JP2009085202A - Honeycomb structure - Google Patents

Honeycomb structure Download PDF

Info

Publication number
JP2009085202A
JP2009085202A JP2007259902A JP2007259902A JP2009085202A JP 2009085202 A JP2009085202 A JP 2009085202A JP 2007259902 A JP2007259902 A JP 2007259902A JP 2007259902 A JP2007259902 A JP 2007259902A JP 2009085202 A JP2009085202 A JP 2009085202A
Authority
JP
Japan
Prior art keywords
outer peripheral
honeycomb
honeycomb structure
material layer
mat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007259902A
Other languages
Japanese (ja)
Other versions
JP5148962B2 (en
Inventor
Koji Tsuneyoshi
孝治 常吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2007259902A priority Critical patent/JP5148962B2/en
Publication of JP2009085202A publication Critical patent/JP2009085202A/en
Application granted granted Critical
Publication of JP5148962B2 publication Critical patent/JP5148962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a honeycomb structure with an excellent thermal shock resistance. <P>SOLUTION: This honeycomb structure 1 has a honeycomb base 2 made of porous ceramic, and a mat material 5 disposed on an outer circumference of the honeycomb base 2. A thermal conductivity of the mat material 5 is smaller than that of the honeycomb base 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ハニカム構造体に関し、詳しくは、耐熱衝撃性に優れたハニカム構造体に関する。   The present invention relates to a honeycomb structure, and more particularly to a honeycomb structure excellent in thermal shock resistance.

内燃機関、ボイラー、化学反応機器、燃料電池用改質器等の触媒作用を利用する触媒用担体、排ガス中のスス等の微粒子(特にディーゼルエンジンからの排気ガス中の微粒子物質(PM))の捕集フィルタ(以下、DPFという)等には、セラミックス製のハニカム構造体が用いられている。   Catalytic carrier utilizing catalytic action of internal combustion engine, boiler, chemical reaction equipment, fuel cell reformer, etc., particulates such as soot in exhaust gas (particularly particulate matter (PM) in exhaust gas from diesel engine) A ceramic honeycomb structure is used for a collection filter (hereinafter referred to as DPF).

セラミックス製のハニカム構造体は、一般に、多孔質のセラミックスよりなり、流体の流路となる複数のセルを区画するハニカム基材と、ハニカム基材の周方向の外周面を被覆したセラミックスよりなる外周材層と、を有している。そして、ハニカム基材は、端面が市松模様状を呈するように隣接するセルが互いに反対側となる端部を封止するセラミックスよりなる封止部で封止されている。   A honeycomb structure made of a ceramic is generally made of a porous ceramic, and includes a honeycomb base material that divides a plurality of cells serving as fluid flow paths, and an outer periphery made of ceramic that covers the outer peripheral surface of the honeycomb base material in the circumferential direction. And a material layer. And the honeycomb base material is sealed with a sealing portion made of ceramics that seals the end portions where the adjacent cells are opposite to each other so that the end faces have a checkered pattern.

セラミックス製のハニカム構造体よりなるDPFは、隔壁部のセルを区画する隔壁を排気ガスが通過するウォールフロー型の触媒として用いられている。ウォールフロー型の触媒は、セル壁に形成された連続した細孔を排気ガスが通過し、細孔を通過できない排気ガス中のPMを捕集する。すなわち、DPFは、排気ガス中のPMを捕集するために、高温の排気ガスに晒される。   A DPF made of a ceramic honeycomb structure is used as a wall flow type catalyst in which exhaust gas passes through partition walls that partition partition wall cells. The wall flow type catalyst collects PM in the exhaust gas through which the exhaust gas passes through the continuous pores formed in the cell wall and cannot pass through the pores. That is, the DPF is exposed to high-temperature exhaust gas in order to collect PM in the exhaust gas.

また、DPFは、捕集したPMが堆積したままでは目詰まりを起こすため、捕集したPMを除去する必要がある。捕集したPMを除去する方法のひとつに燃焼等によりPMを分解・除去する方法がある。また、DPFに触媒活性を発揮する触媒金属を担持し、この触媒金属でPMを分解する方法もある。   Further, since the DPF is clogged when the collected PM is accumulated, it is necessary to remove the collected PM. One method of removing the collected PM is a method of decomposing and removing PM by combustion or the like. There is also a method in which a catalytic metal exhibiting catalytic activity is supported on the DPF and PM is decomposed with this catalytic metal.

PMを燃焼して除去するときには、ハニカム構造体が加熱され、PMの分解(燃焼)時に生じた熱でさらに燃焼が促進される。つまり、PMの燃焼時にはDPFは急激な温度変化(温度上昇)に晒される。   When PM is burned and removed, the honeycomb structure is heated, and combustion is further promoted by heat generated during decomposition (combustion) of PM. That is, the DPF is exposed to a rapid temperature change (temperature increase) during PM combustion.

高温に晒されたDPFは、急激に冷やされると、外周部(外周材層)に損傷を生じるという問題があった。高温に保持されたDPFを急激に冷却すると、外周部は急激に冷やされて収縮を生じるが、内部(ハニカム基材)は高温のままであるため、外周部の収縮に追従しない。この結果、外周部に引っ張り応力が働き、外周部にヒビや割れが生じていた。   When the DPF exposed to high temperature is rapidly cooled, there is a problem in that the outer peripheral portion (outer peripheral material layer) is damaged. When the DPF held at a high temperature is rapidly cooled, the outer peripheral portion is rapidly cooled and contracts, but the inside (honeycomb substrate) remains at a high temperature and does not follow the contraction of the outer peripheral portion. As a result, tensile stress was applied to the outer peripheral portion, and cracks and cracks were generated in the outer peripheral portion.

本発明は上記実情に鑑みてなされたものであり、耐熱衝撃性にすぐれたハニカム構造体を提供することを課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the honeycomb structure excellent in thermal shock resistance.

上記課題を解決するために本発明者らはセラミックス製のハニカム構造体について検討を重ねた結果、従来のハニカム構造体においては外周材層がハニカム構造体の耐熱衝撃性に大きく寄与しないことを見出し、本発明をなすに至った。   In order to solve the above-mentioned problems, the present inventors have repeatedly studied about a ceramic honeycomb structure, and as a result, found that the outer peripheral material layer does not greatly contribute to the thermal shock resistance of the honeycomb structure in the conventional honeycomb structure. The present invention has been made.

本発明のハニカム構造体は、多孔質セラミックスよりなり、軸方向にのびる多数のセルをもつハニカム基材と、ハニカム基材の外周に形成されたセラミックスよりなる外周材層と、外周材層の外周面に配された耐熱性の多孔質体よりなるマット材と、を有するハニカム構造体であって、マット材の熱伝導率κ1の値が、ハニカム基材の熱伝導率κ0よりも小さいことを特徴とする。   The honeycomb structure of the present invention is made of a porous ceramic and has a honeycomb substrate having a large number of cells extending in the axial direction, an outer peripheral material layer made of ceramic formed on the outer periphery of the honeycomb substrate, and an outer periphery of the outer peripheral material layer. A mat member made of a heat-resistant porous material disposed on the surface, wherein the mat member has a thermal conductivity κ1 smaller than the honeycomb substrate thermal conductivity κ0. Features.

また、本発明のハニカム構造体は、多孔質セラミックスよりなり、軸方向にのびる多数のセルをもつハニカム基材と、ハニカム基材の外周面に配された耐熱性の多孔質体よりなるマット材と、セラミックス粒子が分散したスラリーをマット材に含浸させた後に焼成してなるセラミックスと、を有するハニカム構造体であって、マット材の熱伝導率κ1の値が、ハニカム基材の熱伝導率κ0よりも小さいことを特徴とする。   The honeycomb structure of the present invention is made of porous ceramics and has a honeycomb base material having a large number of cells extending in the axial direction, and a mat member made of a heat-resistant porous material disposed on the outer peripheral surface of the honeycomb base material. A ceramic structure obtained by impregnating a mat material with a slurry in which ceramic particles are dispersed, and then firing the ceramic material, wherein the mat material has a thermal conductivity κ1 that is equal to the thermal conductivity of the honeycomb substrate. It is smaller than κ0.

本発明のハニカム構造体は、多孔質のセラミックスよりなるハニカム基材と、ハニカム基材の外周に配されたマット材と、を有し、マット材の熱伝導率がハニカム基材よりも小さくなっている。このような構成となったことで、高温に晒されたときのハニカム基材の温度勾配をマット材で低減させることができる。この結果、本発明のハニカム構造体は、耐熱衝撃性にすぐれたハニカム構造体となった。   The honeycomb structure of the present invention has a honeycomb base material made of porous ceramics and a mat material disposed on the outer periphery of the honeycomb base material, and the thermal conductivity of the mat material is smaller than that of the honeycomb base material. ing. With such a configuration, the temperature gradient of the honeycomb substrate when exposed to a high temperature can be reduced by the mat material. As a result, the honeycomb structure of the present invention became a honeycomb structure excellent in thermal shock resistance.

(第一発明)
本発明のハニカム構造体は、多孔質セラミックスよりなり、軸方向にのびる多数のセルをもつハニカム基材と、ハニカム基材の外周に形成されたセラミックスよりなる外周材層と、外周材層の外周面に配された耐熱性の多孔質体よりなるマット材と、を有する。
(First invention)
The honeycomb structure of the present invention is made of a porous ceramic and has a honeycomb substrate having a large number of cells extending in the axial direction, an outer peripheral material layer made of ceramic formed on the outer periphery of the honeycomb substrate, and an outer periphery of the outer peripheral material layer. And a mat member made of a heat-resistant porous material disposed on the surface.

そして、本発明のハニカム構造体は、マット材の熱伝導率κ1の値が、ハニカム基材の熱伝導率κ0よりも小さい。本発明のように、外周材層の外周に配されるマット材を、ハニカム基材よりも熱伝導率の小さな材質で形成することで、マット材を介しての外部との熱のやりとりが生じにくくなる。これにより、マット材の内部で温度勾配が減少し、温度勾配による応力の集中が緩和する。この結果、熱衝撃によるハニカム構造体や外周材層のヒビや割れの発生が抑えられる。   In the honeycomb structure of the present invention, the value of the thermal conductivity κ1 of the mat member is smaller than the thermal conductivity κ0 of the honeycomb substrate. As in the present invention, the mat material disposed on the outer periphery of the outer peripheral material layer is formed of a material having a lower thermal conductivity than the honeycomb base material, so that heat exchange with the outside through the mat material occurs. It becomes difficult. Thereby, the temperature gradient is reduced inside the mat member, and stress concentration due to the temperature gradient is relaxed. As a result, the occurrence of cracks and cracks in the honeycomb structure and the outer peripheral material layer due to thermal shock can be suppressed.

より具体的には、本発明のハニカム構造体を昇温させると、ハニカム基材および外周材層の温度が上昇し、それぞれが熱膨張を生じる。しかし、外周材層の外周に配されたマット材が、ハニカム基材よりも熱伝導率が低いため、マット材の内部の熱を外部に伝達しにくくなっている。このため、マット材の内部のハニカム基材および外周材層の高熱がマット材の内部で均一に拡散することとなる。そして、マット材の内部での温度勾配が解消されあるいは微量となる。この結果、温度勾配により生じる熱応力の偏りが解消される。すなわち、ハニカム構造体にヒビや割れが生じなくなる。   More specifically, when the temperature of the honeycomb structure of the present invention is raised, the temperatures of the honeycomb base material and the outer peripheral material layer are increased, and each of them undergoes thermal expansion. However, since the mat material arranged on the outer periphery of the outer peripheral material layer has lower thermal conductivity than the honeycomb base material, it is difficult to transfer the heat inside the mat material to the outside. For this reason, the high heat of the honeycomb base material and the outer peripheral material layer inside the mat material is uniformly diffused inside the mat material. Then, the temperature gradient inside the mat member is eliminated or becomes a very small amount. As a result, the thermal stress unevenness caused by the temperature gradient is eliminated. That is, cracks and cracks do not occur in the honeycomb structure.

また、高温のハニカム構造体が冷却(急冷)されると、より低い温度に晒されるマット材が冷却される。このとき、マット材の熱伝導率が低いため、マット材の内部でハニカム基材および外周材層は、高温(熱膨張を生じた状態)が維持されている。そして、マット材の低い熱伝導率により、マット材の内部の熱がマット材を介して放出されにくくなっている。このため、ハニカム基材および外周材層に急激な温度変化が生じなくなり、大きな温度勾配を生じなくなった。この結果、温度勾配により生じる熱応力の偏りが解消される。すなわち、ハニカム構造体にヒビや割れが生じなくなる。このように、本発明のハニカム構造体は、耐熱衝撃性に優れたものとなった。   Further, when the high-temperature honeycomb structure is cooled (rapidly cooled), the mat material exposed to a lower temperature is cooled. At this time, since the thermal conductivity of the mat material is low, the honeycomb base material and the outer peripheral material layer are maintained at a high temperature (a state in which thermal expansion occurs) inside the mat material. Further, due to the low thermal conductivity of the mat material, the heat inside the mat material is hardly released through the mat material. For this reason, a rapid temperature change does not occur in the honeycomb substrate and the outer peripheral material layer, and a large temperature gradient does not occur. As a result, the thermal stress unevenness caused by the temperature gradient is eliminated. That is, cracks and cracks do not occur in the honeycomb structure. Thus, the honeycomb structure of the present invention was excellent in thermal shock resistance.

本発明のハニカム構造体において、マット材の熱伝導率はハニカム基材の熱伝導率よりも小さければ小さいほど、温度勾配を解消する効果を発揮できる。そして、本発明のハニカム構造体では、マット材の熱伝導率κ1とハニカム基材の熱伝導率κ0との比が0.8以下であることが好ましい。マット材の熱伝導率がハニカム基材の熱伝導率の0.8倍を超えると、ハニカム基材とマット材の熱膨張率の差が小さくなりすぎ、マット材の内部で温度勾配が生じやすくなる。より好ましいマット材の熱伝導率κ1とハニカム基材の熱伝導率κ0との比(κ1/κ0)は、0.5以下である。   In the honeycomb structure of the present invention, the effect of eliminating the temperature gradient can be exhibited as the thermal conductivity of the mat member is smaller than the thermal conductivity of the honeycomb substrate. In the honeycomb structure of the present invention, the ratio of the thermal conductivity κ1 of the mat material and the thermal conductivity κ0 of the honeycomb base material is preferably 0.8 or less. If the thermal conductivity of the mat material exceeds 0.8 times the thermal conductivity of the honeycomb substrate, the difference in thermal expansion coefficient between the honeycomb substrate and the mat material becomes too small, and a temperature gradient tends to occur inside the mat material. Become. A more preferable ratio (κ1 / κ0) between the thermal conductivity κ1 of the mat member and the thermal conductivity κ0 of the honeycomb substrate is 0.5 or less.

本発明のハニカム構造体において、マット材は、外周材層の外周面に配されている。このとき、マット材は、外周面を完全に被覆した状態で配されることが好ましい。   In the honeycomb structure of the present invention, the mat member is disposed on the outer peripheral surface of the outer peripheral material layer. At this time, the mat member is preferably arranged in a state where the outer peripheral surface is completely covered.

そして、マット材は、略帯状の部材を外周材層の外周面に周方向に沿って配してなり、略帯状の部材の周方向の一方の端部の端面が外周材層の接線方向に対して傾斜してもうけられ、傾斜した端面に隣接した部材の端部が端面に当接していることが好ましい。このような構成となることで、マット材の少なくとも一部を構成する略帯状の部材の一方の端部近傍で、略帯状の部材と外周材層との間にすき間が生じなくなり、マット材と外周材層との密着性が向上する。   The mat member is formed by arranging a substantially band-shaped member on the outer circumferential surface of the outer circumferential material layer along the circumferential direction, and an end surface of one end portion of the substantially band-shaped member in the tangential direction of the outer circumferential material layer. It is preferable that the end portion of the member which is inclined with respect to the end surface adjacent to the inclined end surface is in contact with the end surface. By having such a configuration, there is no gap between the substantially strip-shaped member and the outer peripheral material layer in the vicinity of one end of the substantially strip-shaped member constituting at least a part of the mat material. Adhesion with the outer peripheral material layer is improved.

ここで、略帯状の部材の一方の端部と隣接する端部とは、同一の略帯状の部材の端部であっても、異なる部材の端部であってもどちらでもよい。すなわち、マット材は、ひとつの略帯状の部材を外周材層の外周面に周方向に沿って巻回して形成しても、複数の略帯状の部材を外周材層の外周面に周方向にそって連続して配して形成してもよい。さらに、マット材は、ひとつの略帯状の部材を外周材層の外周面にらせん状に巻回して形成してもよい。   Here, the end adjacent to one end of the substantially band-shaped member may be the end of the same substantially band-shaped member or the end of a different member. That is, even if the mat member is formed by winding one substantially band-shaped member around the outer peripheral surface of the outer peripheral material layer along the circumferential direction, a plurality of substantially band-shaped members are formed circumferentially on the outer peripheral surface of the outer peripheral material layer. Therefore, it may be formed continuously. Furthermore, the mat member may be formed by spirally winding one substantially band-shaped member around the outer peripheral surface of the outer peripheral material layer.

そして、略帯状の部材の周方向の一方の端部の端面の傾斜は、外周材層の接線方向に対して傾斜していればよい。端面の傾斜は、外周材層の外周面に配された状態で、端面が径方向外方に対向する状態で傾斜していればよい。このように傾斜したことで、隣接した端部が傾斜した端面に乗り上げたときに、隙間が生じなくなる。   And the inclination of the end surface of the one edge part of the circumferential direction of a substantially strip-shaped member should just incline with respect to the tangent direction of an outer peripheral material layer. The end surface may be inclined in a state where the end surface is disposed on the outer peripheral surface of the outer peripheral material layer and the end surface is opposed to the outer side in the radial direction. By inclining in this way, no gap is generated when the adjacent end portions ride on the inclined end surface.

マット材を構成する略帯状の部材の一方の端部の端面のなす傾斜角は、特に限定されるものではないが、一方の端部の端面が、外周材層の接線方向に対して10〜80°をなしていることが好ましい。端面がこの範囲内で傾斜角をなすことで、マット材と外周材層との密着性がより向上する。より好ましい傾斜角は、30〜60°である。   The inclination angle formed by the end surface of one end of the substantially band-shaped member constituting the mat member is not particularly limited, but the end surface of one end is 10 to 10 in the tangential direction of the outer peripheral material layer. The angle is preferably 80 °. When the end surface has an inclination angle within this range, the adhesion between the mat material and the outer peripheral material layer is further improved. A more preferable inclination angle is 30 to 60 °.

マット材を構成する略帯状の部材の一方の端部の端面のなす傾斜角は、外周材層の接線方向に対する傾斜角であるが、外周材層に巻回される前の略帯状の部材の内周面と端面との角度とすることができる。   The inclination angle formed by the end surface of one end portion of the substantially band-shaped member constituting the mat material is an inclination angle with respect to the tangential direction of the outer peripheral material layer, but the substantially band-shaped member before being wound around the outer peripheral material layer. The angle between the inner peripheral surface and the end surface can be set.

