JP2009084147A - Porous body of calcium phosphate-based shaped body and its production method - Google Patents

Porous body of calcium phosphate-based shaped body and its production method Download PDF

Info

Publication number
JP2009084147A
JP2009084147A JP2008232746A JP2008232746A JP2009084147A JP 2009084147 A JP2009084147 A JP 2009084147A JP 2008232746 A JP2008232746 A JP 2008232746A JP 2008232746 A JP2008232746 A JP 2008232746A JP 2009084147 A JP2009084147 A JP 2009084147A
Authority
JP
Japan
Prior art keywords
tcp
molded body
porous
calcium
calcium phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008232746A
Other languages
Japanese (ja)
Other versions
JP5007980B2 (en
Inventor
Hiroshi Teraoka
啓 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008232746A priority Critical patent/JP5007980B2/en
Publication of JP2009084147A publication Critical patent/JP2009084147A/en
Application granted granted Critical
Publication of JP5007980B2 publication Critical patent/JP5007980B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a porous body of a calcium phosphate-based shaped body utilizing a dissolution/deposit reaction, the porous body of the calcium phosphate-based shaped body and a member thereof. <P>SOLUTION: The method is for producing the porous body of calcium phosphate-based shaped body by the two steps below: promoting the dissolution/deposit reaction of a liquid exposing portion of an α-TCP (tri-calcium phosphate) shaped body as an object to be made porous in a liquid and creating a fragile part liable to be decomposed by heat; and decomposing and removing the fragile part by heating the shaped body so that the constituting particles are sintered together while spacing between the constituting particles of the shaped body is enlarged. Also the porous body of calcium phosphate-based shaped body and members thereof are provided. According to the invention, a method for producing the porous calcium phosphate-based shaped body characterized by having a coral-like node-strut structure, the porous body of the calcium phosphate-based shaped body and the member thereof can be provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、セラミックスの製造分野における、溶解析出反応を利用したリン酸カルシウム系成形体の多孔体の製造技術に関するものであり、更に詳しくは、本発明は、溶解析出反応により、α−TCP成形体の構成粒子の間隙近傍に分解しやすい部分(脆弱部位)を設け、該部分を熱分解除去することにより、成形体の構成粒子同士を焼結により高強度化すると共に、成形体構成粒子の間隙を拡張し、脆弱部位の分解残渣を伴ったサンゴ様のnode−strut構造と拡張した気孔構造、即ち、焼結で強度を向上させ、かつ気孔径を拡張することを特徴とした、リン酸カルシウム系の多孔質成形体及びその製造方法に関するものである。   The present invention relates to a manufacturing technique of a porous body of a calcium phosphate-based molded body using a dissolution and precipitation reaction in the field of manufacturing ceramics. More specifically, the present invention relates to an α-TCP molded body by a dissolution and precipitation reaction. By providing a portion (fragile portion) that is easily decomposed in the vicinity of the gap between the constituent particles, and removing the portion by thermal decomposition, the constituent particles of the molded body are strengthened by sintering and the gap between the constituent particles of the molded body is increased. Expanded, coral-like node-strut structure with fragile residue decomposition residue and expanded pore structure, that is, a calcium phosphate-based porous material characterized in that the strength is increased by sintering and the pore diameter is expanded The present invention relates to a molded product and a method for producing the same.

本発明は、例えば、人工骨、薬剤担体、触媒担体、フィルターなどを製造するための手段として好適に利用しうるリン酸カルシウム系成形体の多孔体の製造技術及びその製品を提供するものである。   The present invention provides a technique for producing a porous body of a calcium phosphate-based molded article that can be suitably used as a means for producing, for example, artificial bones, drug carriers, catalyst carriers, filters, and the like, and products thereof.

あらゆる疾病に関して再生的な治療方法が模索されているが、硬組織治療手段に関しては、セラミック人工骨の成熟が目覚ましい。そのような中で、人工骨の開発思想は、「荷重支持機能優先」から「骨伝導優先」にシフトしてきた。よく知られる人工骨への骨伝導機能付与の手段は、人工骨の多孔化である。多孔化は、材料強度を確実に低下させるが、自家骨再生が速やかであれば、材料自身の機械的特性は、再生骨により補われるので問題とならない、との考え方が、世間に受け入れられ始めた。   Regenerative treatment methods are being sought for all diseases, but ceramic artificial bone maturation is remarkable as a hard tissue treatment means. Under such circumstances, the development philosophy of artificial bone has shifted from “load support function priority” to “bone conduction priority”. A well-known means for imparting a bone conduction function to an artificial bone is to make the artificial bone porous. Porosity will surely reduce the strength of the material, but the idea that if the autogenous bone regeneration is rapid, the mechanical properties of the material itself will be compensated by the regenerated bone will not be a problem. It was.

自家骨の再生が速やかである気孔候補としては、骨伝導を預かる数百ミクロンの“マクロポア”から、人工骨の液性成分との親和性と溶解性を高める数ミクロンの“ミクロポア”に至るワイドレンジの気孔がノミネートされている。然るに、人工骨の開発は、人工骨を徹底的に多孔質化することを課題に定めるに至った。セラミックスの多孔化の方法は、多様であり、確実に認知された名称をあげるのは難しいが、例えば、発砲法や骨材焼失法が、一般的、かつ成熟した方法と考えられる。   Pore candidates for rapid regeneration of autologous bones range from “macropores” of several hundred microns that maintain bone conduction to “micropores” of several microns that increase the affinity and solubility of artificial bones for liquid components. Range pores are nominated. However, the development of artificial bone has led to the task of thoroughly making the artificial bone porous. There are various methods for making ceramics porous, and it is difficult to give a well-recognized name. However, for example, the firing method and the aggregate burning method are considered to be general and mature methods.

それらのうち、発砲法は、成形対象スラリー中に気泡を導入し、その状態を適宜の方法で保ちつつ、乾燥、焼結し、セラミックス多孔体を得る方法である(例えば、特許文献8)。骨材焼失法は、成形対象スラリーに焼結時に焼き飛ぶ材質の骨材(例えば、プラスチックビーズやウレタンフォーム)を混ぜたものを、所望の形状に成型し、乾燥、焼結して、セラミックス多孔体を得る方法である(例えば、非特許文献1)。   Among them, the firing method is a method for introducing a bubble into a slurry to be molded and drying and sintering it while maintaining the state by an appropriate method to obtain a ceramic porous body (for example, Patent Document 8). In the aggregate burn-out method, a mixture of an aggregate material (for example, plastic beads or urethane foam) that burns away during molding is molded into a desired shape, dried, sintered, This is a method for obtaining a body (for example, Non-Patent Document 1).

上記方法で得られる気孔径は、比較的大きく、マクロポーラス人工骨を製造する方法として簡便であり、広く利用されている。しかしながら、上記方法は、ミクロポーラス人工骨の製造には向かない。発泡法においては、よく知られる範囲において、数ミクロンの気孔を作るための微小気泡の発生手段が未成熟である。   The pore diameter obtained by the above method is relatively large and is a simple and widely used method for producing macroporous artificial bone. However, the above method is not suitable for producing microporous artificial bone. In the foaming method, within a well-known range, the means for generating microbubbles for producing pores of several microns is immature.

骨材焼失法においては、微小気孔を残せるような焼失骨材の分散や、スラリーを含浸させた焼失フォームの乾燥、焼結がテクニカルである。また、しばしば、骨材の焼失に伴うガスの環境への影響が問題視される。ミクロポーラスセラミックスの製造方法に関して、原料粉体の大きさや、充填、成形に解を求めることもあるが、特に、本発明が扱う人工骨材料α−TCPに関して、実用的な強度の成形体を得ることは難しい。   In the aggregate burning method, it is technical to disperse burned aggregate that can leave micropores, and to dry and sinter burned foam impregnated with slurry. In addition, the environmental impact of gas accompanying the burning of aggregates is often regarded as a problem. Regarding the manufacturing method of microporous ceramics, there are cases where solutions are required for the size, filling, and molding of the raw material powder. In particular, regarding the artificial bone material α-TCP handled by the present invention, a molded body having practical strength is obtained. It ’s difficult.

