JP2009082776A - Method and apparatus for searching catalyst material - Google Patents

Method and apparatus for searching catalyst material Download PDF

Info

Publication number
JP2009082776A
JP2009082776A JP2007252952A JP2007252952A JP2009082776A JP 2009082776 A JP2009082776 A JP 2009082776A JP 2007252952 A JP2007252952 A JP 2007252952A JP 2007252952 A JP2007252952 A JP 2007252952A JP 2009082776 A JP2009082776 A JP 2009082776A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
species
adsorbed
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007252952A
Other languages
Japanese (ja)
Other versions
JP4861950B2 (en
Inventor
Daiki Sato
大樹 佐藤
Hidetoshi Karasawa
英年 唐澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007252952A priority Critical patent/JP4861950B2/en
Publication of JP2009082776A publication Critical patent/JP2009082776A/en
Application granted granted Critical
Publication of JP4861950B2 publication Critical patent/JP4861950B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently searching a catalyst material easy to advance only objective reaction in a system capable of causing at least two competing reactions. <P>SOLUTION: In a catalyst for more preferentially causing required reaction than another competing reaction in the system capable of causing at least two competing reactions, the difference between the Gibbs energies of a state that the respective reaction seeds/forming seeds of the required reaction and the competing reaction are adsorbed on the catalyst is calculated and a substance having high possibility becoming the catalyst material is selected on the basis of the comparing result of the Gibbs energies. Further, the difference between the Gibbs energies may be calculated by utilizing the adsorption or reaction energy of the molecules related to reaction. The adsorption or reaction energy can be calculated by utilizing first principle calculation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、シミュレーションにより特定の反応を選択的に起こさせる触媒を探索する方法に関する。   The present invention relates to a method for searching for a catalyst that selectively causes a specific reaction by simulation.

従来の触媒開発法としては、研究者が経験により触媒元素を選定し、試験により評価するという流れを繰り返し、試行錯誤の上、触媒材料を探索してきていた。しかし、その際にかかる労力や材料コストは膨大である。そこで、より効率的に触媒を探索できる方法が求められてきている。例えば特開2005−270852号公報(特許文献1)には、一の触媒の電子の分布状態として電子のエネルギーをパラメータ化し、代替となる触媒の探索を行うことについて開示している。   As a conventional catalyst development method, researchers have repeatedly searched for catalyst materials through trial and error by selecting a catalyst element based on experience and evaluating it through tests. However, the labor and material costs required for this are enormous. Therefore, a method capable of searching for a catalyst more efficiently has been demanded. For example, Japanese Patent Laying-Open No. 2005-270852 (Patent Document 1) discloses that an electron energy is parameterized as an electron distribution state of one catalyst to search for an alternative catalyst.

特開2005−270852号公報JP 2005-270852 A

探索の手法の可能性の一つが計算化学的手法である。しかしながら、計算化学的な手法は、材料の物性値予測等に利用されてきているが、反応の予測問題に関しては、未だ実用段階に至っていない。また、特に二種類以上の競争反応が起こりうる系では、触媒が高選択率であることが求められる。   One of the possibilities of the search method is a computational chemistry method. However, computational chemistry techniques have been used for predicting physical properties of materials, but the reaction prediction problem has not yet reached a practical stage. In particular, in a system in which two or more kinds of competitive reactions can occur, the catalyst is required to have high selectivity.

二つ以上の競争反応が起こりうる系において、目的の反応のみが生じやすい材料を触媒とするが、その探索方法は経験的であり、現在まで確立された方法は存在しない。また、このような競争反応系において、試行錯誤により望む反応の選択性を向上させる高選択率の触媒を探索することは非常に労力を要する。そこで本発明の課題は、二種類以上の競争反応が進行する可能性がある系(競争反応系)において、特定の反応を選択的に起こさせ、もしくは望む反応の選択性を向上させる触媒を探索する手法を提供することにある。   In a system in which two or more competitive reactions can occur, a material that is likely to generate only the desired reaction is used as a catalyst. However, the search method is empirical, and no method has been established so far. In such a competitive reaction system, it is very laborious to search for a catalyst with a high selectivity that improves the selectivity of a desired reaction by trial and error. Thus, an object of the present invention is to search for a catalyst that selectively causes a specific reaction or improves the selectivity of a desired reaction in a system (competitive reaction system) in which two or more types of competitive reactions may proceed. It is to provide a technique to do.

