JP2009085811A - Testpiece and detection apparatus for detection of stress corrosion cracking - Google Patents

Testpiece and detection apparatus for detection of stress corrosion cracking Download PDF

Info

Publication number
JP2009085811A
JP2009085811A JP2007257231A JP2007257231A JP2009085811A JP 2009085811 A JP2009085811 A JP 2009085811A JP 2007257231 A JP2007257231 A JP 2007257231A JP 2007257231 A JP2007257231 A JP 2007257231A JP 2009085811 A JP2009085811 A JP 2009085811A
Authority
JP
Japan
Prior art keywords
test piece
stress
corrosion cracking
stress corrosion
scc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007257231A
Other languages
Japanese (ja)
Inventor
Hajime Nakayama
元 中山
Yohei Sakakibara
洋平 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007257231A priority Critical patent/JP2009085811A/en
Publication of JP2009085811A publication Critical patent/JP2009085811A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a testpiece for the detection of stress corrosion cracking and capable of detecting and monitoring stress corrosion cracking and easily setting a stress value equivalent to an object to be monitored. <P>SOLUTION: The testpiece 50 for detecting stress corrosion cracking and the state of stress corrosion cracking of a body to be tested which corrodes in contact with a corrosive medium is provided with both a testpiece main body 51 made of the same metallic material as that of the body to be tested and a stress providing mechanism 69 embedded in the testpiece main body 51 for providing a stress for the testpiece main body 51 without coming into contact with the corrosive medium. The testpiece 50 for the detection of stress corrosion cracking includes both a tube 51 made of the same metallic material as that of the body to be tested and having a closed tip and a pressing rod 52 capable of being inserted in the tube 51 and generates a stress specified on the basis of a pressing force of a tip 58 of the pressing rod 52 pressing a wall 57 in the inner part of the tube 51 in the directions of separating both end parts of the tube 51. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は応力腐食割れ検知用試験片及び応力腐食割れ検出装置に関する。   The present invention relates to a test piece for stress corrosion cracking detection and a stress corrosion cracking detection apparatus.

ステンレス鋼溶接配管など、内部流体W側からの応力腐食割れ(SCC)を起こす危惧があるプラントに組み込み、SCCの生起(発生)を監視する目的で、応力腐食割れをモニタリングできる応力腐食割れ検知用センサとモニター装置が知られている(特許文献1)。具体的には、膜状の金属に内圧をかけることにより応力を付与するセンサを形成するものである。   For detection of stress corrosion cracking that can be installed in a plant where there is a risk of stress corrosion cracking (SCC) from the internal fluid W side, such as stainless steel welded piping, and for monitoring the occurrence (occurrence) of SCC A sensor and a monitor device are known (Patent Document 1). Specifically, a sensor that applies stress by applying an internal pressure to a film-like metal is formed.

詳しくは、先端部が半球形の円筒体であり、内部に圧力媒体が充填された作用電極と、照合電極を保持すると共に、モニタリング対象物に取付けるためのホルダーと、作用電極内の圧力媒体に任意の圧力を付加する加圧ネジと、作用電極内の圧力媒体の圧力を検知するための検知ポートを有する。この応力腐食割れ検知センサにおける検知ポートに圧力センサを接続し、作用電極と照合電極に腐食電位測定装置を接続して、応力腐食割れに特有の電位振動を観測するようにしたものである。   Specifically, the tip is a hemispherical cylindrical body that holds a working electrode filled with a pressure medium, a reference electrode, a holder for attaching to a monitoring object, and a pressure medium in the working electrode. It has a pressure screw for applying an arbitrary pressure and a detection port for detecting the pressure of the pressure medium in the working electrode. In this stress corrosion cracking detection sensor, a pressure sensor is connected to the detection port, and a corrosion potential measuring device is connected to the working electrode and the reference electrode so as to observe a potential oscillation peculiar to the stress corrosion cracking.

また、ここでいう応力腐食割れ(SCC)とは、特定の腐食環境中におかれた金属材料が、持続的な引張応力のもとで時間依存型の脆性的割れを起こす現象をいう。すなわち、材料組織、腐食環境、応力の三者がある条件を満足したときのみ割れを生ずる代表的な環境脆化である。また、応力と腐食作用が相乗して対象物にダメージを与えることがSCC発生の必要条件で、応力のみで破壊する場合に比較して、降伏応力以下のはるかに低い応力や弱い腐食環境中でも割れが発生する。そして、割れを生じる材料/環境の特定の組み合わせとして、オーステナイトステンレス鋼−塩化物水溶液、炭素鋼−苛性アルカリ水溶液、黄銅−アンモニア水溶液が知られている。   In addition, stress corrosion cracking (SCC) here refers to a phenomenon in which a metal material placed in a specific corrosive environment causes time-dependent brittle cracking under a continuous tensile stress. In other words, this is a typical environmental embrittlement in which cracking occurs only when a material condition, a corrosive environment, and stress satisfy certain conditions. In addition, stress and corrosive action synergistically damage the target object, which is a necessary condition for the occurrence of SCC. Compared to the case of breaking by stress alone, it is much lower than the yield stress or cracked even in a weak corrosive environment. Will occur. As specific combinations of materials / environments that cause cracking, austenitic stainless steel-chloride aqueous solution, carbon steel-caustic aqueous solution, and brass-ammonia aqueous solution are known.

応力腐食割れは、応力のみで破壊する場合に比して非常に低い応力でも発生するので、安全上確実に検知することが望まれる。しかるに、これまで応力腐食割れをモニタリングする装置は少なかった。なお、全面腐食モニタリングセンサであれば、従来から各種方式のものとして、電気抵抗法、分極抵抗法、又は交流インピーダンス法などの類例はあるが、これらはあくまで全面腐食モニタリングセンサであって、応力腐食割れをモニタリングすることはできなかった。   Since stress corrosion cracking occurs even at a very low stress as compared with the case of breaking by stress alone, it is desired to detect the stress corrosion reliably. However, there have been few devices for monitoring stress corrosion cracking. In the case of a general corrosion monitoring sensor, there are various types of conventional methods such as an electric resistance method, a polarization resistance method, or an AC impedance method. The crack could not be monitored.

SCCが生起する条件は、材料、環境、応力の組み合わせが所定の条件として揃ったときである。例えば、ステンレス鋼が、特に溶接入熱を受けることで鋭敏化した場合、塩化物環境下で、溶接残留応力などの応力が作用する条件が加わることによってSCCが発生するということが解明されている。   SCC occurs when a combination of materials, environment, and stress is set as a predetermined condition. For example, it has been elucidated that when stainless steel is sensitized particularly by receiving welding heat input, SCC is generated by applying a condition such as welding residual stress in a chloride environment. .

しかしながら、化学プラントのプロセス流体など、必ずしもSCCを起こすか否かのデータベースが揃っていないため、プロセス変更に伴う材料のSCC感受性の評価、もしくは、プラント構成機器への新材料の適用など、材料、環境、応力を変更する際には、SCC感受性試験を行う必要があった。   However, because there is not necessarily a database on whether or not SCC occurs, such as process fluids in chemical plants, materials such as evaluation of SCC sensitivity of materials accompanying process changes or application of new materials to plant components When changing the environment and stress, it was necessary to conduct an SCC sensitivity test.

また、所与の材料(合金種を選び、溶接、熱処理などを施す)からU字曲げ試験片(JIS G0576沸騰塩マグ試験に規定)を採取し、プラントの配管、貯槽などに一定期間の浸漬をすることによってSCC感受性を判定している。
また、応力依存性を明確にする必要に応じて、系から分岐させた実験ループを設けるか、もしくは、実験室試験装置を設け、定荷重試験を実施し、SCC発生時間(定荷重試験片の破断時間をもって、SCC発生時間を代表させる)の応力依存性、SCC生起下限界応力などを求めている。もしくは、4点曲げ試験などの定ひずみ曲げ試験を行なって評価している。
In addition, U-shaped bending specimens (specified in the JIS G0576 boiling salt mug test) are collected from a given material (select alloy type, welded, heat treated, etc.) and immersed in plant piping, storage tanks, etc. for a certain period of time. SCC sensitivity is determined by
In addition, if necessary to clarify the stress dependence, an experimental loop branched from the system is provided, or a laboratory test apparatus is provided, a constant load test is performed, and the SCC generation time (constant load test piece The stress dependence of the SCC occurrence time (representing the SCC occurrence time with the rupture time), the SCC occurrence limit stress, and the like are obtained. Alternatively, evaluation is performed by performing a constant strain bending test such as a four-point bending test.

また、試験片に加え、照合電極及びエレクトロメータ(電位差計)、もしくは対極及び無抵抗電流計を用いて、試験片の電位、もしくは対極との短絡電流を連続的に記録し、時系列データを解析することによって、SCCの生起を監視する方法(電気化学ノイズ解析、ENA:Electrochemical Noise Analysis)も試みられている。
特開2000−266662号公報
In addition to the test piece, the reference electrode and electrometer (potentiometer), or counter electrode and non-resistance ammeter are used to continuously record the potential of the test piece or the short-circuit current with the counter electrode, and time-series data Attempts have also been made to monitor the occurrence of SCC by analysis (electrochemical noise analysis, ENA).
JP 2000-266661 A

しかしながら、特許文献1に開示されている荷重付与機構を接液させずに膜状の金属(金属箔)に内圧をかけることで応力を付与するセンサでは、模擬実験としての検証性が不確かであるという欠点があった。すなわち、一般的なプラント構成機器材料は厚肉部材であるにも拘わらず、その金属箔を用いたセンサの場合、金属箔であるため材料特性が違うので、SCC感受性は別物と考える必要があるという課題があった。また、厚肉部材から、大面積の金属箔を採取するような特殊な機械加工は困難であるという課題もあった。   However, in a sensor that applies stress by applying an internal pressure to a film-like metal (metal foil) without contacting the load applying mechanism disclosed in Patent Document 1, the verifiability as a simulation experiment is uncertain. There was a drawback. That is, although a general plant component material is a thick member, the sensor using the metal foil is a metal foil, so the material characteristics are different, so the SCC sensitivity needs to be considered different. There was a problem. In addition, there is a problem that special machining such as collecting a metal foil having a large area from a thick member is difficult.

また、定荷重試験の実施は、荷重付与機構、試験片を囲む腐食セルの設定とプロセス流体の供給などが必要であるため、試験装置が大掛かりになるので、曲げ冶具ごとプロセス流体環境に晒すような実装試験は、実現困難である(治具全体の寸法、流体の妨げ、治具の腐食など)という課題があった。   In addition, the constant load test requires a load application mechanism, the setting of a corrosion cell surrounding the test piece, and the supply of process fluid. Therefore, the test equipment becomes large, so the bending jig should be exposed to the process fluid environment. However, there is a problem that a difficult mounting test is difficult to realize (dimension of the entire jig, fluid obstruction, jig corrosion, etc.).

本発明は上述した事情に鑑みてなされたもので、応力腐食割れを検出及び監視することが可能であり、監視対象物である被検体と同等の応力値を容易に設定できる応力腐食割れ検知用試験片及び応力腐食割れ検出装置を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and is capable of detecting and monitoring stress corrosion cracking, and for detecting stress corrosion cracking that can easily set a stress value equivalent to a subject to be monitored. An object is to provide a test piece and a stress corrosion cracking detection device.

本発明に係る応力腐食割れ検知用試験片及び応力腐食割れ検出装置では、上記課題を解決するために以下の手段を採用した。
第1の発明に係る応力腐食割れ検知用試験片は、腐食媒体に接触して腐食する被検体の応力腐食割れ状態を検出する応力腐食割れ検知用試験片であって、前記被検体と同一の金属材料からなる試験片本体と、前記試験片本体に内蔵されて前記腐食媒体に接することなく前記試験片本体に応力を付与する応力付与機構と、を備えることを特徴とする。
In the test piece for stress corrosion cracking detection and the stress corrosion cracking detection apparatus according to the present invention, the following means are adopted in order to solve the above problems.
A test piece for stress corrosion cracking detection according to the first invention is a test piece for stress corrosion cracking detection for detecting a stress corrosion cracking state of a specimen that corrodes in contact with a corrosion medium, and is the same as the specimen. A test piece body made of a metal material; and a stress applying mechanism that is built in the test piece main body and applies stress to the test piece main body without being in contact with the corrosive medium.

この発明の応力腐食割れ検知用試験片における応力付与機構によれば、試験片本体に内蔵されて腐食媒体に接することなく試験片本体に応力を付与することが可能である。このような応力付与機構を内在する応力腐食割れ検知用試験片は、被検体と同一の金属材料からなる応力腐食割れ検知用試験片自体で引っ張り応力を設定することが可能であり、この設定応力を付与した状態を維持して腐食媒体に接触させることによって、腐食する被検体の応力腐食割れ状態を検出することが可能である。
したがって、応力腐食割れ検知用試験において、従来は必要であった大掛かりな応力発生装置、すなわち試験片を囲む荷重付与機構や曲げ冶具、プロセス流体の供給等が不要となる。
According to the stress applying mechanism in the test piece for detecting stress corrosion cracking of the present invention, it is possible to apply stress to the test piece main body without being in contact with the corrosion medium. The test piece for detecting stress corrosion cracking that includes such a stress applying mechanism can set the tensile stress with the test piece for detecting stress corrosion cracking itself made of the same metal material as the specimen. It is possible to detect the state of stress corrosion cracking of the corroding specimen by maintaining the state of imparting the contact with the corrosive medium.
Therefore, in the stress corrosion cracking detection test, a large-scale stress generator that has been necessary in the past, that is, a load applying mechanism, a bending jig, a process fluid supply, and the like surrounding the test piece become unnecessary.

また、第2の発明において、前記応力付与機構は、先端が閉じた筒状の前記試験片本体に対して内挿可能な押し込み棒を備え、前記筒の奥の壁を前記押し込み棒の先端が押圧する押圧力に基づいて規定される応力を前記筒の両端部が引き離される方向に発生することを特徴とする。   In the second invention, the stress applying mechanism includes a push rod that can be inserted into the cylindrical test piece main body having a closed tip, and the tip of the push rod is disposed on the inner wall of the tube. A stress defined based on a pressing force to be pressed is generated in a direction in which both end portions of the cylinder are pulled apart.

この発明の応力腐食割れ検知用試験片における応力付与機構によれば、筒の開口端から嵌入した押し込み棒の先端が、筒の奥の壁に突き当たって押圧することにより、その奥の壁と、開口端とを遠ざける方向に応力を発生するので、押し込み棒の押圧力に応じた設定応力により、筒の両端部を引き離す方向に応力を付与することが可能である。   According to the stress application mechanism in the test piece for detecting stress corrosion cracking of the present invention, the tip of the push rod inserted from the opening end of the cylinder hits and presses the back wall of the cylinder, Since stress is generated in a direction away from the open end, it is possible to apply stress in a direction in which both ends of the cylinder are pulled apart by a set stress corresponding to the pressing force of the push rod.

また、第3の発明に係る応力腐食割れ検知用試験片において、前記応力付与機構は、前記筒の開口端近傍の内周に刻設されたメネジと、前記押し込み棒の基端部の外周に刻設されたオネジを螺合し、前記螺合したネジの締め具合により前記応力を規定することを特徴とする。
この発明に係る応力腐食割れ検知用試験片を構成する筒の内部には、その開口端近傍の内周にメネジが刻設されている以外、開口端から最奥端の突き当たりまで、ほぼ均一な円筒形の軸穴が設けられている。一方、押し込み棒も、その基端部にオネジが刻設されている以外は、その先端にいたるまで前記オネジの谷径より細く切削された凹凸のない円筒棒である。
Further, in the test piece for detecting stress corrosion cracking according to the third invention, the stress applying mechanism is provided on the outer periphery of the female screw engraved on the inner periphery in the vicinity of the opening end of the cylinder and the proximal end portion of the push rod. The engraved male screw is screwed together, and the stress is defined by the degree of tightening of the screwed screw.
The inside of the cylinder constituting the test piece for detecting stress corrosion cracking according to the present invention is substantially uniform from the opening end to the end of the innermost end except that an internal thread is engraved on the inner periphery near the opening end. A cylindrical shaft hole is provided. On the other hand, the push-in rod is also a cylindrical rod without unevenness, which is cut narrower than the valley diameter of the male screw until reaching the tip, except that a male screw is engraved at the base end.