ここで、一方の端部の傾斜した端面に当接する端部は、傾斜した端面に内周面で当接しても、当接する端部の端面で当接してもいずれでもよい。当接する端部の端面が当接するときには、傾斜した端面の傾斜に対応した傾斜形状に当接する端部の端面も形成していることが好ましい。   Here, the end that contacts the inclined end surface of one end may be in contact with the inclined end surface on the inner peripheral surface or on the end surface of the contacting end. When the end surfaces of the abutting end portions abut, it is preferable that the end surface of the end portion that abuts in an inclined shape corresponding to the inclination of the inclined end surface is also formed.

本発明のハニカム構造体において、マット材の厚さ(ハニカム構造体の径方向での厚さ)は、特に限定されるものではないが、厚さが厚くなければなるほど、マット材の効果(温度勾配による熱応力の集中を抑える効果)が大きくなる。つまり、マット材の厚さが厚くなるほど、より高温の熱衝撃に耐えられるようになる。好ましいマット材の厚さは0.5mm以上であり、さらに好ましい厚さは1.0mm以上である。   In the honeycomb structure of the present invention, the thickness of the mat material (the thickness in the radial direction of the honeycomb structure) is not particularly limited, but the effect of the mat material (temperature) increases as the thickness increases. The effect of suppressing the concentration of thermal stress due to the gradient is increased. That is, as the mat material becomes thicker, it can withstand a higher temperature thermal shock. A preferable mat material has a thickness of 0.5 mm or more, and a more preferable thickness is 1.0 mm or more.

本発明のハニカム構造体のハニカム基材を形成する多孔質のセラミックスは、その材質が特に限定されるものではなく、従来公知のセラミックスを用いることができる。セラミックスは、チタン酸アルミニウム、炭化珪素、窒化珪素、コーディエライトより選ばれる一種を主成分とすることが好ましい。これらのセラミックスのうち、炭化珪素を主成分とするセラミックスよりなることがより好ましい。   The porous ceramic material forming the honeycomb substrate of the honeycomb structure of the present invention is not particularly limited, and conventionally known ceramics can be used. The ceramic is preferably mainly composed of one kind selected from aluminum titanate, silicon carbide, silicon nitride, and cordierite. Of these ceramics, it is more preferable to be made of ceramics mainly composed of silicon carbide.

本発明のハニカム構造体において、ハニカム基材に形成されたセルの形状(断面形状)は、特に限定されるものではなく、従来公知の断面形状とすることができる。従来公知のセル形状のうち、正方形状であることがより好ましい。   In the honeycomb structure of the present invention, the shape (cross-sectional shape) of the cells formed on the honeycomb substrate is not particularly limited, and can be a conventionally known cross-sectional shape. Of the conventionally known cell shapes, a square shape is more preferable.

さらに、ハニカム基材が複数のセラミックス分体を接合材層を介して接合されてなっていてもよい。このとき、それぞれのセラミックス分体に形成されたセルの大きさ(セル形状)は、同じであっても、異なっていても、いずれでもよい。それぞれのセラミックス分体のセルの大きさ(セル形状)は、同じであることが好ましい。   Furthermore, the honeycomb substrate may be formed by bonding a plurality of ceramic bodies through a bonding material layer. At this time, the size (cell shape) of the cells formed in each ceramic segment may be the same or different. The size (cell shape) of each ceramic segment cell is preferably the same.

ハニカム基材は、多数のセルの一方の端部または他方の端部がセラミックスよりなる封止材に封止されていることが好ましい。セルの一方の端部または他方の端部が封止材で封止されることで、ウォールフロー型のハニカム構造体を形成できる。封止材を構成するセラミックスは、その材質が特に限定されるものではなく、ハニカム基材を構成する多孔質のセラミックスと同じ材質であっても、異なる材質であっても、いずれでもよい。より好ましくは、多孔質のセラミックスを主成分としてなるセラミックスである。   In the honeycomb substrate, one end or the other end of many cells is preferably sealed with a sealing material made of ceramics. A wall flow type honeycomb structure can be formed by sealing one end or the other end of the cell with a sealing material. The material of the ceramic constituting the sealing material is not particularly limited, and may be the same as or different from the porous ceramic constituting the honeycomb substrate. More preferably, the ceramic is mainly composed of porous ceramics.

本発明のハニカム構造体の外周材層は、従来公知のハニカム構造体の外周材層と同様の構成とすることができる。すなわち、外周材層を構成する材質は、従来公知の材質を用いることができ、たとえば、SiC、シリカ系化合物、チタン酸アルミニウムなどのアルミナ系化合物などを用いることができる。   The outer peripheral material layer of the honeycomb structure of the present invention can have the same configuration as the conventionally known outer peripheral material layer of the honeycomb structure. That is, a conventionally known material can be used as the material constituting the outer peripheral material layer, and for example, SiC, silica-based compounds, alumina-based compounds such as aluminum titanate, and the like can be used.

本発明のハニカム構造体の外周材層の厚さも従来公知と同様とすることができ、0.5mm以上の厚さを有することが好ましい。ここで、外周材層の厚さが厚くなるほどハニカム基材の熱膨張を外周材層が規制することとなるため、耐熱衝撃性が向上する。一般的に、外周材層は、外周材層を構成するスラリーを調製し、このスラリーをハニカム基材の外周面に塗布して形成することから、外周材層の厚さが厚くなるほどスラリーの塗布厚さが厚くなり、作業性が悪化したりコストが上昇する。このため、外周材層の好ましい厚さは0.5〜5.0mmであり、より好ましい厚さは0.5〜3.0mmであり、さらに好ましい厚さは0.5〜1.0mmである。ここで、外周材層の厚さとは、ハニカム構造体の径方向での厚さが最も薄い部分を外周材層の厚さとする。   The thickness of the outer peripheral material layer of the honeycomb structure of the present invention can be the same as that conventionally known, and preferably has a thickness of 0.5 mm or more. Here, since the outer peripheral material layer regulates the thermal expansion of the honeycomb base material as the thickness of the outer peripheral material layer increases, the thermal shock resistance is improved. Generally, the outer peripheral material layer is formed by preparing a slurry that constitutes the outer peripheral material layer and applying this slurry to the outer peripheral surface of the honeycomb base material. Therefore, as the thickness of the outer peripheral material layer increases, the slurry is applied. Thickness increases, workability deteriorates and costs increase. For this reason, the preferable thickness of the outer peripheral material layer is 0.5 to 5.0 mm, the more preferable thickness is 0.5 to 3.0 mm, and the further preferable thickness is 0.5 to 1.0 mm. . Here, the thickness of the outer peripheral material layer is defined as the thickness of the outer peripheral material layer at the portion where the thickness in the radial direction of the honeycomb structure is the thinnest.

本発明のハニカム構造体のマット材は、上記の熱膨張率ももつものであれば、その材質などは限定されるものではない。たとえば、耐熱性セラミックス繊維よりなる不織布をあげることができる。また、従来からハニカム構造体を排気管の内部に挿入配置するときにハニカム構造体の外周に巻回しているマット材を使用してもよい。   The mat material of the honeycomb structure of the present invention is not limited as long as it has the above-described thermal expansion coefficient. For example, the nonwoven fabric which consists of heat resistant ceramic fibers can be mention | raise | lifted. Conventionally, a mat member wound around the outer periphery of the honeycomb structure when the honeycomb structure is inserted and arranged in the exhaust pipe may be used.

本発明のハニカム構造体は、DPFに用いることが好ましい。本発明のハニカム構造体は、セルを区画する隔壁を排気ガス(気体)が通過するウォールフロー型のフィルタ触媒として用いることができ、このようなフィルタ触媒のうち特に、DPFとして用いることが好ましい。   The honeycomb structure of the present invention is preferably used for a DPF. The honeycomb structure of the present invention can be used as a wall flow type filter catalyst in which exhaust gas (gas) passes through partition walls that partition cells, and among these filter catalysts, it is particularly preferable to use as a DPF.

本発明のハニカム構造体をDPFとして用いるときに、少なくとも隔壁部の細孔表面に、アルミナ等よりなる多孔質酸化物、Pt,Pd,Rh等の触媒金属の少なくともひとつを担持したことが好ましい。これらの物質を担持したことで、DPFとしてパティキュレートなどの浄化性能が向上する。   When the honeycomb structure of the present invention is used as a DPF, it is preferable to support at least one of a porous oxide made of alumina or the like and a catalyst metal such as Pt, Pd, or Rh on at least the pore surfaces of the partition walls. By carrying these substances, purification performance such as particulates as DPF is improved.

本発明のハニカム構造体は、その外周形状が特に限定されるものではなく、従来公知の形状とすることができる。たとえば、断面が真円や楕円の略円柱状、断面が方形や多角形の角柱状とすることができ、より好ましくは円柱形状である。   The outer peripheral shape of the honeycomb structure of the present invention is not particularly limited, and can be a conventionally known shape. For example, the cross section may be a substantially circular or elliptical cylinder, and the cross section may be a square or polygonal prism, and more preferably a cylinder.

(第二発明)
本発明のハニカム構造体は、多孔質セラミックスよりなり、軸方向にのびる多数のセルをもつハニカム基材と、ハニカム基材の外周面に配された耐熱性の多孔質体よりなるマット材と、セラミックス粒子が分散したスラリーをマット材に含浸させた後に焼成してなるセラミックスと、を有する。すなわち、本発明のハニカム構造体では、マット材とセラミックスとが外周材層を形成している。
(Second invention)
The honeycomb structure of the present invention is made of porous ceramics and has a honeycomb base material having a large number of cells extending in the axial direction, and a mat member made of a heat-resistant porous material disposed on the outer peripheral surface of the honeycomb base material. And a ceramic formed by impregnating a mat material with a slurry in which ceramic particles are dispersed and then firing. That is, in the honeycomb structure of the present invention, the mat material and the ceramic form an outer peripheral material layer.

