JP2009085496A - Latent heat storage device and method of designing the same - Google Patents

Latent heat storage device and method of designing the same Download PDF

Info

Publication number
JP2009085496A
JP2009085496A JP2007255388A JP2007255388A JP2009085496A JP 2009085496 A JP2009085496 A JP 2009085496A JP 2007255388 A JP2007255388 A JP 2007255388A JP 2007255388 A JP2007255388 A JP 2007255388A JP 2009085496 A JP2009085496 A JP 2009085496A
Authority
JP
Japan
Prior art keywords
heat storage
latent heat
storage tank
tank body
latent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007255388A
Other languages
Japanese (ja)
Other versions
JP5190240B2 (en
Inventor
Taneya Yamashita
植也 山下
Shoji Yamane
唱司 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2007255388A priority Critical patent/JP5190240B2/en
Publication of JP2009085496A publication Critical patent/JP2009085496A/en
Application granted granted Critical
Publication of JP5190240B2 publication Critical patent/JP5190240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a latent heat storage device having a latent heat storage tank body which requires a smaller quantity of heat medium than in the case of a round type and has economic efficiency and also provide a method of designing the latent heat storage device. <P>SOLUTION: This horizontal latent heat storage device 1 comprises the latent heat storage tank body 3 so disposed that the axis thereof extends horizontally. The shape of the latent heat storage tank body 3 in longitudinal cross section is such that a circle with a predetermined diameter is deformed in an elliptic shape using the longitudinal axis Y as the major axis and the horizontal axis X as the minor axis. The circumferential length of the circle is equal to the circumferential length of the elliptic shape. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、200℃以下の低温廃熱を潜熱蓄熱材(PCM:Phase Change Material)に蓄え、熱を必要としている施設へトラック等の車両でオフライン輸送し、再利用するようにした潜熱蓄熱装置及び該潜熱蓄熱装置の設計方法に関するものである。   The present invention relates to a latent heat storage device in which low-temperature waste heat of 200 ° C. or less is stored in a latent heat storage material (PCM: Phase Change Material), transported offline to a facility in need of heat by a vehicle such as a truck, and reused. And a method for designing the latent heat storage device.

近年、未利用エネルギを活用した「エネルギの有効利用」として、例えば、発電プラントや化学プラント等の工場、下水汚泥焼却プラント、ごみ焼却炉プラント等の熱源から発生する200℃以下の低温廃熱を潜熱蓄熱材(PCM)に蓄え、熱を必要している病院やオフィス、公共施設等へ車両でオフライン輸送し、利用するようにした潜熱蓄熱装置が提案されており、本願出願人も平成18年1月6日付けで、潜熱蓄熱装置及びその運転方法について出願を行なった(特願2006−1532号)。而して、この潜熱蓄熱装置の概要は図4、図5に示されている。   In recent years, as an “effective use of energy” utilizing unused energy, for example, low-temperature waste heat of 200 ° C. or less generated from heat sources such as power plants and chemical plants, sewage sludge incineration plants, waste incinerator plants, etc. A latent heat storage device that has been stored in a latent heat storage material (PCM) and transported offline to a hospital, office, public facility, etc. that requires heat has been proposed. On January 6, an application was filed for the latent heat storage device and its operating method (Japanese Patent Application No. 2006-1532). Thus, the outline of this latent heat storage device is shown in FIGS.

すなわち、潜熱蓄熱装置1は横置き型で、潜熱蓄熱槽2を備えている。潜熱蓄熱槽2は、断面円筒形(正円)で長手方向両端を側板により閉塞された潜熱蓄熱槽本体3を備えており、潜熱蓄熱槽本体3内には、下部左右に位置して潜熱蓄熱槽本体3の軸線方向へ平行に延在する2本の熱媒供給配管4が収納されていると共に、上部左右に位置して熱媒供給配管4と平行に延在する2本の熱媒回収配管5が収納されている。2本の熱媒供給配管4は略同じ高さに位置しており、2本の熱媒回収配管5も略同じ高さに位置している。   That is, the latent heat storage device 1 is a horizontal type and includes a latent heat storage tank 2. The latent heat storage tank 2 includes a latent heat storage tank main body 3 having a cylindrical cross section (circular shape) and closed at both ends in the longitudinal direction by side plates. Two heating medium supply pipes 4 extending in parallel to the axial direction of the tank body 3 are accommodated, and two heating medium recoveries extending parallel to the heating medium supply pipe 4 are located on the upper left and right sides. The piping 5 is accommodated. The two heat medium supply pipes 4 are located at substantially the same height, and the two heat medium recovery pipes 5 are also located at substantially the same height.

熱媒供給配管4の一端部は盲板により閉塞されていると共に、熱媒供給配管4の下端には長手方向へ一定間隔で、複数の孔4aが穿設されており、熱媒供給配管4の他端に接続された配管6は、潜熱蓄熱槽本体3の一側の側板を貫通して潜熱蓄熱槽本体3の外部に延在し、他端にはカップリング継手7が接続されている。   One end of the heat medium supply pipe 4 is closed by a blind plate, and a plurality of holes 4 a are formed at regular intervals in the longitudinal direction at the lower end of the heat medium supply pipe 4. A pipe 6 connected to the other end of the pipe extends through the side plate on one side of the latent heat storage tank body 3 to the outside of the latent heat storage tank body 3, and a coupling joint 7 is connected to the other end. .

熱媒回収配管5の一端部は盲板により閉塞されていると共に、熱媒回収配管5の天端には長手方向へ一定間隔で、複数の孔5aが穿設されており、熱媒回収配管5の他端にフレキシブル管8を介して接続した配管9には、カップリング継手10が接続されている。   One end portion of the heat medium recovery pipe 5 is closed by a blind plate, and a plurality of holes 5a are formed in the top end of the heat medium recovery pipe 5 at regular intervals in the longitudinal direction. A coupling joint 10 is connected to a pipe 9 connected to the other end of 5 via a flexible pipe 8.

潜熱蓄熱槽本体3内には、境界面11が潜熱蓄熱槽本体3の略中心近傍位置で且つ常時熱媒供給配管4の上方となるよう、潜熱蓄熱材12が収納されていると共に、上面13が熱媒回収配管5の上端よりも常時上方となるよう、潜熱蓄熱槽本体3内の潜熱蓄熱材12の上部には熱媒14が収納されている。   In the latent heat storage tank body 3, a latent heat storage material 12 is accommodated so that the boundary surface 11 is located near the center of the latent heat storage tank body 3 and is always above the heat medium supply pipe 4. Is placed above the latent heat storage material 12 in the latent heat storage tank body 3 so that the temperature is always above the upper end of the heat medium recovery pipe 5.

又、熱媒14の上面13と潜熱蓄熱槽本体3内周の天端との間には、潜熱蓄熱材12と熱媒14との間で、蓄熱、放熱が行なわれて潜熱蓄熱材12、熱媒14の温度が変化し、その結果、潜熱蓄熱材12と熱媒14の比重が変化して、潜熱蓄熱材12の境界面11や熱媒14の上面13が昇降し、高さが変化しても、熱媒14上面と潜熱蓄熱槽本体3内周の天端との間には、常時空気層15が確保されるようになっている。   In addition, between the upper surface 13 of the heat medium 14 and the top end of the inner periphery of the latent heat storage tank body 3, heat storage and heat dissipation are performed between the latent heat storage material 12 and the heat medium 14, and the latent heat storage material 12, The temperature of the heat medium 14 changes, and as a result, the specific gravity of the latent heat storage material 12 and the heat medium 14 changes, the boundary surface 11 of the latent heat storage material 12 and the upper surface 13 of the heat medium 14 move up and down, and the height changes. Even so, the air layer 15 is always secured between the upper surface of the heat medium 14 and the top end of the inner periphery of the latent heat storage tank main body 3.

潜熱蓄熱材12としては、例えば、酢酸ナトリウム3水化物(融点58℃)があり、熱媒としては、例えば、工業用白油がある。   Examples of the latent heat storage material 12 include sodium acetate trihydrate (melting point: 58 ° C.), and examples of the heat medium include industrial white oil.

又、図4中、16は例えば、ごみ焼却プラント、下水汚泥焼却プラント、発電プラント、化学プラント、製鉄所等の熱源プラント、又は、病院、オフィス、公共施設等の熱利用側である。而して、熱源プラント又は熱利用側16は、熱交換器17、熱交換器17に接続される熱媒ポンプ18、熱媒ポンプ18に接続される配管19、配管19に接続されて熱源プラント又は熱利用側16を潜熱蓄熱装置1と接続する際に、潜熱蓄熱槽本体3側のカップリング継手10と連結する配管20を備えている。又、熱源プラント又は熱利用側16は、熱交換器17に接続される配管21、配管21に接続されて、熱源プラント又は熱利用側16を潜熱蓄熱装置1と接続する際に、潜熱蓄熱槽本体3側のカップリング継手7と連結する配管22を備えている。   In FIG. 4, reference numeral 16 denotes a heat source side such as a waste incineration plant, a sewage sludge incineration plant, a power generation plant, a chemical plant, and a steel mill, or a heat utilization side such as a hospital, office, or public facility. Thus, the heat source plant or the heat utilization side 16 is connected to the heat source plant 17 connected to the heat exchanger 17, the heat medium pump 18 connected to the heat exchanger 17, the pipe 19 connected to the heat medium pump 18, and the pipe 19. Or when connecting the heat utilization side 16 with the latent heat storage apparatus 1, the piping 20 connected with the coupling joint 10 by the side of the latent heat storage tank main body 3 is provided. The heat source plant or heat utilization side 16 is connected to the piping 21 and the piping 21 connected to the heat exchanger 17, and when the heat source plant or heat utilization side 16 is connected to the latent heat storage device 1, the latent heat storage tank. A pipe 22 connected to the coupling joint 7 on the main body 3 side is provided.

例えば、16が熱源プラントであって、潜熱蓄熱材12に潜熱を蓄熱する場合は、熱媒ポンプ18を駆動して、熱媒14を、潜熱蓄熱槽本体3と熱交換器17との間に循環させ、熱源プラント16から発生する低温廃熱(蒸気、温水、高温空気、排ガス等の廃熱)を、熱交換器17を介して熱媒14に伝える。   For example, when 16 is a heat source plant and latent heat is stored in the latent heat storage material 12, the heat medium pump 18 is driven so that the heat medium 14 is placed between the latent heat storage tank body 3 and the heat exchanger 17. The low-temperature waste heat generated from the heat source plant 16 (waste heat such as steam, hot water, high-temperature air, and exhaust gas) is circulated and transmitted to the heat medium 14 via the heat exchanger 17.

すなわち、潜熱蓄熱槽本体3内から複数の孔5aを通して熱媒回収配管5内へ回収された熱媒14は、熱媒回収配管5、配管9、20、19等を通って熱媒ポンプ18を介し熱交換器17に供給され、熱交換器17おいて熱エネルギを取得し、熱エネルギを得た熱媒14は、配管21、22等を通って、熱媒供給配管4の下端の複数の孔4aから固体状の潜熱蓄熱材12内に供給される。   That is, the heat medium 14 recovered from the latent heat storage tank main body 3 through the plurality of holes 5a and into the heat medium recovery pipe 5 passes through the heat medium recovery pipe 5, the pipes 9, 20, 19 and the like. The heat medium 14 that is supplied to the heat exchanger 17, acquires heat energy in the heat exchanger 17, and obtains the heat energy passes through the pipes 21, 22, and the like, and passes through a plurality of lower ends of the heat medium supply pipe 4. It is supplied into the solid latent heat storage material 12 from the hole 4a.

このため、熱媒14は潜熱蓄熱材12との比重差により潜熱蓄熱材12内を上昇し、潜熱蓄熱材12を上昇する間に、熱媒14は潜熱蓄熱材12との直接接触により熱交換して潜熱蓄熱材12に熱を付与する。固体状の潜熱蓄熱材12は熱を与えられると徐々に液状化し、この相変化により潜熱蓄熱材12には潜熱が蓄熱される。   For this reason, the heat medium 14 rises in the latent heat storage material 12 due to the specific gravity difference with the latent heat storage material 12, and the heat medium 14 exchanges heat by direct contact with the latent heat storage material 12 while moving up the latent heat storage material 12. Then, heat is applied to the latent heat storage material 12. The solid latent heat storage material 12 is gradually liquefied when given heat, and latent heat is stored in the latent heat storage material 12 by this phase change.

比重差により上昇して潜熱蓄熱材12から潜熱蓄熱槽本体3上部へ分離された熱媒14は、複数の孔5aから熱媒回収配管5内へ回収されて再び熱交換器17へ供給され、前述した手順で循環する。而して、潜熱蓄熱材12全てが液状化した時点で潜熱蓄熱材12に対する蓄熱は完了する。   The heat medium 14 that has risen due to the difference in specific gravity and is separated from the latent heat storage material 12 to the upper part of the latent heat storage tank body 3 is recovered from the plurality of holes 5a into the heat medium recovery pipe 5 and supplied to the heat exchanger 17 again. Cycle through the steps described above. Thus, when all the latent heat storage material 12 is liquefied, the heat storage for the latent heat storage material 12 is completed.

16が熱利用側の場合には熱媒ポンプ18を駆動して、熱媒14を、潜熱蓄熱槽本体3と熱交換器17との間に循環させ、潜熱蓄熱材12に蓄えられていた潜熱により熱媒14を直接接触により加熱する。このため、熱を与えられた熱媒14は、熱交換器17に供給されてその熱は熱利用側16の熱媒体(水、空気、ガス等)に伝えられ、空調(暖房・冷房)・給湯用熱源として利用される。このときの熱媒14の潜熱蓄熱槽本体3と熱交換器17との間の流れは16が熱源プラントの場合と同様であるが、熱媒14は潜熱蓄熱材12から熱を受ける点で、熱源プラントの場合と異なる。潜熱蓄熱材12は、熱媒14に潜熱を放出して温度降下すると共に固体化し、放熱を完了する。   When 16 is on the heat utilization side, the heat medium pump 18 is driven to circulate the heat medium 14 between the latent heat storage tank body 3 and the heat exchanger 17, and the latent heat stored in the latent heat storage material 12 is stored. The heating medium 14 is heated by direct contact. For this reason, the heat medium 14 to which heat has been applied is supplied to the heat exchanger 17 and the heat is transmitted to the heat medium (water, air, gas, etc.) on the heat utilization side 16 for air conditioning (heating / cooling) / Used as a heat source for hot water supply. At this time, the flow of the heat medium 14 between the latent heat storage tank body 3 and the heat exchanger 17 is the same as that in the case where 16 is a heat source plant, but the heat medium 14 receives heat from the latent heat storage material 12. Different from the heat source plant. The latent heat storage material 12 releases latent heat to the heat medium 14 to lower the temperature and solidify to complete heat dissipation.

一方、未利用エネルギを活用した「エネルギの有効利用」として、例えば、発電プラントや化学プラント等の工場、下水汚泥焼却プラント、ごみ焼却プラント等の熱源から発生する低温廃熱(200℃)を、潜熱蓄熱材(PCM)に蓄え、熱を必要としている病院やオフィス、公共施設等へ車両でオフライン輸送し、利用することができる潜熱蓄熱装置が提案されている(特許文献1)。
WO03/019099
On the other hand, as “effective use of energy” utilizing unused energy, for example, low-temperature waste heat (200 ° C.) generated from heat sources such as power plants and chemical plants, sewage sludge incineration plants, waste incineration plants, A latent heat storage device has been proposed that can be stored in a latent heat storage material (PCM) and transported offline to a hospital, office, public facility, or the like that requires heat and used (Patent Document 1).
WO03 / 019099

図4に示す潜熱蓄熱装置1の場合は、横置き型で、潜熱蓄熱槽本体3の断面形状は円筒形であるため、以下に述べるように、楕円形状のものに比べて熱媒14の絶対量が多くなり非経済的であるうえ、潜熱蓄熱材12に対する蓄熱量も多くできない。なお、特許文献1は潜熱蓄熱装置であるという点では、図4に示すものと共通するが、熱媒の量や蓄熱量については特に考慮を払ったものではない。   In the case of the latent heat storage device 1 shown in FIG. 4, it is a horizontal type and the latent heat storage tank main body 3 has a cylindrical cross section. The amount is uneconomical and the amount of heat stored in the latent heat storage material 12 cannot be increased. In addition, although patent document 1 is common with what is shown in FIG. 4 in the point that it is a latent-heat storage device, it does not pay special consideration about the quantity of a heat medium, and the amount of heat storage.

本発明は、斯かる実情に鑑み、潜熱蓄熱槽本体の断面形状が円筒形(正円)の場合よりも熱媒の量が少なくてすみ、経済的で、しかも、蓄熱量も増大させ得るようにした潜熱蓄熱装置及び該潜熱蓄熱装置の設計方法を提供することを目的としてなしたものである。   In view of such circumstances, the present invention requires less heat medium than the case where the cross-sectional shape of the latent heat storage tank body is cylindrical (circular), is economical, and can also increase the amount of heat storage. The purpose of the present invention is to provide a latent heat storage device and a design method for the latent heat storage device.

本発明の請求項1の潜熱蓄熱装置は、軸線が水平方向に延在するよう配置された潜熱蓄熱槽本体を備え、該潜熱蓄熱槽本体は、比重差により下部に潜熱蓄熱材が溜まり、該潜熱蓄熱材の上面に熱媒が溜まるように構成されており、しかも、熱媒が潜熱蓄熱材を通って上昇する際に、熱媒と潜熱蓄熱材との直接接触により熱の授受が行なわれるよう構成されており、更に、潜熱蓄熱材の蓄熱完了時においても、熱媒上面と潜熱蓄熱槽本体の内周天端との間に空気層が形成されるよう構成した横置き型の潜熱蓄熱装置であって、前記潜熱蓄熱槽本体の縦断面形状は、所定の径の正円を縦軸が長軸で、水平軸が短軸の楕円形状となるよう変形させた形状で、且つ、正円の周長と楕円の周長は略等しくなるよう構成されているものである。   The latent heat storage device according to claim 1 of the present invention includes a latent heat storage tank body arranged so that its axis extends in the horizontal direction, the latent heat storage tank body stores a latent heat storage material in a lower portion due to a specific gravity difference, The heat medium is configured to accumulate on the upper surface of the latent heat storage material, and when the heat medium rises through the latent heat storage material, heat is transferred by direct contact between the heat medium and the latent heat storage material. Furthermore, even when the heat storage of the latent heat storage material is completed, the horizontal type latent heat storage device is configured such that an air layer is formed between the top surface of the heat medium and the inner peripheral top of the latent heat storage tank body. The longitudinal cross-sectional shape of the latent heat storage tank main body is a shape obtained by deforming a perfect circle having a predetermined diameter so that the longitudinal axis is a major axis and the horizontal axis is a minor axis, and is a perfect circle. The circumference and the circumference of the ellipse are configured to be substantially equal.

本発明の請求項2の潜熱蓄熱装置は、空気層厚さ比x'/x>1(ここで、xは蓄熱完了後の熱媒上面と、円筒形状の潜熱蓄熱槽本体の内周天端との間の空気層の厚さ、x'は蓄熱完了後の熱媒上面と、周長が前記円筒形状の潜熱蓄熱槽本体縦断面正円周長と等しい縦断面楕円形状の潜熱蓄熱槽本体の内周天端との間の空気層の厚さ)とするものである。 The latent heat storage device according to claim 2 of the present invention has an air layer thickness ratio x ′ 3 / x 3 > 1 (where x 3 is the upper surface of the heat medium after completion of heat storage, and the cylindrical latent heat storage tank main body. The thickness of the air layer between the circumferential top and x ′ 3 is the upper surface of the heat medium after the completion of heat storage, and the latent heat storage having an elliptical cross section whose circumference is equal to the longitudinal circumference of the cylindrical latent heat storage tank body The thickness of the air layer between the inner peripheral top of the tank body).

本発明の請求項3の潜熱蓄熱装置においては、前記潜熱蓄熱槽本体内の下部には、熱媒を潜熱蓄熱材内に供給するための熱媒供給配管が、潜熱蓄熱材内に位置するよう配置され、前記蓄熱槽本体内の上部には、蓄熱時においても放熱時においても熱媒内に位置するよう、熱媒回収配管が配置されており、しかも、潜熱蓄熱槽本体の中心Oから熱媒回収配管の中心までの高さh'pipeは、(III)式及び(IV)式により決定されるよう構成されており、前記空気層の厚さx'は(X)式により決定されるよう構成されているものである。 In the latent heat storage device according to claim 3 of the present invention, a heat medium supply pipe for supplying a heat medium into the latent heat storage material is located in the latent heat storage material at a lower portion in the latent heat storage tank body. In the upper part of the heat storage tank main body, a heat medium recovery pipe is arranged so as to be located in the heat medium during heat storage and at the time of heat release, and heat is generated from the center O of the latent heat storage tank main body. The height h ′ pipe to the center of the medium recovery pipe is configured to be determined by the formulas (III) and (IV), and the thickness x ′ 3 of the air layer is determined by the formula (X). It is comprised so that.

ここで、式は以下の通りである。

Figure 2009085496
Here, the formula is as follows.
Figure 2009085496

上記式中、h'pcm(l)は潜熱蓄熱槽本体の中心Oから、蓄熱完了時の潜熱蓄熱材上面までの高さ、xは蓄熱完了時の潜熱蓄熱材上面から熱媒回収配管径方向中心までの高さであり、熱媒回収配管の下端が潜熱蓄熱材上面よりも高くなるよう、実際の設計においては適宜決定される数値、h'oil(s)は潜熱蓄熱槽本体の中心Oから、放熱完了時の熱媒上面までの高さ、xは熱媒回収配管径方向中心から放熱完了時の熱媒上面までの高さであり、熱媒回収配管の上端が熱媒上面よりも低くなるよう、実際の設計においては適宜決定される数値、bは潜熱蓄熱槽本体の中心Oから潜熱蓄熱槽本体の内周天端までの高さ、h'oil(l)は潜熱蓄熱槽本体の中心Oから、蓄熱完了時の熱媒上面までの高さである。 In the above formula, h 'pcm (l) from the center O of the latent heat storage tank body, the heat storage completion time of phase change material upper surface to a height, x 1 is the heat medium recovery pipe diameter from the latent heat storage material upper surface when the heat storage completion In the actual design, h ′ oil (s) is the center of the latent heat storage tank body so that it is the height to the center of the direction and the lower end of the heat medium recovery pipe is higher than the upper surface of the latent heat storage material from O, height to the heat transfer medium the upper surface of the heat radiation completion, x 2 is the height from the heat medium recovery pipe radial center to the heating medium upper surface of the heat radiation completion, the upper end of the heat medium recovery pipe is the heating medium top In the actual design, the numerical value is appropriately determined, b is the height from the center O of the latent heat storage tank body to the inner peripheral top of the latent heat storage tank body, and h'oil (l) is the latent heat storage tank body The height from the center O to the top surface of the heat medium when heat storage is completed.

本発明の請求項4の潜熱蓄熱装置の設計方法は、
請求項1に記載の潜熱蓄熱装置の設計方法であって、第一のステップから第六のステップよりなり、
第一のステップは、
潜熱蓄熱材の単位長さ当たりの蓄熱量と、潜熱蓄熱材に蓄熱を完了した際の潜熱蓄熱材の密度と、潜熱蓄熱材の単位重量当たりの潜熱とから導出した、潜熱蓄熱槽本体軸線方向に対する蓄熱完了時の潜熱蓄熱材の単位長さ当たりの容積Spcm(l)を基に、潜熱蓄熱槽本体の中心Oから蓄熱完了時の潜熱蓄熱材の上面である境界面までの高さh'pcm(l)を(II)式により算出するステップであり、
第二のステップは、
第一のステップで算出した、潜熱蓄熱槽本体の中心Oから蓄熱完了時の潜熱蓄熱材の上面である境界面までの高さh'pcm(l)を基に、潜熱蓄熱槽本体における中心Oから熱蓄熱槽本体の内部上方にある熱媒回収配管中心までの高さh'pipeを(III)式により算出するステップであり、
第三のステップは、
第二のステップで求めた、潜熱蓄熱槽本体の中心Oから熱媒回収配管中心までの高さh'pipeを基に、潜熱蓄熱槽本体の中心Oから、放熱完了時の熱媒上面までの高さh'oil(s)を(IV)式により算出するステップであり、
第四のステップは、
第三のステップで求めた、潜熱蓄熱槽本体の中心Oから、放熱完了時の熱媒上面までの高さh'oil(s)、及び、潜熱蓄熱材の単位長さ当たりの蓄熱量と、潜熱蓄熱材から放熱を完了した際の潜熱蓄熱材の密度と、潜熱蓄熱材の単位重量当たりの潜熱とから導出した、潜熱蓄熱槽本体軸線方向に対する放熱完了時の潜熱蓄熱材の単位長さ当たりの容積Spcm(s)を基に、熱媒の放熱完了時の潜熱蓄熱槽本体軸線方向に対する単位長さ当たりの容積S'oil(s)を(VI)式により算出するステップであり、
第五のステップは、
潜熱蓄熱材の単位長さ当たりの蓄熱量と、潜熱蓄熱材に蓄熱を完了した際の潜熱蓄熱材の密度と、潜熱蓄熱材の単位重量当たりの潜熱とから導出した、潜熱蓄熱槽本体軸線方向に対する蓄熱完了時の潜熱蓄熱材の単位長さ当たりの容積Spcm(l)、及び、第四のステップで求めた、熱媒の放熱完了時の潜熱蓄熱槽本体軸線方向に対する単位長さ当たりの容積S'oil(s)、並びに放熱完了時の熱媒の密度と放熱完了時の熱媒の単位長さ当たりの容積とから導出した熱媒の単位長さ当たりの重量と、蓄熱完了時の熱媒の密度とから導出した蓄熱完了時の熱媒の、潜熱蓄熱槽本体軸線方向に対する単位長さ当たりの容積S'oil(l)を基に、潜熱蓄熱槽本体中心Oから蓄熱完了時の熱媒上面までの高さh'oil(l)を(IX)式により算出するステップであり、
第六のステップは、
第五のステップで求めた、潜熱蓄熱槽本体中心Oから蓄熱完了時の熱媒上面までの高さh'oil(l)を基に、蓄熱完了時の熱媒上面と潜熱蓄熱槽本体内周天端との間の空気層の厚さx'を(X)式により算出するステップである。
The method for designing a latent heat storage device according to claim 4 of the present invention includes:
The method for designing a latent heat storage device according to claim 1, comprising a first step to a sixth step,
The first step is
Latent heat storage tank body axial direction derived from the amount of heat storage per unit length of the latent heat storage material, the density of the latent heat storage material when the latent heat storage material has completed heat storage, and the latent heat per unit weight of the latent heat storage material The height h from the center O of the latent heat storage tank body to the boundary surface, which is the upper surface of the latent heat storage material at the completion of heat storage, based on the volume Spcm (l) per unit length of the latent heat storage material at the time of completion of heat storage 'is a step of calculating pcm (l) by equation (II),
The second step is
Based on the height h ′ pcm (l) from the center O of the latent heat storage tank body calculated in the first step to the boundary surface, which is the upper surface of the latent heat storage material when the heat storage is completed, the center O in the latent heat storage tank body Calculating the height h ′ pipe from the center of the heat storage tank to the center of the heat medium recovery pipe located above the interior of the heat storage tank body by the formula (III),
The third step is
Based on the height h ' pipe from the center O of the latent heat storage tank body to the center of the heat medium recovery pipe obtained in the second step, from the center O of the latent heat storage tank body to the top surface of the heat medium when the heat release is completed Calculating the height h ′ oil (s) by the formula (IV),
The fourth step is
The height h ′ oil (s) from the center O of the latent heat storage tank body to the upper surface of the heat medium when heat release is completed , and the amount of heat stored per unit length of the latent heat storage material, determined in the third step, Per unit length of the latent heat storage material at the completion of heat dissipation in the axial direction of the latent heat storage tank body, derived from the density of the latent heat storage material when the heat release from the latent heat storage material is completed and the latent heat per unit weight of the latent heat storage material A volume S ′ oil (s) per unit length with respect to the axial direction of the latent heat storage tank body upon completion of heat dissipation of the heat medium based on the volume S pcm (s) of
The fifth step is
Latent heat storage tank body axial direction derived from the amount of heat storage per unit length of the latent heat storage material, the density of the latent heat storage material when the latent heat storage material has completed heat storage, and the latent heat per unit weight of the latent heat storage material The volume per unit length Spcm (l) of the latent heat storage material at the time of completion of heat storage with respect to the unit length per unit length with respect to the axial direction of the latent heat storage tank main body at the time of completion of heat dissipation of the heat medium, determined in the fourth step The weight per unit length of the heat medium derived from the volume S ′ oil (s), the density of the heat medium at the completion of heat dissipation and the volume per unit length of the heat medium at the time of heat dissipation, and Based on the volume S'oil (l) per unit length of the heat medium at the time of completion of the heat storage derived from the density of the heat medium with respect to the axial direction of the latent heat storage tank body, the heat storage from the center O of the latent heat storage tank The height h'oil (l) to the top surface of the heat medium is changed to the formula (IX) Is a step of calculating
The sixth step is
Based on the height h'oil (l) from the center O of the latent heat storage tank body to the top surface of the heat medium when the heat storage is completed, obtained in the fifth step, the heat medium upper surface when the heat storage is completed and the inner peripheral top of the latent heat storage tank body Is the step of calculating the thickness x ′ 3 of the air layer between and (1) by the equation (X).