前記筒の開口端から嵌入した押し込み棒のネジ締めトルク及び/又はネジ締め角度に応じて、前記メネジと前記オネジの螺合部分から押し込み棒の先端までの挿入深さを加減することになる。そして、押し込み棒の先端が深く挿入される程に、開口端から最奥端の壁までを引き離す方向の設定応力が強く発生する。この作用により、応力腐食割れ検知用試験片自体で任意に引っ張り応力を設定することが可能である。
したがって、押し込み棒のネジ締めトルク及び/又はネジ締め角度に応じた設定応力を、応力腐食割れ検知用試験片自体で設定することが可能である。
The insertion depth from the threaded portion of the female screw and the male screw to the tip of the push rod is adjusted depending on the screw tightening torque and / or screw tightening angle of the push rod inserted from the open end of the cylinder. Then, the deeper the tip of the push rod is inserted, the more strongly the set stress in the direction of pulling away from the opening end to the innermost wall is generated. By this action, it is possible to arbitrarily set a tensile stress in the test piece for detecting stress corrosion cracking itself.
Therefore, it is possible to set the set stress according to the screw tightening torque and / or screw tightening angle of the push-in bar with the test piece itself for detecting stress corrosion cracking.

また、第4の発明に係る応力腐食割れ検知用試験片は、前記筒の長手方向に対する中央部の外径を、前記筒の両端部の外径よりも細くした中央くびれ部を形成した。
この発明によれば、最も細くくびれた中央くびれ部の周壁は薄いので、腐食媒体に接触したことによる腐食の影響に加えて、引張力による応力付与の影響を顕著に受けやすく、比較的短い時間で明確に破断するので試験片に好適である。
Moreover, the test piece for stress corrosion cracking detection according to the fourth invention has a central constricted portion in which the outer diameter of the central portion with respect to the longitudinal direction of the cylinder is narrower than the outer diameters of both end portions of the cylinder.
According to the present invention, since the peripheral wall of the narrowest constricted portion is thin, in addition to the influence of corrosion due to contact with the corrosive medium, it is remarkably easily affected by the application of stress due to tensile force, and in a relatively short time. Since it breaks clearly, it is suitable for a test piece.

また、第5の発明に係る応力腐食割れ検知用試験片は、前記腐食媒体を接触して流通させる装置における配管又は容器を構成する金属材料が前記被検体であって、前記配管又は容器に穿設された取付け穴に密嵌固定して用いることを特徴とする。   The test piece for detecting stress corrosion cracking according to a fifth aspect of the present invention is the test object, wherein the metal material constituting the pipe or container in the apparatus for contacting and circulating the corrosive medium is the subject, and the pipe or container is perforated. It is characterized by being tightly fitted and fixed in a provided mounting hole.

この発明によれば、応力腐食割れ検知用試験片を、稼動設備の一部に実装して、設備の劣化程度を把握することが可能である。すなわち、試験片を囲む荷重付与機構や曲げ冶具を用いることなしに、応力腐食割れ検知用試験片自体で規定の引っ張り応力を発生して維持できるので、小さく簡易簡素な応力腐食割れ検知用試験片だけをプロセス流体環境に晒せば足りる。したがって、応力腐食割れ検知用試験に対する実装試験を簡素かつ容易に実現することが可能になる。そして、前記稼動設備の一部に実装した応力腐食割れ検知用試験片を定期的に取り外して確認することによって、設備の劣化程度を把握することが可能である。   According to the present invention, it is possible to grasp the degree of deterioration of the equipment by mounting the test piece for detecting the stress corrosion cracking in a part of the operating equipment. In other words, the stress corrosion cracking test piece itself can generate and maintain a specified tensile stress without using a load applying mechanism or bending jig surrounding the test piece, so a small and simple test piece for stress corrosion cracking detection Only need to be exposed to the process fluid environment. Therefore, it is possible to realize a mounting test for the stress corrosion cracking detection test simply and easily. And it is possible to grasp | ascertain the deterioration degree of an installation by removing and confirming the test piece for a stress corrosion cracking detection mounted in a part of said operation equipment regularly.

また、第6の発明に係る応力腐食割れ検出装置は、前記被検体の応力腐食割れ状態を電気化学的に検出可能に配線接続された複数の測定電極と、前記測定電極間の電流及び/又は電位差を測定する測定器と、を備えた応力腐食割れ検出装置において、前記測定電極のうち少なくとも1つには前記応力腐食割れ検知用試験片を用いたことを特徴とする。
この発明によれば、電気化学的な応力腐食割れ検出装置において、他の設備を用いることなく、応力腐食割れ検知用試験片自体で引っ張り応力を発生させて維持できるので、簡素かつ安価に応力腐食割れを検出することが可能である。
A stress corrosion cracking detection apparatus according to a sixth aspect of the present invention includes a plurality of measurement electrodes that are wire-connected so that the stress corrosion cracking state of the subject can be detected electrochemically, and currents between the measurement electrodes and / or A stress corrosion cracking detection apparatus comprising a measuring instrument for measuring a potential difference, wherein the test piece for detecting stress corrosion cracking is used for at least one of the measurement electrodes.
According to the present invention, in the electrochemical stress corrosion cracking detection apparatus, tensile stress can be generated and maintained in the test piece for stress corrosion cracking detection itself without using other equipment. It is possible to detect cracks.

本発明によれば、以下の効果を得ることができる。
まず、本発明に係る応力腐食割れ検知用試験片によれば、応力腐食割れ検知用試験において、従来は必要であった大掛かりな応力発生装置、すなわち試験片を囲む荷重付与機構や曲げ冶具、及びそれらに対するプロセス流体の供給等が不要となり、応力腐食割れ検知用試験片自身で応力発生した状態を維持して腐食媒体に接触させることによって、腐食する被検体の応力腐食割れ状態を検出することが可能である。
According to the present invention, the following effects can be obtained.
First, according to the test piece for detecting stress corrosion cracking according to the present invention, in the test for detecting stress corrosion cracking, a large-scale stress generator that was conventionally necessary, that is, a load applying mechanism and a bending jig surrounding the test piece, and The supply of process fluid to them is no longer necessary, and the stress corrosion cracking state of the corroding specimen can be detected by maintaining the stress generated state in the stress corrosion cracking detection specimen itself and bringing it into contact with the corrosion medium. Is possible.

また、本発明に係る応力腐食割れ検知用試験片によれば、被検体と同一の金属材料からなり先端が閉じた筒の内に挿入可能な押し込み棒の先端で、筒の奥の壁を押圧するという、極めて簡素かつ取り扱い容易な応力腐食割れ検知用試験片を提供することができる。
また、本発明に係る応力腐食割れ検知用試験片によれば、押し込み棒のネジ締めトルク及び/又はネジ締め角度に応じた設定応力を、応力腐食割れ検知用試験片自体で設定することが可能であり、極めて簡素かつ取り扱い容易な応力腐食割れ検知用試験片を提供することができる。
Further, according to the test piece for stress corrosion cracking detection according to the present invention, the inner wall of the cylinder is pressed with the tip of a push rod that can be inserted into the cylinder made of the same metal material as the subject and closed at the tip. It is possible to provide a test piece for detecting stress corrosion cracking that is extremely simple and easy to handle.
Further, according to the test piece for detecting stress corrosion cracking according to the present invention, it is possible to set the set stress corresponding to the screw tightening torque and / or the screw tightening angle of the push-in rod with the stress corrosion crack detecting test piece itself. Therefore, it is possible to provide a test piece for detecting stress corrosion cracking that is extremely simple and easy to handle.

また、本発明に係る応力腐食割れ検知用試験片によれば、最も細くくびれた中央くびれ部の周壁は薄いので、腐食媒体に接触したことによる腐食の影響に加えて、引張力による応力付与の影響も顕著に受けやすく、比較的短い時間で明確に破断するので試験片に好適である。   Further, according to the test specimen for detecting stress corrosion cracking according to the present invention, since the peripheral wall of the narrowest constricted portion is thin, in addition to the influence of corrosion due to contact with the corrosive medium, stress applied by tensile force can be applied. The test piece is suitable for a test piece because it is also easily affected and breaks clearly in a relatively short time.

また、本発明に係る応力腐食割れ検知用試験片によれば、応力腐食割れ検知用試験に対する実装試験を簡易、簡素かつ容易に実現することが可能になる。そして、稼動設備の一部に実装された応力腐食割れ検知用試験片を、定期的に取り外して確認することによって、設備の劣化程度を把握することが可能である。   Further, according to the test piece for detecting stress corrosion cracking according to the present invention, it becomes possible to easily, simply and easily realize a mounting test for the test for detecting stress corrosion cracking. Then, it is possible to grasp the degree of deterioration of the equipment by periodically removing and checking the test pieces for detecting stress corrosion cracking mounted on a part of the operating equipment.

また、本発明に係る応力腐食割れ検出装置及び/又は応力腐食割れ監視方法によれば、電気化学的な応力腐食割れ検出装置において、他の設備を用いることなく、応力腐食割れ検知用試験片自体で引っ張り応力を発生させて維持できるので、簡素かつ安価な装置で容易に応力腐食割れを検出し監視することが可能である。   Further, according to the stress corrosion cracking detection apparatus and / or the stress corrosion cracking monitoring method according to the present invention, in the electrochemical stress corrosion cracking detection apparatus, the stress corrosion cracking test piece itself without using other equipment. Therefore, it is possible to easily detect and monitor stress corrosion cracking with a simple and inexpensive device.

以下、本発明の実施形態に係る、応力腐食割れ(SSC)試験片、応力腐食割れ(SSC)検出装置及び応力腐食割れ(SSC)監視方法について図面を参照して説明する。
図1は本発明の実施形態に係る応力付与機構69を内在したSCC(応力腐食割れ)試験片50の説明図であり、(a)斜視図、(b)一部断面略図である。
Hereinafter, a stress corrosion cracking (SSC) test piece, a stress corrosion cracking (SSC) detection device, and a stress corrosion cracking (SSC) monitoring method according to embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view of an SCC (stress corrosion cracking) test piece 50 including a stress applying mechanism 69 according to an embodiment of the present invention, (a) a perspective view and (b) a partial sectional schematic view.

図2は図1に示したSCC試験片50の詳細図であり、(a)丸棒試験片(試験片本体,筒)51の側面図、(b)丸棒試験片51の正面図、(c)ボルト(応力付与機構,押し込み棒)52の正面図、(d)ボルト52の側面図である。なお、図2において、説明を容易にするために具体的な数値を例示しているが、必ずしもこの寸法に限定されるものではない。   2 is a detailed view of the SCC test piece 50 shown in FIG. 1, (a) a side view of a round bar test piece (test piece main body, cylinder) 51, (b) a front view of the round bar test piece 51, c) A front view of a bolt (stress applying mechanism, push-in rod) 52, and (d) a side view of the bolt 52. Although specific numerical values are illustrated in FIG. 2 for ease of explanation, the dimensions are not necessarily limited to these dimensions.

図1,図2に示すように、SCC試験片50は、丸棒試験片51の開口端60から、軸穴59にボルト52をネジ込む構成である。丸棒試験片51は、金属棒の長手方向のほぼ中央付近に中央くびれ部55を有する試験片の軸中心部に円筒形の軸穴59を穿設したものである。
この丸棒試験片51の内部には、その開口端60近傍の内周にメネジQ(応力付与機構)が刻設されている以外、開口端60から最奥端、すなわち突き当たりの壁57にいたるまで、ほぼ均一な円筒形の軸穴59が穿設されている。一方、ボルト52も、その基端部56にオネジR(応力付与機構)が刻設されている以外は、その先端58にいたるまでオネジRの谷径より細く切削された凹凸のない円筒棒である。
As shown in FIGS. 1 and 2, the SCC test piece 50 is configured such that a bolt 52 is screwed into the shaft hole 59 from the open end 60 of the round bar test piece 51. The round bar test piece 51 is formed by drilling a cylindrical shaft hole 59 at the axial center of a test piece having a central constricted portion 55 near the center in the longitudinal direction of the metal bar.
Inside this round bar test piece 51, a female screw Q (stress applying mechanism) is engraved on the inner periphery in the vicinity of the opening end 60, and extends from the opening end 60 to the farthest end, that is, the wall 57 at the end. A substantially uniform cylindrical shaft hole 59 is formed. On the other hand, the bolt 52 is also a cylindrical rod having no irregularities, which is cut to be narrower than the valley diameter of the male screw R until reaching the tip 58 except that the male screw R (stress applying mechanism) is engraved on the base end portion 56. is there.

したがって、押し込み棒52のネジ締めトルク及び/又はネジ締め角度に応じて、前記メネジQと前記オネジRの螺合部分から押し込み棒52の先端58までの挿入深さを加減することになる。そして、押し込み棒52の先端58が深く挿入される程に、開口端60から最奥端の壁57までを引き離す方向の設定応力が強く発生する。この作用により、SSC試験片50自体で引っ張り応力を任意に設定することが可能である。
すなわち、ボルト52を、丸棒試験片51の開口端60から、軸穴59の突き当たりまで強く締め込むことにより、丸棒試験片51を引き伸ばす方向(図1(b)矢印X)に引っ張り応力Xを付与して維持できるように構成されている。
Therefore, the insertion depth from the threaded portion of the female screw Q and the male screw R to the tip 58 of the push rod 52 is adjusted depending on the screw tightening torque and / or screw tightening angle of the push rod 52. Then, as the tip 58 of the push-in bar 52 is inserted deeper, a set stress in the direction of separating the opening end 60 to the innermost wall 57 is generated more strongly. With this action, it is possible to arbitrarily set the tensile stress in the SSC test piece 50 itself.
That is, by tightening the bolt 52 strongly from the open end 60 of the round bar test piece 51 to the end of the shaft hole 59, the tensile stress X in the direction of extending the round bar test piece 51 (arrow X in FIG. 1B). It is comprised so that it can be given and maintained.

この構成による応力付与機構69を内在したSCC試験片50を用いれば、大掛かりな荷重付与機構(不図示)を接液させることなく、自身で発生した任意の応力を維持したSCC試験片50によるSCC試験が実施できる。   If the SCC test piece 50 having the stress applying mechanism 69 with this configuration is used, the SCC test piece 50 maintaining an arbitrary stress generated by itself without contacting a large load applying mechanism (not shown). A test can be conducted.

図2に示すように、丸棒試験片51における中央くびれ部55の外径のφ5(mm)に対して、その中心に内径φ4.5+α(mm)の軸穴59が穿設されている。この径の差分による管厚の断面積が約3.7mmであり、その断面積によって引っ張り荷重を受け持つことになる。ここに、プロセス流体Wの液圧P(図6参照)に相当する応力を、SCC試験片50に対する前記引っ張り荷重として付与すれば適切な試験の設定が可能である。ちなみに、前記断面積は下式に基づく。
前記断面積=π(φ5/2) −π(φ4.5/2) =約3.7mm
また、開口端60側の基端部(太径部)54の内周にM5のタップを立ててメネジQが刻設されており、ボルト52の基端部56の外周に刻設されたオネジRと螺合可能に構成されている。
As shown in FIG. 2, a shaft hole 59 having an inner diameter φ4.5 + α (mm) is formed at the center with respect to the outer diameter φ5 (mm) of the central constricted portion 55 in the round bar test piece 51. The cross-sectional area of the tube thickness due to the difference in diameter is about 3.7 mm 2 , and the tensile load is handled by the cross-sectional area. If a stress corresponding to the hydraulic pressure P (see FIG. 6) of the process fluid W is applied as the tensile load on the SCC test piece 50, an appropriate test can be set. Incidentally, the cross-sectional area is based on the following equation.
The cross-sectional area = π (φ5 / 2) 2 −π (φ4.5 / 2) 2 = about 3.7 mm 2
Further, a female thread Q is engraved on the inner periphery of the base end portion (large diameter portion) 54 on the opening end 60 side with an M5 tap standing, and a male screw engraved on the outer periphery of the base end portion 56 of the bolt 52. It is configured to be screwable with R.

一方、図2(c)(d)に示すように、ボルト52は、M5の高力ボルトの先端58から16mmだけ基端部56に向けてφ4.5−α(mm)に形成され、丸棒試験片51の軸穴59に挿入できるように形成されている。
なお、試験に先立って、丸棒試験片51の中央くびれ部55にひずみゲージを張り、ボルト52をネジ込みながら、ボルト52の回転角度とひずみとの関係を求めて換算テーブル等(又はグラフ)を作成しておくことが望ましい。
On the other hand, as shown in FIGS. 2 (c) and 2 (d), the bolt 52 is formed to have a diameter of φ4.5−α (mm) toward the base end portion 56 by 16 mm from the tip 58 of the high-strength bolt of M5. It is formed so that it can be inserted into the shaft hole 59 of the bar test piece 51.
Prior to the test, a strain gauge is attached to the central constricted portion 55 of the round bar test piece 51, and the relationship between the rotation angle of the bolt 52 and the strain is obtained while the bolt 52 is screwed in, and a conversion table or the like (or graph). It is desirable to create.

そして、以降の試験において、丸棒試験片51の奥の壁57を、ボルト52の先端58が当接して押圧する押圧力を、ネジQ,Rの締め角度等に基づいて規定可能な構成によって、SSC試験片50に付与されたひずみが推定できる。さらに、材料への応力とひずみの関係から、負荷応力も推定できるので前記換算テーブルを「ネジQ,Rの締め角度に基づいて付与する応力」として完成させておけばなお好ましい(図示せず)。   In a subsequent test, the pressing force that presses the inner wall 57 of the round bar test piece 51 with the front end 58 of the bolt 52 coming into contact with it can be defined based on the tightening angle of the screws Q and R, etc. The strain applied to the SSC specimen 50 can be estimated. Further, since the load stress can be estimated from the relationship between the stress and strain on the material, it is still preferable to complete the conversion table as “stress to be applied based on the tightening angle of the screws Q and R” (not shown). .

なお、SSC試験片50がSCCを起こした場合、ネジQ,R部分がバウンダリー(止水境界)となるので、この部分での止水性に配慮したシール構造の設計を行う。また、SSC試験片50が完全に破断した場合は、丸棒試験片51の先端部53の小片がプロセス流体Wと共に流出するので、流出先にザルのようなスクリーン34(図6参照)を設ける等の対策が必要である。   In addition, when the SSC test piece 50 raises SCC, since the screw Q and R part becomes a boundary (water stop boundary), the seal structure in consideration of the water stop in this part is designed. Further, when the SSC test piece 50 is completely broken, a small piece at the tip 53 of the round bar test piece 51 flows out together with the process fluid W, and therefore a screen 34 (see FIG. 6) like a colander is provided at the outflow destination. Measures such as these are necessary.

次に、SCC試験片50を用いたSSC検出装置1、及びその経時変化を監視するSSC監視方法について、図3〜図6を用いて、より具体的かつ詳細に説明する。
図3は本発明の実施形態に係るSCC検出装置1の一部断面を示した概略説明図であり、(a)二極式、(b)三極式である。なお、この試験は、SCCの生起を外部から目視確認するため、透明なガラス製のセル30,31に満たされた腐食媒体3にSCC試験片50を浸漬して実施している。
Next, the SSC detection apparatus 1 using the SCC test piece 50 and the SSC monitoring method for monitoring the change with time will be described more specifically and in detail with reference to FIGS.
FIG. 3 is a schematic explanatory view showing a partial cross section of the SCC detection device 1 according to the embodiment of the present invention, which is (a) a bipolar type and (b) a tripolar type. This test is performed by immersing the SCC test piece 50 in the corrosive medium 3 filled in the transparent glass cells 30 and 31 in order to visually confirm the occurrence of SCC from the outside.

SCC検出装置1、2は腐食媒体3に浸漬(接触)される測定プローブ24,25と、測定プローブ24,25に接続される電位差計/電流計を含む測定器20と、この測定器20の検出出力を取得して、任意の時間毎にこの検出データを記録(蓄積)し、更に外部に出力可能なデータロガー22と、そのデータロガー22から出力された各種データを処理して表示、記録等を行うパソコン23等から構成される。   The SCC detectors 1 and 2 include measuring probes 24 and 25 immersed (contacted) in the corrosive medium 3, a measuring instrument 20 including a potentiometer / ammeter connected to the measuring probes 24 and 25, and the measuring instrument 20. The detection output is acquired, and this detection data is recorded (accumulated) every arbitrary time. Further, the data logger 22 that can be output to the outside and various data output from the data logger 22 are processed and displayed and recorded. The personal computer 23 etc. that perform etc.

図3(a)に示す二極式のSCC検出装置1は、二極式測定プローブ24を備え、この二極式測定プローブ24に、SSC試験片50及びそれに対する対極8の二極で構成される測定電極を、適切な位置関係を保持するように絶縁部32で固定する。
図3(b)に示す三極式のSCC検出装置2は、三極式測定プローブ25を備え、この三極式測定プローブ25に、SSC試験片50、対極8及び参照電極10の三極で構成される測定電極を、適切な位置関係を保持するように絶縁部33で固定する。
なお、二極式のSCC検出装置1と、三極式のSCC検出装置2のいずれであっても、被検体と同一の金属であるSCC試験片50によりSSCの状態を電気化学的に検出することが可能である。
The bipolar SCC detection apparatus 1 shown in FIG. 3 (a) includes a bipolar measurement probe 24. The bipolar measurement probe 24 includes an SSC test piece 50 and a bipolar electrode 8 corresponding to the SSC test piece 50. The measurement electrode is fixed by the insulating portion 32 so as to maintain an appropriate positional relationship.
The tripolar SCC detection device 2 shown in FIG. 3B includes a tripolar measurement probe 25, and the tripolar measurement probe 25 includes three electrodes, that is, an SSC test piece 50, a counter electrode 8, and a reference electrode 10. The configured measurement electrode is fixed by the insulating portion 33 so as to maintain an appropriate positional relationship.
It should be noted that the SSC state is detected electrochemically by the SCC test piece 50 made of the same metal as the subject in both the bipolar SCC detection device 1 and the tripolar SCC detection device 2. It is possible.

より詳しくは、セル30,31の腐食媒体3中には、SSC試験片50のほか、対極8も浸漬され、これらSSC試験片50と対極8との電位差及び/又は電流を計測する電位差計/電流計20に配線接続されている。また、セル31の腐食媒体3中には、前記SSC試験片50と対極8に加えて、照合電極10も浸漬され、SSC試験片と対極8との電位差を計測するための基準電位を提供している。これらSCC検出装置1,2の構成によって、SCCの生起を監視する方法(電気化学ノイズ解析、ENA)、すなわち、SSC試験片の電位、もしくは、対極8との短絡電流を連続的に記録し、時系列データを解析することができるように構成されている。   More specifically, in addition to the SSC test piece 50, the counter electrode 8 is also immersed in the corrosion medium 3 of the cells 30, 31, and a potentiometer // measures the potential difference and / or current between the SSC test piece 50 and the counter electrode 8. The ammeter 20 is wired. In addition to the SSC test piece 50 and the counter electrode 8, the reference electrode 10 is also immersed in the corrosion medium 3 of the cell 31 to provide a reference potential for measuring the potential difference between the SSC test piece and the counter electrode 8. ing. A method of monitoring the occurrence of SCC (electrochemical noise analysis, ENA) depending on the configuration of these SCC detection devices 1 and 2, that is, continuously recording the potential of the SSC test piece or the short-circuit current with the counter electrode 8, It is configured to be able to analyze time series data.

すなわち、SCC試験片50と、照合電極10又との間に生ずる電位、すなわち電気化学ノイズを連続計測し、電位の変動として示される信号を解析することによって、試験片にSCCが生起する状態を監視(モニタリング)することができる。
なお、前記照合電極10とは、Ag/AgClを飽和KClなど一定の環境に置くことによって常に一定の電位を与える基準電極であり、実際の暴露系を構成するセル31に対してガラス管(図示せず)などで液絡を確保している。
That is, by continuously measuring the potential generated between the SCC test piece 50 and the reference electrode 10, that is, electrochemical noise, and analyzing the signal indicated as potential fluctuation, the state in which SCC occurs in the test piece is obtained. It can be monitored.
The reference electrode 10 is a reference electrode that always gives a constant potential by placing Ag / AgCl in a constant environment such as saturated KCl, and is a glass tube (see FIG. (Not shown) etc. to ensure a liquid junction.

また、その系で腐食しない安定な金属、例えば、チタンなどを基準電極として照合電極10に代用することもできる。そして、基準電極である照合電極10とは異なる材料のSSC試験片50を電極として系に挿入して電位を計測する。計測された電位は、SCCを起こしていない時に高い電位を示し、SCCが生起することによって電位が低下し、SCCの進展中は低い電位を保ち、SCCが停止すれば電位が上昇することが確認できる。   In addition, a stable metal that does not corrode in the system, for example, titanium or the like can be substituted for the reference electrode 10 as a reference electrode. Then, an SSC test piece 50 made of a material different from that of the reference electrode 10 serving as the reference electrode is inserted into the system as an electrode, and the potential is measured. The measured potential shows a high potential when no SCC occurs, the potential decreases when the SCC occurs, maintains a low potential during the progress of the SCC, and increases when the SCC stops. it can.

また、対極8との間の短絡電流を解析することによっても、SCCの生起が監視できる。対極8は、基本的にSSC試験片50と同一材料を用いるか、又はPtなどの安定した金属を用いる。ステンレス鋼製の円筒などをSCC試験片50と絶縁する形でその周りに設けても良いし、配管自体を対極8とすることもできる。SCC試験片50と対極8が同じ状態であれば、基本的に短絡電流は流れない(平衡状態)が、SCC試験片50にSCCが発生すると割れによる金属の溶解、すなわち下記電気化学反応式に相当する電流が流れることによってSCCの生起が検出できる。
Fe→Fe2+ + 2e
The occurrence of SCC can also be monitored by analyzing the short circuit current between the counter electrode 8 and the counter electrode 8. The counter electrode 8 is basically made of the same material as the SSC test piece 50 or a stable metal such as Pt. A stainless steel cylinder or the like may be provided around and insulated from the SCC test piece 50, or the pipe itself may be the counter electrode 8. If the SCC test piece 50 and the counter electrode 8 are in the same state, basically no short-circuit current flows (equilibrium state), but when SCC occurs in the SCC test piece 50, metal dissolution due to cracking, that is, the following electrochemical reaction equation The occurrence of SCC can be detected by the corresponding current flowing.
Fe → Fe 2+ + 2e

また、本発明に係るSCC検出装置1,2によれば、電位、もしくは短絡電流の時系列データをデータロガー22及びパソコン23(図3参照)などに取り込み、電位/電流の変化を検出することによって、SCCのオンラインモニタリングができる。さらに、本発明によれば、配管など、溶接部も含めて、実機構造物構成材料から、SCC試験片50を採取して実装試験することが可能であり、任意の応力を付与することで、評価したい条件でのSCC感受性が評価できる。また、このSCC検出装置1、2によれば、大掛かりなバネ式荷重付与機構その他を用いることなく、SCC試験片50自体で引っ張り応力を発生させて維持できるので、簡素かつ安価にSCCを検出することが可能である。   Further, according to the SCC detection devices 1 and 2 according to the present invention, the time series data of the potential or short-circuit current is taken into the data logger 22 and the personal computer 23 (see FIG. 3), and the potential / current change is detected. Allows online monitoring of SCC. Furthermore, according to the present invention, it is possible to collect and test the SCC test piece 50 from the actual structural component material including the welded portion, such as piping, and by applying an arbitrary stress, SCC sensitivity can be evaluated under the conditions to be evaluated. Further, according to the SCC detection devices 1 and 2, since it is possible to generate and maintain the tensile stress in the SCC test piece 50 itself without using a large-scale spring-type load applying mechanism or the like, SCC is detected simply and inexpensively. It is possible.

図4は本発明の実施形態に係るSCC検出装置1において試験中の短絡電流62I,64I/電位差61E,63Eの経時変化を示すグラフであり、(a)15時間計測データ、(b)2時間計測データである。図4に示すように、試験中の短絡電流、電位差の経時変化、電位差61E,63E、および短絡電流62I,64Iの絶対値が比較的大きく動いてグラフからはみ出すので、その変化分のみを抽出することで、SCCをより検出しやすく微分表示(図5参照)することが好ましい。   FIG. 4 is a graph showing changes over time of the short-circuit currents 62I and 64I / potential differences 61E and 63E during the test in the SCC detection apparatus 1 according to the embodiment of the present invention. (A) 15-hour measurement data, (b) 2 hours Measurement data. As shown in FIG. 4, since the absolute values of the short-circuit current, the potential difference with time, the potential differences 61E and 63E, and the short-circuit currents 62I and 64I during the test move relatively large and protrude from the graph, only the change is extracted. Thus, it is preferable to display differentially (see FIG. 5) so that SCC can be detected more easily.

図5は本発明の実施形態に係るSCC検出装置1において試験中の短絡電流62I,64I/電位差61E,63Eの微分値の経時変化を計測した2時間計測データである。図5に示すように、試験開始0.7h頃に、電位65E、短絡電流66Iともに顕著なスパイク(電気化学ノイズ)が認められ、この時点でSCCが生起したことを検出できる。このような応力腐食割れ監視方法によれば、感度の高い試験結果を得ることが可能である。   FIG. 5 shows two-hour measurement data obtained by measuring the change over time in the differential values of the short-circuit currents 62I and 64I / potential differences 61E and 63E under test in the SCC detection apparatus 1 according to the embodiment of the present invention. As shown in FIG. 5, a remarkable spike (electrochemical noise) is recognized in both the potential 65E and the short-circuit current 66I around 0.7 h after the start of the test, and it can be detected that SCC has occurred at this point. According to such a stress corrosion cracking monitoring method, a highly sensitive test result can be obtained.

図6は本発明の実施形態に係るSCC監視方法の説明図であり、(a)既存の配管100に直接SCC試験片50を取付けた状態の断面図、(b)既存の配管200から分流して設けたバイパス管(以下、「配管」という)201にSCC試験片50を取付けた状態の断面図である。
図6に示すように、SCC感受性を評価すべき被検体は、プロセス流体Wが液圧Pを維持して流れる配管100,200である。この配管100,200における試験片取付け穴101には、絶縁シール21を介在させたSCC試験片50が、その基端部54(図2参照)で支持されながら、配管100,201内に向けて植設されている。また、図6(b)に示すように、スクリーン34を配設することにより、SCC発生による破断片を配管系に流出させることなく回収することができる。
6A and 6B are explanatory diagrams of the SCC monitoring method according to the embodiment of the present invention, in which FIG. 6A is a cross-sectional view in which the SCC test piece 50 is directly attached to the existing pipe 100, and FIG. 2 is a cross-sectional view of a state in which an SCC test piece 50 is attached to a bypass pipe (hereinafter referred to as “piping”) 201 provided.
As shown in FIG. 6, the subject whose SCC sensitivity is to be evaluated is piping 100 and 200 through which the process fluid W flows while maintaining the fluid pressure P. In the test piece mounting hole 101 in the pipes 100 and 200, the SCC test piece 50 with the insulating seal 21 interposed is supported by the base end portion 54 (see FIG. 2) and directed toward the pipes 100 and 201. It has been planted. Further, as shown in FIG. 6B, by disposing the screen 34, it is possible to collect the broken pieces due to the occurrence of SCC without flowing out into the piping system.

このように、プロセス流体Wが流れる配管100,200の試験片取付け穴101から配管100,200内に向けて、SCC試験片50が植設され、腐食媒体3に接触させられることによって実装試験が開始できる。詳しくは、丸棒試験片51の基端部54の一部と、試験片取付け穴101の内周にネジを刻設して両者を螺着すると、金属どうしが直接接触するので電気的導通状態が維持される。ただし、試験の目的によって配管100とSCC試験片50の間を電気的に絶縁するか、あるいは導通状態を維持するかを区別する必要がある。なお、図6では絶縁シール21を介在させて絶縁している。   As described above, the SCC test piece 50 is implanted from the test piece mounting hole 101 of the pipes 100 and 200 through which the process fluid W flows into the pipes 100 and 200, and is brought into contact with the corrosive medium 3. You can start. Specifically, when a screw is engraved on a part of the base end portion 54 of the round bar test piece 51 and the inner periphery of the test piece mounting hole 101 and the both are screwed together, the metals are in direct contact with each other, so that they are in an electrically conductive state. Is maintained. However, it is necessary to distinguish whether the piping 100 and the SCC test piece 50 are electrically insulated from each other or to maintain the conduction state depending on the purpose of the test. In FIG. 6, insulation is performed with an insulating seal 21 interposed.

次に、ENAについて、補足説明する。
前述したように、SSCの生起は、特定の腐食環境中におかれた金属材料が、持続的な引張応力のもとで時間依存型の脆性的割れを起こす環境脆化現象である。そのSSC生起の条件は、材料組織、腐食環境、応力の三者が相当程度に満足されることである。
Next, ENA will be supplementarily described.
As described above, the occurrence of SSC is an environmental embrittlement phenomenon in which a metal material placed in a specific corrosive environment undergoes time-dependent brittle cracking under a continuous tensile stress. The conditions for the occurrence of the SSC are that the material structure, the corrosive environment, and the stress are satisfied to a considerable extent.

本発明のSSC試験片50、SSC検出装置1,2及びSSC監視方法において、SSC試験片50に対する応力と腐食作用を同時に付与させるという必要条件を満足させるので、応力のみで破壊する場合に比較して、降伏応力以下のはるかに低い応力や弱い腐食環境中でも割れが発生する。したがって、本発明に係る応力腐食割れ検知用試験片及び応力腐食割れ検出装置によれば、感度の高い試験結果を得ることが可能である。   In the SSC test piece 50, the SSC detectors 1 and 2 and the SSC monitoring method of the present invention, the necessary condition that stress and corrosive action are simultaneously applied to the SSC test piece 50 is satisfied. Thus, cracks occur even in much lower stresses below the yield stress and in weak corrosive environments. Therefore, according to the test piece for stress corrosion cracking detection and the stress corrosion cracking detection apparatus according to the present invention, it is possible to obtain a highly sensitive test result.

なお、図示せぬ従来のバネ式荷重付与機構したSCC検出装置において、棒状のSSC試験片に対して500Kgf程度の荷重を付与することによって、実装試験に変えた模擬実験を行っていたが、SCC検出装置1,2は、従来の大掛かりなバネ式荷重付与機構等を用いることなく、所望の引っ張り応力X(図1参照)をSSC試験片50自身で発生させて維持するので、プラント配管等において、簡素・安価で容易に実装試験を行なうことができる。なお、実験室等における模擬実験にも、SSC試験片50用いて効果的であることはいうまでもない。   In addition, in the SCC detection device having a conventional spring-type load application mechanism (not shown), a simulation experiment was performed instead of a mounting test by applying a load of about 500 kgf to a rod-shaped SSC test piece. Since the detecting devices 1 and 2 generate and maintain a desired tensile stress X (see FIG. 1) in the SSC test piece 50 itself without using a conventional large-scale spring-type load applying mechanism or the like, in plant piping or the like Simple, inexpensive and easy to perform mounting tests. Needless to say, the SSC test piece 50 is also effective for a simulation experiment in a laboratory or the like.

本発明の実施形態に係る応力付与機構を内在したSCC(応力腐食割れ)試験片の説明図であり、(a)斜視図、(b)一部断面略図である。It is explanatory drawing of the SCC (stress corrosion cracking) test piece which included the stress provision mechanism which concerns on embodiment of this invention, (a) Perspective view, (b) It is a partial cross section schematic diagram. 図1に示したSCC試験片の詳細図であり、(a)丸棒試験片の側面図、(b)丸棒試験片の正面図、(c)ボルトの正面図、(d)ボルトの側面図である。FIG. 2 is a detailed view of the SCC test piece shown in FIG. 1, (a) a side view of the round bar test piece, (b) a front view of the round bar test piece, (c) a front view of the bolt, and (d) a side face of the bolt. FIG. 本発明の実施形態に係るSCC検出装置の一部断面を示した概略説明図であり、(a)二極式、(b)三極式である。It is the schematic explanatory drawing which showed the partial cross section of the SCC detection apparatus which concerns on embodiment of this invention, (a) Bipolar type, (b) Tripolar type. 本発明の実施形態に係るSCC検出装置において試験中の短絡電流/電位差の経時変化を示すグラフであり、(a)15時間計測データ、(b)2時間計測データである。It is a graph which shows a time-dependent change of the short circuit current / potential difference during a test in the SCC detection device concerning the embodiment of the present invention, (a) 15 hours measurement data, (b) 2 hours measurement data. 本発明の実施形態に係るSCC検出装置において試験中の短絡電流/電位差の微分値経時変化を示すグラフであり、(a)15時間計測データ、(b)2時間計測データである。It is a graph which shows the differential value time-dependent change of the short circuit current / potential difference under test in the SCC detection device concerning the embodiment of the present invention, (a) 15 hours measurement data, (b) 2 hours measurement data. 本実施形態に係るSCC監視方法の説明図であり、(a)既存の配管に直接SCC試験片を取付けた状態の断面図、(b)既存の配管から分流して設けたバイパス管にSCC試験片を取付けた状態の断面図である。It is explanatory drawing of the SCC monitoring method which concerns on this embodiment, (a) Sectional drawing of the state which attached the SCC test piece directly to existing piping, (b) SCC test to the bypass pipe provided by shunting from existing piping It is sectional drawing of the state which attached the piece.

符号の説明Explanation of symbols

1,2…SCC検出装置、 3…腐食媒体、 8…対極(測定電極)、 10…照合電極(測定電極)、 20…測定器、 50…SCC(腐食割れ)試験片、51…丸棒試験片(試験片本体,筒)、 52…ボルト(応力付与機構,押し込み棒)、 53…先端部(両端部)、 54…基端部(両端部)、 55…中央くびれ部、 56…基端部、 57…奥の壁、 58…先端、 60…開口端、 61E,63E,65E…電位(電位差)、62I,64I,66I…短絡電流、 69…応力付与機構、 Q…メネジ(応力付与機構)、 R…オネジ(応力付与機構)、W…プロセス流体(腐食媒体)   DESCRIPTION OF SYMBOLS 1, 2 ... SCC detection device 3 ... Corrosion medium 8 ... Counter electrode (measurement electrode) 10 ... Reference electrode (measurement electrode) 20 ... Measuring instrument 50 ... SCC (corrosion cracking) test piece 51 ... Round bar test Piece (test piece main body, tube), 52 ... Bolt (stress applying mechanism, push-in rod), 53 ... Tip end (both ends), 54 ... Base end (both ends), 55 ... Center constriction, 56 ... Base end , 57 ... back wall, 58 ... tip, 60 ... open end, 61E, 63E, 65E ... potential (potential difference), 62I, 64I, 66I ... short circuit current, 69 ... stress applying mechanism, Q ... female screw (stress applying mechanism) ), R ... male screw (stress applying mechanism), W ... process fluid (corrosion medium)

Claims (6)

腐食媒体に接触して腐食する被検体の応力腐食割れ状態を検出する応力腐食割れ検知用試験片であって、
前記被検体と同一の金属材料からなる試験片本体と、
前記試験片本体に内蔵されて前記腐食媒体に接することなく前記試験片本体に応力を付与する応力付与機構と、
を備えることを特徴とする応力腐食割れ検知用試験片。
A test piece for stress corrosion cracking detection that detects the state of stress corrosion cracking of a specimen that corrodes in contact with a corrosive medium,
A specimen body made of the same metal material as the subject;
A stress applying mechanism that is built in the test piece body and applies stress to the test piece body without contacting the corrosive medium;
A test piece for detecting stress corrosion cracking.
前記応力付与機構は、
先端が閉じた筒状の前記試験片本体に対して内挿可能な押し込み棒を備え、
前記筒の奥の壁を前記押し込み棒の先端が押圧する押圧力に基づいて規定される応力を前記筒の両端部が引き離される方向に発生することを特徴とする請求項1に記載の応力腐食割れ検知用試験片。
The stress applying mechanism is
A push rod that can be inserted into the cylindrical test piece main body having a closed tip,
2. The stress corrosion according to claim 1, wherein a stress defined based on a pressing force with which a tip of the push-in rod presses the inner wall of the cylinder is generated in a direction in which both ends of the cylinder are separated. Test specimen for crack detection.
前記応力付与機構は、
前記筒の開口端近傍の内周に刻設されたメネジと、前記押し込み棒の基端部の外周に刻設されたオネジを螺合し、
前記螺合したネジの締め具合により前記応力を規定することを特徴とする請求項2に記載の応力腐食割れ検知用試験片。
The stress applying mechanism is
The internal thread engraved on the inner periphery near the opening end of the cylinder and the external thread engraved on the outer periphery of the base end of the push rod are screwed together,
The test piece for detecting stress corrosion cracking according to claim 2, wherein the stress is defined by a tightening degree of the screwed screw.
前記筒の長手方向に対する中央部の外径を、前記筒の両端部の外径よりも細くした中央くびれ部を形成したことを特徴とする請求項2又は請求項3に記載の応力腐食割れ検知用試験片。   The stress corrosion cracking detection according to claim 2 or 3, wherein a central constriction portion is formed in which an outer diameter of a central portion with respect to a longitudinal direction of the tube is smaller than an outer diameter of both end portions of the tube. Test piece. 前記被検体である配管又は容器に穿設された取付け穴に密嵌固定して用いることを特徴とする請求項1から請求項4のうちいずれか一項に記載の応力腐食割れ検知用試験片。   The test piece for detecting stress corrosion cracking according to any one of claims 1 to 4, wherein the test piece is tightly fitted and fixed to a mounting hole formed in a pipe or a container as the object. . 被検体の応力腐食割れ状態を電気化学的に検出可能に配線接続された複数の測定電極と、
前記測定電極間の電流及び/又は電位差を測定する測定器と、
を備えた応力腐食割れ検出装置において、
前記測定電極のうち少なくとも1つに、請求項1から請求項5のうちいずれか一項に記載の応力腐食割れ検知用試験片を用いたことを特徴とする応力腐食割れ検出装置。
A plurality of measurement electrodes wired to enable electrochemical detection of the state of stress corrosion cracking of the specimen;
A measuring instrument for measuring the current and / or potential difference between the measuring electrodes;
In the stress corrosion cracking detector with
A stress corrosion cracking detection apparatus using the stress corrosion cracking test piece according to any one of claims 1 to 5 as at least one of the measurement electrodes.
JP2007257231A 2007-10-01 2007-10-01 Testpiece and detection apparatus for detection of stress corrosion cracking Pending JP2009085811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007257231A JP2009085811A (en) 2007-10-01 2007-10-01 Testpiece and detection apparatus for detection of stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007257231A JP2009085811A (en) 2007-10-01 2007-10-01 Testpiece and detection apparatus for detection of stress corrosion cracking

Publications (1)

Publication Number Publication Date
JP2009085811A true JP2009085811A (en) 2009-04-23

Family

ID=40659417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007257231A Pending JP2009085811A (en) 2007-10-01 2007-10-01 Testpiece and detection apparatus for detection of stress corrosion cracking

Country Status (1)

Country Link
JP (1) JP2009085811A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115243A (en) * 2012-12-12 2014-06-26 Ihi Corp Test piece for stress corrosion crack test, method of manufacturing the same, and stress corrosion crack test device
RU2666161C1 (en) * 2017-10-20 2018-09-06 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" Method of testing tube steels on stress corrosion cracking and device for its implementation
CN108918406A (en) * 2018-09-17 2018-11-30 吉林大学 Drilling tool material corrosion simulation test device in a kind of well
KR20210108120A (en) 2020-02-25 2021-09-02 한국원자력연구원 Testing apparatus of measuring starting time of stress corrosion cracking and thereof method
CN115013139A (en) * 2022-06-17 2022-09-06 武汉理工大学 Simulation test system for performance analysis of welding pipe fitting of marine cooling water system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115243A (en) * 2012-12-12 2014-06-26 Ihi Corp Test piece for stress corrosion crack test, method of manufacturing the same, and stress corrosion crack test device
RU2666161C1 (en) * 2017-10-20 2018-09-06 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - Газпром ВНИИГАЗ" Method of testing tube steels on stress corrosion cracking and device for its implementation
CN108918406A (en) * 2018-09-17 2018-11-30 吉林大学 Drilling tool material corrosion simulation test device in a kind of well
KR20210108120A (en) 2020-02-25 2021-09-02 한국원자력연구원 Testing apparatus of measuring starting time of stress corrosion cracking and thereof method
CN115013139A (en) * 2022-06-17 2022-09-06 武汉理工大学 Simulation test system for performance analysis of welding pipe fitting of marine cooling water system
CN115013139B (en) * 2022-06-17 2024-04-12 武汉理工大学 Simulation test system for performance analysis of welded pipe fitting of marine cooling water system

Similar Documents

Publication Publication Date Title
CN107505256B (en) Weld corrosion monitoring device capable of simulating stress state and monitoring method thereof
US20060144719A1 (en) Quantitative, real time measurements of localized corrosion events
NL2011758C2 (en) Field measurement of corrosion and erosion.
JP2009085811A (en) Testpiece and detection apparatus for detection of stress corrosion cracking
JPH0650927A (en) Detecting method for crack or fracture caused by stress corrosion cracking
US20130210154A1 (en) Hand-device, and methods for examining a corrodible metal object for corrosion
CA2711951C (en) Localized corrosion monitoring device for limited conductivity fluids
Song et al. Field corrosion detection of nuclear materials using electrochemical noise techinique
JP2010266342A (en) Metal corrosion diagnostic method
Agyenim-Boateng et al. Determination of corrosion rate and remaining life of pressure vessel using ultrasonic thickness testing technique
JP2008209180A (en) Measuring electrode, corrosion monitoring device, and corrosion monitoring method
US7675297B1 (en) Methods for measuring bounding corrosion rates using coupled multielectrode sensors and eliminating the effects of bad electrodes
Yang et al. Monitoring of Localized Corrosion
Tan et al. New electrochemical methods for visualizing dynamic corrosion and coating disbondment processes on simulated pipeline conditions
WO2020087144A1 (en) Structural arrangement for a sensor/probe for measuring corrosion rate by using electrical resistance
Tan et al. An overview of recent progresses in acquiring, visualizing and interpreting pipeline corrosion monitoring data
Masroor Methods of Corrosion Monitoring
NL2025145B1 (en) Corrosion measurement
Hurley et al. A condition monitor for atmospheric induced stress corrosion cracking
Dean Corrosion monitoring for industrial processes
Tan et al. An overview of new progresses in understanding pipeline corrosion
JP2856524B2 (en) Health monitoring device
Varela et al. Electrochemically monitoring localized corrosion patterns and CP effectiveness under disbonded coatings
Beavers et al. Development of Selective Seam Weld Corrosion Test Method
EP4211442A1 (en) Corrosion rate measuring probe