JP2009079937A - Prediction method of blood sugar level-insulin concentration in blood by desacyl ghrelin concentration in blood - Google Patents

Prediction method of blood sugar level-insulin concentration in blood by desacyl ghrelin concentration in blood Download PDF

Info

Publication number
JP2009079937A
JP2009079937A JP2007248241A JP2007248241A JP2009079937A JP 2009079937 A JP2009079937 A JP 2009079937A JP 2007248241 A JP2007248241 A JP 2007248241A JP 2007248241 A JP2007248241 A JP 2007248241A JP 2009079937 A JP2009079937 A JP 2009079937A
Authority
JP
Japan
Prior art keywords
blood
concentration
food
desacyl ghrelin
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007248241A
Other languages
Japanese (ja)
Inventor
Eiji Takeda
英二 武田
Senji Okumura
仙示 奥村
Rie Sakuma
理英 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokushima NUC
Original Assignee
University of Tokushima NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokushima NUC filed Critical University of Tokushima NUC
Priority to JP2007248241A priority Critical patent/JP2009079937A/en
Publication of JP2009079937A publication Critical patent/JP2009079937A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for predicting a blood sugar level or an insulin concentration in blood after taking a specific carbohydrate-including food, and a biomarker using beforehand as an evaluation index, the degree of increase of the blood sugar level or the insulin concentration in blood caused by the specific carbohydrate-including food. <P>SOLUTION: A desacyl ghrelin concentration in blood is measured with elapse of time, namely, before taking (at a hungry time) and after taking a carbohydrate-including food, and a change of the blood sugar level and/or the insulin concentration in blood after taking the food is predicted from the desacyl ghrelin concentration and a concentration change thereof, and the desacyl ghrelin concentration in blood is used as an increasing property evaluation index of the blood sugar level and/or the insulin concentration in blood of the food. When the desacyl ghrelin concentration after one or two hours after taking the food is not lowered or hardly fluctuated in comparison with the desacyl ghrelin concentration in blood at a hungry time, the food is evaluated as a low increasing property food of the blood sugar level and/or the insulin concentration in blood. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、食品摂取後の血中デスアシルグレリン濃度を測定することにより、当該食品摂取後の血糖値及び/又は血中インスリン濃度やその変化を予測する方法や、血中デスアシルグレリン濃度を当該食品の血糖値及び/又は血中インスリン濃度の上昇性評価指標とする方法に関する。   The present invention relates to a method for predicting blood glucose level and / or blood insulin concentration and its change after food intake by measuring the blood desacyl ghrelin concentration after food intake, The present invention relates to a method of using as an evaluation index for increasing the blood glucose level and / or blood insulin concentration of the food.

日本の糖尿病人口は増加の一途を辿っており、増加を阻止する為の一次予防が課題となっている。食欲や体重の管理は一次予防の重要な因子である。食欲や体重増加は、様々な因子により調節されている。長年、成長ホルモン(GH)の下垂体前葉からの分泌は、視床下部ホルモンであるGHRHとソマトスタチンによって制御されていると考えられていたが、一方で成長ホルモン分泌促進物質(growth hormone secretagogue:GHS)と結合するレセプター(GHS−R)の内因性リガンドの存在が示唆されていた。グレリン(アシルグレリン)は、GHS−Rに特異的に結合する内因性リガンドとして胃組織から単離され、構造が決定された生理活性タンパク質であり、アミノ酸28個のペプチドの3番目のセリン残基がn−オクタン酸でアシル化修飾された構造を有する(非特許文献1〜3参照)。またグレリンは、ヒトを含む哺乳類のみならず、鳥類、両生類、魚類でも同定されており、なかでもN末端側の7アミノ酸は高度に保存され、いずれも3番目のセリン残基又はスレオニン残基に脂肪酸が付加されている(非特許文献4参照)。   Japan's diabetic population is steadily increasing, and primary prevention is a challenge. Appetite and weight management are important factors for primary prevention. Appetite and weight gain are regulated by various factors. For many years, growth hormone (GH) secretion from the anterior pituitary gland was thought to be controlled by hypothalamic hormones GHRH and somatostatin, while growth hormone secretagogue (GHS). The presence of an endogenous ligand for the receptor that binds to (GHS-R) has been suggested. Ghrelin (acyl ghrelin) is a biologically active protein isolated from gastric tissue as an endogenous ligand that specifically binds to GHS-R and whose structure has been determined, and the third serine residue of a 28 amino acid peptide Has a structure acylated with n-octanoic acid (see Non-Patent Documents 1 to 3). Ghrelin has been identified not only in mammals including humans, but also in birds, amphibians, and fish. Among them, the 7 amino acids on the N-terminal side are highly conserved, and all of them are the third serine residue or threonine residue. Fatty acids are added (see Non-Patent Document 4).

グレリンを投与すると、げっ歯類及びヒトにおいて、食欲を刺激し(非特許文献5〜10参照)、また、ラットやマウスを用いた研究により、グレリンは体重増加と脂肪蓄積を誘発する(非特許文献5〜8参照)。一方で、空腹時のインスリン濃度の上昇により、空腹時の血中グレリン濃度は低下する(非特許文献11及び12参照)。また、インスリン濃度の上昇によりグレリン濃度は低下することが報告されている(非特許文献13〜15参照)。これらの所見は、グレリンがインスリン分泌の調節に関与していることを示唆している。また、ヒト健常者と合併症のないII型糖尿病患者では空腹時の血漿グレリン濃度は、体格指数(Body Mass Index)と負の相関関係を示すことから、体重調節への関与も示唆されている(非特許文献16〜21参照)。かかる成長ホルモン分泌促進活性は、セリンの脂肪酸修飾が必須であるとされている(非特許文献1参照)。   Administration of ghrelin stimulates appetite in rodents and humans (see Non-Patent Documents 5 to 10), and ghrelin induces weight gain and fat accumulation in studies using rats and mice (Non-Patent Document 5) References 5-8). On the other hand, the increase in fasting insulin concentration decreases the fasting blood ghrelin concentration (see Non-Patent Documents 11 and 12). In addition, it has been reported that the ghrelin concentration decreases as the insulin concentration increases (see Non-Patent Documents 13 to 15). These findings suggest that ghrelin is involved in the regulation of insulin secretion. In addition, fasting plasma ghrelin levels are negatively correlated with body mass index in healthy humans and uncomplicated type II diabetic patients, suggesting that they are involved in body weight regulation. (Refer nonpatent literature 16-21.). Such growth hormone secretion promoting activity is said to require fatty acid modification of serine (see Non-Patent Document 1).

しかしながら、ヒト血漿総グレリン濃度の80〜90%は、グレリンが脱アシル化されたデスアシルグレリンとして存在している。デスアシルグレリンは、グレリンと同様、アミノ酸28個からなり、3番目のセリン残基がn−オクタン酸でアシル化修飾されていないペプチド構造を有し、グレリンの生物活性は、n−オクタン酸によるアシル化修飾がとれることで不活化すると考えられていたが、デスアシルグレリンの生理作用は知られていなかった。   However, 80-90% of the total human plasma ghrelin concentration exists as desacyl ghrelin from which ghrelin has been deacylated. Desacyl ghrelin, like ghrelin, has 28 amino acids and has a peptide structure in which the third serine residue is not acylated with n-octanoic acid. The biological activity of ghrelin depends on n-octanoic acid. Although it was thought to be inactivated by the acylation modification, the physiological action of desacyl ghrelin was not known.

長期にわたるデスアシルグレリンの過剰発現の効果を調査するため、デスアシルグレリンを過剰発現するトランスジェニックマウスが作出された。デスアシルグレリンを投与したマウスでの、食物摂取、胃内容排出、視床下部のc−Fos発現、及び視床下部の神経ペプチド遺伝子発現を測定したところ、デスアシルグレリンの投与により、視床下部の傍室核と弓状核に対する作用を通じて、食物摂取と胃内容排出速度が減少し、食欲不振を起こすコカインとアンフェタミンに制御される転写物とウロコルチンの遺伝子発現は増加した。デスアシルグレリン過剰発現マウスは、体重、食物摂取、及び脂肪の減少、並びに成長の線形減少を伴った。内容排出速度もデスアシルグレリン過剰発現マウスでは減少した。これらの知見により、グレリンと対照的にデスアシルグレリンは、食物摂取の減少と胃内容排出速度の減速を招くことが示された(非特許文献22参照)。   In order to investigate the effects of long-term desacyl ghrelin overexpression, transgenic mice over-expressing desacyl ghrelin were created. Measurement of food intake, gastric emptying, hypothalamic c-Fos expression, and hypothalamic neuropeptide gene expression in mice treated with desacyl ghrelin revealed that hypothalamic paraventricle Through action on the nucleus and arcuate nucleus, food intake and gastric emptying rates were reduced, and the expression of cocaine and amphetamine-regulated transcripts and urocortin, which cause anorexia, increased. Desacyl ghrelin overexpressing mice were associated with a decrease in body weight, food intake, and fat, and a linear decrease in growth. The content excretion rate was also decreased in mice overexpressing desacyl ghrelin. These findings indicate that desacyl ghrelin, in contrast to ghrelin, leads to a decrease in food intake and a decrease in gastric emptying rate (see Non-Patent Document 22).