リン酸カルシウム系多孔質焼結体及びその製造方法に関しては、先行技術として、例えば、生体活性且つ高強度を有するセラミックスであって、連続気孔を有する多孔質焼結体で、焼結体の表面にリン酸三カルシウムを主成分とする被膜が形成されているリン酸カルシウムセラミックスが提案されている(特許文献1)。   Regarding the calcium phosphate porous sintered body and the manufacturing method thereof, as a prior art, for example, a ceramic having bioactivity and high strength, which is a porous sintered body having continuous pores, phosphorous is formed on the surface of the sintered body. Calcium phosphate ceramics in which a coating composed mainly of tricalcium oxide has been proposed (Patent Document 1).

また、他の例として、リン酸カルシウム系多孔質焼結体の骨格部分が概略緻密化したリン酸カルシウム系焼結体からなり、その表面部分が微細な凹凸若しくは多孔質焼結体より成る層を有し、比表面積が0.1m/cm以上であるリン酸カルシウム系多孔質焼結体が提案されている(特許文献2)。 Further, as another example, the skeleton portion of the calcium phosphate porous sintered body is composed of a calcium phosphate sintered body in which the skeleton portion is substantially densified, and the surface portion has a layer made of fine irregularities or a porous sintered body, A calcium phosphate porous sintered body having a specific surface area of 0.1 m 2 / cm or more has been proposed (Patent Document 2).

また、他の例として、細胞や組織との初期接着をよくするリン酸カルシウム系生体用セラミック焼結体であって、金属イオンにより焼結体が表面修飾されていて、骨の再生成長を促す高分子が焼結体の表面に配置されているリン酸カルシウム系生体用セラミック焼結体が提案されている(特許文献3)。   As another example, a calcium phosphate biosintered ceramic sintered body that improves initial adhesion with cells and tissues, and the sintered body is surface-modified with metal ions to promote bone regeneration and growth. There has been proposed a calcium phosphate-based bioceramic sintered body for living body in which is disposed on the surface of the sintered body (Patent Document 3).

また、他の例として、機械的強度が高く、細胞・組織が侵入することができるような多孔体の特徴を兼ね備えたリン酸カルシウム系多孔質焼結体であって、気孔率が5%以下から85%以上まで実質的に連続して傾斜的に分布しているリン酸カルシウム系多孔質焼結体が提案されている(特許文献4)。   Another example is a calcium phosphate-based porous sintered body that has the characteristics of a porous body that has high mechanical strength and allows cells and tissues to enter, and has a porosity of 5% or less to 85. A calcium phosphate-based porous sintered body that has been distributed substantially continuously and in a gradient up to% or more has been proposed (Patent Document 4).

また、他の例として、血管や細胞が侵入するのに適した連通孔と、高い強度を併せ持つインプラント用材料であって、直径が10〜500μmで、一方向に配向して貫通している気孔を有する多孔質セラミックスインプラント材料が提案されている(特許文献5)。   As another example, a communicating hole suitable for invasion of blood vessels and cells and an implant material having both high strength and having a diameter of 10 to 500 μm and oriented and penetrating in one direction There has been proposed a porous ceramics implant material having (Patent Document 5).

また、他の例として、高気孔率を有する多孔質リン酸カルシウム系セラミックス焼結体の製造方法であって、リン酸カルシウム系セラミックス粉体を含有するスラリーを起泡させ、一対の微多孔質樹脂シートを型枠を介して対向させてなる成形型内に注入し、ゲル化させ、乾燥後に焼結することからなる多孔質リン酸カルシウム系セラミックス焼結体の製造方法が提案されている(特許文献6)。   As another example, a method for producing a porous calcium phosphate ceramic sintered body having a high porosity, in which a slurry containing calcium phosphate ceramic powder is foamed, and a pair of microporous resin sheets is molded There has been proposed a method for producing a porous calcium phosphate ceramic sintered body which is injected into a molding die facing through a frame, gelled, and sintered after drying (Patent Document 6).

更に、他の例として、多孔体としての優れた生体親和性及び細胞、薬剤等の侵入容易性と、緻密体として優れた強度特性とを兼ね備えたリン酸カルシウム系多孔質焼結体であって、平均気孔径0mmから3mm以下までの気孔が連続的に傾斜して形成されているリン酸カルシウム系多孔質焼結体が提案されている(特許文献7)。   Furthermore, as another example, a calcium phosphate based porous sintered body having excellent biocompatibility as a porous body and ease of invasion of cells, drugs, etc., and excellent strength characteristics as a dense body, A calcium phosphate porous sintered body in which pores having a pore diameter of 0 mm to 3 mm or less are continuously inclined has been proposed (Patent Document 7).

しかしながら、従来、人工骨材料α−TCPに関して、α−TCP成形体であって、多孔体構造と実用的な強度を両立させたα−TCP成形体の多孔体を簡便な手法で実現させることは困難であった。   However, conventionally, regarding an artificial bone material α-TCP, it is an α-TCP molded body, and it is possible to realize a porous body of an α-TCP molded body having both a porous structure and practical strength by a simple method. It was difficult.

特開平5−97551号公報JP-A-5-97551 特開2000−302567号公報JP 2000-302567 A 特開2001−198208号公報JP 2001-198208 A 特開2001−206787号公報JP 2001-206787 A 特開2004−275202号公報JP 2004-275202 A 特開2005−170767号公報JP 2005-170767 A 特開2006−176371号公報JP 2006-176371 A 特開2005−255439号公報JP 2005-255439 A “An Introduction to Bioceramics” edited by L.L.Hench,J.Wilson,World Scientific,P.183,1998年“An Introduction to Bioceramics” edited by L.L. L. Hench, J. et al. Wilson, World Scientific, P.M. 183, 1998

このような状況の中で、本発明者は、上記従来技術に鑑みて、上記従来技術における諸問題を確実に解消することができる新しいリン酸カルシウム系成形体の多孔化方法と、その新しい利用形態、その製品及び運用方法等を、多角的な視点から検討、開発することを目標として鋭意研究を積み重ねた結果、適宜の液体中でα−TCP成形体の溶液暴露部の溶解析出反応を促進することにより、α−TCP成形体構成粒子の間隙近傍に脆弱部位を設け、該脆弱部位を加熱除去して成形体構成粒子の間隙を拡張することにより所期の目的を達成し得ることを見出し、本発明を完成させるに至った。   In such a situation, in view of the prior art, the present inventor has made a new method for making a porous calcium phosphate-based molded body that can reliably solve the problems in the prior art, and a new form of use thereof, As a result of intensive research aimed at studying and developing the product and operation method from various viewpoints, the dissolution precipitation reaction of the solution exposed part of the α-TCP molded body should be promoted in an appropriate liquid. Thus, it has been found that the intended purpose can be achieved by providing a fragile site in the vicinity of the gap between the α-TCP molded body constituent particles and expanding the gap between the molded body constituent particles by removing the fragile site by heating. The invention has been completed.

本発明のリン酸カルシウム系成形体の多孔化方法により、α−TCP成形体、及び該α−TCPから派生的に調製できる水酸アパタイト(HA)、β−TCP成形体に、数ミクロンの流路幅を持つ気孔ネットワークを、発泡法や骨材焼失法を用いることなく付与することができる。すなわち、本発明は、数ミクロンの流路幅を持つサンゴ様構造の細孔を持つリン酸カルシウム系成形体の多孔体、その製造方法及びその部材を提供することを目的とするものである。   By the method for making a calcium phosphate-based molded body of the present invention porous, α-TCP molded body, and hydroxyapatite (HA) and β-TCP molded body, which can be prepared derivatively from α-TCP, have a flow path width of several microns. It is possible to provide a pore network having a without using a foaming method or an aggregate burning method. That is, an object of the present invention is to provide a porous body of a calcium phosphate-based molded body having coral-like pores having a flow path width of several microns, a manufacturing method thereof, and a member thereof.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)下記2ステップによりリン酸カルシウム系成形体の多孔体を製造する方法であって、
1)液体中で多孔化対象のα−TCP成形体の液体暴露部の溶解析出反応を促し、熱で分解しやすい脆弱部位の部分を設け、
2)該成形体を熱処理することにより、上記脆弱部位を分解、除去し、構成粒子同士を焼結すると共に、成形体構成粒子の間隙を拡張する、
ことを特徴とする、リン酸カルシウム系成形体の多孔体の製造方法。
(2)上記溶解析出反応が、多孔化対象のα−TCP成形体の液体中への浸漬による浸漬溶液中のリン、カルシウムの濃度上昇とpH上昇により、成形体の表面及び微小気孔にリン酸カルシウムを析出させる反応である、前記(1)記載のリン酸カルシウム系成形体の多孔体の製造方法。
(3)上記溶解析出反応におけるα−TCP成形体の液体中への浸漬環境が、静置である、前記(1)又は(2)記載のリン酸カルシウム系成形体の多孔体の製造方法。
(4)上記溶解析出反応に用いる液体として、α−TCP成形体が溶解しうる液体を用いる、前記(1)〜(3)のいずれかに記載のリン酸カルシウム系成形体の多孔体の製造方法。
(5)α−TCP成形体の液体暴露部の溶解析出反応により出現する脆弱部位が、X線的、或いは形態的に、MCPM、DCP、DCPD、OCPのいずれか、若しくはそれらの混合物である、前記(1)〜(4)のいずれかに記載のリン酸カルシウム系成形体の多孔体の製造方法。
(6)α−TCP成形体が、湿潤物、乾燥物、又は焼成物である、前記(1)〜(5)のいずれかに記載のリン酸カルシウム系成形体の多孔体の製造方法。
(7)熱処理温度及び/又は熱処理時間の制御により、成形体の一部若しくは全部をβ−TCP化する、前記(1)〜(6)のいずれかに記載のリン酸カルシウム系成形体の多孔体の製造方法。
(8)上記溶解析出反応を促す方法が、温度、又はpHを制御若しくは変化させる方法であって、温度を0−200℃の範囲、pHをpH1−9の範囲に制御若しくは変化させる、前記(1)〜(7)のいずれかに記載のリン酸カルシウム系成形体の多孔体の製造方法。
(9)溶解析出処理後のα−TCP成形体を焼成して得られるリン酸カルシウム系成形体の多孔体であって、
α−TCP成形体の焼結と、溶解析出反応で形成された脆弱部位の分解によりできた、脆弱部位の分解残渣を伴ったサンゴ様のnode−strut構造と拡張した気孔構造を有し、焼結で強度が上がり、かつ気孔径が拡張した、無処理の焼成品と比べて比較的高い気孔率、吸水性、及び実用的な強度を実現していることを特徴とするリン酸カルシウム系成形体の多孔体。
(10)上記リン酸カルシウムが、α−TCP、β−TCP、又は水酸アパタイトである、前記(8)記載のリン酸カルシウム系成形体の多孔体。
(11)前記(9)記載のα−TCP成形体を焼成して得られるリン酸カルシウム系成形体の多孔体を水熱処理することにより得られる、水酸アパタイト若しくは水酸アパタイトを含むリン酸カルシウム系成形体の多孔体。
(12)前記(9)から(11)のいずれかに記載のリン酸カルシウム系成形体の多孔体からなることを特徴とするリン酸カルシウム多孔体部材。
The present invention for solving the above-described problems comprises the following technical means.
(1) A method for producing a calcium phosphate-based porous body by the following two steps,
1) Promote dissolution and precipitation reaction of the liquid exposed portion of the α-TCP molded body to be made porous in the liquid, and provide a portion of a fragile portion that is easily decomposed by heat.
2) By heat-treating the molded body, the fragile site is decomposed and removed, the constituent particles are sintered with each other, and the gap between the molded body constituent particles is expanded.
The manufacturing method of the porous body of the calcium-phosphate type molded object characterized by the above-mentioned.
(2) The dissolution and precipitation reaction causes calcium phosphate to be added to the surface and micropores of the molded body by increasing the concentration and pH of phosphorus and calcium in the immersion solution by dipping the α-TCP molded body to be porous into a liquid. The manufacturing method of the porous body of the calcium-phosphate type molded object as described in said (1) which is reaction to precipitate.
(3) The manufacturing method of the porous body of the calcium-phosphate type molded object of the said (1) or (2) description that the immersion environment in the liquid of the (alpha) -TCP molded object in the said melt | dissolution precipitation reaction is stationary.
(4) The manufacturing method of the porous body of the calcium-phosphate type molded object in any one of said (1)-(3) using the liquid in which the alpha-TCP molded object can melt | dissolve as a liquid used for the said melt | dissolution precipitation reaction.
(5) The fragile site that appears due to the dissolution and precipitation reaction of the liquid exposed portion of the α-TCP molded body is one of MCPM, DCP, DCPD, OCP, or a mixture thereof, X-ray or morphologically. The manufacturing method of the porous body of the calcium-phosphate type molded object in any one of said (1)-(4).
(6) The method for producing a porous body of a calcium phosphate-based molded body according to any one of (1) to (5), wherein the α-TCP molded body is a wet product, a dried product, or a fired product.
(7) The calcium phosphate-based porous body according to any one of (1) to (6), wherein part or all of the formed body is converted to β-TCP by controlling the heat treatment temperature and / or the heat treatment time. Production method.
(8) The method for promoting the dissolution and precipitation reaction is a method for controlling or changing temperature or pH, wherein the temperature is controlled or changed in the range of 0-200 ° C., and the pH is controlled or changed in the range of pH 1-9. The manufacturing method of the porous body of the calcium-phosphate type molded object in any one of 1)-(7).
(9) A calcium phosphate-based porous body obtained by firing an α-TCP molded body after dissolution and precipitation treatment,
It has a coral-like node-strut structure with a fragile site decomposition residue and an expanded pore structure formed by sintering of the α-TCP molded body and decomposition of the fragile site formed by dissolution and precipitation reaction. A calcium phosphate-based molded article characterized by achieving a relatively high porosity, water absorption, and practical strength compared to an untreated fired product with increased strength due to bonding and expanded pore diameter. Porous body.
(10) The porous body of a calcium phosphate-based molded article according to (8), wherein the calcium phosphate is α-TCP, β-TCP, or hydroxyapatite.
(11) A calcium phosphate-based molded body containing hydroxyapatite or hydroxyapatite obtained by hydrothermal treatment of a porous body of a calcium phosphate-based molded body obtained by firing the α-TCP molded body according to (9) Porous body.
(12) A calcium phosphate porous body member comprising the porous body of the calcium phosphate-based molded body according to any one of (9) to (11).

次に、本発明について更に詳細に説明する。
本発明は、下記2ステップによりα−TCPからなるリン酸カルシウム系成形体の多孔体を製造する方法であって、液体中で多孔化対象のα−TCP成形体の液体暴露部の溶解析出反応を促し、熱で分解しやすい脆弱部位の部分を設け、該成形体を熱処理することにより、上記脆弱部位を分解、除去し、成形体構成粒子同士を焼結すると共に、成形体構成粒子の間隙を拡張する、ことを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention is a method for producing a calcium phosphate-based porous body made of α-TCP by the following two steps, which promotes the dissolution and precipitation reaction in the liquid exposed portion of the α-TCP molded body to be made porous in liquid. By providing a portion of the fragile part that is easily decomposed by heat and heat-treating the molded body, the fragile part is decomposed and removed, the molded body constituent particles are sintered, and the gap between the molded body constituent particles is expanded. It is characterized by that.

本発明では、溶解析出反応が、多孔化対象のα−TCP成形体の液体中への浸漬による浸漬溶液中のリン、カルシウムの濃度上昇とpH上昇により、成形体の表面及び微小気孔にリン酸カルシウムを析出させる反応であること、また、溶解析出反応におけるα−TCP成形体の液体中への浸漬環境が静置であること、を好ましい実施の態様としている。上記溶液反応に用いる液体としては、α−TCP成形体が溶解しうる液体を用いることができ、例えば、pH1.5〜5の塩酸水溶液、コハク酸水溶液、クエン酸水溶液、酢酸水溶液、若しくは、純水、超純水が例示される。   In the present invention, the dissolution and precipitation reaction is performed by adding calcium phosphate to the surface and micropores of the molded body by increasing the concentration and pH of phosphorus and calcium in the immersion solution by immersing the α-TCP molded body to be porous in the liquid. It is a preferred embodiment that the reaction is a precipitation reaction and that the environment in which the α-TCP molded body is immersed in the liquid in the dissolution precipitation reaction is stationary. As the liquid used in the solution reaction, a liquid in which the α-TCP molded body can be dissolved can be used. For example, a hydrochloric acid aqueous solution having a pH of 1.5 to 5, a succinic acid aqueous solution, a citric acid aqueous solution, an acetic acid aqueous solution, or a pure Water and ultrapure water are exemplified.

本発明では、液体中でα−TCP成形体に、振盪、撹拌等の操作を加えることにより、溶解析出反応をより促進することができる。また、本発明では、α−TCP成形体の溶解析出により出現する脆弱部位は、X線的、或いは形態的に、MCPM、DCP、DCPD、OCPのいずれか、若しくはそれらの混合物であること、α−TCP成形体は、湿潤物、乾燥物、乃至焼成物であること、熱処理温度及び/又は熱処理時間の制御により、成形体の一部若しくは全部をβ−TCP化すること、が好適である。   In this invention, melt | dissolution precipitation reaction can be accelerated | stimulated more by adding operation, such as shaking and stirring, to (alpha) -TCP molded object in a liquid. In the present invention, the fragile site that appears due to dissolution and precipitation of the α-TCP molded body is X-ray or morphologically any of MCPM, DCP, DCPD, OCP, or a mixture thereof, α It is preferable that the TCP molded body is a wet product, a dried product, or a fired product, and part or all of the molded product is converted to β-TCP by controlling the heat treatment temperature and / or the heat treatment time.

また、本発明は、溶解析出処理後のα−TCP成形体を焼成して得られる多孔質リン酸カルシウム系焼結体であって、α−TCP成形体の焼結と脆弱部位の分解によりできた、脆弱部位の分解残渣を伴ったサンゴ様のnode−strut構造と拡張した気孔構造を有し、焼結で強度が上がり、かつ気孔径が拡張した、無処理の焼成品と比べて、比較的高い気孔率、吸水性、及び実用的な強度を実現していること、リン酸カルシウムが、α−TCP、β−TCP、又は水酸アパタイトであること、が好適である。   In addition, the present invention is a porous calcium phosphate-based sintered body obtained by firing the α-TCP molded body after the dissolution and precipitation treatment, and was obtained by sintering the α-TCP molded body and decomposing the fragile site. It has a coral-like node-strut structure with a fragile residue decomposition residue and an expanded pore structure, and its strength is increased by sintering, and it is relatively high compared to an untreated fired product with an expanded pore diameter. It is preferable that the porosity, water absorption, and practical strength are realized, and that the calcium phosphate is α-TCP, β-TCP, or hydroxyapatite.

本発明における成形体の主要成分であるα−TCP(α−tricalcium phosphate)は、Ca(POの化学組成を持つリン酸カルシウムであり、例えば、“α−リン酸三カルシウム”と呼ばれている。 Α-TCP (α-tricalcium phosphate), which is a main component of the molded body in the present invention, is calcium phosphate having a chemical composition of Ca 3 (PO 4 ) 2 , and is called, for example, “α-tricalcium phosphate”. ing.

本発明において、α−TCPは、目的に応じて適宜の形状に成形して用いられるが、例えば、直径1mm程度の球形状に成形する場合、α−TCP原料粉体とアルギン酸ナトリウム水溶液よりなるα−TCPスラリーを、凝固液に滴下することにより、球状に成形して、α−TCP湿潤ゲルビーズにする。このとき、スラリー中のα−TCP粒径は、好適には、5μm以下であることが、この後に続く多孔化処理の観点から、望ましい。しかし、これらに制限されるものではない。   In the present invention, α-TCP is used after being molded into an appropriate shape according to the purpose. For example, when forming into a spherical shape having a diameter of about 1 mm, α-TCP is made of α-TCP raw material powder and sodium alginate aqueous solution. -Drop the TCP slurry into the coagulation liquid to form a spherical shape into α-TCP wet gel beads. At this time, the α-TCP particle size in the slurry is preferably 5 μm or less from the viewpoint of the subsequent porous treatment. However, it is not limited to these.

成形したα−TCPを、適宜の液体に浸漬する。α−TCP成形体は、湿潤状態、若しくは乾燥状態、焼成状態のいずれでもよい。適宜の液体は、α−TCP成形体の浸漬によりpHが上昇する液体であればよく、例えば、pH1.5〜5の塩酸水溶液、コハク酸水溶液、クエン酸水溶液、酢酸水溶液、若しくは、純水、超純水が例示される。しかし、これらに制限されるものではなく、これらと実質的に同効のもの、或いはこれらと類似のものであれば同様に使用することができる。   The molded α-TCP is immersed in an appropriate liquid. The α-TCP molded body may be in a wet state, a dry state, or a fired state. The appropriate liquid may be a liquid whose pH is increased by immersion of the α-TCP molded body. For example, a hydrochloric acid aqueous solution having a pH of 1.5 to 5, a succinic acid aqueous solution, a citric acid aqueous solution, an acetic acid aqueous solution, or pure water, Ultrapure water is exemplified. However, the present invention is not limited to these, and any one having substantially the same effect as these or those similar to these can be used in the same manner.

α−TCP成形体は、浸漬液中で徐々に溶解し、浸漬液中のリン、カルシウム濃度を高め、浸漬液のpH上昇をもたらし、その結果、成形体上に析出物を生じるに至る(溶解析出反応)(図1の左参照)。成形体が緻密でない場合、浸漬液は、成形体構成粒子の間隙に浸潤するため、上記の溶解析出反応は、成形体の最表面だけでなく、成形体構成粒子の間隙近傍でも起こる。   The α-TCP molded body dissolves gradually in the immersion liquid, increases the phosphorus and calcium concentration in the immersion liquid, and raises the pH of the immersion liquid, resulting in the formation of precipitates on the molded body (dissolution) (Precipitation reaction) (See the left in FIG. 1). When the molded body is not dense, the immersion liquid infiltrates into the gaps between the molded body constituent particles, and thus the dissolution and precipitation reaction occurs not only on the outermost surface of the molded body but also in the vicinity of the gaps between the molded body constituent particles.

従って、上記溶解析出反応の結果、成形体表面及び構成粒子の間隙に析出物を従えた酸処理α−TCP成形体としてのα−TCP成形体を得る。析出物は、浸漬液のpHと温度、圧力により制御される。   Therefore, as a result of the dissolution precipitation reaction, an α-TCP molded body is obtained as an acid-treated α-TCP molded body in which the precipitates follow the molded body surface and the gaps between the constituent particles. The precipitate is controlled by the pH, temperature and pressure of the immersion liquid.

例えば、α−TCP成形体を、pH2以上の浸漬液に40℃、常圧で24時間浸漬することにより、α−TCP成形体上にOCP様の結晶を析出させることができる。また、例えば、α−TCP成形体を、pH2未満の浸漬液に、4℃、常圧で24時間浸漬することにより、α−TCP成形体上にDCPD結晶を析出させることができる。   For example, an OCP-like crystal can be deposited on the α-TCP molded body by immersing the α-TCP molded body in an immersion liquid having a pH of 2 or higher at 40 ° C. and normal pressure for 24 hours. Further, for example, the DCPD crystal can be deposited on the α-TCP molded body by immersing the α-TCP molded body in an immersion liquid having a pH of less than 2 at 4 ° C. and normal pressure for 24 hours.

上記のように調製した酸処理α−TCP成形体を焼成する。このとき、析出物が分解、除去され、その結果、成形体構成粒子の間隙が拡張した多孔化α−TCP成形体としてのα−TCP成形体を得る(図1の右参照)。多孔化α−TCP成形体は、理想的には、数ミクロンの細孔を持つサンゴ様のnode−strut構造になる。   The acid-treated α-TCP molded body prepared as described above is fired. At this time, precipitates are decomposed and removed, and as a result, an α-TCP molded body is obtained as a porous α-TCP molded body in which the gaps between the molded body constituent particles are expanded (see the right in FIG. 1). The porous α-TCP molded body ideally has a coral-like node-strut structure having pores of several microns.

析出物は、例えば、MCPM、DCP、DCPD、乃至OCPのように、α−TCPよりも熱安定性が低いものであることが望ましい。焼成温度を1150〜1400℃とすると、成形体構成粒子同士はしっかり焼結しながらも、成形体構成粒子の間隙が拡張した、高強度且つ多孔質のα−TCP成形体を得ることができる。   Desirably, the precipitate has a lower thermal stability than α-TCP, such as MCPM, DCP, DCPD, or OCP. When the firing temperature is 1150 to 1400 ° C., it is possible to obtain a high-strength and porous α-TCP molded body in which the gap between the molded body constituent particles is expanded while the molded body constituent particles are firmly sintered.

また、焼成温度を800〜1150℃とすると、一部若しくは全部がβ−TCP化した多孔質成形体を得ることができる。更に、上記のように調製した多孔化α−TCP成形体を水熱処理することにより、一部若しくは全部がHA化した多孔質成形体を得ることができる。   Moreover, when a calcination temperature is set to 800 to 1150 ° C., a porous molded body in which a part or the whole is β-TCP can be obtained. Furthermore, a porous molded body partially or wholly made HA can be obtained by hydrothermally treating the porous α-TCP molded body prepared as described above.

本発明によるリン酸カルシウム系成形体の多孔化方法によれば、サンゴ様構造と数ミクロンの流路幅を持つ細孔を、発泡法や骨材焼失法を用いることなく、α−TCP成形体に付与することができる。数ミクロンの細孔は、成形体の比表面積を増大させ、液性成分との親和性を向上し、成形体の溶解性を比較的高くすることができる。   According to the method for making a calcium phosphate-based molded body according to the present invention, a coral-like structure and a pore having a flow path width of several microns are imparted to an α-TCP molded body without using a foaming method or an aggregate burning method. can do. The pores of several microns can increase the specific surface area of the molded body, improve the affinity with the liquid component, and relatively increase the solubility of the molded body.

また、通常、焼結により構成粒子の間隙は縮小するが、そのような常識に反して、本発明では、多孔化処理にもかかわらず、構成粒子同士のしっかりした焼結により高強度化が起こるので、成形体の強度低下が少なく、しかも構成粒子の間隙は拡張される。   In addition, although the gap between the constituent particles is usually reduced by sintering, contrary to such common knowledge, in the present invention, high strength occurs due to the solid sintering of the constituent particles despite the porous treatment. Therefore, the strength reduction of the molded body is small, and the gap between the constituent particles is expanded.

更に、本多孔化処理によれば、α−TCP成形体をスタート成形体として、例えば、多孔化後のα−TCP成形体を水熱処理することにより、スタート成形体と類似の気孔構造を持つ水酸アパタイト成形体としたり、熱処理温度制御により、スタート成形体と類似の気孔構造を持つβ−TCP成形体とすることができる。   Furthermore, according to the present porous treatment, the α-TCP molded body is used as a start molded body, and for example, water having a pore structure similar to that of the start molded body is obtained by hydrothermal treatment of the porous α-TCP molded body. An acid apatite molded body or a β-TCP molded body having a pore structure similar to that of the start molded body can be obtained by controlling the heat treatment temperature.

本発明は、溶解析出反応により、α−TCP成形体の構成粒子の間隙近傍に分解しやすい脆弱部位の部分を設け、該部分を熱分解除去することにより、構成粒子の間隙を拡張することで特徴付けられる、多孔質リン酸カルシウム系焼結体及びその製造方法を提供するものである。本発明では、数ミクロンの流路(細孔)幅を持つサンゴ様構造を、発泡法や骨材焼失法を用いることなく、α−TCP成形体に付与することが可能である。   The present invention provides a brittle portion portion that is easily decomposed in the vicinity of the gap between the constituent particles of the α-TCP molded body by dissolution and precipitation reaction, and expands the gap between the constituent particles by thermally removing the portion. A porous calcium phosphate-based sintered body and a method for producing the same are characterized. In the present invention, a coral-like structure having a flow path (pore) width of several microns can be imparted to an α-TCP molded body without using a foaming method or an aggregate burning method.

本発明のサンゴ様構造は、成形体の比表面積を増大させ、液性成分との親和性を向上し、成形体の溶解性を比較的高くすることができ、多孔化処理にもかかわらず、成形体の強度低下が少ない。本発明では、α−TCP成形体をスタート成形体として、例えば、多孔化後のα−TCP成形体を水熱処理することにより、スタート成形体と類似の気孔構造を持つ水酸アパタイト成形体とすることが可能である。   The coral-like structure of the present invention can increase the specific surface area of the molded body, improve the affinity with the liquid component, and can relatively increase the solubility of the molded body. There is little decrease in strength of the molded body. In the present invention, the α-TCP molded body is used as a start molded body. For example, the porous α-TCP molded body is hydrothermally treated to form a hydroxyapatite molded body having a pore structure similar to that of the start molded body. It is possible.

本発明のリン酸カルシウム系成形体の多孔化方法は、熱処理温度制御により、スタート成形体と類似の気孔構造を持つβ−TCP成形体とすることができ、例えば、人工骨、薬剤担体、触媒担体、フィルターなどを製造するための手段として好適に利用することが可能である。   The method for making a calcium phosphate-based molded body of the present invention porous can be a β-TCP molded body having a pore structure similar to the start molded body by heat treatment temperature control. For example, artificial bone, drug carrier, catalyst carrier, It can be suitably used as a means for producing a filter or the like.

本発明により、次のような格別の作用効果が奏される。
(1)溶解析出反応により、α−TCP成形体の構成粒子の間隙近傍に分解しやすい脆弱部位の部分を設け、該部分を熱分解除去することにより、構成粒子同士を焼結、高強度化すると共に、構成粒子の間隙を拡張した、多孔質人工骨を製造し、提供することができる。
(2)数ミクロンの流路(細孔)幅を持つサンゴ様構造を、発泡法や骨材焼失法を用いることなく、α−TCP成形体に付与することができる。
(3)サンゴ様構造は、成形体の比表面積を増大させ、液性成分との親和性を向上し、成形体の溶解性を比較的高くすることができる。
(4)多孔化処理にもかかわらず、成形体の強度低下が少ない。
(5)α−TCP成形体をスタート成形体として、例えば、多孔化後のα−TCP成形体を水熱処理することにより、スタート成形体と類似の気孔構造を持つ水酸アパタイト成形体としたり、熱処理温度制御によりスタート成形体と類似の気孔構造を持つβ−TCP成形体とすることができる。
(6)本発明の多孔化方法は、例えば、人工骨、薬剤担体、触媒担体、フィルターなどを製造するための手段として好適に利用しうるものとして有用である。
According to the present invention, the following special effects are achieved.
(1) By the dissolution and precipitation reaction, a portion of a fragile portion that is easily decomposed is provided in the vicinity of the gap between the constituent particles of the α-TCP molded body, and the constituent particles are sintered and increased in strength by removing the portion by thermal decomposition. At the same time, it is possible to manufacture and provide a porous artificial bone having an expanded gap between constituent particles.
(2) A coral-like structure having a flow path (pore) width of several microns can be imparted to an α-TCP molded body without using a foaming method or an aggregate burning method.
(3) The coral-like structure can increase the specific surface area of the molded body, improve the affinity with the liquid component, and relatively increase the solubility of the molded body.
(4) Despite the porous treatment, there is little decrease in strength of the molded body.
(5) The α-TCP molded body as a start molded body, for example, by hydrothermal treatment of the porous α-TCP molded body, a hydroxyapatite molded body having a pore structure similar to the start molded body, A β-TCP molded body having a pore structure similar to the start molded body can be obtained by controlling the heat treatment temperature.
(6) The porous method of the present invention is useful, for example, as a means that can be suitably used as a means for producing artificial bones, drug carriers, catalyst carriers, filters, and the like.

以下、本発明を実施例に基づいて具体的に説明するが、本発明は、これらによって何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by these.

α−TCP粉体と1%アルギン酸ナトリウム水溶液を混合し、40%α−TCPスラリーを調製した。上記α−TCPスラリーを、1%塩化カルシウム水溶液に滴下することにより、α−TCPゲルビーズを作製した。上記α−TCPゲルビーズを、60℃、24時間乾燥することにより、α−TCP乾燥ビーズを作製した。乾燥α−TCPビーズの空隙率及び空隙メジアン径は、58.78%、0.6905μmであった。   α-TCP powder and 1% sodium alginate aqueous solution were mixed to prepare a 40% α-TCP slurry. The α-TCP slurry was dropped into a 1% calcium chloride aqueous solution to prepare α-TCP gel beads. The α-TCP gel beads were dried at 60 ° C. for 24 hours to prepare α-TCP dry beads. The porosity and median diameter of the dry α-TCP beads were 58.78% and 0.6905 μm.

α−TCP乾燥ビーズをpH2.5の塩酸酸性水溶液に浸漬し、40℃、24時間静置した。上記処理により、α−TCP乾燥ビーズの一部が溶解し、溶液中のpHを上昇させ、その結果として、α−TCP乾燥ビーズ上に析出物が形成された。α−TCP乾燥ビーズ上の析出物は、OCP様のモルフォロジーを呈した(図2)。酸処理α−TCPビーズの空隙率及び空隙メジアン径は、55.27%、0.0420μmであった。   The α-TCP dried beads were immersed in an acidic aqueous hydrochloric acid solution having a pH of 2.5 and allowed to stand at 40 ° C. for 24 hours. By the said process, a part of (alpha) -TCP dry bead melt | dissolved and the pH in a solution was raised, As a result, the deposit was formed on the (alpha) -TCP dry bead. The precipitate on the α-TCP dry beads exhibited an OCP-like morphology (FIG. 2). The porosity and median diameter of the acid-treated α-TCP beads were 55.27% and 0.0420 μm.

上記酸処理後のα−TCPビーズを、水洗、乾燥後、1400℃で焼成することにより、ビーズ上の析出物を分解し、サンゴ様構造を持つ多孔質α−TCPビーズを得た(図3)。多孔化α−TCPビーズの空隙率及び空隙メヂアン径は、42.07%、1.692μmであり、気孔径の拡張が確認できた。   The acid-treated α-TCP beads were washed with water, dried, and then fired at 1400 ° C. to decompose precipitates on the beads to obtain porous α-TCP beads having a coral-like structure (FIG. 3). ). The porosity and void median diameter of the porous α-TCP beads were 42.07% and 1.692 μm, and expansion of the pore diameter was confirmed.

粉砕したα−TCP粉体を用いて、実施例1と同様の多孔化処理を行うことにより、よりサンゴ様構造が顕著なα−TCP多孔体を得ることができた(図4)。   Using the pulverized α-TCP powder, the same porous treatment as in Example 1 was performed, and an α-TCP porous body with a more remarkable coral-like structure could be obtained (FIG. 4).

実施例1と同様の方法で、α−TCP乾燥ビーズを作製した。α−TCP乾燥ビーズをpH1.5の塩酸酸性水溶液に浸漬し、4℃、24時間静置した。上記処理により、α−TCP乾燥ビーズの一部が溶解し、溶液中のpHを上昇させ、その結果として、α−TCP乾燥ビーズ上に、DCPDの析出物が形成された。(図5)。上記酸処理後のα−TCPビーズを、水洗、乾燥後、1400℃で焼成することにより、ビーズ上の析出物を分解し、多孔質α−TCPビーズを得た(図6)。   Α-TCP dry beads were produced in the same manner as in Example 1. The α-TCP dry beads were immersed in an acidic aqueous hydrochloric acid solution having a pH of 1.5 and allowed to stand at 4 ° C. for 24 hours. By the said process, a part of alpha-TCP dry bead melt | dissolved and the pH in a solution was raised, As a result, the deposit of DCPD was formed on the alpha-TCP dry bead. (FIG. 5). The α-TCP beads after the acid treatment were washed with water, dried and then fired at 1400 ° C. to decompose precipitates on the beads to obtain porous α-TCP beads (FIG. 6).

実施例1で作製した多孔化α−TCPビーズを、150℃、5日間水熱処理することにより、HA化多孔化α−TCPビーズを作製することができた(図7)。   The porous α-TCP beads prepared in Example 1 were hydrothermally treated at 150 ° C. for 5 days, whereby HA-modified porous α-TCP beads could be prepared (FIG. 7).

比較例1
実施例1において、塩酸処理を行わずに、α−TCPビーズを1400℃で焼成した。ただα−TCPビーズを1400℃で焼成しただけでは、サンゴ様構造はできなかった(図8)。無処理α−TCPビーズの空隙率及び空隙メジアン径は、23.23%、0.6686μmであった。
Comparative Example 1
In Example 1, α-TCP beads were baked at 1400 ° C. without performing hydrochloric acid treatment. However, a coral-like structure could not be obtained only by firing α-TCP beads at 1400 ° C. (FIG. 8). The porosity and median diameter of the untreated α-TCP beads were 23.23% and 0.6686 μm.

実施例1と同様の方法で、α−TCPスラリーを30%として作製したα−TCP乾燥ビーズを、500mgずつ、pH2.5の塩酸酸性水溶液25mlに浸漬し、40℃のインキュベーターシェイカーで、1、3,5,15,24,48時間、50rpmで、振盪して、溶解析出反応を促進することにより、α−TCP乾燥ビーズ上に、析出物を形成した。上記酸処理中の処理液pHは、各経過時間において、6.4、6.375、6.301、6.148、5.867、5.682となった。酸処理1時間のpH上昇は、α−TCP乾燥ビーズの溶解を、その後のpH下降は、処理液からのリン酸カルシウムの析出を、それぞれ示唆している。   In the same manner as in Example 1, α-TCP dried beads prepared with 30% α-TCP slurry were immersed in 25 ml of an acidic aqueous hydrochloric acid solution having a pH of 2.5, and 1 in a 40 ° C. incubator shaker. The precipitate was formed on the α-TCP dry beads by accelerating the dissolution precipitation reaction by shaking at 50 rpm for 3, 5, 15, 24, 48 hours. The treatment solution pH during the acid treatment was 6.4, 6.375, 6.301, 6.148, 5.867, 5.682 at each elapsed time. An increase in pH during 1 hour of acid treatment suggests dissolution of α-TCP dry beads, and a subsequent decrease in pH suggests precipitation of calcium phosphate from the treatment solution.

以上詳述したように、本発明は、溶解析出反応により、α−TCP成形体の構成粒子の間隙近傍に分解しやすい脆弱部位の部分を設け、該部分を熱分解除去することにより、構成粒子の間隙を拡張することを特徴とした、多孔質リン酸カルシウム系焼結体及びその製造方法に係るものであり、本発明により、数ミクロンの流路(細孔)幅を持つサンゴ様構造を、発泡法や骨材焼失法を用いることなく、α−TCP成形体に付与することができる。本発明のサンゴ様構造は、成形体の比表面積を増大させ、液性成分との親和性を向上し、成形体の溶解性を比較的高くすることができる。   As described above in detail, the present invention provides a constituent particle by providing a portion of a fragile portion that is easily decomposed in the vicinity of a gap between constituent particles of the α-TCP molded body by dissolution and precipitation, and thermally decomposing and removing the portion. According to the present invention, a coral-like structure having a flow path (pore) width of a few microns is foamed, which relates to a porous calcium phosphate sintered body and a method for producing the same. It can be applied to the α-TCP molded body without using the method or the aggregate burning method. The coral-like structure of the present invention can increase the specific surface area of the molded body, improve the affinity with the liquid component, and relatively increase the solubility of the molded body.

多孔化処理にもかかわらず、成形体の強度低下が少ない。本発明では、α−TCP成形体をスタート成形体として、例えば、多孔化後のα−TCP成形体を水熱処理することにより、スタート成形体と類似の気孔構造を持つ水酸アパタイト成形体としたり、熱処理温度制御により、スタート成形体と類似の気孔構造を持つβ−TCP成形体とすることができる。本発明のリン酸カルシウム系成形体の多孔化方法は、例えば、人工骨、薬剤担体、触媒担体、フィルターなどを製造するための手段として好適に利用しうるものとして有用である。   Despite the porous treatment, there is little decrease in strength of the molded body. In the present invention, the α-TCP molded body is used as a start molded body. For example, by hydrothermally treating the porous α-TCP molded body, a hydroxyapatite molded body having a pore structure similar to that of the start molded body can be obtained. The β-TCP molded body having a pore structure similar to that of the start molded body can be obtained by controlling the heat treatment temperature. The method for making a calcium phosphate-based molded body of the present invention porous is useful, for example, as a means that can be suitably used as a means for producing artificial bones, drug carriers, catalyst carriers, filters, and the like.

本発明の多孔化処理を模式的に示す。多孔化処理は、左(1)から右(4)に進む。つまり、図は、(1)成形体溶解で浸漬液Ca、P濃度上昇→(2)浸漬液pH上昇→(3)脆弱部位析出→(4)焼結、により、ミクロポア出現という多孔化の機序を示している。The porous treatment of this invention is typically shown. The porosity treatment proceeds from left (1) to right (4). In other words, the figure shows (1) Increase in concentration of immersion liquid Ca and P due to dissolution of molded body → (2) Increase in pH of immersion liquid → (3) Precipitation of fragile sites → (4) Sintering of micropore appearance An introduction is shown. OCP様の結晶が析出した状態のα−TCPビーズの電子顕微鏡画像を示す。An electron microscopic image of α-TCP beads in a state where OCP-like crystals are precipitated is shown. OCP様の結晶析出後に焼成して多孔化したα−TCPビーズの電子顕微鏡画像を示す。The electron microscope image of the alpha-TCP beads baked and porous after the OCP-like crystal precipitation is shown. サンゴ様構造がより顕著な多孔化α−TCPビーズの電子顕微鏡画像を示す。An electron microscope image of a porous α-TCP bead having a more prominent coral-like structure is shown. DCPD結晶が析出した状態のα−TCPビーズの電子顕微鏡画像を示す。The electron microscope image of the alpha-TCP bead in the state where DCPD crystal precipitated is shown. DCPD析出後に焼成して多孔化したα−TCPビーズの電子顕微鏡画像を示す。The electron microscope image of the alpha-TCP beads baked and porous after DCPD deposition is shown. 水熱処理でHA化した、OCP様の結晶析出後に焼成して多孔化したα−TCPビーズの電子顕微鏡画像を示す。An electron microscopic image of α-TCP beads that have been HAd by hydrothermal treatment and fired to become porous after precipitation of OCP-like crystals is shown. 塩酸処理を行わずに、ただ1400℃で焼成しただけのα−TCPビーズの電子顕微鏡画像を示す。多孔化処理の特徴であるサンゴ様構造は見られない。An electron microscopic image of α-TCP beads that were merely fired at 1400 ° C. without hydrochloric acid treatment is shown. The coral-like structure that is characteristic of the porous treatment is not observed.

Claims (12)

下記2ステップによりリン酸カルシウム系成形体の多孔体を製造する方法であって、
1)液体中で多孔化対象のα−TCP成形体の液体暴露部の溶解析出反応を促し、熱で分解しやすい脆弱部位の部分を設け、
2)該成形体を熱処理することにより、上記脆弱部位を分解、除去し、構成粒子同士を焼結すると共に、成形体構成粒子の間隙を拡張する、
ことを特徴とする、リン酸カルシウム系成形体の多孔体の製造方法。
A method for producing a porous body of a calcium phosphate-based molded body by the following two steps,
1) Promote dissolution and precipitation reaction of the liquid exposed portion of the α-TCP molded body to be made porous in the liquid, and provide a portion of a fragile portion that is easily decomposed by heat.
2) By heat-treating the molded body, the fragile site is decomposed and removed, the constituent particles are sintered with each other, and the gap between the molded body constituent particles is expanded.
The manufacturing method of the porous body of the calcium-phosphate type molded object characterized by the above-mentioned.
上記溶解析出反応が、多孔化対象のα−TCP成形体の液体中への浸漬による浸漬溶液中のリン、カルシウムの濃度上昇とpH上昇により、成形体の表面及び微小気孔にリン酸カルシウムを析出させる反応である、請求項1記載のリン酸カルシウム系成形体の多孔体の製造方法。   The above dissolution precipitation reaction is a reaction for precipitating calcium phosphate on the surface of the molded body and micropores by increasing the concentration and pH of phosphorus and calcium in the immersion solution by immersing the α-TCP molded body to be porous in the liquid. The manufacturing method of the porous body of the calcium-phosphate type molded object of Claim 1 which is. 上記溶解析出反応におけるα−TCP成形体の液体中への浸漬環境が、静置である、請求項1又は2記載のリン酸カルシウム系成形体の多孔体の製造方法。   The manufacturing method of the porous body of the calcium-phosphate type molded object of Claim 1 or 2 whose immersion environment in the liquid of the (alpha) -TCP molded object in the said dissolution precipitation reaction is still. 上記溶解析出反応に用いる液体として、α−TCP成形体が溶解しうる液体を用いる、請求項1〜3のいずれかに記載のリン酸カルシウム系成形体の多孔体の製造方法。   The manufacturing method of the porous body of the calcium-phosphate type molded object in any one of Claims 1-3 which uses the liquid which (alpha) -TCP molded object can melt | dissolve as a liquid used for the said melt | dissolution precipitation reaction. α−TCP成形体の液体暴露部の溶解析出反応により出現する脆弱部位が、X線的、或いは形態的に、MCPM、DCP、DCPD、OCPのいずれか、若しくはそれらの混合物である、請求項1〜4のいずれかに記載のリン酸カルシウム系成形体の多孔体の製造方法。   The fragile site that appears due to the dissolution and precipitation reaction in the liquid exposed portion of the α-TCP molded body is one of MCPM, DCP, DCPD, OCP, or a mixture thereof in X-ray or morphological form. The manufacturing method of the porous body of the calcium-phosphate type molded object in any one of -4. α−TCP成形体が、湿潤物、乾燥物、又は焼成物である、請求項1〜5のいずれかに記載のリン酸カルシウム系成形体の多孔体の製造方法。   The manufacturing method of the porous body of the calcium-phosphate type molded object in any one of Claims 1-5 whose (alpha) -TCP molded object is a wet thing, a dry thing, or a baked product. 熱処理温度及び/又は熱処理時間の制御により、成形体の一部若しくは全部をβ−TCP化する、請求項1〜6のいずれかに記載のリン酸カルシウム系成形体の多孔体の製造方法。   The method for producing a porous body of a calcium phosphate-based molded body according to any one of claims 1 to 6, wherein a part or all of the molded body is β-TCP by controlling a heat treatment temperature and / or a heat treatment time. 上記溶解析出反応を促す方法が、温度、又はpHを制御若しくは変化させる方法であって、温度を0−200℃の範囲、pHをpH1−9の範囲に制御若しくは変化させる、請求項1〜7のいずれかに記載のリン酸カルシウム系成形体の多孔体の製造方法。   The method for promoting the dissolution and precipitation reaction is a method of controlling or changing temperature or pH, wherein the temperature is controlled or changed in the range of 0-200 ° C and the pH is controlled in the range of pH 1-9. The manufacturing method of the porous body of the calcium-phosphate type molded object in any one of these. 溶解析出処理後のα−TCP成形体を焼成して得られるリン酸カルシウム系成形体の多孔体であって、
α−TCP成形体の焼結と、溶解析出反応で形成された脆弱部位の分解によりできた、脆弱部位の分解残渣を伴ったサンゴ様のnode−strut構造と拡張した気孔構造を有し、焼結で強度が上がり、かつ気孔径が拡張した、無処理の焼成品と比べて比較的高い気孔率、吸水性、及び実用的な強度を実現していることを特徴とするリン酸カルシウム系成形体の多孔体。
It is a porous body of a calcium phosphate-based molded body obtained by firing an α-TCP molded body after dissolution and precipitation treatment,
It has a coral-like node-strut structure with a fragile site decomposition residue and an expanded pore structure formed by sintering of the α-TCP molded body and decomposition of the fragile site formed by dissolution and precipitation reaction. A calcium phosphate-based molded article characterized by achieving a relatively high porosity, water absorption, and practical strength compared to an untreated fired product with increased strength due to bonding and expanded pore diameter. Porous body.
上記リン酸カルシウムが、α−TCP、β−TCP、又は水酸アパタイトである、請求項8記載のリン酸カルシウム系成形体の多孔体。   The porous body of a calcium phosphate-based molded body according to claim 8, wherein the calcium phosphate is α-TCP, β-TCP, or hydroxyapatite. 請求項9記載のα−TCP成形体を焼成して得られるリン酸カルシウム系成形体の多孔体を水熱処理することにより得られる、水酸アパタイト若しくは水酸アパタイトを含むリン酸カルシウム系成形体の多孔体。   A porous body of a calcium phosphate-based molded body containing a hydroxyapatite or a hydroxyapatite obtained by hydrothermal treatment of a porous body of a calcium phosphate-based molded body obtained by firing the α-TCP molded body according to claim 9. 請求項9から11のいずれかに記載のリン酸カルシウム系成形体の多孔体からなることを特徴とするリン酸カルシウム多孔体部材。   It consists of a porous body of the calcium-phosphate type molded object in any one of Claim 9 to 11, The calcium-phosphate porous body member characterized by the above-mentioned.
JP2008232746A 2007-09-10 2008-09-10 Porous body of calcium phosphate-based molded body and method for producing the same Expired - Fee Related JP5007980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008232746A JP5007980B2 (en) 2007-09-10 2008-09-10 Porous body of calcium phosphate-based molded body and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007234251 2007-09-10
JP2007234251 2007-09-10
JP2008232746A JP5007980B2 (en) 2007-09-10 2008-09-10 Porous body of calcium phosphate-based molded body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009084147A true JP2009084147A (en) 2009-04-23
JP5007980B2 JP5007980B2 (en) 2012-08-22

Family

ID=40658042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008232746A Expired - Fee Related JP5007980B2 (en) 2007-09-10 2008-09-10 Porous body of calcium phosphate-based molded body and method for producing the same

Country Status (1)

Country Link
JP (1) JP5007980B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020503109A (en) * 2016-12-23 2020-01-30 サンスター スイス エスエー Bone graft substitute
JP2023072636A (en) * 2021-11-12 2023-05-24 ▲フ▼派海洋生技股▲分▼有限公司 Porous tricalcium phosphate material, pharmaceutical composition for bone healing containing the same, and method for producing the same
JP7483782B2 (en) 2016-12-23 2024-05-15 コラジェン マトリックス,インク. Bone graft substitutes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957970A (en) * 1982-09-25 1984-04-03 株式会社イナックス Carbon fiber-apatite baked composite body
JP2005067966A (en) * 2003-08-26 2005-03-17 Makoto Kitamura Calcium phosphate ceramics porous material and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957970A (en) * 1982-09-25 1984-04-03 株式会社イナックス Carbon fiber-apatite baked composite body
JP2005067966A (en) * 2003-08-26 2005-03-17 Makoto Kitamura Calcium phosphate ceramics porous material and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020503109A (en) * 2016-12-23 2020-01-30 サンスター スイス エスエー Bone graft substitute
JP2022088628A (en) * 2016-12-23 2022-06-14 コラジェン マトリックス,インク. Bone transplant substitute
JP7197483B2 (en) 2016-12-23 2022-12-27 コラジェン マトリックス,インク. bone graft substitute
JP7483782B2 (en) 2016-12-23 2024-05-15 コラジェン マトリックス,インク. Bone graft substitutes
JP2023072636A (en) * 2021-11-12 2023-05-24 ▲フ▼派海洋生技股▲分▼有限公司 Porous tricalcium phosphate material, pharmaceutical composition for bone healing containing the same, and method for producing the same
JP7419422B2 (en) 2021-11-12 2024-01-22 ▲フ▼派海洋生技股▲分▼有限公司 Porous tricalcium phosphate material, pharmaceutical composition for bone healing containing the same, and method for producing the same

Also Published As

Publication number Publication date
JP5007980B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
Pei et al. Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three-dimensional printing and microwave sintering
JP2572606B2 (en) Manufacturing method of superficially porous calcium phosphate ceramics
Descamps et al. Synthesis of macroporous β-tricalcium phosphate with controlled porous architectural
US11077225B2 (en) Hollow porous spherical particle artificial bone as well as preparation method and application thereof
US20080103227A1 (en) Porous material having hierarchical pore structure and preparation method thereof
JP2001224679A (en) Porous ceramic body
JP4693992B2 (en) Ceramic foam
KR100814730B1 (en) Hierarchically nanoporous-macroporous bioactive glass and method for preparing thereof
US7279219B2 (en) Porous calcium phosphate ceramic and method for producing same
Zhang et al. Fabrication of porous Hydroxyapatite ceramic scaffolds with high flexural strength through the double slip‐casting method using fine powders
JP2004532685A (en) Foamed sol-gel and method for producing the same
JP2008541958A (en) Modeled product
CN103638556A (en) Surface nano-scale modified calcium phosphate bioactive ceramic as well as preparation method and application thereof
Abdurrahim et al. Recent progress on the development of porous bioactive calcium phosphate for biomedical applications
KR100751504B1 (en) Nano-macro sized porous biomaterials with 3-d hierarchical pore structure and method for prepararion thereof
Zhang et al. Fabrication and properties of porous β-tricalcium phosphate ceramics prepared using a double slip-casting method using slips with different viscosities
KR100941374B1 (en) Bio-degradable triple pore ceramic-polymer scaffold and preparation method thereof
JP5007980B2 (en) Porous body of calcium phosphate-based molded body and method for producing the same
JP4699902B2 (en) Calcium phosphate ceramic porous body and method for producing the same
Mohammed Mohammed et al. A comprehensive review of the effects of porosity and macro-and micropore formations in porous β-TCP scaffolds on cell responses
JP3718708B2 (en) Calcium phosphate bioceramic sintered body and method for producing the same
Iwamoto et al. Effects of molecular weight on macropore sizes and characterization of porous hydroxyapatite ceramics fabricated using polyethylene glycol: mechanisms to generate macropores and tune their sizes
Swain Processing of porous hydroxyapatite scaffold
JP2003325654A (en) Porous composite body for living body, method for manufacturing the body, and application of the body
JP2004284933A (en) Fibrous calcium phosphate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

R150 Certificate of patent or registration of utility model

Ref document number: 5007980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees