JP2009085639A - Noncontact-type viscometer and viscosity-measuring method - Google Patents

Noncontact-type viscometer and viscosity-measuring method Download PDF

Info

Publication number
JP2009085639A
JP2009085639A JP2007252684A JP2007252684A JP2009085639A JP 2009085639 A JP2009085639 A JP 2009085639A JP 2007252684 A JP2007252684 A JP 2007252684A JP 2007252684 A JP2007252684 A JP 2007252684A JP 2009085639 A JP2009085639 A JP 2009085639A
Authority
JP
Japan
Prior art keywords
liquid
viscosity
life cycle
gas
measured value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007252684A
Other languages
Japanese (ja)
Inventor
Rikiya Ito
力哉 伊藤
Koji Onozaki
浩志 小野崎
Yusuke Yuzaki
裕介 猶崎
Toshihiro Harada
敏裕 原田
Katsuaki Nakamura
勝晶 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimmon Manufacturing Co Ltd
Azbil Corp
Original Assignee
Kimmon Manufacturing Co Ltd
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimmon Manufacturing Co Ltd, Azbil Corp filed Critical Kimmon Manufacturing Co Ltd
Priority to JP2007252684A priority Critical patent/JP2009085639A/en
Publication of JP2009085639A publication Critical patent/JP2009085639A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noncontact type viscometer capable of readily measuring the viscosity from the displacement of a liquid surface. <P>SOLUTION: This viscometer is equipped with a measuring mechanism 301 for measuring the existence period, until vanishment of a recessed part 2 generated on the liquid 1 surface by a gas jetted out from a nozzle 21, arranged obliquely with respect to the liquid 1 surface; a proportional relation storage module 201 for preserving a proportional relation between the existence period and the viscosity of the liquid 1; and a viscosity calculation mechanism 302 for calculating a measured value of the viscosity of the liquid 1, based on the measured value of the existence period and the proportional relation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は物性評価技術に関し、特に非接触型粘度計及び粘度測定方法に関する。   The present invention relates to a physical property evaluation technique, and more particularly to a non-contact viscometer and a viscosity measuring method.

従来、振動式粘度計、回転式粘度計、細管式粘度計、落体式粘度計、及びカップ式粘度計等の計測対象の液体に直接接触して液体の粘度を測定する接触型粘度計があった。しかし接触型粘度計は、計測対象の液体にコンタミが生じるおそれがあった。そこで、液体表面に音波を照射して液体表面に生じる変位をレーザ変位計で測定し、測定された変位から液体の粘度を算出する粘度計が提案されている(例えば、特許文献1参照。)。しかし、音波を照射することにより生じる液体の表面の変位は微小であり、検出は困難であった。
小林、田井、伊藤、「空中音波を用いた非接触型粘度計」、超音波TECHNO、日本工業出版、2007年5-6月号、p5-8
Conventionally, there are contact type viscometers that measure the viscosity of a liquid by directly contacting the liquid to be measured, such as a vibration viscometer, a rotary viscometer, a capillary viscometer, a falling body viscometer, and a cup viscometer. It was. However, the contact viscometer may cause contamination in the liquid to be measured. Therefore, a viscometer has been proposed in which a displacement generated on a liquid surface by irradiating a sound wave on the liquid surface is measured with a laser displacement meter, and the viscosity of the liquid is calculated from the measured displacement (see, for example, Patent Document 1). . However, the displacement of the surface of the liquid caused by irradiating the sound wave is very small and difficult to detect.
Kobayashi, Tai, Ito, “Non-contact viscometer using aerial acoustic waves”, Ultrasonic TECHNO, Nihon Kogyo Publishing, May-June 2007, p5-8

本発明は、液体表面の変位から容易に粘度を測定可能な非接触型粘度計及び粘度測定方法を提供することを目的とする。   An object of the present invention is to provide a non-contact viscometer and a viscosity measuring method capable of easily measuring the viscosity from the displacement of the liquid surface.

本発明の特徴は、(イ)液体の表面に対して斜めに配置されたノズルから噴き出される気体により液体の表面に生じる凹部が消失するまでの生存周期を測定する測定機構と、(ロ)生存周期と液体の粘度との比例関係を保存する比例関係記憶モジュールと、(ハ)生存周期の測定値及び比例関係に基づいて、液体の粘度の測定値を算出する粘度算出機構とを備える非接触型粘度計であることを要旨とする。   The features of the present invention are: (a) a measurement mechanism that measures a life cycle until a recess generated on the surface of the liquid disappears due to a gas ejected from a nozzle disposed obliquely with respect to the surface of the liquid; A proportional relationship storage module that stores a proportional relationship between the life cycle and the viscosity of the liquid; and (c) a viscosity calculation mechanism that calculates the measured value of the viscosity of the liquid based on the measured value and the proportional relationship of the life cycle. The gist is that it is a contact viscometer.

本発明の他の特徴は、(イ)液体の表面に対して斜めに配置されたノズルから一定の速度で気体を噴出するステップと、(ロ)噴出された気体により液体の表面に生じる凹部が消失するまでの生存周期を測定するステップと、(ハ)生存周期の測定値と、生存周期及び液体の粘度の比例関係に基づいて、液体の粘度の測定値を算出するステップとを含む粘度測定方法であることを要旨とする。   Other features of the present invention are: (a) a step of ejecting gas at a constant speed from a nozzle disposed obliquely with respect to the surface of the liquid; and (b) a recess formed on the surface of the liquid by the ejected gas. Measuring the life cycle until disappearance, and (c) measuring the life cycle and calculating the measurement value of the viscosity of the liquid based on the proportional relationship between the life cycle and the viscosity of the liquid. The gist is the method.

本発明によれば、液体表面に生じる凹部が消失するまでの生存周期から容易に粘度を測定可能な非接触型粘度計及び粘度測定方法を提供可能である。   According to the present invention, it is possible to provide a non-contact viscometer and a viscosity measuring method capable of easily measuring the viscosity from the life cycle until the concave portion generated on the liquid surface disappears.