ここで、式は以下の通りである。

Figure 2009085496
Here, the formula is as follows.
Figure 2009085496

各式中、aは潜熱蓄熱槽本体の短軸側(水平方向)の半径(短軸半径)、bは潜熱蓄熱槽本体の長軸側(縦方向)の半径(長軸半径)、πは円周率、xは、蓄熱完了時の潜熱蓄熱材上面から熱媒回収配管中心までの高さであり、熱媒回収配管の下端が潜熱蓄熱材上面よりも高くなるよう、実際の設計においては適宜決定される数値、xは熱媒回収配管中心から放熱完了時の熱媒上面までの高さであり、熱媒回収配管の上端が熱媒上面よりも低くなるよう、実際の設計においては適宜決定される数値である。 In each formula, a is a radius (short axis radius) on the short axis side (horizontal direction) of the latent heat storage tank body, b is a radius (long axis radius) on the long axis side (vertical direction) of the latent heat storage tank body, and π is In the actual design, x 1 is the height from the top surface of the latent heat storage material to the center of the heat medium recovery pipe when the heat storage is completed, and the lower end of the heat medium recovery pipe is higher than the top surface of the latent heat storage material. figures to be determined appropriately, x 2 is the height from the heat medium recovery pipe center to the heating medium upper surface of the heat radiation completion, so that the upper end of the heat medium recovery pipe becomes lower than the heating medium top, in actual design Is a numerical value determined as appropriate.

本発明の請求項5の潜熱蓄熱装置の設計方法においては、潜熱蓄熱槽本体の水平方向の半径と垂直方向の半径が等しいrであり、且つ、水平方向の半径がaで垂直方向の半径がbの楕円と周長が等しい正円について、(II)式、(VI)式、(IX)式のa、bはrとして請求項4のステップに従って計算を行い、断面円形状の潜熱蓄熱槽本体において、潜熱蓄熱材に対する蓄熱完了後の、熱媒上面と潜熱蓄熱槽本体内周天端との間の空気層の厚さx
を求めるものである。
In the method for designing a latent heat storage device according to claim 5 of the present invention, the horizontal radius and the vertical radius of the latent heat storage tank body are equal to r, the horizontal radius is a, and the vertical radius is For a perfect circle whose circumference is equal to the ellipse of b, a and b in the formulas (II), (VI), and (IX) are set as r according to the steps of claim 4, and the latent heat storage tank having a circular cross section is calculated. in the body, and requests after the heat storage completion for latent heat storage material, the thickness x 3 of the air layer between the heating medium top and latent heat storage tank body peripheral crest.

本発明の請求項6の潜熱蓄熱装置の設計方法は、断面円形状の潜熱蓄熱槽本体において、潜熱蓄熱材に対する蓄熱完了後の、熱媒上面と潜熱蓄熱槽本体内周天端との間の空気層の厚さをxとし、周長が前記断面円形状の蓄熱槽本体と等しい、断面形状が楕円形状の蓄熱槽本体において、熱蓄熱材に対する蓄熱完了後の、熱媒上面と潜熱蓄熱槽本体内周天端との間の空気層の厚さをx'とした場合、x'/x>1とするものである。 In the latent heat storage device design method according to claim 6 of the present invention, in the latent heat storage tank main body having a circular cross section, the air layer between the upper surface of the heat medium and the inner peripheral top of the latent heat storage tank main body after heat storage for the latent heat storage material is completed. the thickness of the x 3, the circumferential length is equal to the circular cross section of the heat storage tank body, the heat storage tank body of the cross-sectional shape oval shape, after the heat storage completion to heat the heat storage material, the heat medium top and latent heat storage tank body When the thickness of the air layer between the inner peripheral top end is x ′ 3 , x ′ 3 / x 3 > 1.

本発明の請求項1〜6に記載の潜熱蓄熱装置及び該潜熱蓄熱装置の設計方法によれば、潜熱蓄熱槽本体の断面形状を縦長の楕円形状とすることにより、周長が等しい円筒形(正円)の場合よりも必要な熱媒の量を少なくすることができて経済的であり、しかも、体積効率を大きくできるため、投入可能な潜熱蓄熱材の量が増加し、その結果、蓄熱量が増加する等、種々の優れた効果を奏し得る。   According to the latent heat storage device and the design method of the latent heat storage device according to claims 1 to 6 of the present invention, the cross-sectional shape of the latent heat storage tank main body is a vertically long oval shape, so that the circumferential length is equal ( The amount of necessary heat medium can be reduced compared to the case of a perfect circle), and it is economical and the volumetric efficiency can be increased, so that the amount of latent heat storage material that can be input increases, and as a result, heat storage Various excellent effects such as an increase in the amount can be obtained.

以下、本発明の実施の形態を添付図面を参照して説明する。
図1は本発明を実施する形態の一例であって、潜熱蓄熱槽本体3の縦断面形状以外は、図4、図5に示すものと略同様の構成である。図1中、図4、図5と同一の符号のものは形状が異なっていても同一のものを示している。又、蓄熱、放熱も図4に示すものと同様にして行なわれるため詳細な説明は省略する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is an example of an embodiment for carrying out the present invention, and the configuration is substantially the same as that shown in FIGS. 4 and 5 except for the longitudinal sectional shape of the latent heat storage tank body 3. In FIG. 1, the same reference numerals as those in FIGS. 4 and 5 indicate the same components even if the shapes are different. Further, since heat storage and heat dissipation are performed in the same manner as shown in FIG. 4, detailed description thereof is omitted.

而して、本図示例においては、潜熱蓄熱装置1は横置き型で、潜熱蓄熱槽2における潜熱蓄熱槽本体3の縦断面形状は、所定の径の正円を縦軸Yが長軸で、水平軸Xが短軸の楕円形状となるよう変形させた形状であり、正円の周長と楕円の周長は略等しいものである。   Thus, in the illustrated example, the latent heat storage device 1 is a horizontal type, and the longitudinal cross-sectional shape of the latent heat storage tank body 3 in the latent heat storage tank 2 is a perfect circle having a predetermined diameter, and the vertical axis Y is the long axis. The horizontal axis X is deformed so as to be an elliptical shape with a short axis, and the circumference of the perfect circle and the circumference of the ellipse are substantially equal.

又、潜熱蓄熱装置1は、以下で述べるように、熱媒14と潜熱蓄熱材12が直接接触する潜熱直接接触型である。更に、以下の説明で「蓄熱」とは潜熱蓄熱槽本体3内の潜熱蓄熱材12に流入した高温の熱媒14が、潜熱蓄熱材12と熱媒14との比重差(熱媒14の比重<潜熱蓄熱材12の比重)により上昇しつつ潜熱蓄熱材12を加熱し、熱媒14の熱が潜熱として潜熱蓄熱材12に蓄えられることをいい、「放熱」とは、潜熱蓄熱材12に蓄熱されていた潜熱が、潜熱蓄熱材12内を上昇する熱媒14に与えられて熱媒14が加熱されることをいう。「蓄熱完了」とは、熱媒14から潜熱蓄熱材12へ蓄熱の結果、当該潜熱蓄熱材12が液状化し、融点以上のある決められた温度、例えば、酢酸ナトリウム3水和物(融点58℃)の場合70℃に加熱されることをいい、「放熱完了」とは、潜熱蓄熱材12から熱媒4へ放熱の結果、当該潜熱蓄熱材12が固体化し、融点以下のある決められた温度、例えば、酢酸ナトリウム3水和物の場合50℃になることをいう。   The latent heat storage device 1 is a latent heat direct contact type in which the heat medium 14 and the latent heat storage material 12 are in direct contact as described below. Further, in the following description, “heat storage” means that the high-temperature heat medium 14 that has flowed into the latent heat storage material 12 in the latent heat storage tank main body 3 has a difference in specific gravity between the latent heat storage material 12 and the heat medium 14 (specific gravity of the heat medium 14). <The specific gravity of the latent heat storage material 12) is heated by the latent heat storage material 12, and the heat of the heat medium 14 is stored in the latent heat storage material 12 as latent heat. The latent heat that has been stored is given to the heat medium 14 that rises in the latent heat storage material 12 to heat the heat medium 14. “Heat storage is completed” means that the latent heat storage material 12 is liquefied as a result of heat storage from the heat medium 14 to the latent heat storage material 12, and a certain temperature higher than the melting point, for example, sodium acetate trihydrate (melting point 58 ° C.). ) Is heated to 70 ° C., and “radiation completed” means that the latent heat storage material 12 is solidified as a result of heat dissipation from the latent heat storage material 12 to the heat medium 4 and has a certain temperature below the melting point. For example, in the case of sodium acetate trihydrate, it means 50 ° C.

更に又、潜熱蓄熱槽本体3において、熱媒14(常時液状)が潜熱蓄熱材12(蓄熱完了時は液状、放熱完了時は固体状)の上方に溜まるのは、上述のように、熱媒14の比重が潜熱蓄熱材12の比重よりも小さいため、比重差により熱媒14が浮上するためである。具体的には、潜熱蓄熱材12としては、例えば、酢酸ナトリウム3水和物(融点58℃)を使用し、熱媒14としては、例えば、工業用白油とする。密度は、酢酸ナトリウム3水和物で、蓄熱完了時において、1.28t/m、放熱完了時において、1.45t/mであり、工業用白油で、蓄熱完了時において、0.8t/m3、放熱完了時において、0.85t/mである。 Furthermore, in the latent heat storage tank body 3, the heat medium 14 (always liquid) accumulates above the latent heat storage material 12 (liquid when heat storage is completed and solid when heat dissipation is completed) as described above. This is because the specific gravity of 14 is smaller than the specific gravity of the latent heat storage material 12, so that the heat medium 14 floats due to the specific gravity difference. Specifically, for example, sodium acetate trihydrate (melting point: 58 ° C.) is used as the latent heat storage material 12, and industrial white oil is used as the heat medium 14, for example. The density is 1.28 t / m 3 at the completion of heat storage, 1.45 t / m 3 at the completion of heat storage, 1.45 t / m 3 at the completion of heat storage, and 0. 8t / m 3, at the time of heat dissipation complete, a 0.85 T / m 3.

而して、本実施例では、以下に詳説するように、潜熱蓄熱槽本体3の断面形状が縦長の楕円形状の場合、潜熱蓄熱槽本体3が楕円と周長が等しい正円の場合と比較して、潜熱蓄熱槽本体3内に貯留する熱媒14の量を低減できる結果、熱媒14全体の価格を安価にすることができ、又、楕円率a/b(後述)が所定の範囲の場合は、潜熱蓄熱槽本体3上部の空気層15の面積効率を正円の場合より大きくできるため、潜熱蓄熱槽本体3へ投入することができる潜熱蓄熱材12が増加し、その結果潜熱の蓄熱量が増加する。   Thus, in the present embodiment, as will be described in detail below, when the cross-sectional shape of the latent heat storage tank body 3 is a vertically long elliptical shape, the latent heat storage tank body 3 is compared with a case where the latent heat storage tank body 3 is a perfect circle having the same circumference as the ellipse As a result, the amount of the heat medium 14 stored in the latent heat storage tank body 3 can be reduced. As a result, the price of the entire heat medium 14 can be reduced, and the ellipticity a / b (described later) is within a predetermined range. In this case, since the area efficiency of the air layer 15 on the upper part of the latent heat storage tank body 3 can be made larger than that in the case of a perfect circle, the latent heat storage material 12 that can be put into the latent heat storage tank body 3 is increased. The amount of heat storage increases.

次に、本図示例において潜熱蓄熱槽本体3の断面形状を縦長(縦軸Yが長軸で水平軸Xが短軸)の楕円形状にすると、周長が等しい正円の場合よりも熱媒14の量や蓄熱量が有利となる理由について、潜熱蓄熱槽本体3が円筒形状(正円)である図6をも参照しつつ数式を使用して説明する。なお、以下の説明では、図1、図6の何れの場合においても、蓄熱時の状態は縦軸Yの右側に示され、放熱時の状態は縦軸Yの左側に示されている。又、以下の説明において、「潜熱蓄熱槽本体3の軸線方向」とは、潜熱蓄熱槽本体3の長手方向(図4の紙面と平行な方向)であって、図1、図6の紙面に対し直交する方向である。   Next, in the illustrated example, when the cross-sectional shape of the latent heat storage tank main body 3 is an elliptical shape that is vertically long (the vertical axis Y is the long axis and the horizontal axis X is the short axis), the heat medium is larger than the case of a perfect circle having the same circumference. The reason why the amount of 14 and the amount of stored heat are advantageous will be described using mathematical formulas with reference to FIG. 6 in which the latent heat storage tank body 3 has a cylindrical shape (circular shape). In the following description, the state during heat storage is shown on the right side of the vertical axis Y and the state during heat dissipation is shown on the left side of the vertical axis Y in both cases of FIGS. In the following description, “the axial direction of the latent heat storage tank main body 3” is the longitudinal direction of the latent heat storage tank main body 3 (a direction parallel to the paper surface of FIG. 4). The direction is perpendicular to the direction.

先ず、図6に示す正円の潜熱蓄熱槽本体3において、蓄熱完了時、放熱完了時の諸元の決定の仕方を説明する。   First, how to determine the specifications at the completion of heat storage and the completion of heat dissipation in the circular latent heat storage tank main body 3 shown in FIG. 6 will be described.

i)潜熱蓄熱材12の蓄熱完了時における、潜熱蓄熱槽本体3の軸線方向に対する単位長さ当たりの容積Spcm(l)〔m/m〕を(i)式により算出する。(i)式中、Qは、潜熱蓄熱材12の潜熱蓄熱槽本体3における軸線方向の単位長さ当たりの蓄熱量〔MWh/m〕、ρpcm(l)は潜熱蓄熱材12に蓄熱を完了した際の潜熱蓄熱材12の密度〔ton/m〕、cは潜熱蓄熱材12の単位重量当たりの潜熱〔MJ/ton〕である。 i) The volume Spcm (l) [m 3 / m] per unit length with respect to the axial direction of the latent heat storage tank body 3 at the completion of heat storage of the latent heat storage material 12 is calculated by the equation (i). In formula (i), Q is the amount of heat stored per unit length [MWh / m] in the axial direction in the latent heat storage tank body 3 of the latent heat storage material 12, and ρ pcm (l) completes heat storage in the latent heat storage material 12. The density [ton / m 3 ] of the latent heat storage material 12 and c are the latent heat [MJ / ton] per unit weight of the latent heat storage material 12.

Figure 2009085496
Figure 2009085496

ii)(i)式で求めた蓄熱完了時における潜熱蓄熱材12の潜熱蓄熱槽本体3軸線方向に対する単位長さ当たりの容積Spcm(l)〔m/m〕を基に、蓄熱完了時の潜熱蓄熱材12の潜熱蓄熱槽本体3における中心Oから潜熱蓄熱材12の上面である境界面11までの高さhpcm(l)〔m〕を(ii)式により算出する。(ii)式中、rは潜熱蓄熱槽本体3の半径〔m〕、πは円周率である。 ii) When the heat storage is completed based on the volume Spcm (l) [m 3 / m] per unit length of the latent heat storage material 12 in the three axial directions of the latent heat storage material 12 at the time of the completion of the heat storage determined by the equation (i) The height hpcm (l) [m] from the center O of the latent heat storage material 12 in the latent heat storage tank body 3 to the boundary surface 11 which is the upper surface of the latent heat storage material 12 is calculated by the equation (ii). In the formula (ii), r is the radius [m] of the latent heat storage tank body 3, and π is the circumference.

Figure 2009085496
Figure 2009085496

iii)(ii)式で求めた、蓄熱完了時の潜熱蓄熱槽本体3における中心Oから潜熱蓄熱材12の境界面11までの高さhpcm(l)〔m〕を基に、潜熱蓄熱槽本体3における中心Oから潜熱蓄熱槽本体3の内部上方にある熱媒回収配管5の中心までの高さhpipe〔m〕を(iii)式により算出する。(iii)式中、xは、潜熱蓄熱材12に対する蓄熱を完了した際の潜熱蓄熱材12における境界面11から熱媒回収配管5の中心までの高さ〔m〕であり、熱媒回収管5の下端が潜熱蓄熱材12の上面よりも高くなるよう、実際の設計においては適宜決定される数値である。 iii) Based on the height hpcm (l) [m] from the center O of the latent heat storage tank body 3 at the completion of the heat storage to the boundary surface 11 of the latent heat storage material 12 obtained by the equation (ii), the latent heat storage tank The height h pipe [m] from the center O in the main body 3 to the center of the heat medium recovery pipe 5 located inside the latent heat storage tank main body 3 is calculated by the formula (iii). (Iii) wherein, x 1 is a from the boundary surface 11 of the latent heat storage material 12 at the time of completing the heat storage for the latent heat storage material 12 to the center of the heating medium recovery pipe 5 Height (m), the heating medium recovered In the actual design, the numerical value is appropriately determined so that the lower end of the pipe 5 is higher than the upper surface of the latent heat storage material 12.

Figure 2009085496
Figure 2009085496

iv)(iii)式で求めた潜熱蓄熱槽本体3の中心Oから熱媒回収配管5の中心までの高さhpipe〔m〕を基に、潜熱蓄熱材12から熱媒14に対して放熱が完了した際の潜熱蓄熱槽本体3の中心Oから熱媒14上面13までの高さhoil(s)〔m〕を(iv)式により算出する。(iv)中、xは、熱媒回収配管5の中心から、潜熱蓄熱材12の放熱完了時の熱媒14の上面13までの高さ〔m〕であり、熱媒回収配管5の上端が熱媒14の上面13よりも低くなるように実際の設計において適宜決定される数値である。 iv) Based on the height h pipe [m] from the center O of the latent heat storage tank body 3 to the center of the heat medium recovery pipe 5 obtained by the equation (iii), heat is radiated from the latent heat storage material 12 to the heat medium 14. The height h oil (s) [m] from the center O of the latent heat storage tank main body 3 to the upper surface 13 of the heat medium 14 when is completed is calculated by the equation (iv). (Iv) in, x 2 from the center of the heating medium recovery pipe 5, a top up 13 the height of the heat dissipation at completion of the heating medium 14 in the latent heat storage material 12 [m], the upper end of the heat medium recovery pipe 5 Is a numerical value appropriately determined in actual design so as to be lower than the upper surface 13 of the heat medium 14.

Figure 2009085496
Figure 2009085496

v)潜熱蓄熱材12の熱媒14に対する放熱完了時における、潜熱蓄熱槽本体3の軸線方向に対する単位長さ当たりの容積Spcm(s)〔m/m〕を(v)式により算出する。(v)式中、Qは、潜熱蓄熱材12の潜熱蓄熱槽本体13における軸線方向に対する単位長さ当たりの蓄熱量〔MWh/m〕、ρpcm(s)は潜熱蓄熱材12が放熱を完了した際の潜熱蓄熱材12の密度〔ton/m〕、cは潜熱蓄熱材12の単位重量当たりの潜熱〔MJ/ton〕である。 v) The volume Spcm (s) [m 3 / m] per unit length in the axial direction of the latent heat storage tank body 3 at the time when the heat dissipation of the latent heat storage material 12 to the heat medium 14 is completed is calculated by the equation (v). . In the formula (v), Q is the amount of heat stored per unit length [MWh / m] with respect to the axial direction of the latent heat storage tank body 13 of the latent heat storage material 12, and ρ pcm (s) is the latent heat storage material 12 completing the heat dissipation. The density [ton / m 3 ] of the latent heat storage material 12 and c are the latent heat [MJ / ton] per unit weight of the latent heat storage material 12.

Figure 2009085496
Figure 2009085496

vi)(iv)式で求めた放熱完了時の熱媒14の上面13までの、潜熱蓄熱槽本体3中心Oからの高さhoil(s)〔m〕及び(v)式で求めた放熱完了時における潜熱蓄熱槽本体3軸線方向に対する潜熱蓄熱材12の単位長さ当たりの容積Spcm(s)〔m/m〕を基に、潜熱蓄熱材12の放熱完了時における潜熱蓄熱槽本体3の軸線方向に対する熱媒14の単位長さ当たりの容積Soil(s)〔m/m〕を(vi)式により算出する。(vi)式中、rは潜熱蓄熱槽本体3の半径〔m〕、πは円周率である。 vi) Height h oil (s) from the center O of the latent heat storage tank body 3 to the upper surface 13 of the heat medium 14 at the time of completion of the heat release obtained by the equation (iv) and heat release obtained by the equation (v) Latent heat storage tank body at the time of completion Based on the volume Spcm (s) [m 3 / m] per unit length of the latent heat storage material 12 with respect to the three axial directions, the latent heat storage tank body at the time of completion of heat radiation of the latent heat storage material 12 The volume S oil (s) [m 3 / m] per unit length of the heat medium 14 with respect to the axial direction of 3 is calculated by the equation (vi). In the formula (vi), r is the radius [m] of the latent heat storage tank body 3, and π is the circumference.

Figure 2009085496
Figure 2009085496

vii)(vi)式で求めた放熱完了時における潜熱蓄熱槽本体3の軸線方向に対する熱媒14の単位長さ当たりの容積Soil(s)〔m/m〕を基に、(vii)式により潜熱蓄熱槽本体3の軸線方向に対する熱媒14の単位長さ当たりの重量Moil〔ton/m〕を算出する。(vii)式中、ρoil(s)は、潜熱蓄熱材12の放熱完了時の熱媒14の密度〔ton/m〕である。 vii) Based on the volume S oil (s) [m 3 / m] per unit length of the heat medium 14 with respect to the axial direction of the latent heat storage tank main body 3 at the time of completion of the heat release obtained by the equation (vi), (vii) The weight M oil [ton / m] per unit length of the heat medium 14 with respect to the axial direction of the latent heat storage tank body 3 is calculated by the equation. In the equation (vii), ρ oil (s) is the density [ton / m 3 ] of the heat medium 14 when the heat release from the latent heat storage material 12 is completed.

Figure 2009085496
Figure 2009085496

又、(vii)式で求めた潜熱蓄熱槽本体3の軸線方向に対する熱媒14の単位長さ当たりの重量Moil〔ton/m〕を基に潜熱蓄熱材12の蓄熱完了時における潜熱蓄熱槽本体3の軸線方向に対する熱媒14の単位長さ当たりの容積Soil(l)〔m/m〕を(viii)式により算出する。(viii)式中、ρoil(l)は、潜熱蓄熱材12に蓄熱が完了した際の熱媒14の密度〔ton/m〕である。 Further, the latent heat storage tank when the heat storage of the latent heat storage material 12 is completed based on the weight M oil [ton / m] per unit length of the heat medium 14 with respect to the axial direction of the latent heat storage tank main body 3 obtained by the equation (vii). The volume S oil (l) [m 3 / m] per unit length of the heat medium 14 with respect to the axial direction of the main body 3 is calculated by the equation (viii). In the formula (viii), ρ oil (l) is the density [ton / m 3 ] of the heat medium 14 when the latent heat storage material 12 has completed heat storage.

Figure 2009085496
Figure 2009085496

(i)式で求めた潜熱蓄熱材12の蓄熱完了時における潜熱蓄熱槽本体3の軸線方向に対する単位長さ当たりの容積Spcm(l)〔m/m〕及び(viii)式で求めた潜熱蓄熱材12の蓄熱完了時における潜熱蓄熱槽本体3の軸線方向に対する熱媒14の単位長さ当たりの容積Soil(l)〔m/m〕を基に、潜熱蓄熱材12の蓄熱完了時における潜熱蓄熱槽本体3の中心Oから熱媒14の上面13までの高さhoil(l)〔m〕を(ix)式により、算出する。(ix)式中、rは潜熱蓄熱槽本体3の半径〔m〕、πは円周率である。 The volume per unit length Spcm (l) [m 3 / m] with respect to the axial direction of the latent heat storage tank body 3 at the completion of heat storage of the latent heat storage material 12 determined by the expression (i) and the expression (viii) Completion of heat storage of the latent heat storage material 12 based on the volume S oil (l) [m 3 / m] per unit length of the heat medium 14 with respect to the axial direction of the latent heat storage tank body 3 when the heat storage of the latent heat storage material 12 is completed The height h oil (l) [m] from the center O of the latent heat storage tank body 3 to the upper surface 13 of the heat medium 14 at the time is calculated by the equation (ix). In the formula (ix), r is the radius [m] of the latent heat storage tank body 3, and π is the circumference.