そして、本発明のハニカム構造体は、マット材の熱伝導率κ1の値が、ハニカム基材の熱伝導率κ0よりも小さい。本発明のように、ハニカム基材の外周に配されるマット材を、ハニカム基材よりも熱伝導率の小さな材質で形成することで、マット材とセラミックスとが形成する外周材層を介しての外部との熱のやりとりが生じにくくなる。これにより、外周材層の内部でハニカム基材の温度勾配が減少し、温度勾配による応力の集中が緩和する。この結果、熱衝撃によるハニカム構造体や外周材層のヒビや割れの発生が抑えられる。   In the honeycomb structure of the present invention, the value of the thermal conductivity κ1 of the mat member is smaller than the thermal conductivity κ0 of the honeycomb substrate. As in the present invention, the mat material disposed on the outer periphery of the honeycomb base material is formed of a material having a lower thermal conductivity than the honeycomb base material, so that the mat material and the ceramic are formed via the outer peripheral material layer. The heat exchange with the outside is less likely to occur. As a result, the temperature gradient of the honeycomb substrate is reduced inside the outer peripheral material layer, and the concentration of stress due to the temperature gradient is relaxed. As a result, the occurrence of cracks and cracks in the honeycomb structure and the outer peripheral material layer due to thermal shock can be suppressed.

より具体的には、本発明のハニカム構造体を昇温させると、ハニカム基材および外周材層の温度が上昇する。しかし、外周材層がハニカム基材よりも熱伝導率が低いため、外周材層の内部の熱を外部に伝達しにくくなっている。このため、外周材層の内部のハニカム基材の高熱が外周材層の内部で均一に拡散することとなる。そして、外周材層の内部での温度勾配が解消されあるいは微量となる。この結果、温度勾配により生じる熱応力の偏りが解消される。すなわち、ハニカム構造体にヒビや割れが生じなくなる。   More specifically, when the temperature of the honeycomb structure of the present invention is increased, the temperatures of the honeycomb base material and the outer peripheral material layer are increased. However, since the outer peripheral material layer has a lower thermal conductivity than the honeycomb substrate, it is difficult to transfer the heat inside the outer peripheral material layer to the outside. For this reason, the high heat of the honeycomb base material inside the outer peripheral material layer diffuses uniformly inside the outer peripheral material layer. And the temperature gradient inside an outer peripheral material layer is eliminated, or it becomes a trace amount. As a result, the thermal stress unevenness caused by the temperature gradient is eliminated. That is, cracks and cracks do not occur in the honeycomb structure.

また、高温のハニカム構造体が冷却(急冷)されると、より低い温度に晒される外周材層が冷却される。このとき、マット材により外周材層の熱伝導率が低いため、外周材層の内部では、ハニカム基材の高温(熱膨張を生じた状態)が維持されている。そして、外周材層の低い熱伝導率により、外周材層の内部の熱が外周材層を介して放出されにくくなっている。このため、ハニカム基材に急激な温度変化が生じなくなり、大きな温度勾配を生じなくなった。この結果、温度勾配により生じる熱応力の偏りが解消される。すなわち、ハニカム構造体にヒビや割れが生じなくなる。   Further, when the high-temperature honeycomb structure is cooled (rapidly cooled), the outer peripheral material layer exposed to a lower temperature is cooled. At this time, since the thermal conductivity of the outer peripheral material layer is low due to the mat material, the high temperature (a state in which thermal expansion occurs) of the honeycomb substrate is maintained inside the outer peripheral material layer. Further, due to the low thermal conductivity of the outer peripheral material layer, the heat inside the outer peripheral material layer is hardly released through the outer peripheral material layer. For this reason, a rapid temperature change does not occur in the honeycomb substrate, and a large temperature gradient is not generated. As a result, the thermal stress unevenness caused by the temperature gradient is eliminated. That is, cracks and cracks do not occur in the honeycomb structure.

このように、本発明のハニカム構造体は、耐熱衝撃性に優れたものとなっている。   Thus, the honeycomb structure of the present invention has excellent thermal shock resistance.

本発明のハニカム構造体において、マット材の熱伝導率はハニカム基材の熱伝導率よりも小さければ小さいほど、温度勾配を解消する効果を発揮できる。そして、本発明のハニカム構造体では、マット材の熱伝導率κ1とハニカム基材の熱伝導率κ0との比が0.8以下であることが好ましい。マット材の熱伝導率がハニカム基材の熱伝導率の0.8倍を超えると、ハニカム基材とマット材の熱膨張率の差が小さくなりすぎ、外周材層の内部で温度勾配が生じやすくなる。より好ましいマット材の熱伝導率κ1とハニカム基材の熱伝導率κ0との比(κ1/κ0)は、0.5以下である。   In the honeycomb structure of the present invention, the effect of eliminating the temperature gradient can be exhibited as the thermal conductivity of the mat member is smaller than the thermal conductivity of the honeycomb substrate. In the honeycomb structure of the present invention, the ratio of the thermal conductivity κ1 of the mat material and the thermal conductivity κ0 of the honeycomb base material is preferably 0.8 or less. If the thermal conductivity of the mat material exceeds 0.8 times the thermal conductivity of the honeycomb substrate, the difference in thermal expansion coefficient between the honeycomb substrate and the mat material becomes too small, and a temperature gradient is generated inside the outer peripheral material layer. It becomes easy. A more preferable ratio (κ1 / κ0) between the thermal conductivity κ1 of the mat member and the thermal conductivity κ0 of the honeycomb substrate is 0.5 or less.

本発明のハニカム構造体において、マット材は、ハニカム基材の外周面に配されている。このとき、マット材は、ハニカム基材の外周面を完全に被覆した状態で配されることが好ましい。   In the honeycomb structure of the present invention, the mat member is disposed on the outer peripheral surface of the honeycomb substrate. At this time, the mat member is preferably arranged in a state in which the outer peripheral surface of the honeycomb substrate is completely covered.

そして、マット材は、略帯状の部材を外周材層の外周面に周方向に沿って配してなり、略帯状の部材の周方向の一方の端部の端面が外周材層の接線方向に対して傾斜してもうけられ、傾斜した端面に隣接した部材の端部が端面に当接していることが好ましい。このような構成となることで、マット材の少なくとも一部を構成する略帯状の部材の一方の端部近傍で、略帯状の部材と外周材層との間にすき間が生じなくなり、マット材と外周材層との密着性が向上する。   The mat member is formed by arranging a substantially band-shaped member on the outer circumferential surface of the outer circumferential material layer along the circumferential direction, and an end surface of one end portion of the substantially band-shaped member in the tangential direction of the outer circumferential material layer. It is preferable that the end portion of the member which is inclined with respect to the end surface adjacent to the inclined end surface is in contact with the end surface. By having such a configuration, there is no gap between the substantially strip-shaped member and the outer peripheral material layer in the vicinity of one end of the substantially strip-shaped member constituting at least a part of the mat material. Adhesion with the outer peripheral material layer is improved.

ここで、略帯状の部材の一方の端部と隣接する端部とは、同一の略帯状の部材の端部であっても、異なる部材の端部であってもどちらでもよい。すなわち、マット材は、ひとつの略帯状の部材を外周材層の外周面に周方向に沿って巻回して形成しても、複数の略帯状の部材を外周材層の外周面に周方向にそって連続して配して形成してもよい。さらに、マット材は、ひとつの略帯状の部材を外周材層の外周面にらせん状に巻回して形成してもよい。   Here, the end adjacent to one end of the substantially band-shaped member may be the end of the same substantially band-shaped member or the end of a different member. That is, even if the mat member is formed by winding one substantially band-shaped member around the outer peripheral surface of the outer peripheral material layer along the circumferential direction, a plurality of substantially band-shaped members are formed circumferentially on the outer peripheral surface of the outer peripheral material layer. Therefore, it may be formed continuously. Furthermore, the mat member may be formed by spirally winding one substantially band-shaped member around the outer peripheral surface of the outer peripheral material layer.

そして、略帯状の部材の周方向の一方の端部の端面の傾斜は、外周材層の接線方向に対して傾斜していればよい。端面の傾斜は、外周材層の外周面に配された状態で、端面が径方向外方に対向する状態で傾斜していればよい。このように傾斜したことで、隣接した端部が傾斜した端面に乗り上げたときに、隙間が生じなくなる。   And the inclination of the end surface of the one edge part of the circumferential direction of a substantially strip-shaped member should just incline with respect to the tangent direction of an outer peripheral material layer. The end surface may be inclined in a state where the end surface is disposed on the outer peripheral surface of the outer peripheral material layer and the end surface is opposed to the outer side in the radial direction. By inclining in this way, no gap is generated when the adjacent end portions ride on the inclined end surface.

マット材を構成する略帯状の部材の一方の端部の端面のなす傾斜角は、特に限定されるものではないが、一方の端部の端面が、外周材層の接線方向に対して10〜80°をなしていることが好ましい。端面がこの範囲内で傾斜角をなすことで、マット材と外周材層との密着性がより向上する。より好ましい傾斜角は、30〜60°である。   The inclination angle formed by the end surface of one end of the substantially band-shaped member constituting the mat member is not particularly limited, but the end surface of one end is 10 to 10 in the tangential direction of the outer peripheral material layer. The angle is preferably 80 °. When the end surface has an inclination angle within this range, the adhesion between the mat material and the outer peripheral material layer is further improved. A more preferable inclination angle is 30 to 60 °.

マット材を構成する略帯状の部材の一方の端部の端面のなす傾斜角は、外周材層の接線方向に対する傾斜角であるが、外周材層に巻回される前の略帯状の部材の内周面と端面との角度とすることができる。   The inclination angle formed by the end surface of one end portion of the substantially band-shaped member constituting the mat material is an inclination angle with respect to the tangential direction of the outer peripheral material layer, but the substantially band-shaped member before being wound around the outer peripheral material layer. The angle between the inner peripheral surface and the end surface can be set.

ここで、一方の端部の傾斜した端面に当接する端部は、傾斜した端面に内周面で当接しても、当接する端部の端面で当接してもいずれでもよい。当接する端部の端面が当接するときには、傾斜した端面の傾斜に対応した傾斜形状に当接する端部の端面も形成していることが好ましい。   Here, the end that contacts the inclined end surface of one end may be in contact with the inclined end surface on the inner peripheral surface or on the end surface of the contacting end. When the end surfaces of the abutting end portions abut, it is preferable that the end surface of the end portion that abuts in an inclined shape corresponding to the inclination of the inclined end surface is also formed.

本発明のハニカム構造体において、マット材の厚さ(ハニカム構造体の径方向での厚さ)は、特に限定されるものではないが、厚さが厚くなければなるほど、マット材の効果(温度勾配による熱応力の集中を抑える効果)が大きくなる。つまり、マット材の厚さが厚くなるほど、より高温の熱衝撃に耐えられるようになる。好ましいマット材の厚さは0.5mm以上であり、さらに好ましい厚さは1.0mm以上である。   In the honeycomb structure of the present invention, the thickness of the mat material (the thickness in the radial direction of the honeycomb structure) is not particularly limited, but the effect of the mat material (temperature) increases as the thickness increases. The effect of suppressing the concentration of thermal stress due to the gradient is increased. That is, as the mat material becomes thicker, it can withstand a higher temperature thermal shock. A preferable mat material has a thickness of 0.5 mm or more, and a more preferable thickness is 1.0 mm or more.

本発明のハニカム構造体のハニカム基材を形成する多孔質のセラミックスは、その材質が特に限定されるものではなく、従来公知のセラミックスを用いることができる。セラミックスは、チタン酸アルミニウム、炭化珪素、窒化珪素、コーディエライトより選ばれる一種を主成分とすることが好ましい。これらのセラミックスのうち、炭化珪素を主成分とするセラミックスよりなることがより好ましい。   The porous ceramic material forming the honeycomb substrate of the honeycomb structure of the present invention is not particularly limited, and conventionally known ceramics can be used. The ceramic is preferably mainly composed of one kind selected from aluminum titanate, silicon carbide, silicon nitride, and cordierite. Of these ceramics, it is more preferable to be made of ceramics mainly composed of silicon carbide.

本発明のハニカム構造体において、ハニカム基材に形成されたセルの形状(断面形状)は、特に限定されるものではなく、従来公知の断面形状とすることができる。従来公知のセル形状のうち、正方形状であることがより好ましい。   In the honeycomb structure of the present invention, the shape (cross-sectional shape) of the cells formed on the honeycomb substrate is not particularly limited, and can be a conventionally known cross-sectional shape. Of the conventionally known cell shapes, a square shape is more preferable.

さらに、ハニカム基材が複数のセラミックス分体を接合材層を介して接合されてなっていてもよい。このとき、それぞれのセラミックス分体に形成されたセルの大きさ(セル形状)は、同じであっても、異なっていても、いずれでもよい。それぞれのセラミックス分体のセルの大きさ(セル形状)は、同じであることが好ましい。   Furthermore, the honeycomb substrate may be formed by bonding a plurality of ceramic bodies through a bonding material layer. At this time, the size (cell shape) of the cells formed in each ceramic segment may be the same or different. The size (cell shape) of each ceramic segment cell is preferably the same.

ハニカム基材は、多数のセルの一方の端部または他方の端部がセラミックスよりなる封止材に封止されていることが好ましい。セルの一方の端部または他方の端部が封止材で封止されることで、ウォールフロー型のハニカム構造体を形成できる。封止材を構成するセラミックスは、その材質が特に限定されるものではなく、ハニカム基材を構成する多孔質のセラミックスと同じ材質であっても、異なる材質であっても、いずれでもよい。より好ましくは、多孔質のセラミックスを主成分としてなるセラミックスである。   In the honeycomb substrate, one end or the other end of many cells is preferably sealed with a sealing material made of ceramics. A wall flow type honeycomb structure can be formed by sealing one end or the other end of the cell with a sealing material. The material of the ceramic constituting the sealing material is not particularly limited, and may be the same as or different from the porous ceramic constituting the honeycomb substrate. More preferably, the ceramic is mainly composed of porous ceramics.

本発明のハニカム構造体は、ハニカム基材の外周面に配された耐熱性の多孔質体よりなるマット材と、セラミックス粒子が分散したスラリーをマット材に含浸させた後に焼成してなるセラミックスと、を有しており、マット材とセラミックスとが一体となり外周材層を形成している。マット材とセラミックスとが一体の外周材層を形成したことで、製造に要する工程数を低減できる。さらに、マット材とセラミックスとが一体の外周材層を形成したことで、マット材とセラミックスとがハニカム基材に固定されることとなり、マット材が剥離しにくくなる。   The honeycomb structure of the present invention includes a mat material made of a heat-resistant porous material disposed on the outer peripheral surface of a honeycomb base material, and a ceramic formed by impregnating the mat material with a slurry in which ceramic particles are dispersed and firing. The mat material and the ceramic are integrated to form an outer peripheral material layer. By forming the outer peripheral material layer in which the mat material and ceramics are integrated, the number of steps required for manufacturing can be reduced. Furthermore, since the mat member and the ceramic form an integral outer peripheral material layer, the mat member and the ceramic are fixed to the honeycomb substrate, and the mat member is difficult to peel off.

外周材層のセラミックスは、従来のハニカム構造体の外周材層を構成するセラミックスを用いることができ、たとえば、SiC、シリカ系化合物、チタン酸アルミニウムなどのアルミナ系化合物などを用いることができる。   As the ceramic of the outer peripheral material layer, ceramics constituting the outer peripheral material layer of the conventional honeycomb structure can be used. For example, SiC, silica-based compounds, alumina-based compounds such as aluminum titanate, and the like can be used.

本発明のハニカム構造体のマット材は、上記の熱伝導率をもつものであれば、その材質などは限定されるものではない。たとえば、耐熱性セラミックス繊維よりなる不織布をあげることができる。また、従来からハニカム構造体を排気管の内部に挿入配置するときにハニカム構造体の外周に巻回しているマット材を使用してもよい。   The mat material of the honeycomb structure of the present invention is not limited as long as it has the above-described thermal conductivity. For example, the nonwoven fabric which consists of heat resistant ceramic fibers can be mention | raise | lifted. Conventionally, a mat member wound around the outer periphery of the honeycomb structure when the honeycomb structure is inserted and arranged in the exhaust pipe may be used.

本発明のハニカム構造体は、その外周面にさらにマット材(外周マット材)を配してもよい。この外周マット材を配することで、車両の排気管に挿入するときのクッション性が確保できる。この外周マット材の材質は手奥に限定されるものではなく、従来公知のマット材を使用することができる。この外周マット材には、従来からハニカム構造体を排気管の内部に挿入配置するときにハニカム構造体の外周に巻回しているマット材を使用してもよい。この外周マット材の材質は特に限定されるものではないが、ハニカム基材よりも熱伝導率の低い材質よりなることが好ましく、ハニカム基材の外周に配されたマット材よりも熱伝導率の低い材質よりなることがさらに好ましい。   In the honeycomb structure of the present invention, a mat member (outer peripheral mat member) may be further arranged on the outer peripheral surface. By providing this outer periphery mat member, cushioning properties when inserted into the exhaust pipe of the vehicle can be ensured. The material of the outer peripheral mat member is not limited to the back of the hand, and a conventionally known mat member can be used. Conventionally, a mat member wound around the outer periphery of the honeycomb structure when the honeycomb structure is inserted and arranged in the exhaust pipe may be used as the outer periphery mat member. The material of the outer peripheral mat material is not particularly limited, but is preferably made of a material having a lower thermal conductivity than the honeycomb base material, and has a thermal conductivity higher than that of the mat material arranged on the outer periphery of the honeycomb base material. More preferably, it is made of a low material.

本発明のハニカム構造体は、DPFに用いることが好ましい。本発明のハニカム構造体は、セルを区画する隔壁を排気ガス(気体)が通過するウォールフロー型のフィルタ触媒として用いることができ、このようなフィルタ触媒のうち特に、DPFとして用いることが好ましい。   The honeycomb structure of the present invention is preferably used for a DPF. The honeycomb structure of the present invention can be used as a wall flow type filter catalyst in which exhaust gas (gas) passes through partition walls that partition cells, and among these filter catalysts, it is particularly preferable to use as a DPF.

本発明のハニカム構造体をDPFとして用いるときに、少なくとも隔壁部の細孔表面に、アルミナ等よりなる多孔質酸化物、Pt,Pd,Rh等の触媒金属の少なくともひとつを担持したことが好ましい。これらの物質を担持したことで、DPFとしてパティキュレートなどの浄化性能が向上する。   When the honeycomb structure of the present invention is used as a DPF, it is preferable to support at least one of a porous oxide made of alumina or the like and a catalyst metal such as Pt, Pd, or Rh on at least the pore surfaces of the partition walls. By carrying these substances, purification performance such as particulates as DPF is improved.

本発明のハニカム構造体は、その外周形状が特に限定されるものではなく、従来公知の形状とすることができる。たとえば、断面が真円や楕円の略円柱状、断面が方形や多角形の角柱状とすることができ、より好ましくは円柱形状である。   The outer peripheral shape of the honeycomb structure of the present invention is not particularly limited, and can be a conventionally known shape. For example, the cross section may be a substantially circular or elliptical cylinder, and the cross section may be a square or polygonal prism, and more preferably a cylinder.

以下、実施例を用いて本発明を説明する。   Hereinafter, the present invention will be described using examples.

本発明の実施例として、DPF用ハニカム構造体を製造した。   As an example of the present invention, a honeycomb structure for DPF was manufactured.

(実施例1)
本実施例は、多孔質のセラミックスよりなるハニカム体2と、ハニカム体2のセルを封止する封止部3と、ハニカム体2の外周に配置された外周材層4と、外周材層4の外周に配されたマット材5と、からなる、略円柱状の外形をなしたハニカム構造体1である。本実施例のハニカム構造体を、図1〜2に示した。図1には本実施例のハニカム構造体1の一方の端部側の端面を、図2には軸方向での断面を示した。
Example 1
In this example, a honeycomb body 2 made of porous ceramics, a sealing portion 3 for sealing cells of the honeycomb body 2, an outer peripheral material layer 4 disposed on the outer periphery of the honeycomb body 2, and an outer peripheral material layer 4 1 is a honeycomb structure 1 having a substantially columnar outer shape. The honeycomb structure of the present example is shown in FIGS. FIG. 1 shows an end face on one end side of the honeycomb structure 1 of this example, and FIG. 2 shows a cross section in the axial direction.

ハニカム体2は、多孔質のSiCセラミックスよりなり、ハニカム体2の軸方向に貫通してのびる多数のセル20,21がセル壁22に区画されるとともに略円柱状の外周形状を有している。そして、多数のセル20,21は、それぞれ正方形状の断面形状をなすようにセル壁22により区画されている。ハニカム体2を構成する多孔質セラミックスは、その細孔分布が均一となっている。本実施例のハニカム体2は、直径:90mm、軸方向の長さ150mmの略円柱状をなすように形成されている。   The honeycomb body 2 is made of porous SiC ceramics, and a large number of cells 20 and 21 extending in the axial direction of the honeycomb body 2 are partitioned by cell walls 22 and have a substantially cylindrical outer peripheral shape. . And many cells 20 and 21 are divided by the cell wall 22 so that the cross-sectional shape of square shape may be made, respectively. The porous ceramics constituting the honeycomb body 2 has a uniform pore distribution. The honeycomb body 2 of the present example is formed to have a substantially cylindrical shape with a diameter of 90 mm and an axial length of 150 mm.

ハニカム体2の多数のセル20,21の軸方向の端部のいずれかには、セル20,21を封止する封止材30,31よりなる封止部3が形成されている。封止材30は、ハニカム構造体1の一方の端部側でセル20を封止し、封止材31は他方の端部側でセル21を封止する。そして、封止材30,31は、端面が市松模様をなすようにセル20,21を封止している。封止材30,31は、セル20,21内での長さが一定となるようにもうけられている。   A sealing portion 3 made of sealing materials 30 and 31 for sealing the cells 20 and 21 is formed at any of the axial ends of the numerous cells 20 and 21 of the honeycomb body 2. The sealing material 30 seals the cells 20 on one end side of the honeycomb structure 1, and the sealing material 31 seals the cells 21 on the other end side. And the sealing materials 30 and 31 are sealing the cells 20 and 21 so that an end surface may make a checkered pattern. The sealing materials 30 and 31 are provided so that the length in the cells 20 and 21 is constant.

外周材層4は、ハニカム体2の外周面に均一な厚さで形成されたSiCセラミックス層である。外周材層4は、0.5mmの厚さで形成された。   The outer peripheral material layer 4 is an SiC ceramic layer formed on the outer peripheral surface of the honeycomb body 2 with a uniform thickness. The outer peripheral material layer 4 was formed with a thickness of 0.5 mm.

マット材5は、耐熱性のセラミックスよりなる多孔質体である。本実施例においては、アルミナシリカファイバーよりなるセラミックス繊維の不織布(ニチアス株式会社製、商品名:ファインフレックスペーパー 5130−T)より形成された幅が150mmの帯状の部材を、外周材層4の外周面に巻回して形成された。マット材5は、径方向での厚さが20mmとなるように形成されている。   The mat member 5 is a porous body made of heat resistant ceramics. In this example, a band-shaped member having a width of 150 mm formed from a nonwoven fabric of ceramic fibers made of alumina silica fibers (manufactured by NICHIAS Corporation, trade name: Fine Flex Paper 5130-T) It was formed by winding on a surface. The mat member 5 is formed so that the thickness in the radial direction is 20 mm.

本実施例のハニカム構造体1のハニカム基材2およびマット材5の熱伝導率を測定した。ハニカム基材2の熱伝導率κ0は40.6であり、マット材5の熱伝導率κ1は0.07であった。つまり、熱伝導率の比(κ1/κ0)は0.002(1.7×10−3)であった。 The thermal conductivity of the honeycomb substrate 2 and the mat member 5 of the honeycomb structure 1 of this example was measured. The honeycomb substrate 2 had a thermal conductivity κ0 of 40.6, and the mat member 5 had a thermal conductivity κ1 of 0.07. That is, the thermal conductivity ratio (κ1 / κ0) was 0.002 (1.7 × 10 −3 ).

本実施例のハニカム構造体1の製造方法を以下に説明する。   A method for manufacturing the honeycomb structure 1 of the present embodiment will be described below.

まず、封止部3が形成されたハニカム体2を製造する。この製造は、従来公知の製造方法を用いた。   First, the honeycomb body 2 in which the sealing part 3 is formed is manufactured. For this production, a conventionally known production method was used.

そして、SiCセラミックス粒子を分散させたスラリーを調製し、スラリーをハニカム体2の外周面に塗布し、焼成した。これにより外周材層4が形成された。   And the slurry which disperse | distributed SiC ceramic particle was prepared, the slurry was apply | coated to the outer peripheral surface of the honeycomb body 2, and it baked. Thereby, the outer peripheral material layer 4 was formed.

つづいて、帯状のマット部材50を準備した。このマット部材50は、図3に示したように、長手方向の一方の端部の端面50cおよび他方の端部の端面50dが傾斜した状態で形成されている。ここで、マット部材50を示した図3において、図3(a)は上面を、ず3(b)は側面をそれぞれ示した。また、図3にも示したように、一方の端部の端面50cが内周面50aに対する傾斜角αが45°をなしている。この傾斜角αは、マット部材50を外周材層4の外周面に巻回させたときに、外周材層4の外周面の接線方向と端面50cとのなす角である。また、他方の端部の端面50dが外周面50bに対してなす傾斜角も端面50cが内周面50aに対してなす角αと同じであった。   Subsequently, a belt-like mat member 50 was prepared. As shown in FIG. 3, the mat member 50 is formed with an end face 50c at one end in the longitudinal direction and an end face 50d at the other end inclined. Here, in FIG. 3 showing the mat member 50, FIG. 3 (a) shows the upper surface, and 3 (b) shows the side surface. Further, as shown in FIG. 3, the end surface 50c at one end portion has an inclination angle α of 45 ° with respect to the inner peripheral surface 50a. This inclination angle α is an angle formed between the tangential direction of the outer peripheral surface of the outer peripheral material layer 4 and the end surface 50 c when the mat member 50 is wound around the outer peripheral surface of the outer peripheral material layer 4. The inclination angle formed by the end surface 50d of the other end portion with respect to the outer peripheral surface 50b was also the same as the angle α formed by the end surface 50c with respect to the inner peripheral surface 50a.

そして、帯状のマット部材50をハニカム体2(外周材層4)の外周面に、周方向に沿って巻回した。これにより、マット部材50が外周材層4の外周面を完全に被覆した。また、マット部材50は、一方の端部の端面50cと他方の端部の端面50dとが完全に当接した。   Then, the belt-like mat member 50 was wound around the outer peripheral surface of the honeycomb body 2 (outer peripheral material layer 4) along the circumferential direction. Thereby, the mat member 50 completely covered the outer peripheral surface of the outer peripheral material layer 4. Further, the mat member 50 has an end face 50c at one end and an end face 50d at the other end completely in contact with each other.

以上により、本実施例のハニカム構造体1が製造できた。   Thus, the honeycomb structure 1 of the present example was manufactured.

(実施例2)
本実施例は、マット材5の厚さを0.5mmとしたこと以外は、実施例1と同様なハニカム構造体である。
(Example 2)
This example is a honeycomb structure similar to Example 1 except that the thickness of the mat member 5 is 0.5 mm.

(実施例3)
本実施例は、マット材5の厚さを1.0mmとしたこと以外は、実施例1と同様なハニカム構造体である。
(Example 3)
This example is a honeycomb structure similar to Example 1 except that the thickness of the mat member 5 is 1.0 mm.

(比較例1)
本比較例は、上記実施例1のハニカム体2である。
(Comparative Example 1)
This comparative example is the honeycomb body 2 of Example 1 described above.

(比較例2)
本比較例は、上記実施例1の外周材層4が形成された状態のハニカム体2である。
(Comparative Example 2)
This comparative example is the honeycomb body 2 in a state where the outer peripheral material layer 4 of Example 1 is formed.

(評価)
実施例1〜3および比較例1〜2のハニカム構造体1の評価として、それぞれのハニカム構造体に熱衝撃試験を施した。具体的な試験方法を以下に示す。
(Evaluation)
As an evaluation of the honeycomb structures 1 of Examples 1 to 3 and Comparative Examples 1 and 2, each honeycomb structure was subjected to a thermal shock test. Specific test methods are shown below.

まず、内部の温度を調節できる加熱炉を準備し、炉内温度を500〜700℃の50℃ごとの所定の温度に加熱し保持する。炉内温度が所定の温度に保持されたことが確認できたら、試験が施されるハニカム構造体を炉内に配置し、20分間保持する。   First, a heating furnace capable of adjusting the internal temperature is prepared, and the furnace temperature is heated and held at a predetermined temperature of 500 to 700 ° C. every 50 ° C. When it is confirmed that the furnace temperature is maintained at a predetermined temperature, the honeycomb structure to be tested is placed in the furnace and held for 20 minutes.

20分間保持した後に、炉内からハニカム構造体を取り出し、室温に保持して急冷した。   After holding for 20 minutes, the honeycomb structure was taken out from the furnace, kept at room temperature, and rapidly cooled.

この急冷持に、ハニカム構造体の温度が十分に低下するまで観察した。観察結果を表1に示した。表1においては、ハニカム構造体1(ハニカム体2)にひび割れが確認できない場合には○で、ハニカム構造体1(ハニカム体2)にひび割れが確認できた場合には×で示した。   This rapid cooling was observed until the temperature of the honeycomb structure was sufficiently lowered. The observation results are shown in Table 1. In Table 1, the case where cracks could not be confirmed in the honeycomb structure 1 (honeycomb body 2) was indicated by ◯, and the case where cracks were confirmed in the honeycomb structure 1 (honeycomb body 2) was indicated by x.

Figure 2009085202
Figure 2009085202

表1に示したように、実施例1〜3のハニカム構造体は、比較例1〜2のハニカム構造体においてハニカム体にひび割れが生じる温度である600℃に加熱して急冷する熱衝撃が加えられても、ひび割れが確認できなかった。つまり、熱伝導率の低いマット材を外周に配した実施例1〜3のハニカム構造体は、耐熱衝撃性に優れたハニカム構造体であることが確認できた。そして、外周に配されるマット材を20mmと厚くした実施例1のハニカム構造体は、700℃の熱衝撃でもひび割れが観察されず、耐熱衝撃性に最も優れたものとなっている。   As shown in Table 1, the honeycomb structures of Examples 1 to 3 were subjected to a thermal shock that was rapidly cooled by heating to 600 ° C., which is a temperature at which cracks occur in the honeycomb structures of Comparative Examples 1 and 2. However, no cracks could be confirmed. That is, it was confirmed that the honeycomb structures of Examples 1 to 3 in which the mat material having low thermal conductivity was arranged on the outer periphery were excellent in thermal shock resistance. And the honeycomb structure of Example 1 in which the mat material disposed on the outer periphery is as thick as 20 mm has the most excellent thermal shock resistance with no cracks observed even at 700 ° C. thermal shock.

次に、実施例1〜3および比較例1〜2のハニカム構造体1を600℃に保持した後に、同様に室温に保持したときのハニカム構造体1の中心部(ハニカム構造体の軸心部であって、軸方向の長さの中央部)での温度変化を測定した。測定結果を図4に示した。   Next, after the honeycomb structures 1 of Examples 1 to 3 and Comparative Examples 1 and 2 are held at 600 ° C., the center portion of the honeycomb structure 1 when the honeycomb structures 1 are similarly held at room temperature (the axial center portion of the honeycomb structure) Then, the temperature change in the axial length) was measured. The measurement results are shown in FIG.

図4に示したように、外周にマット材が配されていない比較例1〜2のハニカム構造体では直ちに中心部の温度が低下している。これに対し、外周にマット材を配した各実施例のハニカム構造体は、中心部の温度の低下が比較例よりも緩やかとなっている。つまり、各実施例のハニカム構造体は、急激な温度変化(温度低下)が生じなくなっており、大きな温度勾配を生じなくなっている。すなわち、温度勾配により生じる熱応力の偏りが解消されている。この結果、ハニカム構造体にヒビや割れが生じなくなった。   As shown in FIG. 4, in the honeycomb structures of Comparative Examples 1 and 2 in which the mat material is not disposed on the outer periphery, the temperature at the center portion immediately decreases. On the other hand, in the honeycomb structure of each example in which the mat material is arranged on the outer periphery, the temperature decrease in the central part is more gradual than in the comparative example. That is, the honeycomb structure of each example does not cause a rapid temperature change (temperature decrease) and does not generate a large temperature gradient. That is, the bias of thermal stress caused by the temperature gradient is eliminated. As a result, the honeycomb structure was not cracked or cracked.

(実施例4)
本実施例は、多孔質のセラミックスよりなるハニカム体2と、ハニカム体2のセルを封止する封止部3と、マット部材およびセラミックスからなるハニカム体2の外周に形成された外周材層6と、からなる、略円柱状の外形をなしたハニカム構造体1である。本実施例のハニカム構造体を、図5に示した。
Example 4
In this example, a honeycomb body 2 made of porous ceramics, a sealing portion 3 for sealing cells of the honeycomb body 2, and a peripheral material layer 6 formed on the outer periphery of the honeycomb body 2 made of a mat member and ceramics. Is a honeycomb structure 1 having a substantially cylindrical outer shape. The honeycomb structure of the present example is shown in FIG.

ハニカム体2および封止部3は、実施例1の時と同様である。   The honeycomb body 2 and the sealing portion 3 are the same as in the first embodiment.

外周材層6は、ハニカム体2の外周面に配された耐熱性の多孔質体よりなるマット部材と、セラミックス粒子が分散したスラリーをマット部材に含浸させた後に焼成してなるセラミックスと、からなる。   The outer peripheral material layer 6 includes a mat member made of a heat-resistant porous body disposed on the outer peripheral surface of the honeycomb body 2, and ceramics that are fired after impregnating the mat member with a slurry in which ceramic particles are dispersed. Become.

マット部材は、実施例1のマット材5と同様の部材である。また、セラミックスは、実施例1の外周材層4を形成するセラミックスと同様なセラミックスである。   The mat member is the same member as the mat member 5 of the first embodiment. Further, the ceramic is a ceramic similar to the ceramic forming the outer peripheral material layer 4 of the first embodiment.

マット材5は、耐熱性のセラミックスよりなる多孔質体である。本実施例においては、実施例1において用いられたものと同様なマット材が用いられた。   The mat member 5 is a porous body made of heat resistant ceramics. In this example, a mat material similar to that used in Example 1 was used.

本実施例のハニカム構造体1は、まず、封止部3が形成されたハニカム体2を製造した。この製造は、従来公知の製造方法を用いた。   In the honeycomb structure 1 of the present example, first, the honeycomb body 2 in which the sealing portion 3 was formed was manufactured. For this production, a conventionally known production method was used.

そして、実施例1のマット部材50と同様な帯状のマット部材を準備した。このマット部材をハニカム体2の外周面に、周方向に沿って巻回した。これにより、マット部材がハニカム体2の外周面を完全に被覆した。マット部材は、一方の端部の端面と他方の端部の端面とが完全に当接した。   A belt-like mat member similar to the mat member 50 of Example 1 was prepared. This mat member was wound around the outer peripheral surface of the honeycomb body 2 along the circumferential direction. Thereby, the mat member completely covered the outer peripheral surface of the honeycomb body 2. In the mat member, the end face of one end part and the end face of the other end part completely contacted.

その後、実施例1の外周材層4の形成に用いたものと同様なスラリーを調製し、このスラリー中に巻回体を浸漬した。この浸漬により、マット部材の孔の内部にまでスラリーが侵入した。   Thereafter, a slurry similar to that used for forming the outer peripheral material layer 4 of Example 1 was prepared, and the wound body was immersed in the slurry. By this immersion, the slurry entered the inside of the hole of the mat member.

巻回体のマット部材にスラリーが十分に含浸したら引き上げ、焼成した。この焼成により、外周材層6が形成された。   When the mat member of the wound body was sufficiently impregnated with the slurry, it was pulled up and fired. The peripheral material layer 6 was formed by this baking.

以上により、本実施例のハニカム構造体1が製造できた。   Thus, the honeycomb structure 1 of the present example was manufactured.

本実施例のハニカム構造体1に、実施例1の時と同様な熱衝撃試験を施し、試験結果を表1にあわせて示した。   The honeycomb structure 1 of the present example was subjected to the same thermal shock test as in Example 1, and the test results are shown in Table 1.

表1に示したように、実施例4のハニカム構造体も、実施例1と同様に、700℃の熱衝撃でもひび割れが観察されなかった。すなわち、実施例4のハニカム構造体も、耐熱衝撃性に優れたものとなっている。すなわち、本実施例のハニカム構造体1のように、外周材層6がマット部材60とセラミックスから構成されていても、外周材層6がハニカム体2の温度勾配を小さくすることができる。   As shown in Table 1, no cracks were observed in the honeycomb structure of Example 4 even at 700 ° C. as in Example 1. That is, the honeycomb structure of Example 4 is also excellent in thermal shock resistance. That is, as in the honeycomb structure 1 of the present embodiment, even if the outer peripheral material layer 6 is composed of the mat member 60 and ceramics, the outer peripheral material layer 6 can reduce the temperature gradient of the honeycomb body 2.

上記したように、本実施例のハニカム構造体でも、外周材層6により温度勾配により生じる熱応力の偏りが解消されている。この結果、本実施例のハニカム構造体1は、耐熱衝撃性に優れたものとなっている。   As described above, also in the honeycomb structure of the present example, the thermal stress unevenness caused by the temperature gradient due to the outer peripheral material layer 6 is eliminated. As a result, the honeycomb structure 1 of the present example is excellent in thermal shock resistance.

実施例1のハニカム構造体の端面を示した図である。3 is a view showing an end face of a honeycomb structure of Example 1. FIG. 実施例1のハニカム構造体の軸方向の断面を示した図である。3 is a view showing a cross section in the axial direction of a honeycomb structure of Example 1. FIG. マット部材を示した図である。It is the figure which showed the mat member. 実施例および比較例のヒートショック試験の試験結果を示した図である。It is the figure which showed the test result of the heat shock test of an Example and a comparative example. 実施例4のハニカム構造体の端面を示した図である。6 is a view showing an end face of a honeycomb structure of Example 4. FIG.

符号の説明Explanation of symbols

1:ハニカム構造体
2:ハニカム体
3:封止材
4:外周材層
5:マット材
6:接合材層
1: Honeycomb structure 2: Honeycomb body 3: Sealing material 4: Peripheral material layer 5: Mat material 6: Bonding material layer

Claims (8)

多孔質セラミックスよりなり、軸方向にのびる多数のセルをもつハニカム基材と、
該ハニカム基材の外周に形成されたセラミックスよりなる外周材層と、
該外周材層の外周面に配された耐熱性の多孔質体よりなるマット材と、
を有するハニカム構造体であって、
該マット材の熱伝導率κ1の値が、該ハニカム基材の熱伝導率κ0よりも小さいことを特徴とするハニカム構造体。
A honeycomb substrate made of porous ceramics and having a large number of cells extending in the axial direction;
An outer peripheral material layer made of ceramics formed on the outer periphery of the honeycomb substrate;
A mat member made of a heat-resistant porous material disposed on the outer peripheral surface of the outer peripheral material layer;
A honeycomb structure having
A honeycomb structure characterized in that a thermal conductivity κ1 of the mat member is smaller than a thermal conductivity κ0 of the honeycomb substrate.
前記マット材の熱伝導率κ1と前記ハニカム基材の熱伝導率κ0との比が0.8以下である請求項1記載のハニカム構造体。   The honeycomb structure according to claim 1, wherein the ratio of the thermal conductivity κ1 of the mat member and the thermal conductivity κ0 of the honeycomb base material is 0.8 or less. 前記マット材は、略帯状の部材を前記外周材層の外周面に周方向に沿って配してなり、
該略帯状の部材の周方向の一方の端部の端面が該外周材層の接線方向に対して傾斜してもうけられ、傾斜した該端面に隣接した部材の端部が該端面に当接している請求項1〜2のいずれかに記載のハニカム構造体。
The mat material is a substantially strip-shaped member arranged on the outer peripheral surface of the outer peripheral material layer along the circumferential direction,
The end surface of one end portion in the circumferential direction of the substantially band-shaped member is inclined with respect to the tangential direction of the outer peripheral material layer, and the end portion of the member adjacent to the inclined end surface is in contact with the end surface. The honeycomb structure according to any one of claims 1 and 2.
前記マット材は、前記一方の端部の端面が、前記外周材層の接線方向に対して10〜80°をなしている請求項3記載のハニカム構造体。   4. The honeycomb structure according to claim 3, wherein the mat member has an end surface of the one end portion of 10 to 80 ° with respect to a tangential direction of the outer peripheral material layer. 多孔質セラミックスよりなり、軸方向にのびる多数のセルをもつハニカム基材と、
該ハニカム基材の外周面に配された耐熱性の多孔質体よりなるマット材と、
セラミックス粒子が分散したスラリーを該マット材に含浸させた後に焼成してなるセラミックスと、
を有するハニカム構造体であって、
該マット材の熱伝導率κ1の値が、該ハニカム基材の熱伝導率κ0よりも小さいことを特徴とするハニカム構造体。
A honeycomb substrate made of porous ceramics and having a large number of cells extending in the axial direction;
A mat member made of a heat-resistant porous material disposed on the outer peripheral surface of the honeycomb substrate;
A ceramic formed by impregnating the mat material with a slurry in which ceramic particles are dispersed, and then firing;
A honeycomb structure having
A honeycomb structure characterized in that a thermal conductivity κ1 of the mat member is smaller than a thermal conductivity κ0 of the honeycomb substrate.
前記マット材の熱伝導率κ1と前記ハニカム基材の熱伝導率κ0との比が0.8以下である請求項5記載のハニカム構造体。   The honeycomb structure according to claim 5, wherein a ratio of a thermal conductivity κ1 of the mat member and a thermal conductivity κ0 of the honeycomb base material is 0.8 or less. 前記マット材は、略帯状の部材を前記外周材層の外周面に周方向に沿って配してなり、
該略帯状の部材の周方向の一方の端部の端面が該外周材層の接線方向に対して傾斜してもうけられ、傾斜した該端面に隣接した部材の端部が該端面に当接している請求項5〜6のいずれかに記載のハニカム構造体。
The mat material is a substantially strip-shaped member arranged on the outer peripheral surface of the outer peripheral material layer along the circumferential direction,
The end surface of one end portion in the circumferential direction of the substantially band-shaped member is inclined with respect to the tangential direction of the outer peripheral material layer, and the end portion of the member adjacent to the inclined end surface is in contact with the end surface. The honeycomb structure according to any one of claims 5 to 6.
前記マット材は、前記一方の端部の端面が、前記外周材層の接線方向に対して10〜80°をなしている請求項7記載のハニカム構造体。   The honeycomb structure according to claim 7, wherein an end surface of the one end portion of the mat member is 10 to 80 degrees with respect to a tangential direction of the outer peripheral material layer.
JP2007259902A 2007-10-03 2007-10-03 Honeycomb structure Active JP5148962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007259902A JP5148962B2 (en) 2007-10-03 2007-10-03 Honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007259902A JP5148962B2 (en) 2007-10-03 2007-10-03 Honeycomb structure

Publications (2)

Publication Number Publication Date
JP2009085202A true JP2009085202A (en) 2009-04-23
JP5148962B2 JP5148962B2 (en) 2013-02-20

Family

ID=40658908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259902A Active JP5148962B2 (en) 2007-10-03 2007-10-03 Honeycomb structure

Country Status (1)

Country Link
JP (1) JP5148962B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241822A (en) * 2010-05-17 2011-12-01 Ibiden Co Ltd Holding sealing material, method for rolling the holding sealing material, and exhaust gas purifying apparatus
JP2016112524A (en) * 2014-12-16 2016-06-23 株式会社ユタカ技研 Honeycomb carrier, exhaust gas purification device, and manufacturing method of honeycomb carrier
CN111033005A (en) * 2017-08-28 2020-04-17 康宁股份有限公司 Honeycomb body having a radial honeycomb structure with transition features and extrusion die therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221621A (en) * 1989-02-22 1990-09-04 Ibiden Co Ltd Exhaust gas purifying device
JP2000102709A (en) * 1998-07-28 2000-04-11 Ibiden Co Ltd Ceramic structure and its production
JP2004323249A (en) * 2003-04-21 2004-11-18 National Institute Of Advanced Industrial & Technology High-void-content ceramic foam molded article and preparation method therefor
JP2006177368A (en) * 2006-02-24 2006-07-06 Ibiden Co Ltd Exhaust gas purifying catalytic converter
JP2006255574A (en) * 2005-03-16 2006-09-28 Ibiden Co Ltd Honeycomb structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221621A (en) * 1989-02-22 1990-09-04 Ibiden Co Ltd Exhaust gas purifying device
JP2000102709A (en) * 1998-07-28 2000-04-11 Ibiden Co Ltd Ceramic structure and its production
JP2004323249A (en) * 2003-04-21 2004-11-18 National Institute Of Advanced Industrial & Technology High-void-content ceramic foam molded article and preparation method therefor
JP2006255574A (en) * 2005-03-16 2006-09-28 Ibiden Co Ltd Honeycomb structure
JP2006177368A (en) * 2006-02-24 2006-07-06 Ibiden Co Ltd Exhaust gas purifying catalytic converter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241822A (en) * 2010-05-17 2011-12-01 Ibiden Co Ltd Holding sealing material, method for rolling the holding sealing material, and exhaust gas purifying apparatus
JP2016112524A (en) * 2014-12-16 2016-06-23 株式会社ユタカ技研 Honeycomb carrier, exhaust gas purification device, and manufacturing method of honeycomb carrier
CN111033005A (en) * 2017-08-28 2020-04-17 康宁股份有限公司 Honeycomb body having a radial honeycomb structure with transition features and extrusion die therefor
CN111033005B (en) * 2017-08-28 2022-01-21 康宁股份有限公司 Honeycomb body having a radial honeycomb structure with transition features and extrusion die therefor
US11280238B2 (en) 2017-08-28 2022-03-22 Corning, Incorporated Honeycomb body with radial honeycomb structure having transition structural component and extrusion die therefor

Also Published As

Publication number Publication date
JP5148962B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP3889194B2 (en) Honeycomb structure
JP4279497B2 (en) Honeycomb filter
US7041359B2 (en) Honeycomb structure and assembly thereof
JP4532063B2 (en) Honeycomb structure
JP3862458B2 (en) Honeycomb structure
JP5805039B2 (en) Honeycomb structure
EP1382374A1 (en) Honeycomb structural body and assembly thereof
JP4455800B2 (en) Honeycomb structure
US20030000188A1 (en) Triangular cell honeycomb structure
EP1371406A1 (en) Honeycomb structural body
WO2001093984A1 (en) Honeycomb structure and honeycomb filter, and method of producing them
WO2007148764A1 (en) Honeycomb structure and method for manufacturing same
JP6320798B2 (en) Honeycomb structure
JP2018192389A (en) Honeycomb filter
JP2018062871A (en) Plugged Honeycomb Structure
JP5148962B2 (en) Honeycomb structure
JP2008043851A (en) Honeycomb structure
JP5124177B2 (en) Honeycomb structure
JP2008043850A (en) Honeycomb structure
JP2018061926A (en) Plugged Honeycomb Structure
JP4402732B1 (en) Honeycomb structure
JP5831259B2 (en) Honeycomb structure
US11786856B2 (en) Honeycomb filter
JP2008137872A (en) Honeycomb structure
JP2008136981A (en) Honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121129

R150 Certificate of patent or registration of utility model

Ref document number: 5148962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250