また、グレリンとデスアシルグレリンの情報伝達経路は異なっていることが明らかになった。グレリンは胃から分泌されて胃壁内の迷走神経知覚線維終末の受容体に作用して、神経性に脳内に入力し、視床下部の弓状核にあるNPYニューロンを介して摂食や消化管運動を亢進させると考えられている一方、デスアシルグレリンは、胃から血液中に分泌され脳血管関門を通過して直接脳内に入り、視床下部の室傍核にあるCRFやウロコルチンニューロンに作用し、CRF2型受容体を介して、摂食や消化管運動を抑制することが明らかになっている(非特許文献23参照)。   It was also revealed that ghrelin and desacyl ghrelin have different signaling pathways. Ghrelin is secreted from the stomach and acts on receptors of the vagal sensory fiber endings in the stomach wall, and enters neurologically into the brain, feeding and digestive tract via NPY neurons in the arcuate nucleus of the hypothalamus On the other hand, desacyl ghrelin is secreted into the blood from the stomach and passes directly into the brain through the cerebrovascular barrier, and then enters CRF and urocortin neurons in the paraventricular nucleus of the hypothalamus. It has been shown to act and suppress feeding and gastrointestinal motility via the CRF2 type receptor (see Non-Patent Document 23).

さらに、ELISAアッセイにより、健常者のボランティアの血漿中のグレリンとデスアシルグレリンの濃度を別々に測定すると、グレリンレベルは従前にRIAで測定した場合と同じレベルであったが、デスアシルグレリンレベルはRIAで測定した総グレリンレベルから予測されたよりも低かった。BMIに照らして調整後のグレリンの血漿レベルは、男性よりも女性のほうが高く、ホルモンのパラメーターもグレリンとデスアシルグレリンと相関性があった。これらの知見により、グレリンとデスアシルグレリンを別々に測定することで、構造や、性差、生理学的な関与について情報が得られるであろうことが示唆された(非特許文献24参照)。   Furthermore, when the ghrelin and desacyl ghrelin concentrations in the plasma of healthy volunteers were measured separately by ELISA assay, the ghrelin levels were the same as previously measured by RIA, but the desacyl ghrelin levels were Lower than expected from the total ghrelin levels measured by RIA. Adjusted ghrelin plasma levels in the light of BMI were higher in women than in men, and hormonal parameters were also correlated with ghrelin and desacyl ghrelin. Based on these findings, it was suggested that measurement of ghrelin and desacyl ghrelin separately would provide information on structure, sex differences, and physiological involvement (see Non-Patent Document 24).

また、デスアシルグレリンの静脈内投与は、グレリンの静脈内投与により誘導されるグルコースレベルの増加及びインスリンレベル分泌の抑制という作用を阻害することから、デスアシルグレリンはグレリンの末梢作用の機能的アンタゴニストとして作用するという知見をもとに、デスアシルグレリン、その類似体、及びその塩の食後のインスリン抵抗性の誘発を予防及び/又は軽減するための組成物が提案されている(特許文献1参照)。   In addition, intravenous administration of desacyl ghrelin inhibits the effects of increased glucose level and suppression of insulin level secretion induced by intravenous administration of ghrelin, so desacyl ghrelin is a functional antagonist of the peripheral action of ghrelin A composition for preventing and / or reducing induction of postprandial insulin resistance by desacyl ghrelin, its analogs, and salts thereof has been proposed (see Patent Document 1). ).

一方、Jenkinsらによって提唱されたグリセミックインデックス(GI)は、同じ糖質量の食品であっても、素材が異なれば血糖値への影響は同様でないという考えに基づくもので、ブドウ糖(糖質50g相当)を摂取開始から2時間までの血糖上昇下面積(IAUC)を100とした場合に、ブドウ糖と同糖質量の試験食品を摂取し、試験食品の面積とグルコースの面積の比に係数100をかけたものとして表される糖質の質を表す指標であり(非特許文献25参照)、疫学研究により低GI食は糖尿病発症の重要な抑制因子であるとされている(非特許文献26〜28参照)。   On the other hand, the glycemic index (GI) proposed by Jenkins et al. Is based on the idea that even if foods have the same sugar mass, the effect on blood glucose levels is not the same if the ingredients are different. ), When the area under increased blood sugar (IAUC) from the start of ingestion to 2 hours is defined as 100, the test food with the same sugar mass as glucose is ingested, and the ratio of the test food area to the glucose area is multiplied by a factor of 100. (See Non-Patent Document 25), and epidemiological studies indicate that a low GI diet is an important inhibitor of the onset of diabetes (Non-Patent Documents 26 to 28). reference).

特表2005−511771号公報JP-T-2005-511771 Nature 1999; 402(6762):656-660Nature 1999; 402 (6762): 656-660 Endocrinology 2000; 141:4255-4261Endocrinology 2000; 141: 4255-4261 Bio Clinica 2003 18(6):486-487Bio Clinica 2003 18 (6): 486-487 細胞2005; 37(12):4-7Cell 2005; 37 (12): 4-7 Nature 2000; 407:908-913Nature 2000; 407: 908-913 Diabetes 2001; 50:2540-2547Diabetes 2001; 50: 2540-2547 Endocrinology 2000;141:4325-4328Endocrinology 2000; 141: 4325-4328 Nature 2001; 409:194-198Nature 2001; 409: 194-198 Gastroenterology 2001; 120:337-345Gastroenterology 2001; 120: 337-345 J Clin Endocrinol Metab 2001; 86: 5992J Clin Endocrinol Metab 2001; 86: 5992 Diabetes 2002; 51: 3408-3411Diabetes 2002; 51: 3408-3411 Diabetes 2003; 52: 2546-2533Diabetes 2003; 52: 2546-2533 J Endocrinology 2002; 175: R7-R11J Endocrinology 2002; 175: R7-R11 J Clin Endocrinol Metab 2002; 87: 3997-4000J Clin Endocrinol Metab 2002; 87: 3997-4000 J Endocrinol Invest 2002; 25: RC36-8J Endocrinol Invest 2002; 25: RC36-8 N Engl J Med 2002;346:1623-30N Engl J Med 2002; 346: 1623-30 J Clin Endocrinol Metab 2002; 87: 240-4J Clin Endocrinol Metab 2002; 87: 240-4 Am Clin Lab 2002; 21: 22-3Am Clin Lab 2002; 21: 22-3 J Clin Endocrinol Metab 2002; 87: 2984J Clin Endocrinol Metab 2002; 87: 2984 Eur J Endocrinol. 2001; 145: 669-73Eur J Endocrinol. 2001; 145: 669-73 Diabetes 2001; 50: 707-9Diabetes 2001; 50: 707-9 Gut 2005;54:18-2)Gut 2005; 54: 18-2) Gastroenterology 2005;129(1):8-25Gastroenterology 2005; 129 (1): 8-25 J.Clin EndocrinolMetab 90:6-9J.Clin EndocrinolMetab 90: 6-9 Am J Clin Nutr 1981; 34: 362-6Am J Clin Nutr 1981; 34: 362-6 Diabetes Care 1997; 20: 545-50Diabetes Care 1997; 20: 545-50 Am J Clin Nutr 2000; 71: 921-30Am J Clin Nutr 2000; 71: 921-30 Am J Clin Nutr 2006; 83: 1161-9Am J Clin Nutr 2006; 83: 1161-9

本発明の課題は、特定の炭水化物含有食品摂取後の血糖値や血中インスリン濃度を予測する方法や、特定の炭水化物含有食品が血糖値や血中インスリン濃度をどの程度上昇させるか、あらかじめ評価指標とするバイオマーカーを提供することにある。   An object of the present invention is to predict in advance a method for predicting blood glucose level and blood insulin concentration after ingesting a specific carbohydrate-containing food, and how much a specific carbohydrate-containing food increases blood glucose level and blood insulin concentration. It is to provide a biomarker.

本発明者らは、食事形態や食物繊維含量が異なる3つの試験食(グルコース:液体・単純糖質・高GI(GI値100)/米:固体・複合糖質・高GI(GI値80)/大麦:固体・複合糖質・低GI(GI値30))を用い、血糖値や血中インスリン濃度の他満腹感等と、デスアシルグレリンとの関係を評価した。その結果、食後のデスアシルグレリン濃度やその変動が少ない食品ほど、血糖値やインスリン濃度の上昇が抑制されること、また、食後のデスアシルグレリン濃度の差異は、血糖値ではあまり差が見られない場合でも生じること、低GI食であればデスアシルグレリン濃度は食前と比べて低下せず変化が少ないことを見い出した。したがって、デスアシルグレリン濃度及びデスアシルグレリン濃度の変化は食事負荷に対する生体反応を評価する上で、血糖値や血中インスリン濃度よりも、より鋭敏な指標となりうる可能性が考えられ、食の質、すなわちGI値とは異なるバイオマーカーになりうることを見い出し、本発明を完成するに至った。   We have three test meals with different dietary forms and dietary fiber contents (glucose: liquid, simple carbohydrate, high GI (GI value 100) / rice: solid, complex carbohydrate, high GI (GI value 80). / Barley: Solids, complex carbohydrates, low GI (GI value 30)) were used to evaluate the relationship between blood sugar levels, blood insulin levels, and satiety, and desacyl ghrelin. As a result, foods with less post-meal desacyl ghrelin levels and their fluctuations are less likely to increase blood sugar levels and insulin levels, and the difference in post-prandial desacyl ghrelin levels is much different in blood sugar levels. It was found that it occurs even when it is not present, and that if it is a low GI diet, the desacyl ghrelin concentration does not decrease compared to that before the meal, and there is little change. Therefore, it is considered that desacyl ghrelin concentration and changes in desacyl ghrelin concentration may be a more sensitive index than the blood glucose level or blood insulin concentration in evaluating the biological response to dietary load. That is, it has been found that the biomarker can be different from the GI value, and the present invention has been completed.

すなわち本発明は、[1]炭水化物含有食品を摂取した後、血中デスアシルグレリン濃度を測定し、デスアシルグレリン濃度及びその濃度変化から、当該食品摂取後の血糖値及び/又は血中インスリン濃度を予測する方法や、[2]空腹時における血中デスアシルグレリン濃度についても測定することを特徴とする上記[1]記載の方法や、[3]空腹時の血中デスアシルグレリン濃度と比較して食品摂取1〜2時間後のデスアシルグレリン濃度が、(a)低下せず、かつ変動が小さい場合に、当該食品摂取後の血糖値及び/又は血中インスリン濃度の上昇の程度が小さい;(b)低下して、かつ変動が大きい場合に、当該食品摂取後の血糖値及び/又は血中インスリン濃度の上昇の程度が大きい;と予測することを特徴とする上記[2]記載の方法や、[4]炭水化物含有食品として、糖質量75g以上の炭水化物を含有する食品を用いることを特徴とする上記[1]〜[3]のいずれか記載の方法に関する。   That is, the present invention [1] measures blood desacyl ghrelin concentration after ingesting a carbohydrate-containing food, and determines the blood glucose level and / or blood insulin concentration after ingesting the food from the desacyl ghrelin concentration and changes in the concentration. [2] The method described in [1] above, wherein [2] the fasting blood desacyl ghrelin concentration is measured, and [3] the fasting blood desacyl ghrelin concentration. When the desacyl ghrelin concentration after 1 to 2 hours of food intake does not decrease (a) and the fluctuation is small, the degree of increase in blood glucose level and / or blood insulin concentration after food intake is small [2] The prediction of [2] above, wherein (b) the degree of increase in blood glucose level and / or blood insulin concentration after intake of the food is large when it is decreased and fluctuation is large Of a method, [4] as the carbohydrate-containing food, a method of according to any one of [1] to [3], wherein the use of foods containing sugar mass 75g or more carbohydrate.

また本発明は、[5]炭水化物含有食品を摂取した後、血中デスアシルグレリン濃度を測定し、デスアシルグレリン濃度及びその濃度変化から、当該食品摂取後の血糖値及び/又は血中インスリン濃度を予測し、血中デスアシルグレリン濃度を当該食品の血糖値及び/又は血中インスリン濃度の上昇性評価指標とする方法や、[6]空腹時における血中デスアシルグレリン濃度についても測定することを特徴とする上記[5]記載の方法や、[7]空腹時の血中デスアシルグレリン濃度と比較して食品摂取1〜2時間後のデスアシルグレリン濃度が、(a)低下せず、かつ変動が小さい場合に、当該食品を血糖値及び/又は血中インスリン濃度低上昇性食品と評価する;(b)低下して、かつ変動が大きい場合に、当該食品を血糖値及び/又は血中インスリン濃度高上昇性食品と評価する;ことを特徴とする上記[6]記載の方法や、[8]糖尿病の予防をすることが可能な食品であるかどうかを評価することを特徴とする上記[5]〜[7]のいずれか記載の方法や、[9]炭水化物含有食品として、糖質量75g以上の炭水化物を含有する食品を用いることを特徴とする上記[5]〜[8]のいずれか記載の方法に関する。   The present invention also provides [5] blood desacyl ghrelin concentration after ingesting a carbohydrate-containing food, and the blood glucose level and / or blood insulin concentration after ingesting the food from the desacyl ghrelin concentration and changes in the concentration. To measure the blood desacyl ghrelin concentration in blood, and / or the blood desacyl ghrelin concentration in the fasting state [6] The method according to [5] above, wherein [7] the desacyl ghrelin concentration after 1-2 hours of food intake compared to the fasting blood desacyl ghrelin concentration is (a) not reduced, When the fluctuation is small, the food is evaluated as a food with a low blood glucose level and / or blood insulin level; (b) When the food is low and the fluctuation is large, the food is It is evaluated as a food with a high blood insulin concentration; and the method according to [6] above, and [8] whether the food is capable of preventing diabetes, [5] to [8], wherein the method according to any one of [5] to [7] above, or [9] a food containing carbohydrate having a sugar mass of 75 g or more is used as the carbohydrate-containing food. The method according to any one of the above.

本発明によると、血中デスアシルグレリン濃度を測定することにより、血糖値と血中インスリン濃度を同時に予測することができ、また、食事負荷に対する生体反応を評価する上で、血糖値や血中インスリン濃度よりも、より鋭敏な指標となり、食品の質、すなわちGI値とは異なる新たなバイオマーカーを提供することができる。   According to the present invention, by measuring the blood desacyl ghrelin concentration, the blood glucose level and the blood insulin concentration can be predicted at the same time. It becomes a more sensitive index than the insulin concentration, and can provide a new biomarker different from the quality of food, that is, the GI value.

本発明の方法としては、炭水化物含有食品を摂取した後、血中デスアシルグレリン濃度を測定し、デスアシルグレリン濃度及びその濃度変化から、当該食品摂取後の血糖値及び/又は血中インスリン濃度やその変化(変動)を予測する方法や、炭水化物含有食品を摂取した後、血中デスアシルグレリン濃度を測定し、デスアシルグレリン濃度及びその濃度変化から、当該食品摂取後の血糖値及び/又は血中インスリン濃度やその変化(変動)を予測し、血中デスアシルグレリン濃度を当該食品の血糖値及び/又は血中インスリン濃度の上昇性評価指標とする方法であれば特に制限されるものではなく、炭水化物含有食品の摂取量としては、予測精度等の向上の点から糖質量(炭水化物量)として30g以上が好ましく、50g以上がより好ましく、特に75g以上が好ましく、中でも100g以上が好ましい。食品中の糖質量の測定方法としては、従来公知の測定方法であれば特に制限されず、例えば、フェノール硫酸法(J.E.Hodge, B.T.Hofreiter, "Methods in carbohydrate chemistry" Vol. 1 ed. by R.L.Whistler, M.I.Wolfrom, Academic Press, Inc., New York, N.Y., 1962 p388)、酵素法、遊離糖類の高速液クロマトグラフィー(HPLC)分析法、ベルトラン法等を挙げることができる。   As a method of the present invention, after ingesting a carbohydrate-containing food, the blood desacyl ghrelin concentration is measured, and from the desacyl ghrelin concentration and changes in the concentration, A method for predicting the change (fluctuation), or after ingesting a carbohydrate-containing food, measuring the blood desacyl ghrelin concentration, and determining the blood glucose level and / or blood after ingesting the food from the desacyl ghrelin concentration and the change in the concentration. It is not particularly limited as long as it is a method for predicting the blood insulin concentration and its change (fluctuation) and using the blood desacyl ghrelin concentration as an index for evaluating the blood glucose level and / or blood insulin concentration of the food. The intake of carbohydrate-containing foods is preferably 30 g or more, more preferably 50 g or more in terms of sugar mass (carbohydrate amount) from the viewpoint of improving prediction accuracy and the like. Ku, particularly preferably at least 75 g, among them over 100g are preferred. The method for measuring the sugar content in food is not particularly limited as long as it is a conventionally known measurement method. For example, the phenol sulfate method (JEHodge, BTHofreiter, “Methods in carbohydrate chemistry” Vol. 1 ed. By RLWhistler , MIWolfrom, Academic Press, Inc., New York, NY, 1962 p388), enzyme method, high-performance liquid chromatography (HPLC) analysis method for free sugars, belt run method, and the like.

炭水化物含有食品を摂取した後の血中デスアシルグレリン濃度の測定は、経時的に3〜5時間測定することが好ましく、例えば30分又は60分ごとに3〜5時間測定することが好ましい。また、空腹時や当該炭水化物含有食品の摂取前における血中デスアシルグレリン濃度についても測定することが、予測精度等を向上させる点で好ましい。   The blood desacyl ghrelin concentration after ingesting the carbohydrate-containing food is preferably measured for 3 to 5 hours over time, for example, preferably every 3 to 5 hours every 30 or 60 minutes. In addition, it is preferable to measure the blood desacyl ghrelin concentration at the time of fasting or before intake of the carbohydrate-containing food from the viewpoint of improving the prediction accuracy and the like.

そして、空腹時あるいは炭水化物含有食品の摂取前の血中デスアシルグレリン濃度と比較して、(a)食品摂取1〜2時間後のデスアシルグレリン濃度が低下せず、かつ変動が小さい場合に、当該食品摂取後の血糖値及び/又は血中インスリン濃度の上昇の程度が小さい;(b)食品摂取1〜2時間後のデスアシルグレリン濃度が低下して、かつ変動が大きい場合に、当該食品摂取後の血糖値及び/又は血中インスリン濃度の上昇の程度が大きい;と予測することができ、また、(a)食品摂取1〜2時間後のデスアシルグレリン濃度が低下せず、かつ変動が小さい場合に、当該食品を血糖値及び/又は血中インスリン濃度低上昇性食品と評価する;(b)食品摂取1〜2時間後のデスアシルグレリン濃度が低下して、かつ変動が大きい場合に、当該食品を血糖値及び/又は血中インスリン濃度高上昇性食品と評価する;ことができる。   And, compared to the blood desacyl ghrelin concentration before ingestion of fasting or carbohydrate-containing food, (a) when desacyl ghrelin concentration after 1-2 hours of food intake does not decrease and fluctuation is small, The degree of increase in blood glucose level and / or blood insulin concentration after ingestion of the food is small; (b) when the desacyl ghrelin concentration is decreased 1-2 hours after food ingestion and the fluctuation is large, the food The degree of increase in blood glucose level and / or blood insulin concentration after ingestion can be predicted; and (a) desacyl ghrelin concentration does not decrease and varies 1 to 2 hours after food intake When the food is small, the food is evaluated as a food with a low blood glucose level and / or blood insulin concentration; (b) When the desacyl ghrelin concentration decreases 1-2 hours after food intake and the fluctuation is large , The food assessing the blood sugar level and / or blood insulin levels high rise foods; can.

血中デスアシルグレリン濃度、好ましくは血漿中や血清中、より好ましくは血漿中のデスアシルグレリン濃度の測定方法としては、例えば、デスアシルグレリンを特異的に認識する抗体を用いた酵素免疫測定法(ELISA法)やC末端抗体を用いたラジオイムノアッセイ法、あるいは、ガスクロマトグラフィー(GC)、高速液体クロマトグラフィー(HPLC)、及びGCマススペクトロメトリー(GC−MS)等の機器による分析法を挙げることができるが、デスアシルグレリンの特異的モノクローナル抗体を用いたELISA法が好ましい。   As a method for measuring blood desacyl ghrelin concentration, preferably plasma or serum, more preferably plasma desacyl ghrelin concentration, for example, an enzyme immunoassay method using an antibody that specifically recognizes desacyl ghrelin (ELISA method), radioimmunoassay method using C-terminal antibody, or analysis method using instruments such as gas chromatography (GC), high performance liquid chromatography (HPLC), and GC mass spectrometry (GC-MS) However, an ELISA method using a specific monoclonal antibody of desacyl ghrelin is preferable.

血中デスアシルグレリン濃度を炭水化物含有食品の血糖値及び/又は血中インスリン濃度の上昇性評価指標とする方法により、血糖値及び/又は血中インスリン濃度低上昇性食品と評価された場合、当該食品は糖尿病の予防をすることが可能な食品、特にインスリン抵抗性に起因する糖尿病の予防をすることが可能な食品、インスリン濃度の上昇抑制による糖尿病の予防をすることが可能な食品であるといえる。   When the blood desacyl ghrelin concentration is evaluated as a food with a low blood glucose level and / or blood insulin concentration by a method using the blood sugar level and / or blood insulin concentration as an evaluation index of the carbohydrate-containing food, The food is food that can prevent diabetes, especially food that can prevent diabetes caused by insulin resistance, and food that can prevent diabetes by suppressing the increase in insulin concentration. I can say that.

以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。なお、以下の実験等は、徳島大学倫理委員会の承認を受け、被検者は試験開始前に試験内容及び方法などについて十分な説明を受け、文書による同意を得てから実施された。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, the technical scope of this invention is not limited to these illustrations. The following experiments were carried out after receiving approval from the University of Tokushima Ethics Committee, and the subject received sufficient explanation about the test contents and methods before the start of the test and obtained written consent.

デスアシルグレリンと血糖・インスリン反応や満腹度との関係を評価する為の試験をおこなった。   A study was conducted to evaluate the relationship between desacyl ghrelin and blood glucose / insulin response and satiety.

(対象者)
被検者は、健常者9名(男性6名、女性3名、年齢26.7±1.1歳、BMI22.0±0.7kg/m)であった。被検者に対し事前に健康診断を行い、空腹時血糖値及び血清インスリン濃度が正常であることを確認した。被検者の肝機能、腎機能は正常で、代謝性疾患、消化器疾患の既往もなかった(表1参照)。
(Target person)
The subjects were 9 healthy subjects (6 men, 3 women, age 26.7 ± 1.1 years, BMI 22.0 ± 0.7 kg / m 2 ). A medical checkup was performed on the subject in advance, and it was confirmed that the fasting blood glucose level and the serum insulin concentration were normal. The subject's liver function and renal function were normal, and there was no history of metabolic or gastrointestinal diseases (see Table 1).

Figure 2009079937
Figure 2009079937

(試験食)
グルコース(GL)、日本人の主食として欠かすことはできないが、パンやパスタと比べ高GIの食品である米飯(WR)、及び日本人に馴染みのある食品で、穀類の中でも水溶性食物繊維を多く含み、低GIの食品である麦飯(BAR)を試験食として用いた。米飯は『サトウのごはん』(佐藤食品工業株式会社製)の同一ロットを用い、摂取10分前に500Wで2分間電子レンジで加熱した。大麦は『押麦』(株式会社はくばく製)を用いた。押麦は重量の2倍の水に90分間浸水させ、炊飯、放冷し、冷凍保存したものを試験前日から解凍して試験食に用いた。調理条件を統一させるために米飯と同様、試験食摂取10分前に500Wで2分間電子レンジで加熱した。すべての試験食の糖質量は75gに統一した(表2参照)。グルコースはトレーランG(225mL)を用いた。GL以外の試験食は水とともに摂取し、総容量が650mLとなるように飲水量を調節した(表2参照)。摂取時間は20分以内であり、1口あたりの咀嚼回数は約25回程度で摂取するよう指示した。また、試験食と水は交互に摂取するよう指示した。
(Test meal)
Glucose (GL), a staple food for Japanese people, is a high GI food compared to bread and pasta (WR), and food that is familiar to Japanese people. Barley rice (BAR), which is a low GI food product, was used as a test food. The cooked rice was heated in a microwave oven at 500 W for 2 minutes 10 minutes before ingestion using the same lot of “Sato no Gohan” (Sato Food Industry Co., Ltd.). Barley used “Oshigi” (manufactured by Hakubaku Co., Ltd.). The oats were immersed in water twice the weight for 90 minutes, cooked, allowed to cool, and frozen and thawed from the day before the test and used for the test meal. In order to unify the cooking conditions, like the cooked rice, it was heated in a microwave oven at 500 W for 2 minutes 10 minutes before ingestion of the test meal. The sugar mass of all test meals was unified to 75 g (see Table 2). As the glucose, Toraylan G (225 mL) was used. Test foods other than GL were ingested with water, and the amount of drinking was adjusted so that the total volume was 650 mL (see Table 2). The ingestion time was within 20 minutes, and it was instructed to ingest at about 25 chewing times per mouth. Instructed to take test meal and water alternately.

Figure 2009079937
Figure 2009079937

(試験デザイン)
[採血]
本試験はランダムクロスオーバー方式で行った。各試験日は1週間間隔をあけて実施した。試験前日は、欠食、飲酒、激しい運動を禁止し、20時に指定の夕食を摂取した後、水以外の摂取を禁止した。試験当日は、午前8時から安静状態を保った後、試験食を摂取する前の空腹時に0分として採血を行った。午前9時から試験食を摂取し、各試験食を摂取後、30分、45分、60分、90分、120分、180分、240分の各時間に採血した。
(Examination design)
[Blood collection]
This test was conducted by a random crossover method. Each test day was carried out with an interval of one week. On the day before the test, skipping meals, drinking alcohol, and intense exercise were prohibited, and after taking the designated dinner at 20:00, intake other than water was prohibited. On the day of the test, after maintaining a resting state from 8:00 am, blood was collected at 0 minutes on an empty stomach before ingesting the test meal. Test meals were taken from 9:00 am, and blood was collected at 30 minutes, 45 minutes, 60 minutes, 90 minutes, 120 minutes, 180 minutes, and 240 minutes after taking each test meal.

[血漿グルコース濃度、血清インスリン濃度、血漿デスアシルグレリン濃度、及び血清遊離脂肪酸濃度の測定]
血漿グルコース濃度はヘキソキナーゼ法、血清インスリン濃度はEIA法、血漿デスアシルグレリン濃度はELISA法、血清遊離脂肪酸濃度は酵素法により測定した。
[Measurement of plasma glucose concentration, serum insulin concentration, plasma desacyl ghrelin concentration, and serum free fatty acid concentration]
Plasma glucose concentration was measured by hexokinase method, serum insulin concentration was measured by EIA method, plasma desacyl ghrelin concentration was measured by ELISA method, and serum free fatty acid concentration was measured by enzyme method.

[血糖値AUCの測定]
また、0分から各採血時間までの血糖値反応曲線を作成し各時間帯での濃度曲線下面積(area under the curve;AUC)を計算し、試験食を摂取した後の血糖(グルコース)値の上昇を反映させた。なお、基準となる0分の血糖値より下回る部分の面積は、AUCとして算出しないこととした。
[Measurement of blood glucose level AUC]
In addition, blood glucose level response curves from 0 minutes to each blood collection time are created, the area under the curve (AUC) in each time zone is calculated, and the blood glucose (glucose) value after ingesting the test meal is calculated. Reflected the rise. Note that the area below the reference 0 minute blood glucose level was not calculated as AUC.

[インスリン濃度AUCの測定]
また、0分から各採血時間までのインスリン濃度反応曲線を作成し、各時間帯での濃度曲線下面積(area under the curve;AUC)を計算し、試験食を摂取した後のインスリン濃度の上昇を反映させた。なお、基準となる0分のインスリン濃度より下回る部分の面積は、AUCとして算出しないこととした。
[Measurement of insulin concentration AUC]
In addition, an insulin concentration response curve from 0 minutes to each blood collection time was created, the area under the curve (AUC) in each time zone was calculated, and the increase in insulin concentration after taking the test meal was calculated. Reflected. Note that the area below the reference 0 minute insulin concentration was not calculated as AUC.

[視覚的評価法]
採血と同時に、視覚的評価法(visual analog scale;VAS)を行い、被検者の主観的な満腹度、空腹度を評価した。VASの評価用紙には10cmの線分の下側に空腹、上側に満腹と記載され、被検者は各時間での採血時における感覚に該当する位置に印をつけることで評価を行った。空腹0点、満腹10点として両端から被検者の評価点までの距離を測量することによりその評価値を求め、VAS評価点とした。
[Visual evaluation method]
Simultaneously with blood collection, a visual analog scale (VAS) was performed to evaluate the subject's subjective satiety and hunger. On the VAS evaluation sheet, the lower part of the 10 cm line segment is described as hungry and the upper part is full, and the subject performed the evaluation by marking the position corresponding to the sensation at the time of blood collection at each time. The evaluation value was obtained by measuring the distance from both ends to the evaluation point of the subject as 0 points for hungry and 10 points for fullness, and used as a VAS evaluation point.

[統計処理]
各検査の値は平均値±標準誤差(mean±SE)として示し、一元配置分散分析後、Fisher PLSD法による多重比較にて解析した。なお、全ての統計処理はStatView(登録商標)(version 5.0、SAS InstitudeInc.社製 Cary,NC,USA)を用い、危険率p<0.05を統計学的に有意とした。
[Statistical processing]
The value of each test is shown as an average value ± standard error (mean ± SE), and analyzed by multiple comparison by Fisher PLSD method after one-way analysis of variance. All statistical processes were performed using StatView (registered trademark) (version 5.0, Cary, NC, USA manufactured by SAS Institude Inc.), and the risk factor p <0.05 was regarded as statistically significant.

(結果)
[血糖値]
各試験食摂取後0〜240分の血漿グルコース濃度の変化を図1−aに示す。BAR摂取後30分、45分及び60分ではGL及びWR摂取後と比較して、血糖値は有意に低値を示したが、GL摂取後180分及び240分ではWR及びBAR摂取後と比較して、血糖値は有意に低値を示した。
(result)
[Blood glucose level]
The change in plasma glucose concentration from 0 to 240 minutes after ingestion of each test meal is shown in FIG. Blood glucose levels were significantly lower at 30 minutes, 45 minutes and 60 minutes after BAR intake than after GL and WR intake, but at 180 minutes and 240 minutes after GL intake, compared with after WR and BAR intake The blood glucose level was significantly low.

[血糖値AUC]
各試験食摂取後0〜240分の血糖値のAUCを図2−aに示す。BAR摂取後0〜30分、0〜60分のAUCは、GL及びWR摂取後と比較して有意に低値を示した。BAR摂取後0〜120分、0〜180分、0〜240分のAUCは、GL及びWRに対し低値を示す傾向がみられたが、有意差はみられなかった。
[Blood glucose level AUC]
The AUC of the blood glucose level from 0 to 240 minutes after ingestion of each test meal is shown in FIG. AUC for 0 to 30 minutes and 0 to 60 minutes after BAR intake were significantly lower than those after GL and WR intake. AUCs 0 to 120 minutes, 0 to 180 minutes, and 0 to 240 minutes after BAR ingestion tended to show low values for GL and WR, but no significant difference was observed.

[血清インスリン濃度]
各試験食摂取後0〜240分の血清インスリン濃度の変化を図1−bに示す。WRはGLと比べ、血糖値に有意な差は見られなかったが、インスリンは有意に低値を示した。また、BAR摂取後では食後30分に血清インスリン濃度が頂値を示したのに対し、GL及びWR摂取後では食後45分に頂値を示した。また、BAR摂取後60分では、血清インスリン濃度はGL及びWR摂取後と比較して、有意に低値を示した。
[Serum insulin concentration]
Changes in serum insulin concentrations from 0 to 240 minutes after each test meal intake are shown in FIG. WR showed no significant difference in blood glucose level compared to GL, but insulin showed a significantly lower value. In addition, the serum insulin concentration peaked 30 minutes after meal after BAR intake, whereas it peaked 45 minutes after meal after GL and WR intake. In addition, at 60 minutes after BAR ingestion, the serum insulin concentration was significantly lower than that after GL and WR ingestion.

[血清インスリン濃度AUC]
各試験食摂取後0〜240分の血清インスリン濃度のAUCを図2−bに示す。WR及びBAR摂取後では0〜30分、0〜60分、0〜120分、0〜180分、0〜240分の全ての区間においてGLと比較して有意に低値を示し、WRと比較してBARは食後0〜120分及び0〜180分に有意に低値を示した。
[Serum insulin concentration AUC]
The AUC of serum insulin concentration from 0 to 240 minutes after intake of each test meal is shown in FIG. After ingestion of WR and BAR, 0 to 30 minutes, 0 to 60 minutes, 0 to 120 minutes, 0 to 180 minutes, 0 to 240 minutes, significantly lower than GL, compared with WR BAR was significantly low at 0 to 120 minutes and 0 to 180 minutes after meals.

[血清遊離脂肪酸濃度]
各試験食摂取後0〜240分の血清遊離脂肪酸濃度の変化を図1−cに示す。血清遊離脂肪酸濃度はいずれの試験食においても摂取後に低下した。BAR摂取後の血清遊離脂肪酸濃度は、他の2群と比較して食後の低下が緩やかであり、食後45分、120分ではGL摂取後と比較して有意に高値を示し、また食後180分ではGL及びWR摂取後と比較して有意に高値を示した。GL摂取後の血清遊離脂肪酸濃度は、食後240分では空腹時と同程度まで上昇し、WR及びBAR摂取後と比較して有意に高値を示した。食後240分での血清遊離脂肪酸濃度はGL>WR>BAR摂取後の順に高値を示した。GL摂取4時間後に見られた遊離脂肪酸濃度の急上昇は、引き続いて摂取する食事に対する血糖、インスリン反応を上昇させる可能性が示唆される。
[Serum free fatty acid concentration]
The change in serum free fatty acid concentration from 0 to 240 minutes after each test meal intake is shown in FIG. Serum free fatty acid levels decreased after ingestion in any test meal. Serum free fatty acid concentration after ingestion of BAR showed a gradual decrease after meal compared to the other two groups, showing significantly higher values at 45 minutes and 120 minutes than after GL intake, and 180 minutes after meal. Showed significantly higher values than those after ingestion of GL and WR. Serum free fatty acid concentration after ingestion of GL increased to the same level as fasting at 240 minutes after meal, and was significantly higher than that after ingestion of WR and BAR. The serum free fatty acid concentration at 240 minutes after the meal showed a high value in the order after ingesting GL>WR> BAR. The rapid increase in the free fatty acid concentration observed 4 hours after GL intake suggests the possibility of increasing blood glucose and insulin responses to the subsequent intake.

[血漿デスアシルグレリン濃度]
各試験食摂取後0〜240分の血漿デスアシルグレリン濃度の変化を図1−dに示す。血漿デスアシルグレリン濃度はBAR摂取後において食後の変動が最も少なかった。GL摂取後30分から180分の血漿デスアシルグレリン濃度は、BAR摂取後と比較して有意に低値であった。WR摂取後60分の血漿デスアシルグレリン濃度はBAR摂取後と比較して有意に低値であり、またGL摂取後120分の血漿デスアシルグレリン濃度は、WR摂取後と比較して有意に低値であった。また、食事を摂取したときの血糖値(図1−a参照)、インスリン濃度(図1−b参照)、デスアシルグレリンの(図1−d参照)濃度変化を比較した場合、GL及びWRのように食後血糖値が高い食品(高GI食)ほど、デスアシルグレリン濃度は低く、BARのように食後血糖値が低い食品(低GI食)では、デスアシルグレリン濃度は高値を示した。また、BAR摂取後のデスアシルグレリン濃度は、試験食摂取前と比較して低下せず変動が最も少なかった。
[Plasma desacyl ghrelin concentration]
The change in plasma desacyl ghrelin concentration from 0 to 240 minutes after ingestion of each test meal is shown in FIG. Plasma desacyl ghrelin levels were the least postprandial after BAR ingestion. Plasma desacyl ghrelin concentrations 30 minutes to 180 minutes after GL intake were significantly lower than those after BAR intake. Plasma desacyl ghrelin concentration 60 minutes after WR ingestion is significantly lower than that after BAR ingestion, and plasma desacyl ghrelin concentration in 120 minutes after GL ingestion is significantly lower than after WR ingestion. Value. In addition, when comparing changes in blood glucose level (see FIG. 1-a), insulin concentration (see FIG. 1-b), and desacyl ghrelin (see FIG. 1-d) when taking a meal, GL and WR As described above, the higher the postprandial blood glucose level (high GI diet), the lower the desacyl ghrelin concentration. The lower the postprandial blood glucose level (low GI diet) such as BAR, the higher the desacyl ghrelin concentration. Moreover, the desacyl ghrelin concentration after ingestion of BAR did not decrease compared with that before ingestion of the test meal, and the fluctuation was the smallest.

[満腹度、空腹度]
各試験食摂取後0〜240分の満腹度の変化を図1−eに、空腹度の変化を図1−fに示す。満腹度はいずれの試験食においても摂取後30分で頂値を示し、BAR摂取後の満腹度は、GL摂取後と比較して有意に高値を示した。試験食摂取後の満腹度はいずれの区間においてもBAR>WR>GLの順に高値を示した。BAR摂取後の満腹度は、GL及びWR摂取後と比較して低下が緩やかであり、食後180分、240分ではGL及びWR摂取後と比較して有意に高値を示した。空腹度は、いずれの試験食においても摂取後速やかに低下し、食後30分で最低値を示した。いずれの試験食においても最低値から徐々に増加したが、いずれの時間においてもBAR摂取後の空腹度がGL及びWRよりも低値を維持した。
[Fullness, hunger]
A change in satiety level from 0 to 240 minutes after ingestion of each test meal is shown in FIG. 1-e, and a change in hunger degree is shown in FIG. The satiety level peaked at 30 minutes after ingestion in any test meal, and the satiety level after ingestion of BAR was significantly higher than that after ingestion of GL. The satiety after intake of the test meal showed a high value in the order of BAR>WR> GL in any section. The satiety after BAR ingestion showed a gradual decrease compared to after GL and WR ingestion, and showed a significantly higher value at 180 minutes and 240 minutes after meal compared to after GL and WR ingestion. The hunger degree decreased rapidly after ingestion in any test meal, and showed a minimum value 30 minutes after the meal. Although it gradually increased from the lowest value in any of the test meals, the hunger after BAR intake remained lower than GL and WR at any time.

大麦の配合割合を詳細に検討する為の試験を行った。大麦は低GIの食品であるが、食感が悪い為に単独で摂取することは困難であり、大抵の場合、白米に20〜30%混ぜて摂取される。しかし、日常的に摂取可能な割合での、大麦の食後高血糖抑制効果は明らかとなっていない。そこで本研究の第二の目的として、大麦の濃度依存的な食後高血糖に及ぼす効果について検討した。   A test was conducted to examine the blending ratio of barley in detail. Although barley is a low GI food, it is difficult to take it alone because it has a poor texture. In most cases, it is taken by mixing 20-30% with white rice. However, barley's postprandial hyperglycemia-inhibiting effect at a daily ingestible ratio has not been clarified. Therefore, the second purpose of this study was to examine the effect of barley concentration on postprandial hyperglycemia.

(試験食)
米飯(WR)、糖質量の3割が大麦の糖質で、残りの7割が米飯である3割麦飯(30BAR)、及び糖質量の5割が大麦の糖質で、残りの5割が米飯である5割麦飯(50BAR)を用いた(表3参照)。実施例1と同様に、米飯は『サトウのごはん』(佐藤食品工業株式会社)を、大麦は『押麦』(株式会社はくばく)を使用し、加熱を行い、混合割合に応じて、30BAR及び50BARを調製した。全ての試験食の糖質量は75gに統一し、総容量が650mLとなるように飲水量を調節した(表3参照)。摂取時間及び咀嚼回数等の条件は実施例1と同様とした
(Test meal)
Cooked rice (WR), 30% of the sugar mass is barley sugar, the remaining 70% is cooked rice (30BAR), and 50% of the sugar mass is barley sugar, the remaining 50% 50% barley rice (50BAR), which is cooked rice, was used (see Table 3). As in Example 1, the cooked rice uses “Sato no Gohan” (Sato Food Industry Co., Ltd.), and the barley uses “Oshigi” (Hakubaku Co., Ltd.), which are heated, depending on the mixing ratio, 30 BAR and 50 BAR. Was prepared. The sugar mass of all test meals was unified to 75 g, and the amount of drinking water was adjusted so that the total volume was 650 mL (see Table 3). Conditions such as intake time and number of chewing cycles were the same as in Example 1.

Figure 2009079937
Figure 2009079937

(試験デザイン)
採血、血糖値の測定、血糖値AUCの算出、インスリン濃度の測定、インスリン濃度AUCの算出、デスアシルグレリン濃度の測定、血清遊離脂肪酸濃度の測定、視覚的評価法については、実施例1と同様に行った。
(Examination design)
Blood collection, measurement of blood glucose level, calculation of blood glucose level AUC, measurement of insulin concentration, calculation of insulin concentration AUC, measurement of desacyl ghrelin concentration, measurement of serum free fatty acid concentration, visual evaluation method are the same as in Example 1. Went to.

[統計処理]
各検査の値は平均値±標準誤差(mean±SE)として示し、米飯(WR)と3割麦飯(30BAR)、米飯と5割麦飯(50BAR)をそれぞれ対応あるt−検定(paired t-test)にて解析した。その他は実施例1と同様の処理を行った。
[Statistical processing]
The value of each test is shown as an average value ± standard error (mean ± SE), and the cooked rice (WR) and 30% barley rice (30 BAR), the cooked rice and 50% barley rice (50 BAR) are respectively paired t-tests (paired t-test) ). The other processes were the same as in Example 1.

(結果)
[血糖値]
試験食摂取後0〜240分の血漿グルコース濃度の変化を図3−aに示す。50BAR摂取後45分では、WRと比較して血糖値は有意に低値を示し、30BAR摂取後の血糖値は、WR摂取後と比較して有意差はみられなかったが、低値を示す傾向がみられた(p=0.07)。
(result)
[Blood glucose level]
The change in plasma glucose concentration from 0 to 240 minutes after intake of the test meal is shown in FIG. At 45 minutes after ingestion of 50 BAR, the blood glucose level was significantly lower than that of WR, and the blood glucose level after ingestion of 30 BAR was not significantly different from that after ingestion of WR, but was low. A trend was seen (p = 0.07).

[血糖値AUC]
試験食摂取後0〜240分の血糖値AUCを図4−aに示す。30BAR及び50BAR摂取後0〜120分、0〜180分、及び0〜240分のAUCは、WR摂取後と比較して、麦の含有量が増加するとともに低値を示す傾向がみられたが、いずれの区間においても有意差はみられなかった。
[Blood glucose level AUC]
The blood glucose level AUC from 0 to 240 minutes after taking the test meal is shown in FIG. Although AUC for 0 to 120 minutes, 0 to 180 minutes, and 0 to 240 minutes after ingestion of 30 BAR and 50 BAR, compared to after WR ingestion, a tendency was shown that the content of wheat increased and decreased. No significant difference was observed in any interval.

[血清インスリン濃度]
試験食摂取後0〜240分の血清インスリン濃度の変化を図3−bに示す。30BAR及び50BAR摂取後では食後30分に血清インスリン濃度が頂値を示したのに対し、WR摂取後では食後45分に頂値を示した。30BAR及び50BAR摂取後の血清インスリン濃度は、WRと比較して頂値からの低下がすみやかにおこり、食後60分では有意に低値を示した。
[Serum insulin concentration]
The change in serum insulin concentration from 0 to 240 minutes after intake of the test meal is shown in FIG. Serum insulin levels peaked 30 minutes after meal after ingestion of 30 BAR and 50 BAR, whereas peak values were observed 45 minutes after meal after WR intake. The serum insulin concentration after ingesting 30 BAR and 50 BAR rapidly decreased from the peak value compared with WR, and showed a significantly lower value 60 minutes after meal.

[血清インスリン濃度AUC]
試験食摂取後0〜240分の血糖値AUCを図4−bに示す。血清インスリン濃度AUCは血糖値AUCと同様に麦の含有量が増加するとともに低値を示す傾向がみられたが、いずれの区間においても有意差はみられなかった。
[Serum insulin concentration AUC]
The blood glucose level AUC from 0 to 240 minutes after taking the test meal is shown in FIG. The serum insulin concentration AUC tended to show a low value as the wheat content increased as with the blood glucose level AUC, but no significant difference was observed in any interval.

[血清遊離脂肪酸濃度]
各試験食摂取後0〜240分の血清遊離脂肪酸濃度の変化を図3−cに示す。50BAR摂取後の血清遊離脂肪酸濃度は食後120分及び180分で、WR摂取後と比較して有意に高値を示した。30BAR摂取後の血清遊離脂肪酸濃度はいずれの区間もWRとほぼ同じ値を示し、有意差はみられなかった。
[Serum free fatty acid concentration]
The change in serum free fatty acid concentration from 0 to 240 minutes after intake of each test meal is shown in FIG. The serum free fatty acid concentration after ingestion of 50BAR was significantly higher than that after ingestion of WR at 120 minutes and 180 minutes after meal. Serum free fatty acid concentration after ingestion of 30BAR showed almost the same value as WR in any interval, and no significant difference was observed.

[血漿デスアシルグレリン濃度]
各試験食摂取後0〜240分の血漿デスアシルグレリン濃度の変化を図3−dに示す。血漿デスアシルグレリン濃度は、麦の含有量が多いほど食後の低下が少ない傾向が観察された。50BAR摂取後60分、180分の血漿デスアシルグレリン濃度はWR摂取後に比して有意に高値であった。
[Plasma desacyl ghrelin concentration]
The change in plasma desacyl ghrelin concentration from 0 to 240 minutes after intake of each test meal is shown in FIG. It was observed that the plasma desacyl ghrelin concentration tended to decrease less after meals as the wheat content increased. Plasma desacyl ghrelin concentrations at 60 minutes and 180 minutes after ingestion of 50BAR were significantly higher than those after ingestion of WR.

[満腹度、空腹度]
各試験食摂取後0〜240分の満腹度の変化を図3−eに、空腹度の変化を図3−fに示す。満腹度はいずれの試験食においても摂取後30分で頂値を示し、30BAR及び50BAR摂取後の満腹度は、WR摂取後と比較して満腹度が持続し、食後180分、240分で有意に高値を示した。空腹度はいずれの試験食摂取後も食後30分に最低値を示した。30BAR、50BAR摂取後はWRと比較し、最低値からの上昇が緩やかであり、食後180分、240分は有意に低値を示した。
[Fullness, hunger]
The change in satiety degree from 0 to 240 minutes after ingestion of each test meal is shown in FIG. 3-e, and the change in hunger degree is shown in FIG. 3-f. The satiety level peaked at 30 minutes after ingestion in any test meal, and the satiety level after ingestion of 30 BAR and 50 BAR persisted compared to after WR ingestion, and was significant at 180 minutes and 240 minutes after meal Showed a high price. The hunger level showed the lowest value 30 minutes after meal after taking any test meal. After ingestion of 30 BAR and 50 BAR, the increase from the lowest value was gradual compared with WR, and the value was significantly lower at 180 minutes and 240 minutes after meal.

グルコース(図1−a)、インスリン(図1−b)、遊離脂肪酸(図1−c)、デスアシルグレリン(図1−d)、満腹度(図1−e)、空腹度(図1−f)の平均値を示す。デスアシルグレリンについては、0分の値を0として、3種類の試験食を摂取した後4時間にわたる変動を表す。×はグルコース(GL); ○は白米(WR); ●は麦飯(BAR)を示す。図中、*はグルコースと麦飯の間で有意差(P<0.05)があることを示し、#はグルコースと白米の間で有意差(P<0.05)があることを示し、$は麦飯と白米の間で有意差(P<0.05)があることを示す。Glucose (FIG. 1-a), insulin (FIG. 1-b), free fatty acid (FIG. 1-c), desacyl ghrelin (FIG. 1-d), satiety (FIG. 1-e), hunger (FIG. 1- The average value of f) is shown. For desacyl ghrelin, a value of 0 minutes is assumed to be 0, and a change over 4 hours after ingestion of three kinds of test meals is represented. X indicates glucose (GL); ○ indicates white rice (WR); ● indicates barley rice (BAR). In the figure, * indicates that there is a significant difference (P <0.05) between glucose and wheat, # indicates that there is a significant difference (P <0.05) between glucose and white rice, Indicates that there is a significant difference (P <0.05) between barley rice and white rice. 実施例1における3種類の試験食を摂取後4時間にわたる、グルコース濃度のAUCの増分(図2−a)、及び、インスリン濃度のAUCの増分(図2−b)を示す。黒色は、グルコース(GL)、白色が白米(WR)、斜線が麦飯(BAR)であり、グラフの上に付されているabcについては、aとb、bとc、aとcのそれぞれの値に有意差があることを示す。FIG. 2 shows the AUC increment of glucose concentration (FIG. 2-a) and the AUC increment of insulin concentration (FIG. 2-b) over 4 hours after taking the three test meals in Example 1. FIG. The black color is glucose (GL), the white color is white rice (WR), and the diagonal line is barley rice (BAR). For abc on the graph, each of a and b, b and c, and a and c Indicates that there is a significant difference in values. グルコース(図3−a)、インスリン(図3−b)、遊離脂肪酸(図3−c)、デスアシルグレリン(図3−d)、満腹度(図3−e)、空腹度(図3−f)の平均値を示す。デスアシルグレリンについては、0分の値を0として、3種類の試験食を摂取した後4時間にわたる変動を表す。○は白米; ▲は30%麦飯; ■は50%麦飯を示す。図中、*は白米と30%麦飯の間で有意差(P<0.05)があることを示し、#は白米と50%麦飯の間で有意差(P<0.05)があることを示す。Glucose (FIG. 3-a), insulin (FIG. 3-b), free fatty acid (FIG. 3-c), desacyl ghrelin (FIG. 3-d), satiety (FIG. 3-e), hunger (FIG. 3- The average value of f) is shown. For desacyl ghrelin, a value of 0 minutes is assumed to be 0, and a change over 4 hours after ingestion of three kinds of test meals is represented. ○ indicates white rice; ▲ indicates 30% barley rice; ■ indicates 50% barley rice. In the figure, * indicates that there is a significant difference (P <0.05) between white rice and 30% barley rice, and # indicates that there is a significant difference (P <0.05) between white rice and 50% barley rice. Indicates. 実施例2における3種類の試験食を摂取後4時間にわたる、グルコース濃度のAUCの増分(図4−a)、及び、インスリン濃度のAUCの増分(図4−b)を示す。白色は白米(WR)、斜線が30%麦飯(30BAR)、黒色が50%麦飯(50BAR)である。FIG. 4 shows the AUC increment of glucose concentration (FIG. 4-a) and the AUC increment of insulin concentration (FIG. 4-b) over 4 hours after ingesting the three test meals in Example 2. FIG. White is white rice (WR), diagonal lines are 30% wheat (30BAR), and black is 50% wheat (50BAR).

Claims (9)

炭水化物含有食品を摂取した後、血中デスアシルグレリン濃度を測定し、デスアシルグレリン濃度及びその濃度変化から、当該食品摂取後の血糖値及び/又は血中インスリン濃度を予測する方法。 A method of measuring blood desacyl ghrelin concentration after ingesting a carbohydrate-containing food and predicting blood glucose level and / or blood insulin concentration after ingesting the food from the des acyl ghrelin concentration and changes in the concentration. 空腹時における血中デスアシルグレリン濃度についても測定することを特徴とする請求項1記載の方法。 The method according to claim 1, wherein the blood desacyl ghrelin concentration at the time of fasting is also measured. 空腹時の血中デスアシルグレリン濃度と比較して食品摂取1〜2時間後のデスアシルグレリン濃度が、
(a)低下せず、かつ変動が小さい場合に、当該食品摂取後の血糖値及び/又は血中インスリン濃度の上昇の程度が小さい;
(b)低下して、かつ変動が大きい場合に、当該食品摂取後の血糖値及び/又は血中インスリン濃度の上昇の程度が大きい;
と予測することを特徴とする請求項2記載の方法。
Compared to the fasting blood desacyl ghrelin concentration, the desacyl ghrelin concentration after 1-2 hours of food intake
(A) The degree of increase in blood glucose level and / or blood insulin concentration after taking the food is small when it does not decrease and fluctuation is small;
(B) the degree of increase in blood glucose level and / or blood insulin concentration after intake of the food when it is decreased and fluctuation is large;
The method according to claim 2, wherein:
炭水化物含有食品として、糖質量75g以上の炭水化物を含有する食品を用いることを特徴とする請求項1〜3のいずれか記載の方法。 The method according to any one of claims 1 to 3, wherein a food containing a carbohydrate having a sugar mass of 75 g or more is used as the carbohydrate-containing food. 炭水化物含有食品を摂取した後、血中デスアシルグレリン濃度を測定し、デスアシルグレリン濃度及びその濃度変化から、当該食品摂取後の血糖値及び/又は血中インスリン濃度を予測し、血中デスアシルグレリン濃度を当該食品の血糖値及び/又は血中インスリン濃度の上昇性評価指標とする方法。 After ingesting a carbohydrate-containing food, measure the blood desacyl ghrelin concentration, predict the blood glucose level and / or blood insulin concentration after ingesting the food from the desacyl ghrelin concentration and changes in the concentration, and blood desacyl A method in which the ghrelin concentration is used as an evaluation index for increasing the blood glucose level and / or blood insulin concentration of the food. 空腹時における血中デスアシルグレリン濃度についても測定することを特徴とする請求項5記載の方法。 6. The method according to claim 5, wherein the blood desacyl ghrelin concentration at the time of fasting is also measured. 空腹時の血中デスアシルグレリン濃度と比較して食品摂取1〜2時間後のデスアシルグレリン濃度が、
(a)低下せず、かつ変動が小さい場合に、当該食品を血糖値及び/又は血中インスリン濃度低上昇性食品と評価する;
(b)低下して、かつ変動が大きい場合に、当該食品を血糖値及び/又は血中インスリン濃度高上昇性食品と評価する;
ことを特徴とする請求項6記載の方法。
Compared to the fasting blood desacyl ghrelin concentration, the desacyl ghrelin concentration after 1-2 hours of food intake
(A) If the food does not decrease and the fluctuation is small, the food is evaluated as a food with a low blood glucose level and / or low blood insulin concentration;
(B) If the food is decreased and the fluctuation is large, the food is evaluated as a food with a high blood glucose level and / or high blood insulin concentration;
The method according to claim 6.
糖尿病の予防をすることが可能な食品であるかどうかを評価することを特徴とする請求項5〜7のいずれか記載の方法。 The method according to any one of claims 5 to 7, wherein it is evaluated whether or not the food is capable of preventing diabetes. 炭水化物含有食品として、糖質量75g以上の炭水化物を含有する食品を用いることを特徴とする請求項5〜8のいずれか記載の方法。 The method according to any one of claims 5 to 8, wherein a food containing a carbohydrate having a sugar mass of 75 g or more is used as the carbohydrate-containing food.
JP2007248241A 2007-09-25 2007-09-25 Prediction method of blood sugar level-insulin concentration in blood by desacyl ghrelin concentration in blood Pending JP2009079937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007248241A JP2009079937A (en) 2007-09-25 2007-09-25 Prediction method of blood sugar level-insulin concentration in blood by desacyl ghrelin concentration in blood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007248241A JP2009079937A (en) 2007-09-25 2007-09-25 Prediction method of blood sugar level-insulin concentration in blood by desacyl ghrelin concentration in blood

Publications (1)

Publication Number Publication Date
JP2009079937A true JP2009079937A (en) 2009-04-16

Family

ID=40654804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007248241A Pending JP2009079937A (en) 2007-09-25 2007-09-25 Prediction method of blood sugar level-insulin concentration in blood by desacyl ghrelin concentration in blood

Country Status (1)

Country Link
JP (1) JP2009079937A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117592A1 (en) * 2011-03-03 2012-09-07 国立大学法人宮崎大学 Therapeutic agent for hyperthermia
CN106979997A (en) * 2016-01-18 2017-07-25 医博科技股份有限公司 Rapid determination method applied to food glycemic index evaluation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117592A1 (en) * 2011-03-03 2012-09-07 国立大学法人宮崎大学 Therapeutic agent for hyperthermia
JP5999712B2 (en) * 2011-03-03 2016-09-28 国立大学法人 宮崎大学 Hyperthermia treatment
US9555077B2 (en) 2011-03-03 2017-01-31 University Of Miyazaki Methods of lowering body temperature by administration of desacyl ghrelin or its derivative
CN106979997A (en) * 2016-01-18 2017-07-25 医博科技股份有限公司 Rapid determination method applied to food glycemic index evaluation

Similar Documents

Publication Publication Date Title
Samkani et al. A carbohydrate-reduced high-protein diet acutely decreases postprandial and diurnal glucose excursions in type 2 diabetes patients
Ryan et al. Effects of intraduodenal lipid and protein on gut motility and hormone release, glycemia, appetite, and energy intake in lean men
Frid et al. Effect of whey on blood glucose and insulin responses to composite breakfast and lunch meals in type 2 diabetic subjects
Wu et al. Effects of different sweet preloads on incretin hormone secretion, gastric emptying, and postprandial glycemia in healthy humans
Nakahara et al. Plasma obestatin concentrations are negatively correlated with body mass index, insulin resistance index, and plasma leptin concentrations in obesity and anorexia nervosa
Purtell et al. In adults with Prader–Willi syndrome, elevated ghrelin levels are more consistent with hyperphagia than high PYY and GLP-1 levels
Harada et al. Obestatin, acyl ghrelin, and des-acyl ghrelin responses to an oral glucose tolerance test in the restricting type of anorexia nervosa
Gosby et al. Raised FGF-21 and triglycerides accompany increased energy intake driven by protein leverage in lean, healthy individuals: a randomised trial
Wilasco et al. Ghrelin, leptin and insulin in healthy children: Relationship with anthropometry, gender, and age distribution
Fang et al. Circulating galanin levels are increased in patients with gestational diabetes mellitus
Haspolat et al. Relationships between leptin, insulin, IGF-1 and IGFBP-3 in children with energy malnutrition
Nilaweera et al. Whey protein effects on energy balance link the intestinal mechanisms of energy absorption with adiposity and hypothalamic neuropeptide gene expression
Fuglsang-Nielsen et al. Consumption of nutrients and insulin resistance suppress markers of bone turnover in subjects with abdominal obesity
Pena-Bello et al. Effect of oral glucose administration on rebound growth hormone release in normal and obese women: The role of adiposity, insulin sensitivity and ghrelin
Kameyama et al. Effects of consumption of main and side dishes with white rice on postprandial glucose, insulin, glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 responses in healthy Japanese men
Ohlsson et al. Modification of a traditional breakfast leads to increased satiety along with attenuated plasma increments of glucose, C-peptide, insulin, and glucose-dependent insulinotropic polypeptide in humans
J Hickman et al. Structure, signalling and physiologic role of adiponectin-dietary and exercise-related variations
Yoh et al. Plasma levels of n-decanoyl ghrelin, another acyl-and active-form of ghrelin, in human subjects and the effect of glucose-or meal-ingestion on its dynamics
Han et al. Obesity, metabolic syndrome and disorders of energy balance
Roncero-Ramos et al. Alpha cell function interacts with diet to modulate prediabetes and Type 2 diabetes
Schneider et al. Effects of age, malnutrition and refeeding on the expression and secretion of ghrelin
de Luis et al. rs6923761 gene variant in glucagon-like peptide 1 receptor: Allelic frequencies and influence on cardiovascular risk factors in a multicenter study of Castilla-Leon
Ghazzawi et al. Effect of high-protein breakfast meal on within-day appetite hormones: Peptide YY, glucagon like peptide-1 in adults
JP2010522332A (en) Method for monitoring drug efficacy in diabetic patients using an assay for 1,5-anhydro-D-glucitol
JP2009079937A (en) Prediction method of blood sugar level-insulin concentration in blood by desacyl ghrelin concentration in blood