Figure 2009085496
Figure 2009085496

次いで、(ix)式で求めた潜熱蓄熱材12の蓄熱完了時における潜熱蓄熱槽本体3の中心Oから熱媒14の上面までの高さhoil(l)を基に、潜熱蓄熱材12に対する蓄熱完了時の熱媒14上面から潜熱蓄熱槽本体3内周天端までの空気層15の厚さx〔m〕を(x)式により算出する。(x)式中、rは潜熱蓄熱槽本体3の半径〔m〕である。 Next, based on the height h oil (l) from the center O of the latent heat storage tank body 3 to the upper surface of the heat medium 14 at the completion of the heat storage of the latent heat storage material 12 obtained by the equation (ix), the latent heat storage material 12 The thickness x 3 [m] of the air layer 15 from the upper surface of the heat medium 14 when the heat storage is completed to the inner peripheral top end of the latent heat storage tank body 3 is calculated by the equation (x). In the formula (x), r is a radius [m] of the latent heat storage tank body 3.

Figure 2009085496
Figure 2009085496

(x)式を計算する際には、潜熱蓄熱材12に対する蓄熱完了後の空気層15の厚さxが、x>0となるよう、潜熱蓄熱槽本体3の半径rを変えて計算する。 In calculating the (x) equation, the thickness x 3 of the air layer 15 after the heat storage completion for latent heat storage material 12, such as a x 3> 0, calculating a change in the radius r of the latent heat storage tank body 3 To do.

又、(ii)式、(vi)式、(ix)式における、容積と高さの関係は、円の方程式x+y=rをxについて−rからhまで積分することにより得られた

Figure 2009085496
Further, the relationship between the volume and the height in the equations (ii), (vi), and (ix) can be obtained by integrating the equation x 2 + y 2 = r 2 of the circle from −r to h with respect to x. The
Figure 2009085496

更に、図6中、hpcm(s)は、潜熱蓄熱材12の放熱完了時における潜熱蓄熱槽本体3の中心Oから潜熱蓄熱材12の上面である境界面11までの高さ〔m〕である。 Further, in FIG. 6, hpcm (s) is a height [m] from the center O of the latent heat storage tank body 3 to the boundary surface 11 which is the upper surface of the latent heat storage material 12 when the heat release of the latent heat storage material 12 is completed. is there.

次に、潜熱蓄熱槽本体3の縦方向が長軸Yで水平方向が短軸Xである、断面形状が楕円形状の場合に、潜熱蓄熱槽本体3の諸元の決定の手順について、図1、図6を参照しつつ説明する。   Next, when the longitudinal direction of the latent heat storage tank body 3 is the major axis Y and the horizontal direction is the minor axis X and the cross-sectional shape is an elliptical shape, the procedure for determining the specifications of the latent heat storage tank body 3 will be described with reference to FIG. This will be described with reference to FIG.

なお、以下の計算では、潜熱蓄熱槽本体3が正円の場合の内周の周長L1と、楕円形の場合の内周の周長L2は、L1=L2=Lとなるようにする。これは、槽の価格は槽の表面積に比例すると考えられるためである。   In the following calculation, the inner circumference L1 when the latent heat storage tank body 3 is a perfect circle and the inner circumference L2 when the shape is elliptical are set to L1 = L2 = L. This is because the price of the tank is considered to be proportional to the surface area of the tank.

I)潜熱蓄熱材12の蓄熱完了時における、潜熱蓄熱槽本体3の軸線方向に対する単位長さ当たりの容積Spcm(l)〔m/m〕を(I)式により算出する。(I)式中、Qは潜熱蓄熱材12の潜熱蓄熱槽本体3軸線方向に対する単位長さ当たりの蓄熱量〔MWh/m〕、ρpcm(l)は潜熱蓄熱材12に蓄熱を完了した際の潜熱蓄熱材12の密度〔ton/m〕、cは潜熱蓄熱材12の単位重量当たりの潜熱〔MJ/ton〕である。 I) The volume Spcm (l) [m 3 / m] per unit length with respect to the axial direction of the latent heat storage tank body 3 at the completion of heat storage of the latent heat storage material 12 is calculated by the formula (I). In formula (I), Q is the amount of heat stored per unit length [MWh / m] with respect to the three-axis direction of the latent heat storage tank body 12 of the latent heat storage material 12, and ρ pcm (l) is when the latent heat storage material 12 has completed heat storage. The latent heat storage material 12 has a density [ton / m 3 ] and c is a latent heat [MJ / ton] per unit weight of the latent heat storage material 12.

Figure 2009085496
Figure 2009085496

II)(I)式で求めた蓄熱完了時の潜熱蓄熱材12の潜熱蓄熱槽本体3軸線方向に対する蓄熱量Spcm(l)〔m/m〕を基に、蓄熱完了時の潜熱蓄熱材12の潜熱蓄熱槽本体3における楕円の中心O(以下、単に中心Oという)から潜熱蓄熱材12の上面である境界面11までの高さh'pcm(l)〔m〕を(II)式により算出する。(II)式中、aは潜熱蓄熱槽本体3の短軸側(水平方向)の半径(短軸半径)〔m〕、bは潜熱蓄熱槽本体3の長軸側(縦方向)の半径(長軸半径)〔m〕、πは円周率である。 II) Based on the heat storage amount Spcm (l) [m 3 / m] of the latent heat storage tank 12 in the three axial directions of the latent heat storage material 12 at the time of completion of the heat storage obtained by the formula (I), the latent heat storage material at the time of completion of the heat storage The height h ′ pcm (l) [m] from the ellipse center O (hereinafter simply referred to as the center O) in the 12 latent heat storage tank body 3 to the boundary surface 11 which is the upper surface of the latent heat storage material 12 is expressed by the formula (II) Calculated by In the formula (II), a is a radius (short axis radius) [m] on the short axis side (horizontal direction) of the latent heat storage tank body 3, and b is a radius on the long axis side (vertical direction) of the latent heat storage tank body 3 ( (Major axis radius) [m], π is the circumference.

Figure 2009085496
Figure 2009085496

なお、(II)式の計算には、潜熱蓄熱槽本体3の短軸半径a〔m〕、長軸半径b〔m〕とした場合、潜熱蓄熱槽本体3の周長L〔m〕は、半径r〔m〕の円筒形の周長L〔m〕と等しくなるように設定する。周長Lの計算には、

Figure 2009085496
In the calculation of the formula (II), when the short axis radius a [m] and the long axis radius b [m] of the latent heat storage tank body 3 are set, the peripheral length L [m] of the latent heat storage tank body 3 is It is set to be equal to the circumferential length L [m] of the cylindrical shape with the radius r [m]. To calculate the circumference L,
Figure 2009085496

III)(II)式で求めた、蓄熱完了時の潜熱蓄熱材12の潜熱蓄熱槽本体3における中心Oから潜熱蓄熱材12の上面である境界面11までの高さh'pcm(l)〔m〕を基に、潜熱蓄熱槽本体3における中心Oから潜熱蓄熱槽本体3の内部上方にある熱媒回収配管5の中心までの高さh'pipe〔m〕を(III)式により算出する。(III)式中、xは、潜熱蓄熱材12に対する蓄熱を完了した際の潜熱蓄熱材12における上面である境界面11から熱媒回収配管5の径方向中心までの高さ〔m〕であり、潜熱蓄熱材12の上面が、熱媒回収配管5の下端よりも下方となるよう、実際の設計においては適宜決定される数値である。 III) Height h ′ pcm (l) from the center O in the latent heat storage tank body 3 of the latent heat storage material 12 when the heat storage is completed, to the boundary surface 11 that is the upper surface of the latent heat storage material 12, calculated by the formula (II). m], the height h ′ pipe [m] from the center O in the latent heat storage tank body 3 to the center of the heat medium recovery pipe 5 located inside the latent heat storage tank body 3 is calculated by the formula (III). . (III) wherein, x 1 is the height from the boundary surface 11 is the upper surface in latent heat storage material 12 at the time of completing the heat storage for the latent heat storage material 12 to the radial center of the heating medium recovery pipe 5 (m) In the actual design, the numerical value is appropriately determined so that the upper surface of the latent heat storage material 12 is lower than the lower end of the heat medium recovery pipe 5.

Figure 2009085496
Figure 2009085496

IV)(III)式で求めた潜熱蓄熱槽本体3の中心Oから熱媒回収配管5の中心までの高さh'pipe〔m〕を基に、潜熱蓄熱槽本体3における中心Oから、潜熱蓄熱材12よりの熱媒14に対する放熱完了時の熱媒14の上面13までの高さh'oil(s)〔m〕を(IV)式により算出する。(IV)式中、xは、熱媒回収配管5の径方向中心から、潜熱蓄熱材12の放熱完了時の熱媒14の上面13までの高さ〔m〕であり、熱媒回収配管5の上端が熱媒14の上面よりも低くなるように実際の設計において適宜決定される数値である。 IV) Based on the height h ′ pipe [m] from the center O of the latent heat storage tank body 3 to the center of the heat medium recovery pipe 5 calculated by the formula (III), the latent heat is calculated from the center O in the latent heat storage tank body 3. The height h ′ oil (s) [m] up to the upper surface 13 of the heat medium 14 when the heat dissipation from the heat storage material 12 to the heat medium 14 is completed is calculated by the formula (IV). In formula (IV), x 2 is from the radial center of the heating medium recovery pipe 5, the upper surface of up to 13 height of the heat dissipation at completion of the heating medium 14 in the latent heat storage material 12 (m), the heating medium recovery pipe 5 is a numerical value appropriately determined in actual design so that the upper end of 5 is lower than the upper surface of the heat medium 14.

Figure 2009085496
Figure 2009085496

V)潜熱蓄熱材12の熱媒14に対する放熱完了時における、潜熱蓄熱槽本体3の軸線方向に対する単位長さ当たりの容積Spcm(s)〔m/m〕を(V)式により算出する。(V)式中、Qは潜熱蓄熱材12における潜熱蓄熱槽本体3の軸線方向に対する単位長さ当たりの蓄熱量〔MWh/m〕、ρpcm(s)は潜熱蓄熱材12が放熱を完了した際の潜熱蓄熱材12の密度〔ton/m〕、cは潜熱蓄熱材12の単位重量当たりの潜熱〔MJ/ton〕である。 V) The volume Spcm (s) [m 3 / m] per unit length with respect to the axial direction of the latent heat storage tank body 3 when the heat dissipation of the latent heat storage material 12 to the heat medium 14 is completed is calculated by the equation (V). . In the formula (V), Q is the amount of heat stored per unit length [MWh / m] with respect to the axial direction of the latent heat storage tank body 3 in the latent heat storage material 12, and ρ pcm (s) is the latent heat storage material 12 has completed the heat dissipation. The density [ton / m 3 ] and c of the latent heat storage material 12 at that time are latent heat [MJ / ton] per unit weight of the latent heat storage material 12.

Figure 2009085496
Figure 2009085496

V1)(IV)式で求めた潜熱蓄熱材12よりの放熱完了時の熱媒14の上面13までの高さh'oil(s)及び(V)式で求めた潜熱蓄熱材12の放熱完了時における潜熱蓄熱槽本体3の軸線方向に対する単位長さ当たりの容積Spcm(s)〔m/m〕を基に、潜熱蓄熱材12の放熱完了時における熱媒14の潜熱蓄熱槽本体3軸線方向に対する単位長さ当たりの容積S'oil(s)を(VI)式により算出する。(VI)式中、aは潜熱蓄熱槽本体3の短軸側(水平方向)の半径(短軸半径)〔m〕、bは潜熱蓄熱槽本体3の長軸側(縦方向)の半径(長軸半径)〔m〕、πは円周率である。 V1) The height h'oil (s) to the upper surface 13 of the heat medium 14 when the heat release from the latent heat storage material 12 determined by the formula (IV) is completed, and the heat release of the latent heat storage material 12 determined by the formula (V). The latent heat storage tank body 3 of the heat medium 14 when the heat release of the latent heat storage material 12 is completed based on the volume Spcm (s) [m 3 / m] per unit length with respect to the axial direction of the latent heat storage tank body 3 at the time The volume S ′ oil (s) per unit length with respect to the axial direction is calculated by the formula (VI). In the formula (VI), a is a radius (short axis radius) [m] on the short axis side (horizontal direction) of the latent heat storage tank body 3, and b is a radius on the long axis side (vertical direction) of the latent heat storage tank body 3 ( (Major axis radius) [m], π is the circumference.

Figure 2009085496
Figure 2009085496

VII)(VI)式で求めた放熱完了時における熱媒14の潜熱蓄熱槽本体3軸線方向に対する単位長さ当たりの容積S'oil(s)〔m/m〕を基に、(VII)式により熱媒14の潜熱蓄熱槽本体3の軸線方向に対する単位長さ当たりの重量M'oil〔ton/m〕を算出する。(VII)式中、ρoil(s)は、潜熱蓄熱材12の放熱完了時の熱媒14の密度〔ton/m〕である。 VII) Based on the volume S ′ oil (s) [m 3 / m] per unit length of the latent heat storage tank main body 3 axis direction of the heat medium 14 at the time of the completion of the heat release obtained by the formula (VI), (VII) The weight M ′ oil [ton / m] per unit length with respect to the axial direction of the latent heat storage tank body 3 of the heat medium 14 is calculated by the equation. In the formula (VII), ρ oil (s) is the density [ton / m 3 ] of the heat medium 14 when the heat release of the latent heat storage material 12 is completed.