上記課題を解決する本発明の特徴は、二つ以上の競争反応が起こる系で、求める反応を他の競争反応よりも優先的に起こさせる触媒を、求める反応及び競争反応のそれぞれの反応種/生成種が触媒に吸着した状態のギブスエネルギーを利用することにより、シミュレーション計算し探索する方法にある。本発明では、二つ以上の競争反応が起きる場合、本来、複雑な素過程を含む競争反応について、各反応の進行しやすさを、触媒表面に反応物が吸着した際のギブスエネルギーと、触媒表面に生成物が吸着した際のギブスエネルギーの差としてあらわせることに着目した。これらを比較した結果に基づき触媒材料となる可能性が高い物質を選定することができる。   The feature of the present invention that solves the above-described problem is that, in a system in which two or more competitive reactions occur, a catalyst that causes the desired reaction to be preferentially caused over the other competitive reactions, There is a method for calculating and searching by using the Gibbs energy in a state where the generated species are adsorbed on the catalyst. In the present invention, when two or more competitive reactions occur, the competitive reaction inherently including complex elementary processes, the ease of progress of each reaction, the Gibbs energy when the reactant is adsorbed on the catalyst surface, and the catalyst We focused on the difference in Gibbs energy when the product was adsorbed on the surface. Based on the result of comparing these, a substance that is highly likely to be a catalyst material can be selected.

本発明の触媒の探索方法は、求める反応Aと、競争反応Xとの競争反応が起こる系において、反応Aを優先的に生じさせる触媒を計算機によるシミュレーションで探索する方法であって、反応Aの反応種が触媒に吸着した状態のギブスエネルギーG1 Aと、反応Aの生成種が触媒に吸着した状態のギブスエネルギーG2 Aと、競争反応Xの反応種が触媒に吸着した状態のギブスエネルギーG1 Xと、競争反応Xの生成種が触媒に吸着した状態のギブスエネルギーG2 Xとより、G2 AとG1 Aとの差ΔGA(ΔGA=G2 A−G1 A)、およびG2 XとG1 Xとの差ΔGX(ΔGX=G2 X−G1 X)を求める工程と、ΔGAとΔGXとを比較し、ΔGAがΔGXよりも大きい材料を選定する工程とを有する。 The catalyst search method of the present invention is a method of searching for a catalyst that preferentially generates reaction A by a computer simulation in a system in which a competitive reaction between reaction A and competition reaction X occurs. Gibbs energy G 1 A with the reactive species adsorbed on the catalyst, Gibbs energy G 2 A with the reaction A produced species adsorbed on the catalyst, and Gibbs energy with the reactive species X adsorbed on the catalyst G 1 X a, more and Gibbs energy G 2 X states generating species competing reactions X is adsorbed on the catalyst, G 2 a and G 1 the difference between the a ΔG a (ΔG a = G 2 a -G 1 a) And a step of obtaining a difference ΔG X (ΔG X = G 2 X− G 1 X ) between G 2 X and G 1 X and ΔG A and ΔG X are compared, and a material in which ΔG A is larger than ΔG X And selecting a process.

また、上記のギブスエネルギーGはそれぞれ算出してもよいが、反応にかかわる分子の吸着エネルギーと脱離エネルギーを利用すると、前述のギブスエネルギー差を比較的簡易に概算できることを見出した。   Also, although the above-mentioned Gibbs energy G may be calculated, it has been found that the above-mentioned Gibbs energy difference can be estimated relatively easily by using the adsorption energy and desorption energy of the molecules involved in the reaction.

従って本発明は、反応に用いられる各反応種が触媒の表面に吸着した際に得られる各吸着エネルギーを算出し、前記各反応種の吸着エネルギーを合計したΣEreactを算出し、反応で生成する各生成種が触媒の表面に吸着した際に得られる各吸着エネルギーを算出し、前記各生成種の吸着エネルギーを合計したΣEproductを算出し、反応種と生成種のエネルギー差(反応エネルギー)ΔEgasを算出しΣEreactよりΣEproとΔEgasとを減算して前記ΔGを求める(ΔG=ΣEreact−ΣEpro−ΔEgas)ことが好ましい。なお、前記吸着エネルギーや反応エネルギーは、例えば第一原理計算を利用して求めることができる。 Therefore, the present invention calculates each adsorption energy obtained when each reaction species used in the reaction is adsorbed on the surface of the catalyst, calculates ΣE react by adding the adsorption energies of each reaction species, and generates the reaction. Each adsorption energy obtained when each product species is adsorbed on the surface of the catalyst is calculated, ΣE product is calculated by adding the adsorption energy of each product species, and the energy difference (reaction energy) ΔE between the reaction species and the product species is calculated. subtracts the? En pro and Delta] E gas from? En the react to calculate the gas to determine the ΔG (ΔG = ΣE react -ΣE pro -ΔE gas) is preferred. In addition, the said adsorption energy and reaction energy can be calculated | required, for example using a first principle calculation.

上記手法によって、ΔGAがΔGXよりも大きい触媒材料を選定することにより、反応Aが進行しやすい触媒の探求が容易になる。また、上記シミュレーションは計算機で行われるため、事前にシステムを構築し、計算機と組み合わせた触媒探索装置としておくことで容易に触媒の探求が可能である。 By selecting a catalyst material having a ΔG A larger than ΔG X by the above method, it is easy to search for a catalyst in which the reaction A easily proceeds. Further, since the simulation is performed by a computer, it is possible to easily search for a catalyst by constructing a system in advance and setting it as a catalyst search device combined with the computer.

本発明によれば、高い反応の選択率を有する触媒を提供できる。また、選択率の高い触媒を開発する際にかかるコスト(労力,時間,実験材料費用など)の低減ができる。   According to the present invention, a catalyst having a high reaction selectivity can be provided. In addition, costs (labor, time, experimental material costs, etc.) required for developing a catalyst with high selectivity can be reduced.

次式(1)で表される反応と、次式(2)で表される二つの競争反応において、式(1)における反応のみを選択的に生じやすい触媒候補を探索する場合について述べる。   In the reaction represented by the following formula (1) and the two competitive reactions represented by the following formula (2), a case will be described in which a catalyst candidate that tends to selectively generate only the reaction in the formula (1) is searched.

A+B → C+D ・・・(1)
A+E → F+G ・・・(2)
一方、式(1)(2)における反応が触媒の存在下で生じる場合について式(3)と(4)に示す。例えば、式(1)では、反応物AとBが触媒表面に吸着し、触媒表面上で反応して生成物CとDとなる。反応式(3)と(4)では、触媒表面に反応種が吸着した状態を記号(a)で表している。反応式(1)の反応物AとBが触媒表面に吸着した状態をA(a)+B(a)とし、生成物であるCとDが表面に吸着した状態をC(a)+D(a)で表す。また、反応式(2)の反応物AとEが表面に吸着した状態をA(a)+E(a)、生成物であるFとGが表面に吸着した状態をF(a)+G(a)で表す。
A + B → C + D (1)
A + E → F + G (2)
On the other hand, the cases where the reactions in the formulas (1) and (2) occur in the presence of a catalyst are shown in the formulas (3) and (4). For example, in the formula (1), the reactants A and B are adsorbed on the catalyst surface and react on the catalyst surface to become products C and D. In the reaction formulas (3) and (4), the state where the reactive species are adsorbed on the catalyst surface is represented by the symbol (a). The state where the reactants A and B in the reaction formula (1) are adsorbed on the catalyst surface is A (a) + B (a), and the state where the products C and D are adsorbed on the surface is C (a) + D (a ). Further, the state in which the reactants A and E in the reaction formula (2) are adsorbed on the surface is A (a) + E (a), and the state in which the products F and G are adsorbed on the surface is F (a) + G (a ).

A(a)+B(a) → C(a)+D(a) ・・・(3)
A(a)+E(a) → F(a)+G(a) ・・・(4)
式(3)と式(4)それぞれの触媒表面反応の熱力学的安定性を示すため、反応の前後のギブスエネルギー差ΔG3,ΔG4を検討する。式(3)(4)の各状態のギブスエネルギーをG(A,B),G(C,D),G(A,E),G(F,G)で表す。各反応における触媒表面に反応物が吸着した際のギブスエネルギーと触媒表面に生成物が吸着した際のギブスエネルギーの差は式(5)と式(6)にて計算される。
A (a) + B (a) → C (a) + D (a) (3)
A (a) + E (a) → F (a) + G (a) (4)
In order to show the thermodynamic stability of the catalyst surface reaction of each of the equations (3) and (4), the Gibbs energy differences ΔG 3 and ΔG 4 before and after the reaction are examined. The Gibbs energies in each state of the equations (3) and (4) are represented by G (A, B), G (C, D), G (A, E), and G (F, G). The difference between the Gibbs energy when the reactant is adsorbed on the catalyst surface and the Gibbs energy when the product is adsorbed on the catalyst surface in each reaction is calculated by Equation (5) and Equation (6).

ΔG3=G(C,D)−G(A,B) ・・・(5)
ΔG4=G(F,G)−G(A,E) ・・・(6)
このギブスエネルギー差ΔGの値が小さい程、反応は進行しやすい。従って、二つの競争反応(式(3)及び式(4))において、求める反応である式(3)に対応するΔG(式(5))が小さく、阻害反応(競争反応)のΔGが大きい程、触媒材料として優れていると判断する。従って、反応ギブスエネルギーを概算し、触媒を探索できる。
ΔG 3 = G (C, D) −G (A, B) (5)
ΔG 4 = G (F, G) −G (A, E) (6)
The smaller the Gibbs energy difference ΔG is, the easier the reaction proceeds. Therefore, in two competitive reactions (Equation (3) and Equation (4)), ΔG (Equation (5)) corresponding to Equation (3), which is the desired reaction, is small, and ΔG of the inhibition reaction (competitive reaction) is large. It is judged that the catalyst material is superior. Therefore, the reaction Gibbs energy can be estimated and the catalyst can be searched.

図1は、触媒が存在するときの反応物Aと反応物Bから生成物Cと生成物Dが生じる反応のエネルギーダイアグラムを示す図である。この反応物Aと反応物Bが触媒表面に吸着した状態と生成物Cと生成物Dが吸着した状態のエネルギー差でΔGを見積もり、触媒の反応進行しやすさとした。   FIG. 1 is an energy diagram of a reaction in which a product C and a product D are produced from a reactant A and a reactant B in the presence of a catalyst. ΔG was estimated from the energy difference between the state in which the reactant A and the reactant B were adsorbed on the catalyst surface and the state in which the product C and the product D were adsorbed to facilitate the progress of the catalyst reaction.

なお、各反応における吸着状態のギブスエネルギーは、第一原理計算による吸着状態のエネルギーとして計算できる。各反応における反応物と生成物の吸着エネルギーを計算し、表面上の反応物と表面上の生成物のギブスエネルギー差を概算することで、各競争反応において大小関係を比較し、触媒材料の選定を行う。   The Gibbs energy of the adsorption state in each reaction can be calculated as the energy of the adsorption state by the first principle calculation. Calculate the adsorption energy of reactants and products in each reaction, approximate the Gibbs energy difference between the reactants on the surface and the products on the surface, compare the magnitude relationship in each competitive reaction, and select the catalyst material I do.

例えば反応式(3)の場合は、図1から分かるように、式(7)によりΔG3を算出する。 For example, in the case of the reaction formula (3), ΔG 3 is calculated by the formula (7) as can be seen from FIG.

ΔG3=Eads(C)+Eads(D)−(Eads(A)−Eads(B))−ΔE1 ・・・(7)
ΔE1は反応式(1)の反応エネルギーである。また、Eads(A),Eads(B),Eads(C),Eads(D)は、それぞれA,B,C,Dの触媒表面への吸着エネルギーである。
ΔG 3 = E ads (C) + E ads (D) − (E ads (A) −E ads (B)) − ΔE 1 (7)
ΔE 1 is the reaction energy of the reaction formula (1). E ads (A), E ads (B), E ads (C), and E ads (D) are adsorption energies of A, B, C, and D on the catalyst surface, respectively.

以下実施例では、窒素酸化物を窒素ガスに還元する触媒の探索について説明する。本実施例は、前記反応AがCOを還元剤としたNOx還元反応であり、前記競争反応Xが酸素によるCOの酸化反応である場合を想定している。   In the following examples, the search for a catalyst that reduces nitrogen oxides to nitrogen gas will be described. In this example, it is assumed that the reaction A is a NOx reduction reaction using CO as a reducing agent, and the competitive reaction X is an oxidation reaction of CO by oxygen.

ボイラや自動車等による窒素酸化物は大気汚染物質のひとつであり、規制が強化されてきている。現在、ボイラから排出される窒素酸化物は、アンモニアを還元剤とした脱硝触媒法により窒素に還元されている。   Nitrogen oxides from boilers and automobiles are one of the air pollutants, and regulations have been tightened. Currently, nitrogen oxides discharged from boilers are reduced to nitrogen by a denitration catalyst method using ammonia as a reducing agent.

しかし、アンモニアの調達,貯蓄等に必要な運転コストを抑えるために、同じ排ガス中に存在する一酸化炭素を還元剤とした脱硝触媒の開発がされている。酸素存在下での脱硝触媒による窒素酸化物の還元反応(式(8))では、窒素酸化物の還元のほか、酸素により還元剤である一酸化炭素の酸化反応(式(9))も起こってしまう。   However, a denitration catalyst using carbon monoxide present in the same exhaust gas as a reducing agent has been developed in order to reduce operating costs necessary for ammonia procurement, storage, and the like. In the reduction reaction of nitrogen oxides by the denitration catalyst in the presence of oxygen (equation (8)), in addition to the reduction of nitrogen oxides, the oxidation reaction of carbon monoxide, which is a reducing agent, also occurs by oxygen (equation (9)). End up.

NO(a)+CO(a) → 1/2N2(a)+CO2(a) ・・・(8)
CO(a)+1/2O2(a) → CO2(a) ・・・(9)
酸素存在下で窒素酸化物を一酸化炭素によって還元するためには、一酸化炭素と酸素の反応よりも、一酸化炭素による窒素酸化物の還元反応が優先的に起きるような触媒を使用する必要がある。このような酸素に影響されない触媒が検討されているものの、実用可能な触媒はまだ見つかっていない。このように二種類以上の競争反応が起こりうる系は、触媒が高選択率であることが求められる。
NO (a) + CO (a) → 1 / 2N 2 (a) + CO 2 (a) (8)
CO (a) + 1 / 2O 2 (a) → CO 2 (a) (9)
In order to reduce nitrogen oxides with carbon monoxide in the presence of oxygen, it is necessary to use a catalyst that causes a reduction reaction of nitrogen oxides with carbon monoxide over the reaction between carbon monoxide and oxygen. There is. Although such a catalyst that is not affected by oxygen has been studied, no practical catalyst has been found yet. Thus, a system in which two or more types of competitive reactions can occur requires that the catalyst has high selectivity.

そこで、種々の金属を触媒材料として想定し、選択率の高い触媒を探索した。   Therefore, assuming various metals as catalyst materials, a catalyst having a high selectivity was searched.

まず、触媒表面における一酸化炭素と窒素酸化物の反応(式(8))の反応ギブスエネルギーΔGNOと、触媒表面における一酸化炭素と酸素の反応(式(9))の反応ギブスエネルギーΔGO2を算出した。簡易に反応ギブスエネルギーΔGNO,ΔGO2を見積もるために、以下の手段を利用した。まず式(10),式(11)に示すガスの反応を想定した。(g)はガス状態であることを示す。 First, the reaction Gibbs energy ΔG NO of the reaction between carbon monoxide and nitrogen oxide (formula (8)) on the catalyst surface and the reaction Gibbs energy ΔG O2 of the reaction between carbon monoxide and oxygen (formula (9)) on the catalyst surface. Was calculated. In order to simply estimate the reaction Gibbs energies ΔG NO and ΔG O2 , the following means were used. First, the reaction of the gas shown in the equations (10) and (11) was assumed. (G) indicates a gas state.

NO(g)+CO(g) → 1/2N2(g)+CO2(g) ・・・(10)
CO(g)+1/2O2(g) → CO2(g) ・・・(11)
次に、式(10),式(11)に示すガスの反応エネルギーをそれぞれΔEN2(g),ΔECO2(g)とし、これをバンド計算により求めた。さらに、各ガスの触媒表面への吸着エネルギーEadsをバンド計算により求めた。NOの触媒表面への吸着エネルギーをEads(NO)、COの吸着エネルギーをEads(CO)、N2の吸着エネルギーをEads(N2)、CO2の吸着エネルギーをEads(CO2)、O2の吸着エネルギーをEads(O2)と示す。
NO (g) + CO (g) → 1 / 2N 2 (g) + CO 2 (g) (10)
CO (g) +1/2 O 2 (g) → CO 2 (g) (11)
Next, the reaction energies of the gases shown in Equation (10) and Equation (11) were ΔE N2 (g) and ΔE CO2 (g) , respectively, and were obtained by band calculation. Furthermore, adsorption energy E ads on the catalyst surface of each gas was determined by band calculation. NO of the adsorption energy of the catalyst surface E ads (NO), E adsorption energy of CO ads (CO), E the adsorption energy of N 2 ads (N 2), the adsorption energy of the CO 2 E ads (CO 2 ), it shows the adsorption energy of the O 2 and E Ads (O 2).

上記の反応エネルギー,吸着エネルギーを用いて、反応ギブスエネルギーΔGNO(式(12))ΔGO2(式(13))を算出した。 Using the above reaction energy and adsorption energy, the reaction Gibbs energy ΔG NO (formula (12)) ΔG O2 (formula (13)) was calculated.

ΔGNO=1/2Eads(N2)+Eads(CO2)−(Eads(NO)+Eads(CO))
−ΔEN2(g) ・・・(12)
ΔGO2=Eads(CO2)−(Eads(CO)+1/2Eads(O2))−ΔECO2(g)
・・・(13)
ΔGNO,ΔGO2を比較し、反応ギブスエネルギーは値が低い方が熱力学的に有利に進行するので、ΔGO2>ΔGNOが成り立てば、その触媒は有効であると判断する。特に、−(ΔGNO−ΔGO2)が正で大きい程、触媒性能が高いことが予想される。
ΔG NO = 1 / 2E ads (N 2 ) + E ads (CO 2 ) − (E ads (NO) + E ads (CO))
-ΔE N2 (g) (12)
ΔG O2 = E ads (CO 2 ) − (E ads (CO) + 1 / 2E ads (O 2 )) − ΔE CO 2 (g)
(13)
ΔG NO and ΔG O2 are compared, and the reaction Gibbs energy having a lower value proceeds more favorably thermodynamically. Therefore, if ΔG O2 > ΔG NO holds, the catalyst is judged to be effective. In particular, it is expected that the catalyst performance is higher as-(ΔG NO -ΔG O2 ) is larger and positive.

この方法を利用して、白金,金,イリジウム,ロジウム、及びパラジウムについて、NO,CO,N2,CO2、及びO2の吸着エネルギーをバンド計算法により計算した。バンド計算には密度汎関数法の局所密度近似を利用した。結果を図2に記載する。 Using this method, the adsorption energies of NO, CO, N 2 , CO 2 , and O 2 were calculated by the band calculation method for platinum, gold, iridium, rhodium, and palladium. The local density approximation of the density functional method was used for the band calculation. The results are shown in FIG.