以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

(第1の実施の形態)
第1の実施の形態に係る非接触型粘度計は、図1に示すように、液体1の表面に対して斜めに配置されるノズル21、ノズル21から一定の気圧及び速度で噴き出される気体により液体1の表面に生じる凹部2を検出する検出装置31、及び中央演算処理装置(CPU)300を備える。CPU300は、液体1の表面に生じた凹部2が消失するまでの生存周期を測定する測定機構301を含む。またCPU300にはデータ記憶装置200が接続されている。データ記憶装置200は、凹部2が生成してから消失するまでの生存周期と液体1の粘度との比例関係を保存する比例関係記憶モジュール201を含む。CPU300は、凹部2が生成してから消失するまでの生存周期の測定値及び比例関係記憶モジュール201に保存された比例関係に基づいて、液体1の粘度の測定値を算出する粘度算出機構302をさらに含む。
(First embodiment)
As shown in FIG. 1, the non-contact viscometer according to the first embodiment includes a nozzle 21 disposed obliquely with respect to the surface of the liquid 1, and a gas ejected from the nozzle 21 at a constant pressure and speed. Is provided with a detection device 31 for detecting the recess 2 generated on the surface of the liquid 1 and a central processing unit (CPU) 300. The CPU 300 includes a measurement mechanism 301 that measures the life cycle until the recess 2 generated on the surface of the liquid 1 disappears. A data storage device 200 is connected to the CPU 300. The data storage device 200 includes a proportional relationship storage module 201 that stores a proportional relationship between the life cycle from the generation of the recess 2 to the disappearance thereof and the viscosity of the liquid 1. The CPU 300 has a viscosity calculation mechanism 302 that calculates the measured value of the viscosity of the liquid 1 based on the measured value of the life cycle from the generation of the recess 2 to the disappearance and the proportional relationship stored in the proportional relationship storage module 201. In addition.

ノズル21には送風管23を介して空気等の気体を送出するポンプ25が接続されている。液体1は開口シャーレ等の容器101に保存されている。また容器101は、水平方向及び垂直方向に移動可能なステージ102上に配置されている。液体1の表面に一定の気圧及び速度で気体を斜めから吹き付けると、図2に示すように、気体の運動量によって液体1の表面に凹部2が生じる。次に液体1の表面と平行な運動量の成分によって、図3に示すように、凹部2は液体1の表面を横方向に移動する。凹部2の半径程度と同じ距離を凹部2が移動すると、液体1の表面に垂直な運動量の成分が凹部2に与えられなくなるため、図4に示すように、液体1の浮力によって凹部2が消失すると同時に、連続的に吹き付けられている気体によって次の凹部3が液体1の表面に新たに生じる。なお、気体の気圧は一定であることが好ましいが、精度の高い一定性は必要ない。   A pump 25 that sends out gas such as air is connected to the nozzle 21 via a blower pipe 23. The liquid 1 is stored in a container 101 such as an open petri dish. The container 101 is disposed on a stage 102 that can move in the horizontal and vertical directions. When a gas is blown obliquely onto the surface of the liquid 1 at a constant pressure and speed, a recess 2 is formed on the surface of the liquid 1 due to the momentum of the gas, as shown in FIG. Next, due to the momentum component parallel to the surface of the liquid 1, the recess 2 moves laterally on the surface of the liquid 1 as shown in FIG. When the recess 2 moves the same distance as the radius of the recess 2, the momentum component perpendicular to the surface of the liquid 1 is not given to the recess 2, so the recess 2 disappears due to the buoyancy of the liquid 1, as shown in FIG. At the same time, the next recessed portion 3 is newly generated on the surface of the liquid 1 by the continuously blown gas. In addition, although it is preferable that the atmospheric | air pressure of gas is constant, a highly accurate fixed property is not required.

このように、粘性のある液体1の表面に向けて気流を噴射すると、液体の表面にせん断力が働き、表面近傍の液体の位置と内部の液体の位置がズレ始める。しかし液体1の粘性のため、位置ズレは局所的である。さらに、継続的に一定の気圧で気体を吹き付け続けると、局所的な位置ズレが液体表面近傍の渦流になり、液体1の表面に凹部が次から次へと周期的に生成し、消滅することになる。ここで、一つの凹部3が生成してから消滅するまでの時間を凹部3の「生存周期」とする。凹部3の生存周期は、液体1の粘度が低い場合には表面張力等の液体1の慣性の影響を強く受け、液体1の粘度が高い場合には液体1の粘度の影響を強く受ける。   In this way, when an air flow is ejected toward the surface of the viscous liquid 1, a shearing force acts on the surface of the liquid, and the position of the liquid near the surface and the position of the internal liquid begin to shift. However, due to the viscosity of liquid 1, the positional deviation is local. Furthermore, if the gas is continuously blown at a constant atmospheric pressure, the local positional deviation becomes a vortex near the liquid surface, and recesses are periodically generated on the surface of the liquid 1 from one to the next and disappear. become. Here, the time from the generation of one recess 3 to the disappearance is defined as the “life cycle” of the recess 3. The life cycle of the recess 3 is strongly influenced by the inertia of the liquid 1 such as surface tension when the viscosity of the liquid 1 is low, and is strongly influenced by the viscosity of the liquid 1 when the viscosity of the liquid 1 is high.

図5を参照して、液体1に吹き付けられる単位時間あたりの気体の運動量pは、下記(1)式で与えられる。   Referring to FIG. 5, the momentum p of gas per unit time sprayed on liquid 1 is given by the following equation (1).

p = mA×u …(1)
ここでmAは単位時間あたりの気体の質量、uは気体の速度を表す。気体が半径rのノズル21の開口から液体1に吹き付けられている場合、ノズル21の開口部の表面積Sは下記(2)式で与えられる。
p = m A × u… (1)
Here, m A represents the mass of the gas per unit time, and u represents the velocity of the gas. When gas is sprayed onto the liquid 1 from the opening of the nozzle 21 having the radius r, the surface area S of the opening of the nozzle 21 is given by the following equation (2).

S = πr2 …(2)
よって気体の質量mAは下記(3)式で与えられる。
S = πr 2 (2)
Thus the mass m A of the gas is given by the following equation (3).

mA = ρa×u×S = ρa×u×πr2 …(3)
(1)式及び(3)式より、気体の運動量pは下記(4)式で与えられる。
m A = ρ a × u × S = ρ a × u × πr 2 (3)
From equations (1) and (3), the momentum p of the gas is given by the following equation (4).

p = ρa×πr2×u2 …(4)
気体の進行方向と、液体1の表面とがなす角度をθとすると、気体が1秒間に与える運動量pの水平成分phは下記(5)式で与えられ、1秒間の力積fhと等しい。また気体の運動量pの垂直成分pvは下記(6)式で与えられる。
p = ρ a × πr 2 × u 2 … (4)
The traveling direction of the gas, when the angle between the surface liquid 1 and theta, the horizontal component p h momentum p of the gas has on the one second is given by the following equation (5), and impulse f h of 1 sec equal. The vertical component p v of the gas momentum p is given by the following equation (6).

ph = p×cosθ = ρa×πr2×u2×cosθ = fh …(5)
pv = p×sinθ = ρa×πr2×u2×sinθ …(6)
ここで液体1中を半径rの球体が速度vで運動する時、ストークスの法則により、球体には下記(7)式で与えられる粘性抵抗力fvが加わる。
p h = p × cosθ = ρ a × πr 2 × u 2 × cosθ = f h … (5)
p v = p × sinθ = ρ a × πr 2 × u 2 × sinθ… (6)
Here, when a sphere having a radius r moves in the liquid 1 at a velocity v, a viscous resistance force f v given by the following equation (7) is applied to the sphere according to Stokes' law.

fv = 6π×η×r×v = k × v …(7)
ここでηは液体1の粘度、kは定数を表す。球体の運動方程式を立てる場合、慣性質量としては気体の密度ではなく、液体1の密度を用いなければならない。そこで、球体の気泡が速度vで前方に移動することを、球体の気泡と合同な形状の液体が速度vで後方に移動することであると仮定すると、(5)式及び(7)式より、下記(8)式が導かれる。
f v = 6π × η × r × v = k × v (7)
Here, η is the viscosity of the liquid 1, and k is a constant. When establishing the equation of motion of a sphere, the density of the liquid 1 must be used as the inertial mass, not the density of the gas. Therefore, assuming that the spherical bubbles move forward at the speed v, and that the liquid having the same shape as the spherical bubbles moves backward at the speed v, the equations (5) and (7) The following equation (8) is derived.

mW(dv/dt) = fh - fv = fh - k×v …(8)
なおmWは球体の気泡と合同な形状の液体の質量であり、ρWを液体1の密度として下記(9)式で与えられる。
m W (dv / dt) = f h -f v = f h -k × v… (8)
Note that m W is the mass of the liquid having the same shape as the spherical bubbles, and is given by the following equation (9), where ρ W is the density of the liquid 1.

mW = {(4πr3)/3}×ρW …(9)
(8)式の速度vに関する微分方程式を変数分離で解くことにより、下記(10)式が得られる。
m W = {(4πr 3 ) / 3} × ρ W … (9)
The following equation (10) is obtained by solving the differential equation for the velocity v in equation (8) by variable separation.

dv/(fh-kv) = dt / mW
-(1/k)log(fh-kv) = (t / mW) + C1
fh - kv = C2×exp(-kt / mW) …(10)
ここでC1及びC2は定数である。t=0の時、v=0であるという境界条件より、球体の気泡の速度vは下記(11)式で与えられる。
dv / (f h -kv) = dt / m W
-(1 / k) log (f h -kv) = (t / m W ) + C 1
f h -kv = C 2 × exp (-kt / m W )… (10)
Here, C 1 and C 2 are constants. From the boundary condition that v = 0 when t = 0, the velocity v of the spherical bubble is given by the following equation (11).

v = (fh / k) [1-exp(-kt / m)] …(11)
球体の気泡は、吹き付けられた気体によって水平方向に加えられる力fhによって加速されるが、図6に示すように、粘性抵抗力fvによってたちまち下記(12)式で与えられる終端速度vFとなり、等速で移動する。
v = (f h / k) [1-exp (-kt / m)]… (11)
The spherical bubbles are accelerated by the force f h applied in the horizontal direction by the blown gas, but as shown in Fig. 6, the terminal velocity v F given by the following equation (12) is instantly determined by the viscous resistance force f v And move at a constant speed.

vF = (fh / k)
= (ρa×πr2×u2×cosθ) / (6π×η×r) …(12)
ノズル21から噴き出される気体の速度uと流量Uの関係は、下記(13)式で与えられる。
v F = (f h / k)
= (ρ a × πr 2 × u 2 × cosθ) / (6π × η × r)… (12)
The relationship between the velocity u of gas ejected from the nozzle 21 and the flow rate U is given by the following equation (13).

u = (U / πr2) …(13)
よって(12)式及び(13)式より、終端速度vFは下記(14)式で与えられる。
u = (U / πr 2 )… (13)
Therefore, the terminal velocity v F is given by the following equation (14) from the equations (12) and (13).

vF ={ρa×πr2×(U / πr2)2×cosθ} / (6π×η×r)
=(ρaU2×cosθ) / (6π2×η×r3) …(14)
図2乃至図4に示した一つの凹部2が生存周期の間に液体1の表面を移動する距離は、図1に示すノズル21の開口部の半径rと等しいと経験的に仮定できるので、生存周期tCは下記(15)式で与えられる。
v F = {ρ a × πr 2 × (U / πr 2 ) 2 × cosθ} / (6π × η × r)
= (ρ a U 2 × cosθ) / (6π 2 × η × r 3 )… (14)
Since the distance that one recess 2 shown in FIGS. 2 to 4 moves on the surface of the liquid 1 during the life cycle can be empirically assumed to be equal to the radius r of the opening of the nozzle 21 shown in FIG. The life cycle t C is given by the following equation (15).

tC = r / vF
= r / {(ρaU2×cosθ) / (6π2×η×r3)}
= (6π2×η×r4) / (ρaU2×cosθ) …(15)
(15)式を変形して、凹部2の生存周期tCと液体1の粘度ηとの関係は、下記(16)式で与えられる。
t C = r / v F
= r / {(ρ a U 2 × cosθ) / (6π 2 × η × r 3 )}
= (6π 2 × η × r 4 ) / (ρ a U 2 × cosθ) (15)
By transforming the equation (15), the relationship between the life cycle t C of the recess 2 and the viscosity η of the liquid 1 is given by the following equation (16).

η= {(ρaU2×cosθ) / (6π2r4)}×tC …(16)
なお、終端速度vFに至るまでの緩和時間τFは下記(17)式で与えられる。
η = {(ρ a U 2 × cosθ) / (6π 2 r 4 )} × t C … (16)
Incidentally, the relaxation time tau F up to the terminal velocity v F is given by the following equation (17).

τF = mw / k = (2r3ρa) / (9η) …(17)
(16)式において、気体の密度ρa、流量U、角度θ、及びノズル21の半径rのそれぞれは装置によって定まった値をとるため、凹部2の生存周期tCと液体1の粘度ηとは、1次の比例関係にある。
τ F = m w / k = (2r 3 ρ a ) / (9η)… (17)
In the equation (16), the gas density ρ a , the flow rate U, the angle θ, and the radius r of the nozzle 21 each take values determined by the apparatus, so the life cycle t C of the recess 2 and the viscosity η of the liquid 1 Is in a first-order proportional relationship.

図1に示す治具103に固定された検出装置31としては、光電センサが使用可能である。検出装置31は、液体1の表面に向けて配置されている。検出装置31は、液体1の表面で凹部2が次から次へと生成し消滅することにより生じる光強度の変化を検出する。さらに検出装置31は、検出した光強度を光電変換し、図7に示すような電気信号を出力する。図1に示す測定機構301は検出装置31から電気信号を受信する。さらに測定機構301は、例えば電気信号を高速フーリエ変換(FFT)することにより、電気信号の周期を凹部2の生存周期tCの測定値として算出する。 As the detection device 31 fixed to the jig 103 shown in FIG. 1, a photoelectric sensor can be used. The detection device 31 is arranged toward the surface of the liquid 1. The detection device 31 detects a change in light intensity caused by the formation and disappearance of the recess 2 from the next to the next on the surface of the liquid 1. Further, the detection device 31 photoelectrically converts the detected light intensity and outputs an electrical signal as shown in FIG. A measurement mechanism 301 shown in FIG. 1 receives an electrical signal from the detection device 31. Further, the measurement mechanism 301 calculates the period of the electric signal as a measured value of the life cycle t C of the recess 2 by performing, for example, fast Fourier transform (FFT) on the electric signal.

データ記憶装置200は、上記(16)式で示した凹部2の生存周期tCと液体1の粘度ηとの関係を表す式を保存する。粘度算出機構302はデータ記憶装置200から上記(16)式を読み出し、測定機構301から凹部2の生存周期tCの測定値を受信する。さらに粘度算出機構302は、(16)式に気体の密度ρa、流量U、角度θ、及びノズル21の半径rのそれぞれの既知の値と、凹部2の生存周期tCの測定値とを代入し、液体1の粘度ηの測定値を算出する。 The data storage device 200 stores an equation representing the relationship between the life cycle t C of the recess 2 and the viscosity η of the liquid 1 shown in the above equation (16). The viscosity calculation mechanism 302 reads the above equation (16) from the data storage device 200 and receives the measurement value of the life cycle t C of the recess 2 from the measurement mechanism 301. Further, the viscosity calculating mechanism 302 calculates the known value of the gas density ρ a , the flow rate U, the angle θ, and the radius r of the nozzle 21 and the measured value of the life cycle t C of the recess 2 in the equation (16). Substitute and calculate the measured value of viscosity η of liquid 1.

CPU300には、さらに入力装置312、出力装置313、プログラム記憶装置330、及び一時記憶装置331が接続される。入力装置312としては、キーボード、マウス等が使用可能である。出力装置313としては液晶表示装置(LCD)、発光ダイオード(LED)等によるモニタ画面等が使用可能である。プログラム記憶装置330は、CPU300に接続された装置間のデータ送受信等をCPU300に実行させるためのプログラムを保存している。一時記憶装置331は、CPU300の演算過程でのデータを一時的に保存する。   An input device 312, an output device 313, a program storage device 330, and a temporary storage device 331 are further connected to the CPU 300. As the input device 312, a keyboard, a mouse, or the like can be used. As the output device 313, a monitor screen using a liquid crystal display (LCD), a light emitting diode (LED), or the like can be used. The program storage device 330 stores a program for causing the CPU 300 to execute data transmission / reception between devices connected to the CPU 300. The temporary storage device 331 temporarily stores data during the calculation process of the CPU 300.

次に第1の実施の形態に係る粘度測定方法を、図8に示すフローチャートを用いて説明する。なお、図1に示したCPU300による演算結果は、一時記憶装置331に逐次格納される。   Next, a viscosity measuring method according to the first embodiment will be described using the flowchart shown in FIG. Note that the calculation results by the CPU 300 shown in FIG. 1 are sequentially stored in the temporary storage device 331.

(a) ステップS101でポンプ25から気体を送出し、ノズル21の開口から液体1の表面に気体を噴出する。噴出された気体により、液体1の表面に凹部2が次から次への周期的に生成し、消滅する。ステップS102で、検出装置31は凹部2が次から次へと生成し消滅することにより生じる光強度の変化を検出し、図7に示すような電気信号を出力する。ステップS103で、図1に示す測定機構301は検出装置31から電気信号を受信し、電気信号から凹部2の生存周期tCの測定値を算出する。 (a) Gas is sent from the pump 25 in step S101, and the gas is jetted from the opening of the nozzle 21 onto the surface of the liquid 1. Due to the ejected gas, the recesses 2 are periodically generated from the next to the surface of the liquid 1 and disappear. In step S102, the detection device 31 detects a change in light intensity caused by the generation and disappearance of the recess 2 from one to the next, and outputs an electrical signal as shown in FIG. In step S103, the measurement mechanism 301 shown in FIG. 1 receives an electrical signal from the detection device 31, and calculates a measured value of the life cycle t C of the recess 2 from the electrical signal.

(b) ステップS104で粘度算出機構302は、比例関係記憶モジュール201から上記(16)式を読み出す。また入力装置312から気体の密度ρa、流量U、角度θ、及びノズル21の半径rのそれぞれの既知の値が粘度算出機構302に入力される。次に粘度算出機構302は、測定機構301から凹部2の生存周期tCの測定値を受信する。その後、粘度算出機構302は(16)式に気体の密度ρa、流量U、角度θ、及びノズル21の半径rの既知の値と、生存周期tCの測定値とを代入し、液体1の粘度ηの測定値を算出する。最後に、出力装置313に液体1の粘度ηの測定値を出力して、第1の実施の形態に係る粘度測定方法を終了する。 (b) In step S104, the viscosity calculation mechanism 302 reads the equation (16) from the proportional relationship storage module 201. Also, known values of the gas density ρ a , the flow rate U, the angle θ, and the radius r of the nozzle 21 are input to the viscosity calculation mechanism 302 from the input device 312. Next, the viscosity calculation mechanism 302 receives the measurement value of the life cycle t C of the recess 2 from the measurement mechanism 301. Thereafter, the viscosity calculation mechanism 302 substitutes the known value of the gas density ρ a , the flow rate U, the angle θ, and the radius r of the nozzle 21 and the measured value of the life cycle t C into the equation (16), and the liquid 1 The measured value of the viscosity η is calculated. Finally, the measured value of the viscosity η of the liquid 1 is output to the output device 313, and the viscosity measuring method according to the first embodiment is completed.

従来の非接触型粘度計では、音波を照射することにより生じる液体の表面の変位に基づいて、液体の粘度を測定していた。しかし音波の照射によって生じる液体表面の変位は微小であるため検出が困難であり、レーザ変位計等の高価な装置を用いる必要があった。さらに、音波及びレーザの出力が高いために、誤って人体に照射された場合に危険であるという問題があった。   In the conventional non-contact type viscometer, the viscosity of the liquid is measured based on the displacement of the surface of the liquid caused by irradiating the sound wave. However, the displacement of the liquid surface caused by the irradiation of sound waves is minute and difficult to detect, and it is necessary to use an expensive device such as a laser displacement meter. Furthermore, since the output of the sound wave and the laser is high, there is a problem that it is dangerous when the human body is accidentally irradiated.

また、液体表面にレーザ光を照射して液体表面に細波を生じさせ、細波の変位から液体の粘度を測定する方法もあった。しかしレーザ光照射で生じる細波の変位も微小であるため、細波にレーザ光を入射して生じる回折光の減衰時間を測定する必要がある等の困難があった。   In addition, there is a method in which a laser beam is irradiated on the liquid surface to generate a fine wave on the liquid surface, and the viscosity of the liquid is measured from the displacement of the fine wave. However, since the displacement of the fine wave generated by the laser light irradiation is very small, it has been difficult to measure the decay time of the diffracted light generated when the laser light is incident on the fine wave.

また、液体表面の近傍に金属製の探針を配置し、探針に100〜200Vの電圧を加えて電界を発生させ、液体表面に生じる変位を測定することにより液体の粘度を測定する方法もあった。しかし、やはり液体表面の変位が微小であり、検出が困難であった。また、検査対象の液体が帯電性で発火性がある場合、測定中に爆発の危険を伴うという問題もあった。   There is also a method of measuring the viscosity of the liquid by placing a metal probe near the liquid surface, applying a voltage of 100 to 200 V to the probe to generate an electric field, and measuring the displacement generated on the liquid surface. there were. However, the displacement of the liquid surface was very small, and it was difficult to detect. In addition, when the liquid to be inspected is charged and ignitable, there is a problem in that there is a risk of explosion during measurement.

これに対し、第1の実施の形態に係る非接触型粘度計においては、液体1に一定の気圧で気体を継続的に吹き付けることにより凹部2が生じる。液体1に吹き付けられる気体の周波数は実質的にゼロであるため、吹き付けられる気体によって液体1に生じる現象の周波数も低くなる。一定の気圧で気体を吹き付けるという力学的エネルギを与える操作が液体1表面の低周波現象に遷移するため、凹部2の深さや移動距離等の液体の変位は大きくなる。そのため、光電センサ等の安価な装置によっても容易に検出することが可能となる。また、ノズル21から噴射される気体は空気等が利用可能であり、発火性又は有毒性の気体を使用する必要がなく、極めて安全に液体1の粘度を測定することが可能となる。   On the other hand, in the non-contact type viscometer according to the first embodiment, the recess 2 is generated by continuously blowing gas to the liquid 1 at a constant pressure. Since the frequency of the gas sprayed on the liquid 1 is substantially zero, the frequency of the phenomenon generated in the liquid 1 by the sprayed gas is also low. Since the operation of applying mechanical energy to blow gas at a constant pressure shifts to a low frequency phenomenon on the surface of the liquid 1, the displacement of the liquid such as the depth of the recess 2 and the moving distance becomes large. Therefore, it can be easily detected by an inexpensive device such as a photoelectric sensor. In addition, air or the like can be used as the gas injected from the nozzle 21, so that it is not necessary to use an ignitable or toxic gas, and the viscosity of the liquid 1 can be measured extremely safely.

(第1の実施の形態の第1の変形例)
図1に示す凹部2の生存周期tCと液体1の粘度ηが1次の比例関係にあることは、実験的にも検証される。まず、ノズルを液体の表面から垂直方向2mmの高さに配置し、ノズルの開口部の直径を50μm、噴出される気体の流量を30ml/min、気体の気圧を0.2MPaに設定した。次に図9に示す信越工業株式会社製のシリコーンオイル試料5〜13のそれぞれについて凹部の生存周期tCを測定した。すると図10に示すように、シリコーンオイル試料5〜13の粘度と凹部の生存周期tCは1次の比例関係を示した。なお、(16)式から導かれる生存周期tCと粘度の関係を示す理論直線とは差異があるが、差異は、(16)式を導くときに、凹部をノズルの半径rと同じ半径rを有する球体に近似したためと考えられる。
(First modification of the first embodiment)
It is experimentally verified that the life cycle t C of the recess 2 shown in FIG. 1 and the viscosity η of the liquid 1 are in a first-order proportional relationship. First, the nozzle was placed at a height of 2 mm in the vertical direction from the surface of the liquid, the diameter of the nozzle opening was set to 50 μm, the flow rate of the jetted gas was set to 30 ml / min, and the pressure of the gas was set to 0.2 MPa. Next, the life cycle t C of the recesses was measured for each of the silicone oil samples 5 to 13 manufactured by Shin-Etsu Kogyo Co., Ltd. shown in FIG. Then, as shown in FIG. 10, the viscosity of the silicone oil samples 5 to 13 and the life cycle t C of the recesses showed a first-order proportional relationship. Although there is a difference from the theoretical line indicating the relationship between the life cycle t C and the viscosity derived from the equation (16), the difference is that when the equation (16) is derived, the concave portion has the same radius r as the nozzle radius r. This is considered to be approximate to a sphere having

またノズルの開口部の直径を400μm、噴出される気体の流量を114ml/min、気体の気圧を0.2MPaに設定した場合も、図11に示すように、シリコーンオイル試料3〜8の粘度と凹部の生存周期tCは1次の比例関係を示した。 Also, when the diameter of the nozzle opening is set to 400 μm, the flow rate of the jetted gas is set to 114 ml / min, and the pressure of the gas is set to 0.2 MPa, as shown in FIG. The survival cycle t C of the first-order proportional relationship.

またノズルの開口部の直径を50μm、噴出される気体の流量を16ml/min、気体の気圧を0.2MPaに設定した場合も、図12に示すように、シリコーンオイル試料2〜8の粘度と凹部の生存周期tCは1次の比例関係を示した。 Also, when the diameter of the nozzle opening is set to 50 μm, the flow rate of the jetted gas is set to 16 ml / min, and the pressure of the gas is set to 0.2 MPa, the viscosity and the concave portions of the silicone oil samples 2 to 8 are shown in FIG. The survival cycle t C of the first-order proportional relationship.

またノズルの開口部の直径を50μm、噴出される気体の流量を14ml/min、気体の気圧を0.2MPaに設定した場合も、図13に示すように、シリコーンオイル試料1〜8の粘度と凹部の生存周期tCは1次の比例関係を示した。 Also, when the diameter of the nozzle opening is set to 50 μm, the flow rate of the jetted gas is set to 14 ml / min, and the pressure of the gas is set to 0.2 MPa, as shown in FIG. The survival cycle t C of the first-order proportional relationship.

よって図1に示す比例関係記憶モジュール201は、予め取得された凹部の生存周期tCと液体の粘度ηの比例関係を近似する近似式を保存してもよい。この場合、粘度算出機構302は、近似式に含まれる凹部の生存周期tCの変数に測定値を代入することにより、液体1の粘度ηの測定値を算出することが可能である。 Therefore, the proportional relationship storage module 201 shown in FIG. 1 may store an approximate expression that approximates the proportional relationship between the life cycle t C of the recess and the viscosity η of the liquid that is acquired in advance. In this case, the viscosity calculating mechanism 302 can calculate the measured value of the viscosity η of the liquid 1 by substituting the measured value into the variable of the life cycle t C of the recess included in the approximate expression.

(第1の実施の形態の第2の変形例)
第1の実施の形態において、図1に示す検出装置31が光電センサである例を示したが、これに限定されない。例えば検出装置31はハイスピードカメラでもよい。この場合、測定機構301は検出装置31から送られてくる画像から凹部2の生存周期tCを計測すればよい。図14は、複数の粘度の液体のそれぞれの表面に生じる凹部の生存周期を、光電センサとハイスピードカメラのそれぞれで計測した例である。図14に示すように、検出装置31に光電センサとハイスピードカメラのいずれを用いても、計測結果に大きな誤差は生じない。
(Second modification of the first embodiment)
In the first embodiment, an example in which the detection device 31 illustrated in FIG. 1 is a photoelectric sensor has been described, but the present invention is not limited to this. For example, the detection device 31 may be a high speed camera. In this case, the measurement mechanism 301 may measure the life cycle t C of the recess 2 from the image sent from the detection device 31. FIG. 14 shows an example in which the life cycle of the recesses generated on the surfaces of the liquids having a plurality of viscosities is measured by the photoelectric sensor and the high-speed camera, respectively. As shown in FIG. 14, even if any one of the photoelectric sensor and the high-speed camera is used as the detection device 31, no large error occurs in the measurement result.

(第2の実施の形態)
第2の実施の形態に係る非接触型粘度計は、図15に示すように、液体1の温度を測定する温度計104、及び液体1の温度の測定値に基づいて、粘度算出機構302が算出する液体1の粘度ηの測定値を補正する温度補正機構303を備える。液体1の粘度ηは、温度が上昇すれば減少する。また液体1の粘度ηは、温度が低下すれば増加する。そのため、例えば20℃の液体1の粘度ηを測定するよう設定されているにもかかわらず、液体1の温度が30℃であった場合は、温度補正機構303は粘度算出機構302が算出した液体1の粘度ηの測定値に1より大きい数を乗じ、粘度ηの測定値を補正する。また例えば20℃の液体1の粘度ηを測定するよう設定されているにもかかわらず、液体1の温度が10℃であった場合は、温度補正機構303は粘度算出機構302が算出した液体1の粘度ηの測定値に1より小さい数を乗じ、粘度ηの測定値を補正する。第2の実施の形態に係る非接触型粘度計のその他の構成要素は、図1と同様であるので、説明は省略する。
(Second embodiment)
As shown in FIG. 15, the non-contact viscometer according to the second embodiment includes a thermometer 104 that measures the temperature of the liquid 1, and a viscosity calculation mechanism 302 based on the measured value of the temperature of the liquid 1. A temperature correction mechanism 303 for correcting the measured value of the viscosity η of the liquid 1 to be calculated is provided. The viscosity η of the liquid 1 decreases as the temperature increases. Further, the viscosity η of the liquid 1 increases as the temperature decreases. Therefore, for example, when the temperature of the liquid 1 is 30 ° C. even though it is set to measure the viscosity η of the liquid 1 at 20 ° C., the temperature correction mechanism 303 calculates the liquid calculated by the viscosity calculation mechanism 302. The measured value of viscosity η is multiplied by a number greater than 1 to correct the measured value of viscosity η. Further, for example, when the temperature of the liquid 1 is 10 ° C. even though it is set to measure the viscosity η of the liquid 1 at 20 ° C., the temperature correction mechanism 303 calculates the liquid 1 calculated by the viscosity calculation mechanism 302. The measured value of viscosity η is multiplied by a number less than 1 to correct the measured value of viscosity η. The other components of the non-contact viscometer according to the second embodiment are the same as those in FIG.

(第3の実施の形態)
第3の実施の形態に係る非接触型粘度計は、図16に示すように、ノズル21から噴射される気体の流量を測定する流量計105、及び気体の流量の測定値に基づいて、粘度算出機構302が算出する液体1の粘度ηの測定値を補正する流量補正機構304を備える。図17に示すように、気体の流量によって、液体1の表面に生じる凹部の生存周期が異なる場合がある。そのため流量補正機構304は、流量計105から気体の流量の測定値を受信し、さらに粘度算出機構302が(16)式を用いて液体1の粘度ηの測定値を算出する際に、流量の測定値を(16)式に代入するよう、粘度算出機構302に指示する。第3の実施の形態に係る非接触型粘度計のその他の構成要素は、図15と同様であるので、説明は省略する。
(Third embodiment)
As shown in FIG. 16, the non-contact viscometer according to the third embodiment includes a flow meter 105 that measures the flow rate of the gas injected from the nozzle 21, and a viscosity based on the measured value of the gas flow rate. A flow rate correction mechanism 304 for correcting the measured value of the viscosity η of the liquid 1 calculated by the calculation mechanism 302 is provided. As shown in FIG. 17, the life cycle of the recesses generated on the surface of the liquid 1 may differ depending on the gas flow rate. Therefore, the flow rate correction mechanism 304 receives the measurement value of the gas flow rate from the flow meter 105, and when the viscosity calculation mechanism 302 calculates the measurement value of the viscosity η of the liquid 1 using the equation (16), the flow rate correction mechanism 304 The viscosity calculation mechanism 302 is instructed to substitute the measured value into the equation (16). Other components of the non-contact viscometer according to the third embodiment are the same as those in FIG.

(その他の実施の形態)
上記のように本発明を実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。例えば図1に示すノズル21から噴射される気体は空気に限らず、窒素ガス等の様々なガスも使用可能である。この様に、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲の発明特定事項によってのみ限定されるものである。
(Other embodiments)
Although the present invention has been described by the embodiments as described above, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques should be apparent to those skilled in the art. For example, the gas injected from the nozzle 21 shown in FIG. 1 is not limited to air, and various gases such as nitrogen gas can also be used. Thus, it should be understood that the present invention includes various embodiments and the like not described herein. Therefore, the present invention is limited only by the invention specifying matters in the scope of claims reasonable from this disclosure.

本発明の第1の実施の形態に係る非接触型粘度計の模式図である。It is a schematic diagram of the non-contact type viscometer which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る液体の表面に生じる凹部の第1の写真である。It is a 1st photograph of the recessed part produced in the surface of the liquid which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る液体の表面に生じる凹部の第2の写真である。It is a 2nd photograph of the recessed part produced in the surface of the liquid which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る液体の表面に生じる凹部の第3の写真である。It is a 3rd photograph of the recessed part produced in the surface of the liquid which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る液体の表面に与えられる運動量を示す模式図である。It is a schematic diagram which shows the momentum given to the surface of the liquid which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る液体の表面に生じる凹部の速度を示すグラフである。It is a graph which shows the speed of the crevice which arises on the surface of the liquid concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係る検出装置の出力を示すグラフである。It is a graph which shows the output of the detection apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る粘度測定方法を示すフローチャートである。It is a flowchart which shows the viscosity measuring method which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態の第1の変形例に係るシリコーンオイルの一覧を示すテーブルである。It is a table which shows the list of the silicone oil which concerns on the 1st modification of the 1st Embodiment of this invention. 本発明の第1の実施の形態の第1の変形例に係るシリコーンオイルの粘度と凹部の生存周期との関係を示す第1のグラフである。It is a 1st graph which shows the relationship between the viscosity of the silicone oil which concerns on the 1st modification of the 1st Embodiment of this invention, and the lifetime of a recessed part. 本発明の第1の実施の形態の第1の変形例に係るシリコーンオイルの粘度と凹部の生存周期との関係を示す第2のグラフである。It is a 2nd graph which shows the relationship between the viscosity of the silicone oil which concerns on the 1st modification of the 1st Embodiment of this invention, and the lifetime of a recessed part. 本発明の第1の実施の形態の第1の変形例に係るシリコーンオイルの粘度と凹部の生存周期との関係を示す第3のグラフである。It is a 3rd graph which shows the relationship between the viscosity of the silicone oil which concerns on the 1st modification of the 1st Embodiment of this invention, and the lifetime of a recessed part. 本発明の第1の実施の形態の第1の変形例に係るシリコーンオイルの粘度と凹部の生存周期との関係を示す第4のグラフである。It is a 4th graph which shows the relationship between the viscosity of the silicone oil which concerns on the 1st modification of the 1st Embodiment of this invention, and the lifetime of a recessed part. 本発明の第1の実施の形態の第2の変形例に係る液体の粘度と凹部の生存周期との関係を示すグラフである。It is a graph which shows the relationship between the viscosity of the liquid which concerns on the 2nd modification of the 1st Embodiment of this invention, and the lifetime of a recessed part. 本発明の第2の実施の形態に係る非接触型粘度計の模式図である。It is a schematic diagram of the non-contact viscometer which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る非接触型粘度計の模式図である。It is a schematic diagram of the non-contact type viscometer which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係る気体の流量と液体に生じる凹部の生存周期の関係を示すグラフである。It is a graph which shows the relationship between the flow volume of the gas which concerns on the 3rd Embodiment of this invention, and the lifetime of the recessed part which arises in the liquid.

符号の説明Explanation of symbols

1…液体
2, 3…凹部
21…ノズル
23…送風管
25…ポンプ
31…検出装置
101…容器
102…ステージ
103…治具
104…温度計
105…流量計
200…データ記憶装置
201…比例関係記憶モジュール
300…CPU
301…測定機構
302…粘度算出機構
303…温度補正機構
304…流量補正機構
312…入力装置
313…出力装置
330…プログラム記憶装置
331…一時記憶装置
1 ... Liquid
2, 3… Recess
21 ... Nozzle
23 ... Blower pipe
25 ... Pump
31 ... Detection device
101 ... container
102 ... Stage
103 ... Jig
104 ... Thermometer
105 ... Flow meter
200 ... Data storage device
201 ... Proportional relationship storage module
300 ... CPU
301 ... Measuring mechanism
302… Viscosity calculation mechanism
303 ... Temperature compensation mechanism
304 ... Flow rate correction mechanism
312 ... Input device
313 ... Output device
330 ... Program storage device
331 ... Temporary storage device

Claims (9)

液体の表面に対して斜めに配置されたノズルから噴き出される気体により前記液体の表面に生じる凹部が消失するまでの生存周期を測定する測定機構と、
前記生存周期と前記液体の粘度との比例関係を保存する比例関係記憶モジュールと、
前記生存周期の測定値及び前記比例関係に基づいて、前記液体の粘度の測定値を算出する粘度算出機構
とを備えることを特徴とする非接触型粘度計。
A measurement mechanism for measuring a life cycle until a recess generated on the surface of the liquid disappears by a gas ejected from a nozzle disposed obliquely with respect to the surface of the liquid;
A proportional relationship storage module for storing a proportional relationship between the life cycle and the viscosity of the liquid;
A non-contact viscometer comprising: a viscosity calculating mechanism that calculates a measured value of the viscosity of the liquid based on the measured value of the life cycle and the proportional relationship.
前記ノズルから噴き出される前記気体の速度が一定であることを特徴とする請求項1に記載の非接触型粘度計。   The non-contact viscometer according to claim 1, wherein a velocity of the gas ejected from the nozzle is constant. 前記ノズルから噴き出される前記気体の気圧が一定であることを特徴とする請求項1又は2に記載の非接触型粘度計。   The non-contact viscometer according to claim 1 or 2, wherein the pressure of the gas ejected from the nozzle is constant. 前記凹部を検出する光電センサを更に備えることを特徴とする請求項1乃至3のいずれか1項に記載の非接触型粘度計。   The non-contact viscometer according to any one of claims 1 to 3, further comprising a photoelectric sensor for detecting the concave portion. 前記測定機構が、前記光電センサが出力する電気信号を信号処理して前記凹部の生存周期を算出することを特徴とする請求項4に記載の非接触型粘度計。   The non-contact viscometer according to claim 4, wherein the measurement mechanism calculates the life cycle of the recess by performing signal processing on an electrical signal output from the photoelectric sensor. 前記信号処理がフーリエ変換であることを特徴とする請求項5に記載の非接触型粘度計。   The non-contact viscometer according to claim 5, wherein the signal processing is Fourier transform. 前記液体の測定温度に基づいて、前記液体の粘度の測定値を補正する温度補正機構を更に備えることを特徴とする請求項1乃至6のいずれか1項に記載の非接触型粘度計。   The non-contact viscometer according to any one of claims 1 to 6, further comprising a temperature correction mechanism that corrects a measured value of the viscosity of the liquid based on the measured temperature of the liquid. 前記気体の流量に基づいて、前記液体の粘度の測定値を補正する流量補正機構を更に備えることを特徴とする請求項1乃至7のいずれか1項に記載の非接触型粘度計。   The non-contact viscometer according to any one of claims 1 to 7, further comprising a flow rate correction mechanism that corrects a measured value of the viscosity of the liquid based on the flow rate of the gas. 液体の表面に対して斜めに配置されたノズルから気体を噴出するステップと、
前記噴出された気体により前記液体の表面に生じる凹部が消失するまでの生存周期を測定するステップと、
前記生存周期の測定値と、前記生存周期及び前記液体の粘度の比例関係に基づいて、前記液体の粘度の測定値を算出するステップ
とを含むことを特徴とする粘度測定方法。
Ejecting gas from nozzles disposed obliquely to the surface of the liquid;
Measuring a life cycle until the concave portion generated on the surface of the liquid disappears by the jetted gas; and
And a step of calculating a measured value of the viscosity of the liquid based on the measured value of the life cycle and a proportional relationship between the life cycle and the viscosity of the liquid.
JP2007252684A 2007-09-27 2007-09-27 Noncontact-type viscometer and viscosity-measuring method Pending JP2009085639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007252684A JP2009085639A (en) 2007-09-27 2007-09-27 Noncontact-type viscometer and viscosity-measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007252684A JP2009085639A (en) 2007-09-27 2007-09-27 Noncontact-type viscometer and viscosity-measuring method

Publications (1)

Publication Number Publication Date
JP2009085639A true JP2009085639A (en) 2009-04-23

Family

ID=40659274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007252684A Pending JP2009085639A (en) 2007-09-27 2007-09-27 Noncontact-type viscometer and viscosity-measuring method

Country Status (1)

Country Link
JP (1) JP2009085639A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133342A (en) * 2009-12-24 2011-07-07 Tokyo Gas Engineering Co Ltd Liquid object inspection device
WO2014008505A1 (en) * 2012-07-06 2014-01-09 Newman John W Method and system for measuring a property of a non-newtonian fluid
CN106198313A (en) * 2016-08-29 2016-12-07 杭州卓祥科技有限公司 A kind of W type crow formula viscosity pipet
JP2020003399A (en) * 2018-06-29 2020-01-09 国立大学法人静岡大学 Viscosity measuring device and viscosity measuring system
KR102084052B1 (en) * 2019-10-31 2020-03-04 (주)티씨케이 The viscometer with type of gas injection and non-contact structure
JP2020201154A (en) * 2019-06-11 2020-12-17 株式会社ディスコ Contactless viscometer and method for measuring viscosity

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133342A (en) * 2009-12-24 2011-07-07 Tokyo Gas Engineering Co Ltd Liquid object inspection device
WO2014008505A1 (en) * 2012-07-06 2014-01-09 Newman John W Method and system for measuring a property of a non-newtonian fluid
US9759642B2 (en) 2012-07-06 2017-09-12 John W. Newman Method and system for measuring a property of a non-newtonian fluid
US10145773B2 (en) 2012-07-06 2018-12-04 John W. Newman Method and system for measuring a property of a non-newtonian fluid
CN106198313A (en) * 2016-08-29 2016-12-07 杭州卓祥科技有限公司 A kind of W type crow formula viscosity pipet
JP2020003399A (en) * 2018-06-29 2020-01-09 国立大学法人静岡大学 Viscosity measuring device and viscosity measuring system
JP7161172B2 (en) 2018-06-29 2022-10-26 国立大学法人静岡大学 Viscosity measuring device and viscosity measuring system
JP2020201154A (en) * 2019-06-11 2020-12-17 株式会社ディスコ Contactless viscometer and method for measuring viscosity
JP7220955B2 (en) 2019-06-11 2023-02-13 株式会社ディスコ Non-contact viscometer and viscosity measurement method
KR102084052B1 (en) * 2019-10-31 2020-03-04 (주)티씨케이 The viscometer with type of gas injection and non-contact structure

Similar Documents

Publication Publication Date Title
JP2009085639A (en) Noncontact-type viscometer and viscosity-measuring method
Sharp Resonant properties of sessile droplets; contact angle dependence of the resonant frequency and width in glycerol/water mixtures
Bernal et al. Robust detection of non-regular interferometric fringes from a self-mixing displacement sensor using bi-wavelet transform
WO2015050061A1 (en) Inspection device and inspection method for sealed packed product
RU2016147561A (en) TEST DEVICE FOR CHECKING THE CONTAINER
Loysel et al. Results of the 2012-2013 sloshing model test benchmark
JP2007071574A (en) Airtightness inspection method and device
CN102590054B (en) Method and device for measuring particle size distribution of discrete-state particles
ITMI20120493A1 (en) EQUIPMENT FOR NON-DESTRUCTIVE CONTROL OF INTEGRITY AND / OR SUITABILITY OF SEALED PACKAGES
Temperton et al. Mechanical vibrations of pendant liquid droplets
JP2018072284A (en) Ultrasonic inspection device
Mikaelian et al. Dynamics and morphology of single ellipsoidal bubbles in liquids
JP5599269B2 (en) Wavelength detection method, wavelength detection device, dissolved gas total amount evaluation method, dissolved gas total amount evaluation device, dissolved gas total amount control method, and dissolved gas total amount control device
KR101282452B1 (en) Apparatus to simultaneously measure density and viscosity of liquid
Fedorets et al. Capillary waves at microdroplet coalescence with a liquid layer
Andreeva et al. Oscillation mode and resonant frequencies of spherical pendant droplets
CN104248452A (en) Object information obtaining system, signal processing method, and non-transient state storage medium
JP2014044123A (en) Contact interface detection device
Kawamura et al. Impact force measurement of a plastic sheet using drop ball test by the Levitation Mass Method (LMM)
TWI642939B (en) Optical system for detecting cantilever deformation and applications thereof
US10509138B2 (en) System and method for discriminating between origins of vibrations in an object and determination of contact between blunt bodies traveling in a medium
JP6281445B2 (en) Liquid level detector
JP2010261749A (en) Device and method for inspecting coagulation of content in packing container
CN115389046B (en) Temperature measurement method and device
JP2000258223A (en) Optical liquid level sensor