Figure 2009085496
Figure 2009085496

又、(VII)式で求めた熱媒14の潜熱蓄熱槽本体3の軸線方向に対する単位長さ当たりの重量M'oil〔ton/m〕を基に、潜熱蓄熱材12に対する蓄熱完了時の熱媒14の潜熱蓄熱槽本体3軸線方向に対する単位長さ当たりの容積S'oil(l)〔m/m〕を(VIII)式により算出する。(VIII)式中、ρoil(l)は、潜熱蓄熱材12に蓄熱が完了した際の熱媒14の密度〔ton/m〕である。 Further, based on the weight M ′ oil [ton / m] per unit length of the latent heat storage tank body 3 in the axial direction of the latent heat storage tank body 3 obtained by the formula (VII), the heat at the time when the heat storage for the latent heat storage material 12 is completed. The volume S ′ oil (l) [m 3 / m] per unit length with respect to the three axial directions of the latent heat storage tank body of the medium 14 is calculated by the formula (VIII). In the formula (VIII), ρ oil (l) is the density [ton / m 3 ] of the heat medium 14 when the latent heat storage material 12 has completed heat storage.

Figure 2009085496
Figure 2009085496

(I)式で求めた蓄熱完了時の潜熱蓄熱材12の潜熱蓄熱槽本体3軸線方向に対する単位長さ当たりの容積Spcm(l)〔m/m〕及び(VIII)式で求めた潜熱蓄熱材12に対する蓄熱完了時の熱媒14の潜熱蓄熱槽本体3軸線方向に対する単位長さ当たりの容積S'oil(l)〔m/m〕を基に、潜熱蓄熱材12に蓄熱を完了した際の潜熱蓄熱槽本体3の中心Oから熱媒14の上面13までの高さh'oil(l)〔m〕を(IX)式により算出する。(IX)式中、aは潜熱蓄熱槽本体3の短軸側(水平方向)の半径(短軸半径)〔m〕、bは潜熱蓄熱槽本体3の長軸側(縦方向)の半径(長軸半径)〔m〕、πは円周率である。 Volume per unit length Spcm (l) [m 3 / m] of latent heat storage material 12 in the three axial directions of latent heat storage material 12 at the time of completion of heat storage calculated by formula (I) and latent heat calculated by formula (VIII) Completion of heat storage in the latent heat storage material 12 based on the volume S'oil (l) [m 3 / m] per unit length of the latent heat storage tank body 3 in the axial direction of the heat medium 14 when the heat storage for the heat storage material 12 is completed The height h ′ oil (l) [m] from the center O of the latent heat storage tank body 3 to the upper surface 13 of the heat medium 14 is calculated by the formula (IX). In the formula (IX), a is a radius (short axis radius) [m] on the short axis side (horizontal direction) of the latent heat storage tank body 3, and b is a radius on the long axis side (vertical direction) of the latent heat storage tank body 3 ( (Major axis radius) [m], π is the circumference.

Figure 2009085496
Figure 2009085496

次いで、潜熱蓄熱槽本体3の中心Oから潜熱蓄熱材12の蓄熱完了時の熱媒14の上面13までの高さh'oil(l)〔m〕を基に、潜熱蓄熱材12に対する蓄熱完了時の空気層15の厚さx'〔m〕を(X)式により算出する。(X)式中、bは潜熱蓄熱槽本体3の長軸側半径〔m〕である。 Next, the heat storage on the latent heat storage material 12 is completed based on the height h ′ oil (l) [m] from the center O of the latent heat storage tank body 3 to the upper surface 13 of the heat medium 14 when the heat storage of the latent heat storage material 12 is completed. The thickness x ′ 3 [m] of the air layer 15 at the time is calculated by the equation (X). In the formula (X), b is the major axis side radius [m] of the latent heat storage tank body 3.

Figure 2009085496
Figure 2009085496

潜熱蓄熱材12に対する蓄熱完了後の空気層15の厚さx'が、x'>0となるよう、潜熱蓄熱槽本体3の短軸半径a、長軸半径bを変えて計算を行なう。 Calculation is performed by changing the short axis radius a and the long axis radius b of the latent heat storage tank body 3 so that the thickness x ′ 3 of the air layer 15 after completion of heat storage with respect to the latent heat storage material 12 becomes x ′ 3 > 0. .

なお、(II)式、(VI)式、(IX)式における、容積と高さの関係は、

Figure 2009085496
を用いた。 The relationship between the volume and height in the formulas (II), (VI), and (IX) is as follows:
Figure 2009085496
Was used.

又、図1中、h'pcm(s)は、潜熱蓄熱材12の放熱完了時における潜熱蓄熱槽本体3の中心Oから潜熱蓄熱材12の上面である境界面11までの高さ〔m〕である。 In FIG. 1, h ′ pcm (s) is the height [m] from the center O of the latent heat storage tank body 3 to the boundary surface 11 that is the upper surface of the latent heat storage material 12 when the heat release of the latent heat storage material 12 is completed. It is.

上記(i)式〜(x)式、(I)式〜(X)式を用い計算を行なうに際し、潜熱蓄熱材12の単位長さ当たりの蓄熱量Q=0.25〔MWh/m〕、潜熱蓄熱槽本体3が正円の場合にその半径r=1.1〔m〕、潜熱蓄熱材12に対する蓄熱が完了した時点で境界面11が熱媒回収配管5の下端よりも下方となるよう決定した数値である、潜熱蓄熱材12上面から熱媒回収管5の径方向中心までの高さx=0.1〔m〕、潜熱蓄熱材12からの放熱が完了した時点で熱媒14の上面13が熱媒回収配管5の上端よりも上方となるよう決定した数値である、熱媒回収配管5の径方向中心から熱媒14の上面13までの高さx=0.2〔m〕を入力条件とし、楕円率a/bを1から小さくしていった際の熱媒14の油重量比M'oil/Moil及び潜熱蓄熱材12に対する蓄熱完了後の空気層15の厚さの比(空気層厚さ比)x'/xを求め、グラフに表示すると図2(a)、(b)のようになる。 When performing calculations using the formulas (i) to (x) and (I) to (X), the heat storage amount Q per unit length of the latent heat storage material 12 is Q = 0.25 [MWh / m], When the latent heat storage tank body 3 is a perfect circle, the radius r = 1.1 [m], and when the heat storage for the latent heat storage material 12 is completed, the boundary surface 11 is lower than the lower end of the heat medium recovery pipe 5. The heat medium 14 at the time when the heat release from the latent heat storage material 12 is completed, the height x 1 = 0.1 [m] from the upper surface of the latent heat storage material 12 to the radial center of the heat medium recovery pipe 5, which is the determined numerical value. The height x 2 from the center of the heat medium recovery pipe 5 in the radial direction to the upper surface 13 of the heat medium 14 is 0.2 × 0.2 [0.2 [ m] as an input condition, and the oil weight ratio M ′ oil / M of the heating medium 14 when the ellipticity a / b is decreased from 1 The ratio of the thickness of the air layer 15 after completion of heat storage to the oil and the latent heat storage material 12 (air layer thickness ratio) x ′ 3 / x 3 is obtained and displayed on a graph as shown in FIGS. 2 (a) and 2 (b). become.

なお、熱媒14の重量のMoilの計算は(i)式〜(vii)式を用い、熱媒14の重量M'oilの計算は(I)式〜(VII)式を用いた。更に、高さxの計算は(i)式、(viii)式、(ix)式、(x)式と、Moilの計算結果を用い、高さx'の計算は(I)式、(VIII)式、(IX)式、(X)式と、M'oilの計算結果等を用いた。 The calculation of the weight of M oil of the heating medium 14 using the formula (i) ~ (vii) expression, calculation of the weight M 'oil of the heating medium 14 using the equation (I) ~ (VII) equation. Further, the calculation of the height x 3 uses the formula (i), the formula (viii), the formula (ix), the formula (x) and the calculation result of M oil , and the calculation of the height x ′ 3 uses the formula (I). , (VIII) formula, (IX) formula, (X) formula, M ′ oil calculation results, and the like were used.

又、計算に使用した潜熱蓄熱材12(酢酸ナトリウム3水和物)の物性値は、潜熱c=265MJ/ton、蓄熱完了時(温度70℃)の密度ρpcm(l)=1.28ton/m、放熱完了時(温度50℃)の密度ρpcm(s)=1.45ton/mとし、熱媒14の物性値は、蓄熱完了時(温度70℃)の密度ρoil(l)=0.80ton/m、放熱完了時(温度50℃)の密度ρoil(s)=0.85ton/mとした。 The physical property value of the latent heat storage material 12 (sodium acetate trihydrate) used in the calculation is as follows: latent heat c = 265 MJ / ton, density ρ pcm (l) = 1.28 ton / m 3 , density ρ pcm (s) at the time of completion of heat dissipation (temperature 50 ° C.) = 1.45 ton / m 3, and physical properties of the heat medium 14 are density ρ oil (l) at the time of heat storage completion (temperature 70 ° C. ) = 0.80 ton / m 3 , density ρ oil (s) at the time of completion of heat dissipation (temperature 50 ° C. ) = 0.85 ton / m 3 .

図2(a)のグラフから楕円率a/bが小さくなると油重量比M'oil/Moilが減少することが分かり、図2(b)のグラフの点イ'に示すように、空気層厚さ比x'/xを正円の場合と同じ1にすると、油重量比M'oil/Moilは図2(a)の点イに示すごとく約0.87となり、熱媒14の重量は約13%削減できる。 It can be seen from the graph of FIG. 2A that the oil weight ratio M ′ oil / M oil decreases as the ellipticity a / b decreases, and as shown by the point a ′ in the graph of FIG. When the thickness ratio x ′ 3 / x 3 is set to 1, which is the same as in the case of a perfect circle, the oil weight ratio M ′ oil / M oil becomes about 0.87 as shown by the point a in FIG. The weight of can be reduced by about 13%.

又、空気層厚さ比x'/xを更に少なくして、図2(b)の点ロ'のように0.5とすると、すなわち、潜熱蓄熱槽本体3が楕円形状の場合の空気層15の厚さを正円の場合の半分にすると、油重量比M'oil/Moilは図2(a)の点ロに示すごとく約0.8となり、熱媒14の重量は約20%削減できる。 Further, when the air layer thickness ratio x ′ 3 / x 3 is further reduced to 0.5 as indicated by a point b ′ in FIG. 2B, that is, when the latent heat storage tank body 3 is elliptical. When the thickness of the air layer 15 is half that of a perfect circle, the oil weight ratio M ′ oil / M oil becomes about 0.8 as indicated by point b in FIG. 2A, and the weight of the heating medium 14 is about It can be reduced by 20%.

更に、空気層厚さ比x'/xは、図2(b)のハ'のように極大値(蓄熱量Q=0.25〔MWh/m〕で空気層厚さ比x'/x=1.14)を有する。これは潜熱蓄熱槽本体3を、空気層厚さ比x'/xが1以上の楕円形状にすると、潜熱蓄熱槽本体3が、楕円形状の蓄熱槽本体3と周長が等しい正円の場合よりも、楕円形状の蓄熱槽本体3の空気層15の厚さx'が大きくなり、空気層15に余裕があることを意味する。このため、楕円形状の蓄熱槽本体3においては、空気層厚さ比x'/xが1以上の場合、すなわち、潜熱蓄熱槽本体3が楕円形状の場合の空気層15の厚さx'が潜熱蓄熱槽本体3が正円の場合の空気層15の厚さxよりも大きい場合、この空気層15厚さx'が正円の場合の空気層の厚さxと等しくなるように、すなわち、空気層厚さ比x'/x=1となるように、潜熱蓄熱材12の量を増加することが可能となる(空気層15の面積効率が良好となる)。 Furthermore, the ratio air layer thickness x '3 / x 3 is 2 Ha (b)' maxima as (amount of stored heat Q = 0.25 [MWh / m] in the air layer thickness ratio x '3 / X 3 = 1.14). When the latent heat storage tank body 3 is formed into an elliptical shape with an air layer thickness ratio x ′ 3 / x 3 of 1 or more, the latent heat storage tank body 3 is a perfect circle having the same circumference as the elliptical heat storage tank body 3. This means that the thickness x ′ 3 of the air layer 15 of the elliptical heat storage tank main body 3 is larger and the air layer 15 has a margin. For this reason, in the elliptical heat storage tank main body 3, when the air layer thickness ratio x ′ 3 / x 3 is 1 or more, that is, the thickness x of the air layer 15 when the latent heat storage tank main body 3 is elliptical. 'If 3 is greater than the thickness x 3 of the air layer 15 in the case where the latent heat storage tank body 3 of a circle, the air layer 15 thickness x' and thickness x 3 of the air layer when the third circle It is possible to increase the amount of the latent heat storage material 12 so as to be equal, that is, the air layer thickness ratio x ′ 3 / x 3 = 1 (the area efficiency of the air layer 15 is improved). ).

そこで、空気層厚さ比x'/x=1になるまで蓄熱量Qがどのように増加するかを、蓄熱量Qを入力値として種々代え、(I)式〜(X)式を用いて計算したところ、Q=0.2535〔MWh/m〕で、比x'/x=1となった。従って、空気層厚さ比x'/x=1.14(極大値)における蓄熱量Q対して空気層厚さ比x'/x=1の場合の蓄熱量Qは、0.2535÷0.25=1.014倍となり、楕円形状の蓄熱槽本体3においては正円の場合に比べて1.4%だけ潜熱蓄熱材12の蓄熱量Qを増加させることができる。すなわち、図2(b)の点ハ'における空気層厚さ比x'/x=1.14とx'/x=1.00の差0.14(図2(b)のニ'参照)が潜熱蓄熱材12を増加させて蓄熱量Qを1.4%増加させるスペースとなることを示す。図2(a)の点ハは空気層厚さ比x'/xが極大値を取る場合の油重量費M'oil/Moilである。 Therefore, how the heat storage amount Q increases until the air layer thickness ratio x ′ 3 / x 3 = 1 is changed in various ways using the heat storage amount Q as an input value, and the equations (I) to (X) are changed. As a result of calculation using Q = 0.2535 [MWh / m], the ratio x ′ 3 / x 3 = 1 was obtained. Therefore, the heat storage amount Q when the air layer thickness ratio x ′ 3 / x 3 = 1 is 0. 0 with respect to the heat storage amount Q at the air layer thickness ratio x ′ 3 / x 3 = 1.14 (maximum value). 2535 ÷ 0.25 = 1.014 times, and in the heat storage tank body 3 having an elliptical shape, the heat storage amount Q of the latent heat storage material 12 can be increased by 1.4% compared to the case of a perfect circle. That is, the difference 0.14 between the air layer thickness ratio x ′ 3 / x 3 = 1.14 and x ′ 3 / x 3 = 1.00 at point c ′ in FIG. 2B (of FIG. 2B) D) (see Fig. 2) indicates that the latent heat storage material 12 is increased and the heat storage amount Q is increased by 1.4%. The point c in FIG. 2A is the oil weight cost M ′ oil / M oil when the air layer thickness ratio x ′ 3 / x 3 takes a maximum value.

なお、楕円の周長を正円と同一とし、楕円率a/b(短軸÷長軸)を1から減少させてゆくと、楕円と正円の面積比(楕円÷正円)は図3に示すように小さくなる。而して、本発明はこの原理を巧に利用している。   When the circumference of the ellipse is the same as that of the perfect circle and the ellipticity a / b (short axis / major axis) is decreased from 1, the area ratio of the ellipse to the perfect circle (ellipse / perfect circle) is as shown in FIG. It becomes small as shown in. Thus, the present invention takes advantage of this principle.

本図示例によれば、潜熱蓄熱装置1を横置き型とし、潜熱蓄熱槽本体3を軸線が水平に延在し且つ長軸が縦向きで短軸が水平な断面形状楕円形とし、しかも、周長は半径rの円の周長と等しくすることにより、熱媒14の重量を半径rの正円の蓄熱槽本体よりも削減することができ、経済的に有利となり、又、体積効率が大きくできるため、投入可能な潜熱蓄熱材の量が増加し、その結果、蓄熱量が増加する。   According to this illustrated example, the latent heat storage device 1 is a horizontal type, and the latent heat storage tank body 3 has an elliptical cross-sectional shape in which the axis extends horizontally and the major axis is vertical and the minor axis is horizontal, By making the circumference equal to the circumference of a circle having a radius r, the weight of the heating medium 14 can be reduced as compared to a circular heat storage tank body having a radius r, which is economically advantageous, and volume efficiency is improved. Since it can be increased, the amount of latent heat storage material that can be input increases, and as a result, the amount of stored heat increases.

なお、本発明の潜熱蓄熱装置及び該潜熱蓄熱装置の設計方法は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The latent heat storage device and the design method of the latent heat storage device of the present invention are not limited to the above-described embodiments, and various changes can be made without departing from the scope of the present invention. is there.

本発明の潜熱蓄熱装置及び該潜熱蓄熱装置の設計方法の実施の形態を示す縦断面図であり、蓄熱完了時、放熱完了時における潜熱蓄熱材及び熱媒の変化の状態を説明するための図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a longitudinal cross-sectional view which shows embodiment of the latent heat storage apparatus of this invention, and the design method of this latent heat storage apparatus, and is a figure for demonstrating the change state of the latent heat storage material and a heat medium at the time of completion of heat storage, and completion of heat dissipation. It is. 本発明の潜熱蓄熱装置及び該潜熱蓄熱装置の設計方法において、(a)は楕円率と油重量比との関係を、又、(b)は楕円率と空気層厚さ比との関係を示すグラフである。In the latent heat storage device and the method for designing the latent heat storage device of the present invention, (a) shows the relationship between the ellipticity and the oil weight ratio, and (b) shows the relationship between the ellipticity and the air layer thickness ratio. It is a graph. 一般的な楕円率と面積比との関係を示すグラフである。It is a graph which shows the relationship between general ellipticity and area ratio. 既出願の潜熱蓄熱装置の一部破断の側面図である。It is a partially broken side view of the latent heat storage device of an application. 図4のV−V方向矢視図である。It is a VV direction arrow line view of FIG. 図4のV−V方向矢視図の拡大図であり、蓄熱、放熱による潜熱蓄熱材及び熱媒の変化の状態を説明するための図である。It is an enlarged view of the VV direction arrow view of FIG. 4, and is a figure for demonstrating the state of the change of the latent-heat storage material and heat medium by heat storage and heat dissipation.

符号の説明Explanation of symbols

1 潜熱蓄熱装置
3 潜熱蓄熱槽本体
4 熱媒供給配管
5 熱媒回収配管
12 潜熱蓄熱材
14 熱媒
15 空気層
高さ
高さ
厚さ
x' 厚さ
pcm(l) 容積
pcm(s) 容積
S'oil(s) 容積
S'oil(l) 容積
h'pipe 高さ
h'pcm(l) 高さ
h'oil(l) 高さ
h'oil(s) 高さ
a 水平方向の半径
b 垂直方向の半径
r 半径
π 円周率
O 中心
DESCRIPTION OF SYMBOLS 1 Latent heat storage apparatus 3 Latent heat storage tank main body 4 Heat medium supply piping 5 Heat medium recovery piping 12 Latent heat heat storage material 14 Heat medium 15 Air layer x 1 Height x 2 Height x 3 Thickness x ' 3 Thickness Spcm (l ) Volume S pcm (s) Volume S ' oil (s) Volume S' oil (l) Volume h ' pipe height h' pcm (l) Height h ' oil (l) Height h' oil (s) height A Horizontal radius b Vertical radius r Radius π Circumference O Center

Claims (6)

軸線が水平方向に延在するよう配置された潜熱蓄熱槽本体を備え、該潜熱蓄熱槽本体は、比重差により下部に潜熱蓄熱材が溜まり、該潜熱蓄熱材の上面に熱媒が溜まるように構成されており、しかも、熱媒が潜熱蓄熱材を通って上昇する際に、熱媒と潜熱蓄熱材との直接接触により熱の授受が行なわれるよう構成されており、更に、潜熱蓄熱材の蓄熱完了時においても、熱媒上面と潜熱蓄熱槽本体の内周天端との間に空気層が形成されるよう構成した横置き型の潜熱蓄熱装置であって、前記潜熱蓄熱槽本体の縦断面形状は、所定の径の正円を縦軸が長軸で、水平軸が短軸の楕円形状となるよう変形させた形状で、且つ、正円の周長と楕円の周長は略等しくなるよう構成されていることを特徴とする潜熱蓄熱装置。   A latent heat storage tank main body is arranged so that the axis extends in the horizontal direction, and the latent heat storage tank main body accumulates a latent heat storage material in a lower portion due to a difference in specific gravity, and a heat medium accumulates on an upper surface of the latent heat storage material. In addition, when the heat medium rises through the latent heat storage material, heat is transferred by direct contact between the heat medium and the latent heat storage material. A horizontal-type latent heat storage device configured so that an air layer is formed between the top surface of the heat medium and the inner peripheral top end of the latent heat storage tank body even when the heat storage is completed, and a longitudinal sectional shape of the latent heat storage tank body Is a shape obtained by deforming a perfect circle having a predetermined diameter into an elliptical shape having a long axis on the vertical axis and a short axis on the horizontal axis, and the circumference of the perfect circle and the circumference of the ellipse are substantially equal. It is comprised, The latent heat storage apparatus characterized by the above-mentioned. 空気層厚さ比x'/x>1(ここで、xは蓄熱完了後の熱媒上面と、円筒形状の潜熱蓄熱槽本体の内周天端との間の空気層の厚さ、x'は蓄熱完了後の熱媒上面と、周長が前記円筒形状の潜熱蓄熱槽本体縦断面正円周長と等しい縦断面楕円形状の潜熱蓄熱槽本体の内周天端との間の空気層の厚さ)とする請求項1に記載の潜熱蓄熱装置。 Air layer thickness ratio x ′ 3 / x 3 > 1 (where x 3 is the thickness of the air layer between the upper surface of the heat medium after completion of heat storage and the inner peripheral top of the cylindrical latent heat storage tank body, x ' 3 is the air layer between the upper surface of the heat medium after completion of heat storage and the inner peripheral top end of the latent heat storage tank body having an elliptical cross section whose circumference is equal to the longitudinal circumference of the cylindrical latent heat storage tank body. The latent heat storage device according to claim 1, wherein the thickness is a thickness). 前記潜熱蓄熱槽本体内の下部には、熱媒を潜熱蓄熱材内に供給するための熱媒供給配管が、潜熱蓄熱材内に位置するよう配置され、前記蓄熱槽本体内の上部には、蓄熱時においても放熱時においても熱媒内に位置するよう、熱媒回収配管が配置されており、しかも、潜熱蓄熱槽本体の中心Oから熱媒回収配管の中心までの高さh'pipeは、(III)式及び(IV)式により決定されるよう構成されており、前記空気層の厚さx'は(X)式により決定されるよう構成されている請求項1又は2に記載の潜熱蓄熱装置。
ここで、式は以下の通りである。
Figure 2009085496
上記式中、h'pcm(l)は潜熱蓄熱槽本体の中心Oから、蓄熱完了時の潜熱蓄熱材上面までの高さ、xは蓄熱完了時の潜熱蓄熱材上面から熱媒回収配管径方向中心までの高さであり、熱媒回収配管の下端が潜熱蓄熱材上面よりも高くなるよう、実際の設計においては適宜決定される数値、h'oil(s)は潜熱蓄熱槽本体の中心Oから、放熱完了時の熱媒上面までの高さ、xは熱媒回収配管径方向中心から放熱完了時の熱媒上面までの高さであり、熱媒回収配管の上端が熱媒上面よりも低くなるよう、実際の設計においては適宜決定される数値、bは潜熱蓄熱槽本体の中心Oから潜熱蓄熱槽本体の内周天端までの高さ、h'oil(l)は潜熱蓄熱槽本体の中心Oから、蓄熱完了時の熱媒上面までの高さである。
In the lower part in the latent heat storage tank body, a heat medium supply pipe for supplying a heat medium into the latent heat storage material is arranged to be located in the latent heat storage material, and in the upper part in the heat storage tank body, The heat medium recovery pipe is arranged so as to be located in the heat medium during heat storage and during heat release, and the height h ′ pipe from the center O of the latent heat storage tank body to the center of the heat medium recovery pipe is The air layer thickness x ′ 3 is configured to be determined by the formula (X), wherein the thickness x ′ 3 of the air layer is determined by the formula (X). Latent heat storage device.
Here, the formula is as follows.
Figure 2009085496
In the above formula, h 'pcm (l) from the center O of the latent heat storage tank body, the heat storage completion time of phase change material upper surface to a height, x 1 is the heat medium recovery pipe diameter from the latent heat storage material upper surface when the heat storage completion In the actual design, h ′ oil (s) is the center of the latent heat storage tank body so that it is the height to the center of the direction and the lower end of the heat medium recovery pipe is higher than the upper surface of the latent heat storage material from O, height to the heat transfer medium the upper surface of the heat radiation completion, x 2 is the height from the heat medium recovery pipe radial center to the heating medium upper surface of the heat radiation completion, the upper end of the heat medium recovery pipe is the heating medium top In the actual design, the numerical value is appropriately determined, b is the height from the center O of the latent heat storage tank body to the inner peripheral top of the latent heat storage tank body, and h'oil (l) is the latent heat storage tank body The height from the center O to the top surface of the heat medium when heat storage is completed.
請求項1に記載の潜熱蓄熱装置の設計方法であって、第一のステップから第六のステップよりなり、
第一のステップは、
潜熱蓄熱材の単位長さ当たりの蓄熱量と、潜熱蓄熱材に蓄熱を完了した際の潜熱蓄熱材の密度と、潜熱蓄熱材の単位重量当たりの潜熱とから導出した、潜熱蓄熱槽本体軸線方向に対する蓄熱完了時の潜熱蓄熱材の単位長さ当たりの容積Spcm(l)を基に、潜熱蓄熱槽本体の中心Oから蓄熱完了時の潜熱蓄熱材の上面である境界面までの高さh'pcm(l)を(II)式により算出するステップであり、
第二のステップは、
第一のステップで算出した、潜熱蓄熱槽本体の中心Oから蓄熱完了時の潜熱蓄熱材の上面である境界面までの高さh'pcm(l)を基に、潜熱蓄熱槽本体における中心Oから熱蓄熱槽本体の内部上方にある熱媒回収配管までの高さh'pipeを(III)式により算出するステップであり、
第三のステップは、
第二のステップで求めた、潜熱蓄熱槽本体の中心Oから熱媒回収配管までの高さh'pipeを基に、潜熱蓄熱槽本体の中心Oから、放熱完了時の熱媒上面までの高さh'oil(s)を(IV)式により算出するステップであり、
第四のステップは、
第三のステップで求めた、潜熱蓄熱槽本体の中心Oから、放熱完了時の熱媒上面までの高さh'oil(s)、及び、潜熱蓄熱材の単位長さ当たりの蓄熱量と、潜熱蓄熱材から放熱を完了した際の潜熱蓄熱材の密度と、潜熱蓄熱材の単位重量当たりの潜熱とから導出した、潜熱蓄熱槽本体軸線方向に対する放熱完了時の潜熱蓄熱材の単位長さ当たりの容積Spcm(s)を基に、熱媒の放熱完了時の潜熱蓄熱槽本体軸線方向に対する単位長さ当たりの容積S'oil(s)を(VI)式により算出するステップであり、
第五のステップは、
潜熱蓄熱材の単位長さ当たりの蓄熱量と、潜熱蓄熱材に蓄熱を完了した際の潜熱蓄熱材の密度と、潜熱蓄熱材の単位重量当たりの潜熱とから導出した、潜熱蓄熱槽本体軸線方向に対する蓄熱完了時の潜熱蓄熱材の単位長さ当たりの容積Spcm(l)、及び、第四のステップで求めた、熱媒の放熱完了時の潜熱蓄熱槽本体軸線方向に対する単位長さ当たりの容積S'oil(s)、並びに放熱完了時の熱媒の密度と放熱完了時の熱媒の単位長さ当たりの容積とから導出した熱媒の単位長さ当たりの重量と、蓄熱完了時の熱媒の密度とから導出した蓄熱完了時の熱媒の、潜熱蓄熱槽本体軸線方向に対する単位長さ当たりの容積S'oil(l)を基に、潜熱蓄熱槽本体中心Oから蓄熱完了時の熱媒上面までの高さh'oil(l)を(IX)式により算出するステップであり、
第六のステップは、
第五のステップで求めた、潜熱蓄熱槽本体中心Oから蓄熱完了時の熱媒上面までの高さh'oil(l)を基に、蓄熱完了時の熱媒上面と潜熱蓄熱槽本体内周天端との間の空気層の厚さx'を(X)式により算出するステップである
ことを特徴とする潜熱蓄熱槽の設計方法。
ここで、式は以下の通りである。
Figure 2009085496
各式中、aは潜熱蓄熱槽本体の短軸側(水平方向)の半径(短軸半径)、bは潜熱蓄熱槽本体の長軸側(縦方向)の半径(長軸半径)、πは円周率、xは、蓄熱完了時の潜熱蓄熱材上面から熱媒回収配管径方向中心までの高さであり、熱媒回収配管の下端が潜熱蓄熱材上面よりも高くなるよう、実際の設計においては適宜決定される数値、xは熱媒回収配管径方向中心から放熱完了時の熱媒上面までの高さであり、熱媒回収配管の上端が熱媒上面よりも低くなるよう、実際の設計においては適宜決定される数値である。
The method for designing a latent heat storage device according to claim 1, comprising a first step to a sixth step,
The first step is
Latent heat storage tank body axial direction derived from the amount of heat storage per unit length of the latent heat storage material, the density of the latent heat storage material when the latent heat storage material has completed heat storage, and the latent heat per unit weight of the latent heat storage material The height h from the center O of the latent heat storage tank body to the boundary surface, which is the upper surface of the latent heat storage material at the completion of heat storage, based on the volume Spcm (l) per unit length of the latent heat storage material at the time of completion of heat storage 'is a step of calculating pcm (l) by equation (II),
The second step is
Based on the height h ′ pcm (l) from the center O of the latent heat storage tank body calculated in the first step to the boundary surface, which is the upper surface of the latent heat storage material when the heat storage is completed, the center O in the latent heat storage tank body To calculate the height h ′ pipe from the heat storage tank main body to the heat medium recovery pipe located in the upper part of the heat storage tank body by the formula (III),
The third step is
Based on the height h ' pipe from the center O of the latent heat storage tank body to the heat medium recovery pipe obtained in the second step, the height from the center O of the latent heat storage tank body to the top surface of the heat medium when the heat release is completed Is the step of calculating h ′ oil (s) by the formula (IV),
The fourth step is
The height h ′ oil (s) from the center O of the latent heat storage tank body to the upper surface of the heat medium when heat release is completed , and the amount of heat stored per unit length of the latent heat storage material, determined in the third step, Per unit length of the latent heat storage material at the completion of heat dissipation in the axial direction of the latent heat storage tank body, derived from the density of the latent heat storage material when the heat release from the latent heat storage material is completed and the latent heat per unit weight of the latent heat storage material A volume S ′ oil (s) per unit length with respect to the axial direction of the latent heat storage tank body upon completion of heat dissipation of the heat medium based on the volume S pcm (s) of
The fifth step is
Latent heat storage tank body axial direction derived from the amount of heat storage per unit length of the latent heat storage material, the density of the latent heat storage material when the latent heat storage material has completed heat storage, and the latent heat per unit weight of the latent heat storage material The volume per unit length Spcm (l) of the latent heat storage material at the time of completion of heat storage with respect to the unit length per unit length with respect to the axial direction of the latent heat storage tank main body at the time of completion of heat dissipation of the heat medium, determined in the fourth step The weight per unit length of the heat medium derived from the volume S ′ oil (s), the density of the heat medium at the completion of heat dissipation and the volume per unit length of the heat medium at the time of heat dissipation, and Based on the volume S'oil (l) per unit length of the heat medium at the time of completion of the heat storage derived from the density of the heat medium with respect to the axial direction of the latent heat storage tank body, the heat storage from the center O of the latent heat storage tank The height h'oil (l) to the top surface of the heat medium is changed to the formula (IX) Is a step of calculating
The sixth step is
Based on the height h'oil (l) from the center O of the latent heat storage tank body to the top surface of the heat medium when the heat storage is completed, obtained in the fifth step, the heat medium upper surface when the heat storage is completed and the inner peripheral top of the latent heat storage tank body A method for designing a latent heat storage tank, characterized in that it is a step of calculating the thickness x ′ 3 of the air layer between and by equation (X).
Here, the formula is as follows.
Figure 2009085496
In each formula, a is a radius (short axis radius) on the short axis side (horizontal direction) of the latent heat storage tank body, b is a radius (long axis radius) on the long axis side (vertical direction) of the latent heat storage tank body, and π is pi, x 1 is the height from the latent heat storage material upper surface when the heat storage completion to the heat medium recovery pipe radial center so that the lower end of the heat medium recovery pipe is higher than the latent heat storage material upper surface, the actual numbers is appropriately determined in the design, x 2 is the height from the heat medium recovery pipe radial center to the heating medium upper surface of the heat radiation completion, so that the upper end of the heat medium recovery pipe becomes lower than the heating medium top, In actual design, it is a numerical value determined as appropriate.
潜熱蓄熱槽本体の水平方向の半径と垂直方向の半径が等しいrであり、且つ、水平方向の半径がaで垂直方向の半径がbの楕円と周長が等しい正円について、(II)式、(VI)式、(IX)式のa、bはrとして請求項4のステップに従って計算を行い、断面円形状の潜熱蓄熱槽本体において、潜熱蓄熱材に対する蓄熱完了後の、熱媒上面と潜熱蓄熱槽本体内周天端との間の空気層の厚さx
を求める請求項4に記載の潜熱蓄熱装置の設計方法。
For a perfect circle whose circumference is equal to an ellipse having a horizontal radius and a vertical radius r equal to each other and a horizontal radius a and a vertical radius b b of the latent heat storage tank body, the formula (II) , (VI), and (IX) where a and b are calculated as r in accordance with the steps of claim 4, and in the latent heat storage tank body having a circular cross section, the upper surface of the heat medium after completion of heat storage for the latent heat storage material design method of latent heat storage device according to thickness x 3 of the air layer between the latent heat storage tank body peripheral crest to claim 4 seeking.
断面円形状の潜熱蓄熱槽本体において、潜熱蓄熱材に対する蓄熱完了後の、熱媒上面と潜熱蓄熱槽本体内周天端との間の空気層の厚さをxとし、周長が前記断面円形状の蓄熱槽本体と等しい、断面形状が楕円形状の蓄熱槽本体において、熱蓄熱材に対する蓄熱完了後の、熱媒上面と潜熱蓄熱槽本体内周天端との間の空気層の厚さをx'とした場合、x'/x>1とする請求項4又は5に記載の潜熱蓄熱装置の設計方法。 In a circular cross section of the latent heat storage tank body, after the heat storage completion for latent heat storage material, the thickness of the air layer between the heating medium top and latent heat storage tank body peripheral crest and x 3, the circumferential length of the circular cross section X ′ 3 is the thickness of the air layer between the upper surface of the heat medium and the inner peripheral top of the latent heat storage tank body after the heat storage to the heat storage material is completed. In this case, the design method of the latent heat storage device according to claim 4 or 5, wherein x ' 3 / x 3 > 1.
JP2007255388A 2007-09-28 2007-09-28 Latent heat storage device and design method of the latent heat storage device Active JP5190240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007255388A JP5190240B2 (en) 2007-09-28 2007-09-28 Latent heat storage device and design method of the latent heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007255388A JP5190240B2 (en) 2007-09-28 2007-09-28 Latent heat storage device and design method of the latent heat storage device

Publications (2)

Publication Number Publication Date
JP2009085496A true JP2009085496A (en) 2009-04-23
JP5190240B2 JP5190240B2 (en) 2013-04-24

Family

ID=40659150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007255388A Active JP5190240B2 (en) 2007-09-28 2007-09-28 Latent heat storage device and design method of the latent heat storage device

Country Status (1)

Country Link
JP (1) JP5190240B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4109838A1 (en) * 1991-03-26 1992-10-01 Behr Gmbh & Co Heat storage device for storing latent heat - consists of coils of tube fitted inside spherical or ellipsoidal vessel
JPH07218169A (en) * 1994-02-08 1995-08-18 Susumu Kiyokawa Heat accumulating device
DE10348235A1 (en) * 2003-10-16 2005-05-19 Alfred Kolf Latent heat storage and transport container has a discharge pipe leading to the outside via a rotary pump
JP2006308256A (en) * 2005-05-02 2006-11-09 Kobe Steel Ltd Heat storage device and method of operating heat storage device
JP2007183043A (en) * 2006-01-06 2007-07-19 Sanki Eng Co Ltd Latent heat storage device and its operating method
JP2008164210A (en) * 2006-12-28 2008-07-17 Kobelco Eco-Solutions Co Ltd Heat accumulator
JP2008170051A (en) * 2007-01-11 2008-07-24 Kobelco Eco-Solutions Co Ltd Heat storage unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4109838A1 (en) * 1991-03-26 1992-10-01 Behr Gmbh & Co Heat storage device for storing latent heat - consists of coils of tube fitted inside spherical or ellipsoidal vessel
JPH07218169A (en) * 1994-02-08 1995-08-18 Susumu Kiyokawa Heat accumulating device
DE10348235A1 (en) * 2003-10-16 2005-05-19 Alfred Kolf Latent heat storage and transport container has a discharge pipe leading to the outside via a rotary pump
JP2006308256A (en) * 2005-05-02 2006-11-09 Kobe Steel Ltd Heat storage device and method of operating heat storage device
JP2007183043A (en) * 2006-01-06 2007-07-19 Sanki Eng Co Ltd Latent heat storage device and its operating method
JP2008164210A (en) * 2006-12-28 2008-07-17 Kobelco Eco-Solutions Co Ltd Heat accumulator
JP2008170051A (en) * 2007-01-11 2008-07-24 Kobelco Eco-Solutions Co Ltd Heat storage unit

Also Published As

Publication number Publication date
JP5190240B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
Zhou et al. Effects of mechanical vibration on the heat transfer performance of shell-and-tube latent heat thermal storage units during charging process
CN204372900U (en) Boiler blow-off waste-heat recovery device
CN207214870U (en) Shell-and-tube oil water heat exchange device
CN105531471A (en) Engine exhaust heat recovery system
JP5190240B2 (en) Latent heat storage device and design method of the latent heat storage device
CN206372822U (en) A kind of reactor heat-energy utilizing device
CN206420356U (en) A kind of regenerative apparatus
CN205300303U (en) Boiler deoxidization tail vapour waste heat recoverer
CN209261977U (en) Hydraulic oil preheating device and engineering truck
JP4614897B2 (en) Snow melting system
JP2017210951A (en) Ground heat recovery device including triple pipe
CN206580558U (en) Waste-heat recovery device in acid production with sulphur
Zhang et al. Optimal research of annular baffle for heat‐discharging performance of single thermal storage tank with molten salt
CN205066509U (en) Energy -saving boiler flue gas heat reclamation device
Chen et al. Thermal Performance Study of a Water Tank for a Solar System With a Fresnel Lens
JP6041187B2 (en) Heat pipe with automatic reversal of heat transport direction
CN203273922U (en) Flue gas waste heat recovery device based on helical radial turbulent flow
CN207330910U (en) A kind of fermenting case of embedded heat exchanger
JP6990805B2 (en) Heat collection structure of buried pipe
JP2012112567A (en) Latent heat storage material processing facility
JP5908877B2 (en) Heat utilization method
CN211120674U (en) Cooling water jacket
CN210922300U (en) Heat exchange device for pressure container
CN210180261U (en) Cooling tower filler for water circulation cooling
CN204359190U (en) A kind of reactor and heat exchanger plates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5190240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250