これらの結果と先に計算したΔEN2(g),ΔECO2(g)から、−(ΔGNO−ΔGO2)を見積もった。図3に結果を記載する。各触媒表面における、NOとCOの反応ギブスエネルギーを概算した値、COとO2の反応ギブスエネルギーを概算した値、それらの差にマイナスをかけたもので二つの競争反応の進行しやすさを予測する値を示している。 From these results and ΔE N2 (g) and ΔE CO2 (g) calculated in advance, − (ΔG NO −ΔG O2 ) was estimated. The results are shown in FIG. The approximate value of the Gibbs energy of NO and CO on each catalyst surface, the approximate value of the Gibbs energy of reaction of CO and O 2 , and the difference between them minus the ease of the two competitive reactions. The predicted value is shown.

続いて、実際のNOの浄化率を測定し、計算結果の検証を行った。アルミナに、白金,金,イリジウム,ロジウム、及びパラジウムをそれぞれ0.15mol%担持し、NO浄化触媒とした。各触媒について、NOx浄化率を評価した。入り口ガス組成は、NOが100ppm、COが2000ppm、O2が6%であり、残りはN2とした。SVは15000(h-1)とした。反応温度は350℃とした。NOxの浄化率試験結果を図4に示す。実際のNOxの浄化率の試験結果と、先ほど計算から見積もった各触媒の−(ΔGNO−ΔGO2)とを比較した結果を図5に示す。−(ΔGNO−ΔGO2)がゼロより大きいものが高い性能を示しており、計算結果と実測値の間には相関があった。図5より、−(ΔGNO−ΔGO2)がNOの選択還元反応の起きやすさ(NO還元率)を表す値であることが明らかである。 Subsequently, the actual NO purification rate was measured, and the calculation results were verified. 0.15 mol% of platinum, gold, iridium, rhodium, and palladium were supported on alumina, respectively, to obtain a NO purification catalyst. The NOx purification rate was evaluated for each catalyst. As for the inlet gas composition, NO was 100 ppm, CO was 2000 ppm, O 2 was 6%, and the remainder was N 2 . The SV was 15000 (h −1 ). The reaction temperature was 350 ° C. The NOx purification rate test results are shown in FIG. FIG. 5 shows the result of comparing the actual NOx purification rate test result with-(ΔG NO -ΔG O2 ) of each catalyst estimated from the calculation. When-(ΔG NO -ΔG O2 ) is greater than zero, the performance is high, and there is a correlation between the calculation result and the actual measurement value. From FIG. 5, it is clear that − (ΔG NO −ΔG O2 ) is a value indicating the ease of the selective reduction reaction of NO (NO reduction rate).

上述のように、触媒材料の選定前に、複数ある競争反応の表面における反応ギブスエネルギーを第一原理計算により求め、比較することで、複数ある触媒材料化合物の候補より、優位な結果を得られる可能性が高いものを選定することができる。   As described above, by selecting and comparing the reaction Gibbs energy at the surface of a plurality of competitive reactions by first-principles calculation before selecting the catalyst material, a superior result can be obtained over a plurality of candidate catalyst material compounds. The one with the highest possibility can be selected.

触媒が存在するときの反応物Aと反応物Bから生成物Cと生成物Dが生じる反応のエネルギーダイアグラムを示す図である。It is a figure which shows the energy diagram of reaction in which the product C and the product D generate | occur | produce from the reactant A and the reactant B when a catalyst exists. 各種触媒,各種反応化合物のそれぞれの組み合わせの吸着エネルギーの計算結果を示す図である。It is a figure which shows the calculation result of the adsorption energy of each combination of various catalysts and various reaction compounds. 各種触媒表面の反応ギブスエネルギーと、二つの競争反応の進行しやすさを比較する図である。It is a figure which compares the reaction Gibbs energy of various catalyst surfaces, and the easiness of two competitive reactions to advance. 各触媒の350℃におけるNO還元率の測定結果を示す。The measurement result of NO reduction rate in 350 degreeC of each catalyst is shown. −(ΔGNO−ΔGO2)の値と、各触媒のNO還元率の関係を表すグラフである。It is a graph showing the relationship between the value of-(ΔG NO -ΔG O2 ) and the NO reduction rate of each catalyst.

Claims (6)

少なくとも反応Aとその競争反応Xが生じる反応系で反応Aを優先的に起こさせる触媒を探索する触媒の探索方法であって、
反応Aの反応種が前記触媒に吸着した状態のギブスエネルギーG1 Aと、反応Aの生成種が前記触媒に吸着した状態のギブスエネルギーG2 Aの差ΔGA=G2 A−G1 Aを算出し、
反応Xの反応種が前記触媒に吸着した状態のギブスエネルギーG1 Xと、反応Xの生成種が前記触媒に吸着した状態のギブスエネルギーG2 Xの差ΔGX=G2 X−G1 Xを算出し、
前記ΔGXおよびΔGAの値に基づき触媒を選定することを特徴とする触媒の探索方法。
A catalyst search method for searching for a catalyst that preferentially causes reaction A in a reaction system in which at least reaction A and its competitive reaction X occur,
Difference ΔG A = G 2 A− G 1 A between Gibbs energy G 1 A in a state where reaction species of reaction A are adsorbed on the catalyst and Gibbs energy G 2 A in a state where species of reaction A are adsorbed on the catalyst To calculate
Difference ΔG X = G 2 X −G 1 X between Gibbs energy G 1 X in a state where reaction species of reaction X are adsorbed on the catalyst and Gibbs energy G 2 X in a state where species of reaction X are adsorbed on the catalyst To calculate
A catalyst search method, wherein a catalyst is selected based on the values of ΔG X and ΔGA.
請求項1に記載された触媒の探索方法であって、
複数の化合物を前記触媒の候補として選定し、前記複数の化合物のΔGX及びΔGAをそれぞれ算出し、前記各化合物の−(ΔGA−ΔGX)の値を算出し、当該値が大きい化合物を触媒として選定する事を特徴とする触媒の探索方法。
A method for searching for a catalyst according to claim 1,
Select a plurality of compounds as candidates for the catalyst, the .DELTA.G X and .DELTA.G A of the plurality of compounds respectively calculated, said of each compound - calculating the value of (ΔG A -ΔG X), the value is large compound The search method of the catalyst characterized by selecting as a catalyst.
請求項1または2に記載された触媒の探索方法において、
前記反応種がそれぞれ前記触媒に吸着した時の各吸着エネルギーの和ΣEreactと、前記生成種がそれぞれ前記触媒に吸着したときの各吸着エネルギーの和ΣEproductと、前記反応種および生成種のエネルギー差ΔEgasとを算出し、前記ギブスエネルギーの差ΔGをΣEreact−ΣEpro−ΔEgasとして算出することを特徴とする触媒の探索方法。
In the search method of the catalyst according to claim 1 or 2,
ΣE react of the adsorption energies when the reactive species are adsorbed on the catalyst, ΣE product of the adsorption energies when the generated species are adsorbed on the catalyst, and the energy of the reactive species and the generated species, respectively. A search method for a catalyst, wherein a difference ΔE gas is calculated, and the Gibbs energy difference ΔG is calculated as ΣE react −ΣE pro −ΔE gas .
請求項1ないし3のいずれかに記載された触媒の探索方法において、
反応種と生成種のエネルギー差、または前記反応種または生成種の触媒への吸着エネルギーを第一原理計算を利用して求めることを特徴とする触媒の探索方法。
In the search method of the catalyst as described in any one of Claim 1 thru | or 3,
A method for searching for a catalyst, characterized in that an energy difference between a reactive species and a generated species, or an adsorption energy of the reactive species or the generated species to the catalyst is obtained by using a first principle calculation.
請求項1ないし4のいずれかに記載された触媒の探索方法において、
前記反応AがCOを還元剤としたNOx還元反応であり、前記反応Xが酸素によるCOの酸化反応であることを特徴とする触媒の探索方法。
In the search method of the catalyst as described in any one of Claims 1 thru | or 4,
A method for searching for a catalyst, wherein the reaction A is a NOx reduction reaction using CO as a reducing agent, and the reaction X is a CO oxidation reaction with oxygen.
計算機よりなり、少なくとも反応Aとその競争反応Xが生じる反応系で反応Aを優先的に起こさせる触媒を探索する触媒の探索装置であって、
反応Aの反応種が前記触媒に吸着した状態のギブスエネルギーG1 Aと、反応Aの生成種が前記触媒に吸着した状態のギブスエネルギーG2 Aとの差ΔGA=G2 A−G1 Aを算出し、反応Xの反応種が前記触媒に吸着した状態のギブスエネルギーG1 Xと、反応Xの生成種が前記触媒に吸着した状態のギブスエネルギーG2 Xとの差ΔGX=G2 X−G1 Xを算出するΔG算出手段と、
前記ΔGXおよびΔGAの値に基づき触媒を選定する選択手段とを有することを特徴とする触媒の探索装置。
A search device for a catalyst comprising a computer and searching for a catalyst that preferentially causes reaction A in a reaction system in which at least reaction A and its competitive reaction X occur.
Difference ΔG A = G 2 A −G 1 between Gibbs energy G 1 A in a state where reaction species of reaction A are adsorbed on the catalyst and Gibbs energy G 2 A in a state where species of reaction A are adsorbed on the catalyst A is calculated, and the difference ΔG X = G between the Gibbs energy G 1 X in a state where the reaction species of reaction X is adsorbed on the catalyst and the Gibbs energy G 2 X in the state where the species of reaction X is adsorbed on the catalyst. ΔG calculating means for calculating 2 X −G 1 X ;
Seeker of a catalyst; and a selecting means for selecting a catalyst based on a value of the .DELTA.G X and .DELTA.G A.
JP2007252952A 2007-09-28 2007-09-28 Catalyst material search method and search device Expired - Fee Related JP4861950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007252952A JP4861950B2 (en) 2007-09-28 2007-09-28 Catalyst material search method and search device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007252952A JP4861950B2 (en) 2007-09-28 2007-09-28 Catalyst material search method and search device

Publications (2)

Publication Number Publication Date
JP2009082776A true JP2009082776A (en) 2009-04-23
JP4861950B2 JP4861950B2 (en) 2012-01-25

Family

ID=40656961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007252952A Expired - Fee Related JP4861950B2 (en) 2007-09-28 2007-09-28 Catalyst material search method and search device

Country Status (1)

Country Link
JP (1) JP4861950B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056342A (en) * 2009-09-07 2011-03-24 Osaka Univ Catalyst and method for manufacturing catalyst
JP2014083506A (en) * 2012-10-24 2014-05-12 Toyota Central R&D Labs Inc Catalyst evaluation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297627A (en) * 1999-04-15 2000-10-24 Nissan Motor Co Ltd Catalyst for exhaust emission purification and system for the same
JP2005270852A (en) * 2004-03-25 2005-10-06 Japan Science & Technology Agency Searching method for catalyst, manufacturing method for the same and newly found catalyst material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297627A (en) * 1999-04-15 2000-10-24 Nissan Motor Co Ltd Catalyst for exhaust emission purification and system for the same
JP2005270852A (en) * 2004-03-25 2005-10-06 Japan Science & Technology Agency Searching method for catalyst, manufacturing method for the same and newly found catalyst material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056342A (en) * 2009-09-07 2011-03-24 Osaka Univ Catalyst and method for manufacturing catalyst
JP2014083506A (en) * 2012-10-24 2014-05-12 Toyota Central R&D Labs Inc Catalyst evaluation method

Also Published As

Publication number Publication date
JP4861950B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
Heynderickx et al. Kinetic modeling of the total oxidation of propane over CuO-CeO2/γ-Al2O3
Yi et al. Modeling and experimental studies on absorption of CO2 by Benfield solution in rotating packed bed
Colombo et al. Detailed kinetic modeling of the NH3–NO/NO2 SCR reactions over a commercial Cu-zeolite catalyst for Diesel exhausts after treatment
Kumar et al. Impact of different forms of feed sulfur on small-pore Cu-zeolite SCR catalyst
Colombo et al. Experimental and modeling study of a dual-layer (SCR+ PGM) NH3 slip monolith catalyst (ASC) for automotive SCR aftertreatment systems. Part 1. Kinetics for the PGM component and analysis of SCR/PGM interactions
Grande et al. Process intensification in nitric acid plants by catalytic oxidation of nitric oxide
Kočí et al. Global kinetic model for the regeneration of NOx storage catalyst with CO, H2 and C3H6 in the presence of CO2 and H2O
Lommerts et al. Mathematical modeling of internal mass transport limitations in methanol synthesis
Khosravi et al. Kinetic modelling of Pt and Pt: Pd diesel oxidation catalysts
Ruggeri et al. Experimental and modeling study of the impact of interphase and intraphase diffusional limitations on the DeNOx efficiency of a V-based extruded catalyst for NH3–SCR of Diesel exhausts
Jun et al. Kinetics modeling for the mixed reforming of methane over Ni-CeO2/MgAl2O4 catalyst
Thomas et al. Analysis and prediction of the liquid phase composition for the absorption of nitrogen oxides into aqueous solutions
Fahami et al. A kinetic modeling study of NO oxidation over a commercial Cu-CHA SCR catalyst for diesel exhaust aftertreatment
Li et al. Detailed kinetic modelling of H2S oxidation with presence of CO2 under rich condition
Ahari et al. Micro-kinetic modeling of OCM reactions over Mn/Na2WO4/SiO2 catalyst
Elsner et al. Adsorptive reactors for enhancing equilibrium gas-phase reactions—two case studies
JP4861950B2 (en) Catalyst material search method and search device
Larson et al. Microkinetic modeling of lean NOx trap chemistry under reducing conditions
Oyama et al. Absolute determination of reaction mechanisms by in situ measurements of reaction intermediates
Gusmão et al. A general and robust approach for defining and solving microkinetic catalytic systems
Nova et al. The NH₃ Inhibition Effect in the Standard SCR Reaction over a Commercial Fe-zeolite Catalyst for Diesel Exhaust Aftertreatment: An Experimental and Modeling Study
JP2006058169A (en) Nitrogen compound analyzer
Bozbağ et al. Assessment of the Single-Site Kinetic Model for NH 3-SCR on Cu-Chabazite for the Prediction of NOx Emissions in Dynamometer Tests
Whitehead Plasma catalysis: challenges and future perspectives
Marchuk et al. Surface States Governing the Activity and Selectivity of Pt-Based Ammonia Slip Catalysts for Selective Ammonia Oxidation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees