22 and the number of foreign matters or defects counted by the counting means 23. It is a part to do.
At this time, the pass / fail judgment unit 24 is set according to the size range of the foreign matter or defect stored in the confidence interval width storage unit 25 based on the amplification factor of the electrical signal set by the amplification factor switching unit 26. With reference to the confidence interval width, the counting means 23 counts the foreign matter or defect having a size set inward by the confidence interval width from the size of the foreign matter or defect measured by the measuring means 22.
A method for setting the confidence interval width set in accordance with the size range of the foreign matter or defect stored in the confidence interval width storage means 25 will be described later.

増幅倍率切替手段26は、光電子増倍管6による光電変換の際の電気信号の増幅倍率を変更する部分であり、増幅倍率切替手段26で増幅倍率が変更されると、電圧印加制御手段27で光電子増倍管6に印加される電圧が制御され、光電子増倍管6での増幅倍率が変更される。尚、本実施形態では、この増幅倍率切替手段26で変更可能な増幅倍率は、下記表1に示されるようにGain1〜Gain7に変更可能に構成され、Gain1〜Gain7のそれぞれの増幅倍率に応じて測定を保証する粒径範囲が決められている。
従って、従来の方法で半導体ウェハの表面検査装置1で測定する場合、測定する粒径範囲に応じて増幅倍率をGain1〜Gain7に変化させながら、欠陥又は異物の大きさ毎にLPDの数を計数しなければならない。
The amplification magnification switching means 26 is a part for changing the amplification magnification of the electric signal at the time of photoelectric conversion by the photomultiplier tube 6. When the amplification magnification is changed by the amplification magnification switching means 26, the voltage application control means 27 The voltage applied to the photomultiplier tube 6 is controlled, and the amplification factor in the photomultiplier tube 6 is changed. In the present embodiment, the amplification magnification that can be changed by the amplification magnification switching means 26 is configured to be changeable to Gain 1 to Gain 7 as shown in Table 1 below, according to each amplification magnification of Gain 1 to Gain 7. A particle size range that guarantees the measurement is determined.
Therefore, when measuring with the semiconductor wafer surface inspection apparatus 1 by a conventional method, the number of LPDs is counted for each defect or foreign material size while changing the amplification magnification from Gain 1 to Gain 7 according to the particle size range to be measured. Must.

Figure 2009088026
Figure 2009088026

制御手段28は、光照射手段としてのレーザ発振器2、及び半導体ウェハWの表面を走査するためのXYテーブル駆動機構7を駆動制御する部分である。
表示制御手段29は、良否判定手段24から出力される半導体ウェハW表面の画像をディスプレイ30に表示させ、良否判定手段24で判定されたLPDの計測値、計数値に基づいて、半導体ウェハW表面の異物又は欠陥の分布を画像表示する部分である。
The control means 28 is a part that drives and controls the laser oscillator 2 as the light irradiation means and the XY table drive mechanism 7 for scanning the surface of the semiconductor wafer W.
The display control unit 29 causes the display 30 to display an image of the surface of the semiconductor wafer W output from the pass / fail determination unit 24, and based on the measured value and count value of the LPD determined by the pass / fail determination unit 24. This is a portion for displaying an image of the distribution of foreign matter or defects.

このような半導体ウェハの表面検査装置1により、半導体ウェハWの表面をレーザ光で走査した場合、半導体ウェハWの表面に異物又は欠陥があると、その部分で散乱現象が生じ、図3に示されるように、垂直入射するレーザ光の一部が散乱し、光電子増倍管6では、輝点(LPD:Light Point Defect)として検出される。尚、図3に示されるように、半導体ウェハWの平坦な部分で測定を行う際には、入射したレーザ光B1に対して、垂直に反射して開口41から出るレーザ光B2は略90%であり、楕円面ミラー4の反射面42で反射して導光体5で捕捉される散乱光B3、B4は、略5%程度である。   When the surface of the semiconductor wafer W is scanned with laser light by the semiconductor wafer surface inspection apparatus 1 as described above, if there is a foreign matter or a defect on the surface of the semiconductor wafer W, a scattering phenomenon occurs at that portion, as shown in FIG. As shown, a part of the vertically incident laser light is scattered and detected as a light point defect (LPD) in the photomultiplier tube 6. As shown in FIG. 3, when the measurement is performed on the flat portion of the semiconductor wafer W, the laser beam B2 reflected perpendicularly to the incident laser beam B1 and exiting from the opening 41 is approximately 90%. The scattered light B3 and B4 reflected by the reflecting surface 42 of the elliptical mirror 4 and captured by the light guide 5 is about 5%.

しかしながら、図4に示すように、レーザ光が半導体ウェハWのエッジ近傍を照射する場合、半導体ウェハW表面の平坦度が悪くなるため、半導体ウェハWに垂直に入射したレーザ光B1のうち、垂直に反射して開口41から出るレーザ光B5の光線量は減少してしまい、導光体5で捕捉されるレーザ光B6、B7の量が増大してしまう。具体的には、半導体ウェハWのエッジ近傍におけるレーザ光B5は入射したレーザ光B1に対して略10%程度しかなく、導光体5で捕捉されるレーザ光B6、B7の方が略90%という逆転現象が見られる。   However, as shown in FIG. 4, when the laser light irradiates near the edge of the semiconductor wafer W, the flatness of the surface of the semiconductor wafer W deteriorates. Therefore, the amount of the laser beam B5 reflected from the opening 41 decreases, and the amount of the laser beams B6 and B7 captured by the light guide 5 increases. Specifically, the laser beam B5 near the edge of the semiconductor wafer W is only about 10% of the incident laser beam B1, and the laser beams B6 and B7 captured by the light guide 5 are about 90%. The reverse phenomenon is seen.

このため、光電子増倍管6で検出されるLPDの分布をコンピュータによる処理を行って画像として把握すると、図5に示されるように、半導体ウェハWの中央領域は、LPD11が散点状に検出されるのだが、半導体ウェハWのエッジ領域では、半導体ウェハWの外周縁に沿った曲線状のLPD12が検出される。
これをハレーションと呼ぶが、これを光電子増倍管6で検出される信号強度で見ると、図6に示されるように、光電子増倍管6の回復曲線C1が領域R1の部分で信号強度の閾値T1を上回る信号強度となってしまう。この場合、光電子増倍管6の電荷飽和状態が回復するまで測定を行うことができない。
For this reason, when the distribution of LPD detected by the photomultiplier tube 6 is processed by a computer and grasped as an image, the LPD 11 is detected in the form of dots in the central region of the semiconductor wafer W as shown in FIG. However, in the edge region of the semiconductor wafer W, the curved LPD 12 along the outer peripheral edge of the semiconductor wafer W is detected.
This is called halation, but when viewed from the signal intensity detected by the photomultiplier tube 6, as shown in FIG. 6, the recovery curve C1 of the photomultiplier tube 6 shows the signal intensity at the region R1. The signal intensity exceeds the threshold value T1. In this case, measurement cannot be performed until the charge saturation state of the photomultiplier tube 6 is recovered.

一方、検出精度の低下の原因としては、上述したハレーションのみではなく、半導体ウェハの表面検査装置1のシステム的なノイズ、及び、被測定対象物である半導体ウェハWの表面のHazeの相互作用によって生じるゴーストによる疑似LPDの発生がある。
すなわち、図7に示されるように、光電子増倍管6で検出される電気信号は、半導体ウェハの表面検査装置1に応じたシステムノイズN1と半導体ウェハWの表面のHazeに起因するノイズN2が存在するが、通常は、LPDのピークP1からこれらのノイズN1、N2を除去するために、HPF(High Pass FIlter)によって一定の閾値T2以下のノイズ成分を除去している。
On the other hand, the cause of the decrease in detection accuracy is not only due to the above-mentioned halation, but also due to the systematic noise of the semiconductor wafer surface inspection apparatus 1 and the interaction of the haze on the surface of the semiconductor wafer W that is the object to be measured. There is the generation of pseudo-LPD due to the ghost that occurs.
That is, as shown in FIG. 7, the electrical signal detected by the photomultiplier tube 6 includes system noise N1 corresponding to the semiconductor wafer surface inspection apparatus 1 and noise N2 due to Haze on the surface of the semiconductor wafer W. Usually, in order to remove these noises N1 and N2 from the peak P1 of LPD, noise components below a certain threshold T2 are removed by HPF (High Pass FIlter).

しかしながら、システムノイズN1と半導体ウェハWの表面のHazeが相互に作用すると、本来、LPDのピークP1として検出されるものの他に、ゴースト、即ち疑似LPDのピークP2が閾値を超えて生じることがある。具体的には、半導体ウェハWの表面のHazeに起因するノイズN2が低く、システムノイズN1が小さい場合は、問題とならないが、いずれかのノイズが大きい場合には、疑似LPDのピークP2が閾値T2を超えて検出されることがある。
この場合、半導体ウェハWの表面には、図8に示されるように、本来の異物欠陥に基づくLPD11に隣接して、ゴーストに起因する疑似LPD13が分布することとなり、これも検出精度の低下の一因となる。
However, when the system noise N1 and the Haze on the surface of the semiconductor wafer W interact with each other, a ghost, that is, a pseudo-LPD peak P2 may occur beyond the threshold in addition to what is originally detected as the LPD peak P1. . Specifically, there is no problem when the noise N2 due to the haze on the surface of the semiconductor wafer W is low and the system noise N1 is small, but when any noise is large, the peak P2 of the pseudo LPD is the threshold value. It may be detected beyond T2.
In this case, as shown in FIG. 8, pseudo LPDs 13 due to ghosts are distributed on the surface of the semiconductor wafer W adjacent to the LPD 11 based on the original foreign substance defect, which also reduces the detection accuracy. It will contribute.

このようなハレーション、ゴースト等の影響を確認するために、本発明者らは、増幅倍率Gain6、Gain7の2つの水準でハレーション、ゴースト等の発生状況を確認した。問題となるのは0.12μm付近でハレーション、ゴースト等の影響を受けることが確認され、増幅倍率がGain6よりもGain7を活用し、半導体ウェハの表面検査装置1のS/N(Signal/Noise)比を上げることにより、0.12μm付近のLPDをハレーション、ゴーストと分離できることが確認できた。
すなわち、ハレーションについては、Gain6→Gain7とすることにより、図9に示されるように、Gain7における閾値T2が上昇することとなるので、ハレーション発生領域が生じなくなる。
また、ゴーストについても同様に、図10に示されるように、0.12μm検出のための閾値(threshold)が上昇するために、同様に疑似LPDが検出されなくなる。
In order to confirm the influence of such halation, ghost, etc., the present inventors confirmed the occurrence of halation, ghost, etc. at two levels of amplification magnifications Gain6, Gain7. The problem is confirmed to be affected by halation, ghosts, etc. near 0.12 μm, and gain 7 is utilized rather than Gain 6, and the S / N (Signal / Noise) of the semiconductor wafer surface inspection apparatus 1 is used. By increasing the ratio, it was confirmed that LPD in the vicinity of 0.12 μm could be separated from halation and ghost.
That is, with regard to halation, by setting Gain6 → Gain7, as shown in FIG. 9, the threshold value T2 in Gain7 increases, so that no halation generation region is generated.
Similarly, for the ghost, as shown in FIG. 10, the threshold for detecting 0.12 μm rises, so that the pseudo LPD is not detected in the same manner.

このように増幅倍率をGain6からGain7と高感度側に設定することにより、ハレーション、ゴースト等の影響を受けないことを確認することができたが、前述した表1のように、半導体ウェハの表面検査装置1では、一定の増幅倍率で測定を保証する異物又は欠陥の大きさの範囲が限られているため、統計的手法を用いてこれらを補償することにより、0.12μm〜0.16μmの異物又は欠陥の大きさの範囲を保証するGain7で0.30μmまでの異物又は欠陥の大きさの範囲を測定することを可能とした。
具体的には、母集団の母平均μと母分散σを未知として、同一種類の半導体ウェハWの中から、標本として1枚の半導体ウェハWの表面の大きさの異なる異物又は欠陥の大きさを複数回測定する。尚、標本の標本平均xaveは、下記式(1)、標本の分散Vは、下記式(2)で求められる。
Thus, by setting the amplification magnification from Gain 6 to Gain 7 to the high sensitivity side, it was confirmed that there was no influence of halation, ghost, etc., but as shown in Table 1 above, the surface of the semiconductor wafer In the inspection apparatus 1, since the range of the size of the foreign matter or defect that guarantees the measurement at a constant amplification magnification is limited, these are compensated by using a statistical method, and 0.12 μm to 0.16 μm. It was made possible to measure the size range of foreign matter or defect up to 0.30 μm with Gain 7 which guarantees the size range of foreign matter or defect.
Specifically, the population mean μ and population variance σ 2 of the population are unknown, and the size of the foreign matter or defect having a different surface size of one semiconductor wafer W as a sample from the same type of semiconductor wafer W. Measure the thickness multiple times. The sample average x ave of the sample is obtained by the following equation (1), and the variance V of the sample is obtained by the following equation (2).

Figure 2009088026
Figure 2009088026

標本平均xave、標本の分散Vが求められたら、この標本の分布がt分布に従うとすると、母集団の平均μの信頼区間は、次の式(3)で推定することができる。ここで、Nは標本のデータ数、φは自由度(=N−1)、t(φ、α/2)を自由度φ、両側確率αでのスチューデントのt分布の逆関数の値とする。 Once the sample average x ave and the sample variance V are obtained, if the distribution of this sample follows the t distribution, the confidence interval of the mean μ of the population can be estimated by the following equation (3). Here, N is the number of sample data, φ is the degree of freedom (= N−1), t (φ, α / 2) is the degree of freedom φ, and the inverse function of the Student's t distribution with two-sided probability α. .

Figure 2009088026
Figure 2009088026

次に、信頼率95%(1−α:0.95)とし、複数の半導体ウェハWのうちの1枚を標本として選択し、この半導体ウェハW表面の大きさの異なる異物又は欠陥の大きさを半導体ウェハの表面検査装置1で10回測定し、それぞれの異物又は欠陥の大きさにおける標本平均xave、標本の分散Vを算出したところ、表2のような結果が得られ、上記式(3)によって、それぞれの異物又は欠陥における信頼区間の推定を行ったところ、表3のような結果が得られた。 Next, the reliability is 95% (1-α: 0.95), one of the plurality of semiconductor wafers W is selected as a sample, and the size of the foreign matter or defect having a different size on the surface of the semiconductor wafer W is selected. Is measured 10 times by the semiconductor wafer surface inspection apparatus 1, and the sample average x ave and the sample variance V in the size of each foreign matter or defect are calculated. As a result, the results shown in Table 2 are obtained. According to 3), when the confidence interval for each foreign matter or defect was estimated, the results shown in Table 3 were obtained.

Figure 2009088026
Figure 2009088026

Figure 2009088026
Figure 2009088026

これらを整理すると、図11に示されるように、増幅倍率Gain7で0.12μm〜0.30μmの異物又は欠陥を測定する場合、130nm(0.13μm)〜170nm(0.17μm)の範囲D1では、Gain7で保証する測定範囲なので、信頼区間幅は±0.00μm、すなわち、測定値をそのまま信頼してもよいことが判る。
次に、180nm(0.18μm)〜250nm(0.25μm)の範囲D2では、信頼率95%の信頼区間幅が±0.01μmとなるので、Gain7で測定した値に対して、信頼区間幅0.01μmを減じた内側の値を用いて異物又は欠陥の大きさを推定する。つまり、例えば、Gain7で平均値200nm(0.20μm)の異物又は欠陥を計数する際には、範囲D2の信頼区間幅0.01を減じた190nm(0.19μm)の大きさの異物又は欠陥として検出される可能性があるので、計数対象とする。
同様に、250nm(0.25μm)〜300nm(0.30μm)の範囲D3では、信頼区間幅が±0.02μmとなるので、測定値に対して−0.02μmを減じた測定値に対してもこのD3の範囲に含まれるものとして計数する。
When these are arranged, as shown in FIG. 11, when measuring a foreign matter or defect of 0.12 μm to 0.30 μm with an amplification factor of Gain7, in a range D1 of 130 nm (0.13 μm) to 170 nm (0.17 μm), Since the measurement range is guaranteed by Gain 7, the confidence interval width is ± 0.00 μm, that is, it can be seen that the measurement value may be trusted as it is.
Next, in the range D2 from 180 nm (0.18 μm) to 250 nm (0.25 μm), the confidence interval width of 95% reliability is ± 0.01 μm, so the confidence interval width with respect to the value measured with Gain7 The size of the foreign matter or defect is estimated using the inner value obtained by subtracting 0.01 μm. That is, for example, when counting foreign matters or defects having an average value of 200 nm (0.20 μm) with Gain 7, the foreign matters or defects having a size of 190 nm (0.19 μm) obtained by subtracting the confidence interval width 0.01 of the range D2. Since it may be detected as, it is counted.
Similarly, in the range D3 from 250 nm (0.25 μm) to 300 nm (0.30 μm), the confidence interval width is ± 0.02 μm, so that the measured value is obtained by subtracting −0.02 μm from the measured value. Are counted as being included in the range of D3.

以上のような図11に示されるグラフ又は内側設定値の表が得られたら、この値を半導体ウェハの表面検査装置1のメモリ等の記憶手段に格納し、実際の測定に際しては、記憶手段に格納された内側設定値の値を参照して、他の半導体ウェハWの異物又は欠陥の大きさに応じたLPDの計数を行う。その際、LPDの大きさが信頼区間幅による内側設定値よりも大きなものは、すべてその範囲に含まれる大きさの異物又は欠陥であると判定して、計数手段による計数対象に含めて計数する。
このような本実施形態によれば、標本となる半導体ウェハWについて、増幅倍率を固定した状態で測定を行い、本来保証の範囲外の異物又は欠陥の大きさを測定し、これを信頼区間幅で内側設定を行った後、計数手段による他の半導体ウェハWの異物又は欠陥の計数を行っているため、半導体ウェハの表面検査装置において、異物又は欠陥の大きさに応じて増幅倍率Gain1〜Gain7を変更する必要がない。従って、従来の測定作業と比較して、測定作業の大幅な効率化を図ることができる上、測定精度が損なわれることもない。
尚、本実施形態は、異物又は欠陥の測定の実際のばらつきの分布からt分布として推察を行った例であり、推察から統計的手法で一般的に用いられる別の分布を用いる可能性もある。
When the graph shown in FIG. 11 or the table of the inner set values as described above is obtained, this value is stored in the storage means such as the memory of the surface inspection apparatus 1 of the semiconductor wafer. With reference to the stored value of the inner set value, the LPD is counted according to the size of the foreign matter or defect of the other semiconductor wafer W. At this time, if the LPD size is larger than the inner set value by the confidence interval width, it is determined that all foreign matters or defects having a size included in the range are included in the counting object by the counting means and counted. .
According to this embodiment, the semiconductor wafer W as a sample is measured in a state where the amplification magnification is fixed, the size of the foreign matter or defect outside the originally guaranteed range is measured, and this is determined as the confidence interval width. In the semiconductor wafer surface inspection apparatus, the amplification magnifications Gain1 to Gain7 are determined in accordance with the size of the foreign matter or defect in the semiconductor wafer surface inspection apparatus. There is no need to change. Therefore, compared to the conventional measurement work, the measurement work can be greatly improved in efficiency and the measurement accuracy is not impaired.
In addition, this embodiment is an example in which the distribution of the actual measurement of the foreign matter or the defect is inferred as a t distribution, and another distribution generally used in statistical methods may be used from the inference. .

本発明の実施形態に係る半導体ウェハの表面検査装置を表す概要斜視図。The outline perspective view showing the surface inspection device of the semiconductor wafer concerning the embodiment of the present invention. 前記実施形態におけるコンピュータの構造を表すブロック図。The block diagram showing the structure of the computer in the said embodiment. 前記実施形態におけるハレーションが生じない状態での測定原理を説明する模式図。The schematic diagram explaining the measurement principle in the state which the halation does not arise in the said embodiment. 前記実施形態におけるハレーションが生じる原理を説明する模式図。The schematic diagram explaining the principle which the halation produces in the said embodiment. 前記実施形態におけるハレーションが発生した際のLPDの分布を示す模式図。The schematic diagram which shows distribution of LPD when the halation generate | occur | produces in the said embodiment. 前記実施形態における光電子増倍管の回復曲線とハレーションが発生する領域を表すグラフ。The graph showing the area | region where the recovery curve of a photomultiplier tube and the halation generate | occur | produce in the said embodiment. 前記実施形態におけるゴーストによる疑似LPDが生じる原理を説明するためのグラフ。The graph for demonstrating the principle which pseudo | simulation LPD by the ghost in the said embodiment produces. 前記実施形態における疑似LPDが発生した際のLPDの分布を示す模式図。The schematic diagram which shows distribution of LPD when pseudo | simulation LPD in the said embodiment generate | occur | produces. 前記実施形態における増幅倍率を高倍率側に設定した際の光電子増倍管の回復曲線と閾値の関係を表すグラフ。The graph showing the relationship between the recovery curve of a photomultiplier tube at the time of setting the amplification magnification in the said embodiment to the high magnification side, and a threshold value. 前記実施形態における増幅倍率を高倍率側に設定した際の光電子増倍管の疑似LPDのピーク高さと閾値の関係を表すグラフ。The graph showing the relationship between the peak height of the pseudo-LPD of the photomultiplier tube and the threshold when the amplification magnification in the embodiment is set on the high magnification side. 前記実施形態におけるLPDの大きさの範囲と信頼区間の関係を表すグラフ。The graph showing the relationship between the range of the size of LPD and the confidence interval in the embodiment.

符号の説明Explanation of symbols

1…半導体ウェハの表面検査装置、2…レーザ発振器、3…反射ミラー、4…楕円面ミラー、5…導光体、6…光電子増倍管、7…テーブル駆動機構、11、12、13…LPD、20…コンピュータ、21…A/D変換器、22…計測手段、23…計数手段、24…良否判定手段、25…信頼区間幅格納手段、26…増幅倍率切替手段、27…電圧印加制御手段、28…制御手段、29…表示制御手段、30…ディスプレイ、41…開口、42…反射面、51…光入射端面、B1…レーザ光、B2…レーザ光、B3、B4…散乱光、B5…レーザ光、B6…レーザ光、C1…回復曲線、D1、D2、D3…範囲、N1…システムノイズ、N2…高Hazeによるノイズ、P1、P2…ピーク、R1…領域、T1、T2…閾値、W…半導体ウェハ   DESCRIPTION OF SYMBOLS 1 ... Semiconductor wafer surface inspection apparatus, 2 ... Laser oscillator, 3 ... Reflection mirror, 4 ... Ellipsoidal mirror, 5 ... Light guide, 6 ... Photomultiplier tube, 7 ... Table drive mechanism, 11, 12, 13 ... LPD, 20 ... computer, 21 ... A / D converter, 22 ... measuring means, 23 ... counting means, 24 ... pass / fail judgment means, 25 ... confidence interval storage means, 26 ... amplification magnification switching means, 27 ... voltage application control Means 28 ... Control means 29 ... Display control means 30 ... Display 41 ... Opening 42 ... Reflecting surface 51 ... Light incident end face B1 ... Laser light B2 ... Laser light B3, B4 ... Scattered light, B5 ... laser light, B6 ... laser light, C1 ... recovery curve, D1, D2, D3 ... range, N1 ... system noise, N2 ... noise due to high haze, P1, P2 ... peak, R1 ... region, T1, T2 ... threshold, W ... Semiconductor Ha

Claims (2)

被検査対象物となる半導体ウェハの表面を光学的手法によって測定し、前記半導体ウェハ表面の異物又は欠陥を検出する半導体ウェハの表面検査装置であって、
前記半導体ウェハ表面に光を照射する光照射手段と、
前記半導体ウェハ表面からの反射光又は散乱光を受光する受光手段と、
前記受光手段で受光された光を、光電効果により電気信号に変換する光電変換手段と、
前記光電変換手段で変換された電気信号を増幅する信号増幅手段と、
前記信号増幅手段で増幅された電気信号に基づいて、前記半導体ウェハ表面の異物又は欠陥の大きさを計測する計測手段と、
前記計測手段で計測された異物又は欠陥の大きさに応じてその数を計数する計数手段と、
前記信号増幅手段による各増幅倍率について、予め標本測定により算出された前記半導体ウェハ表面の異物又は欠陥の大きさに応じて設定された信頼区間幅が格納された信頼区間幅格納手段と、
前記信号増幅手段による増幅倍率を固定して、前記異物又は欠陥の大きさに応じた信頼区間幅に基づいて、前記計測手段により計測された前記半導体ウェハ表面の異物又は欠陥の大きさを算出し、該半導体ウェハ表面の異物又は欠陥の大きさに応じた計数値から、前記半導体ウェハ表面の良否判定を行う良否判定手段とを備えていることを特徴とする半導体ウェハの表面検査装置。
A semiconductor wafer surface inspection apparatus for measuring a surface of a semiconductor wafer to be inspected by an optical technique and detecting foreign matter or defects on the surface of the semiconductor wafer,
A light irradiation means for irradiating the semiconductor wafer surface with light;
A light receiving means for receiving reflected light or scattered light from the surface of the semiconductor wafer;
Photoelectric conversion means for converting light received by the light receiving means into an electrical signal by a photoelectric effect;
Signal amplifying means for amplifying the electric signal converted by the photoelectric conversion means;
Based on the electrical signal amplified by the signal amplification means, measuring means for measuring the size of the foreign matter or defect on the surface of the semiconductor wafer,
A counting means for counting the number of particles according to the size of the foreign matter or defect measured by the measuring means;
For each amplification factor by the signal amplification means, a confidence interval width storage means in which a confidence interval width set according to the size of the foreign matter or defect on the surface of the semiconductor wafer calculated in advance by sample measurement is stored;
The amplification factor by the signal amplification unit is fixed, and the size of the foreign matter or defect on the surface of the semiconductor wafer measured by the measurement unit is calculated based on the confidence interval width corresponding to the size of the foreign matter or defect. An apparatus for inspecting a surface of a semiconductor wafer, comprising: a quality judgment means for judging quality of the surface of the semiconductor wafer from a count value corresponding to the size of foreign matter or defect on the surface of the semiconductor wafer.
被検査対象物となる半導体ウェハの表面を光学的手法によって測定し、前記半導体ウェハ表面の異物又は欠陥を検出する半導体ウェハの表面検査方法であって、
複数の前記半導体ウェハのうち、いずれか1つの半導体ウェハを標本として選択する手順と、
標本として選択された前記半導体ウェハの表面を光学的手法により測定し、電気信号に変換する手順と、
変換された電気信号を、増幅倍率を固定して増幅する手順と、
増幅された電気信号に基づいて、前記半導体ウェハ表面の異物又は欠陥の大きさを計測する手順と、
前記標本となる半導体ウェハについて、光学的手法により測定し、電気信号に変換する手順乃至前記異物又は欠陥の大きさを計測する手順を複数回繰り返し、得られた結果から前記異物又は欠陥の大きさの平均値及び分散を算出し、統計的手法により、前記異物又は欠陥の大きさの平均値に対する信頼区間幅を設定する手順と、
他の半導体ウェハの表面を、前記光学的手法により測定し、電気信号に変換するとともに、変換された電気信号を、前記固定された増幅倍率で増幅し、設定された前記信頼区間幅に基づいて、前記他の半導体ウェハ表面の異物又は欠陥の大きさを計測し、前記他の半導体ウェハ表面の異物又は欠陥の大きさに応じて、異物又は欠陥の数を計数することにより、該他の半導体ウェハの良否判定を行う手順とを実施することを特徴とする半導体ウェハの表面検査方法。
A method for inspecting a surface of a semiconductor wafer by measuring the surface of a semiconductor wafer to be inspected by an optical technique and detecting foreign matter or defects on the surface of the semiconductor wafer,
A procedure for selecting any one of the plurality of semiconductor wafers as a specimen;
A procedure for measuring the surface of the semiconductor wafer selected as a specimen by an optical method and converting it into an electrical signal;
A procedure for amplifying the converted electrical signal with a fixed amplification factor;
A procedure for measuring the size of foreign matter or defects on the surface of the semiconductor wafer based on the amplified electrical signal;
About the semiconductor wafer used as the specimen, the procedure of measuring by an optical method and converting to an electric signal or the procedure of measuring the size of the foreign matter or defect is repeated a plurality of times, and the size of the foreign matter or defect is obtained from the obtained result. Calculating a mean value and a variance of, and setting a confidence interval width for the mean value of the size of the foreign matter or defect by a statistical method;
The surface of another semiconductor wafer is measured by the optical method and converted into an electric signal. The converted electric signal is amplified by the fixed amplification factor, and based on the set confidence interval width. Measure the size of the foreign matter or defect on the surface of the other semiconductor wafer, and count the number of foreign matter or defect according to the size of the foreign matter or defect on the surface of the other semiconductor wafer. A method for inspecting a surface of a semiconductor wafer, comprising: performing a wafer quality determination procedure.
JP2007252539A 2007-09-27 2007-09-27 Apparatus and method for surface inspection of semiconductor wafer Pending JP2009088026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007252539A JP2009088026A (en) 2007-09-27 2007-09-27 Apparatus and method for surface inspection of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007252539A JP2009088026A (en) 2007-09-27 2007-09-27 Apparatus and method for surface inspection of semiconductor wafer

Publications (1)

Publication Number Publication Date
JP2009088026A true JP2009088026A (en) 2009-04-23

Family

ID=40661109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007252539A Pending JP2009088026A (en) 2007-09-27 2007-09-27 Apparatus and method for surface inspection of semiconductor wafer

Country Status (1)

Country Link
JP (1) JP2009088026A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138493A (en) * 2010-12-27 2012-07-19 Sumco Corp Method for detecting defects of wafer
JP2012149944A (en) * 2011-01-18 2012-08-09 Mitsubishi Materials Corp Method for discriminating rust

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138493A (en) * 2010-12-27 2012-07-19 Sumco Corp Method for detecting defects of wafer
JP2012149944A (en) * 2011-01-18 2012-08-09 Mitsubishi Materials Corp Method for discriminating rust

Similar Documents

Publication Publication Date Title
JP6352529B2 (en) Light amount detection device, immunoassay device using the same, and charged particle beam device
US6909092B2 (en) Electron beam apparatus and device manufacturing method using same
JP3805565B2 (en) Inspection or measurement method and apparatus based on electron beam image
EP2190002A1 (en) Apparatus for detecting a fine geometry and device manufacturing method
JPH06167456A (en) Calibration method of scanner and generation apparatus of prescribed scattered-light amplitude
US20180247790A1 (en) Charged particle beam device and image forming method using same
JP4641143B2 (en) Surface inspection device
JP2008196872A (en) Inspection device, inspection method, and manufacturing method of pattern substrate
WO2010113232A1 (en) Examining method and examining device
JP2014182984A (en) Specimen examination device and examination method of specimen
JP2009088026A (en) Apparatus and method for surface inspection of semiconductor wafer
JP2008164497A (en) Device for inspecting flaws
KR100725453B1 (en) Method for scanning of a substrate and method and apparatus for inspecting characteristic of crystal
US8134698B1 (en) Dynamic range extension in surface inspection systems
JP4972472B2 (en) Semiconductor inspection equipment
JP6033325B2 (en) Semiconductor inspection apparatus and inspection method using charged particle beam
JP2004132956A (en) Method for measuring undercut by using scanning electron microscope
JP2004163198A (en) Defect inspection device, defect inspection method, optical scanner, and method of manufacturing semiconductor device
JP2000077019A (en) Electron microscope
JP4413618B2 (en) Photoelectron microscope for inspecting wafers and reticles
JP5046054B2 (en) Defect inspection apparatus, defect inspection method, optical scanning apparatus, and semiconductor device manufacturing method
JP5002367B2 (en) Optical inspection device, pinhole inspection device, film thickness inspection device, and surface inspection device
JP2007128738A (en) Charging control device and charged particle beam application apparatus having same
JP2001284423A (en) Semiconductor inspection appliance and method of manufacturing semiconductor device
US20140061465A1 (en) Electron beam detector, electron beam processing apparatus, and method of manufacturing electron beam detector