JP2009079493A - Movable blade axial flow pump - Google Patents

Movable blade axial flow pump Download PDF

Info

Publication number
JP2009079493A
JP2009079493A JP2007247462A JP2007247462A JP2009079493A JP 2009079493 A JP2009079493 A JP 2009079493A JP 2007247462 A JP2007247462 A JP 2007247462A JP 2007247462 A JP2007247462 A JP 2007247462A JP 2009079493 A JP2009079493 A JP 2009079493A
Authority
JP
Japan
Prior art keywords
impeller
blade
hub
outer diameter
axial flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007247462A
Other languages
Japanese (ja)
Other versions
JP4882939B2 (en
Inventor
Yasuhiro Inoue
康弘 井上
Ichiro Harada
一郎 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2007247462A priority Critical patent/JP4882939B2/en
Priority to CN201410053634.3A priority patent/CN103758780B/en
Priority to CN200810211039.2A priority patent/CN101398011B/en
Publication of JP2009079493A publication Critical patent/JP2009079493A/en
Application granted granted Critical
Publication of JP4882939B2 publication Critical patent/JP4882939B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve pump efficiency and expand the stable operation range of the pump in a movable blade axial flow pump. <P>SOLUTION: In the movable blade axial flow pump 100, a plurality of impeller blades 2 provided on an outer circumference side of the impeller hub 2 can rotate around a blade turning shaft 6 set for each blade. A guide blade hub 4 including a plurality of guide blades 3 arranged with keeping interval in a circumference direction is arranged at a downstream side of the impeller hub. An outer diameter of the guide blade hub at a section where the guide blades are positioned is larger than the minimum outer diameter of the impeller hub, and is smaller than the maximum outer diameter of the impeller hub. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は軸流型のポンプに係り、特に可動翼軸流ポンプに関する。   The present invention relates to an axial flow type pump, and more particularly to a movable blade axial flow pump.

従来の可動翼軸流ポンプの例が、特許文献1に記載されている。この公報に記載のポンプでは、その図1に示されるように、羽根車ハブに翼軸が嵌合し、翼軸の中心線を回動中心として、羽根車翼が回動可能に構成されている。そして、羽根車翼のハブ側である流路内径側は、球面状に形成された部材に一体となっており、この部材からはみ出る部分では、翼部を一部外径方向にカットしている。一方、羽根車翼のチップ側である流路外径側では、ポンプケーシングおよび吸込みケーシングを球面状に形成し、これらケーシングと僅かな隙間を形成するように、羽根車翼のチップを球面または断面円形状に形成して、羽根車翼の円滑な回動を可能にしている。   An example of a conventional movable blade axial flow pump is described in Patent Document 1. In the pump described in this publication, as shown in FIG. 1, the impeller hub is fitted to the impeller hub, and the impeller blade is configured to be rotatable about the centerline of the impeller shaft. Yes. The inner diameter side of the flow path, which is the hub side of the impeller blade, is integrated with a spherically formed member, and the blade portion is partially cut in the outer diameter direction at a portion protruding from the member. . On the other hand, on the flow path outer diameter side, which is the tip side of the impeller blade, the pump casing and the suction casing are formed in a spherical shape, and the tip of the impeller blade is formed in a spherical shape or a cross section so as to form a slight gap with these casings. It is formed in a circular shape to enable smooth rotation of the impeller blades.

従来の可動翼軸流ポンプの他の例が、特許文献2に記載されている。この公報に記載のポンプは特許文献1と同様に、球面状に形成された基材にインペラの内径側が一体になっている。ただし特許文献1に記載の羽根車翼とは異なり、基材からはみ出た部分を断面円形状にし、基材が嵌合するインペラハブを球面状に形成している。そして、インペラとインペラハブとの間に僅かな隙間を形成し、インペラの円滑な回動を可能にしている。これらいずれのポンプにおいても、羽根車翼またはインペラを回動させたので、小水量域から大水量域まで効率の良いポンプ運転が可能となっている。   Another example of a conventional movable blade axial flow pump is described in Patent Document 2. In the pump described in this publication, similarly to Patent Document 1, the inner diameter side of the impeller is integrated with a spherically formed base material. However, unlike the impeller blade described in Patent Document 1, the portion protruding from the base material has a circular cross section, and the impeller hub into which the base material is fitted is formed in a spherical shape. A slight gap is formed between the impeller and the impeller hub to enable smooth rotation of the impeller. In any of these pumps, since the impeller blades or impellers are rotated, efficient pump operation is possible from a small water amount region to a large water amount region.

特開平7-238899号公報Japanese Patent Laid-Open No. 7-238899 特開昭58-197499号公報JP 58-197499 A

上記特許文献1および2に記載の羽根車翼およびインペラでは、ハブ面とチップ面をハブやケーシングと同心球面に形成して、羽根車翼およびインペラをその軸心回りに回動可能にしている。しかしながら、チップ側に比べて曲率の大きい球面に形成されるハブ側では、羽根車翼やインペラを流過する際に、流れがハブ面からはく離するおそれがある。   In the impeller blades and impellers described in Patent Documents 1 and 2, the hub surface and the tip surface are formed concentrically with the hub and the casing, so that the impeller blades and the impeller can be rotated about the axis thereof. . However, on the hub side, which is formed on a spherical surface having a larger curvature than the tip side, there is a possibility that the flow may separate from the hub surface when the impeller blades or the impeller are passed through.

流れが翼面からはく離すると、ハブ面とチップ面が軸方向断面で直線となる固定翼軸流ポンプに比べて、羽根車翼やインペラのハブ側での損失が増大し、可動翼軸流ポンプの性能低下を引き起こす。このように、従来の可動翼軸流ポンプでは、ポンプ効率の低下を許容しながら、安定作動範囲の増大を図っていた。   When the flow is separated from the blade surface, the loss on the hub side of the impeller blade or impeller increases compared to the fixed blade axial flow pump in which the hub surface and the tip surface are straight in the axial cross section, and the movable blade axial flow pump Cause performance degradation. As described above, in the conventional movable blade axial flow pump, the stable operation range is increased while allowing a decrease in pump efficiency.

本発明は上記従来技術の不具合に鑑みなされたものであり、その目的は、可動翼軸流ポンプにおいて、ポンプ効率の向上と安定作動範囲の増大を図ることにある。本発明の他の目的は、可動翼の可動性を損なわずに可動翼での流れのはく離を抑制することにある。また、可動翼部での損失を低減して、可動翼ポンプのエネルギー消費を低減することにある。そして、これら目的の少なくともいずれかを、達成することを目的とする。   The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to improve pump efficiency and increase a stable operation range in a movable blade axial flow pump. Another object of the present invention is to suppress flow separation in the movable blade without impairing the mobility of the movable blade. Moreover, it is in reducing the loss in a movable blade part and reducing the energy consumption of a movable blade pump. And it aims at achieving at least one of these objectives.

上記目的を達成する本発明の特徴は、羽根車ハブの外周側に間隔をおいて設けられた複数の羽根車翼が各翼ごとに設定された翼旋回軸の回りに回動可能である可動翼軸流ポンプにおいて、羽根車翼の内径端形状を円弧形状とし、羽根車ハブの外周面の子午面形状が、羽根車翼の内径端円弧の中心位置と同じ中心位置で羽根車ハブの子午面形状を円弧で形成したときの円弧の曲率よりも小さい曲率の曲線形状としたことにある。   A feature of the present invention that achieves the above object is that a plurality of impeller blades provided at intervals on the outer peripheral side of the impeller hub are movable around a blade rotation axis set for each blade. In the blade axial flow pump, the inner diameter end shape of the impeller blade is an arc shape, and the meridional shape of the outer peripheral surface of the impeller hub is the same as the central position of the inner diameter end arc of the impeller blade. The surface shape is a curved shape having a smaller curvature than the curvature of the arc when the arc is formed.

上記目的を達成する本発明の他の特徴は、羽根車ハブの外周側に間隔をおいて設けられた複数の羽根車翼が各翼ごとに設定された翼旋回軸の回りに回動可能である可動翼軸流ポンプにおいて、羽根車ハブの下流側に周方向に間隔をおいて配置された複数の案内羽根を有する案内羽根ハブを配置し、案内羽根が位置する部分の案内羽根ハブの外径は、羽根車ハブの最小外径よりも大きく、羽根車ハブの最大外径よりも小さく形成したことにある。   Another feature of the present invention that achieves the above object is that a plurality of impeller blades provided at intervals on the outer peripheral side of the impeller hub can be rotated around a blade rotation axis set for each blade. In a movable vane axial flow pump, a guide vane hub having a plurality of guide vanes arranged at intervals in the circumferential direction is arranged on the downstream side of the impeller hub, and the guide vane hub outside the portion where the guide vanes are located is arranged. The diameter is larger than the minimum outer diameter of the impeller hub and smaller than the maximum outer diameter of the impeller hub.

そしてこれらの特徴において、羽根車ハブの外径が、上流端で下流端よりも小さいのがよく、案内羽根ハブの案内羽根取付け部の外径が、前記羽根車ハブの下流端の外径より大きいことが好ましい。また、案内羽根ハブの外径を、羽根車ハブの下流端の外径より流れ方向に徐々に大きくして縮流量域を設けるのがよく、案内羽根の外径端が取り付けられるほぼ円筒状のケーシングを有し、このケーシングの羽根車翼に対向する内周面の子午面断面形状と羽根車翼の外径端の形状を同心円形状とするのがよい。   In these features, the outer diameter of the impeller hub is preferably smaller at the upstream end than the downstream end, and the outer diameter of the guide vane mounting portion of the guide vane hub is larger than the outer diameter of the downstream end of the impeller hub. Larger is preferred. Also, the outer diameter of the guide vane hub should be gradually increased in the flow direction from the outer diameter of the downstream end of the impeller hub to provide a contracted flow area, and the guide vane hub has a substantially cylindrical shape to which the outer diameter end of the guide vane is attached. It has a casing, and it is good to make the meridian cross-sectional shape of the internal peripheral surface facing the impeller blade of this casing, and the shape of the outer-diameter end of an impeller blade into a concentric shape.

本発明によれば、可動翼軸流ポンプにおいて、内径側に位置するハブの外形曲率を翼のハブ側の曲率よりも大きくしたので、ハブ側での流れの翼面からのはく離を抑制でき、ポンプ効率の向上と安定作動範囲を増大できる。また、可動翼の可動性を損なわずに可動翼での流れのはく離を抑制できる。さらに、可動翼部での損失が低減するので、可動翼ポンプのエネルギー消費も低減する。   According to the present invention, in the movable blade axial flow pump, the outer curvature of the hub located on the inner diameter side is made larger than the curvature on the hub side of the blade, so that separation of the flow on the hub side from the blade surface can be suppressed, The pump efficiency can be improved and the stable operating range can be increased. Further, it is possible to suppress the separation of the flow in the movable blade without impairing the mobility of the movable blade. Furthermore, since the loss in the movable blade portion is reduced, the energy consumption of the movable blade pump is also reduced.

以下、図面を用いて、本発明に係る可動翼軸流ポンプのいくつかの実施例を説明する。図1に、可動翼軸流ポンプ100の一実施例を、子午面断面図で示す。円筒状に形成されたケーシング10内に、筒状の内筒部11が収容されている。内筒部11は、案内羽根3により、ケーシング10に保持される。   Hereinafter, several embodiments of the movable blade axial flow pump according to the present invention will be described with reference to the drawings. FIG. 1 is a meridional sectional view of an embodiment of a movable blade axial flow pump 100. A cylindrical inner cylinder portion 11 is accommodated in a cylindrical casing 10. The inner cylinder part 11 is held in the casing 10 by the guide vanes 3.

内筒部11は、流れの上流側端部に鈍頭形状の前面カバー12を有している。前面カバー12に続く軸方向下流側には、羽根車ハブ2が配置されており、羽根車ハブ2の軸方向下流側には外径一定の円筒部4aと外径がなだらかに減少するすぼまり部4bとを有する案内羽根ハブ4が配置されている。案内羽根3は、内径側を円筒部4aの外表面に固定されており、外径側をケーシング10の内壁に固定されている。案内羽根3は複数枚、例えば3枚あり、周方向にほぼ等ピッチで配置されている。   The inner cylinder part 11 has a blunt-shaped front cover 12 at the upstream end of the flow. An impeller hub 2 is disposed downstream of the front cover 12 in the axial direction, and a cylindrical portion 4a having a constant outer diameter and a gradual decrease in the outer diameter are provided on the downstream side of the impeller hub 2 in the axial direction. A guide vane hub 4 having a ball portion 4b is arranged. The guide blade 3 has an inner diameter side fixed to the outer surface of the cylindrical portion 4 a and an outer diameter side fixed to the inner wall of the casing 10. There are a plurality of guide blades 3, for example, three, and they are arranged at substantially equal pitches in the circumferential direction.

内筒部11の中で、羽根車ハブ2は回動可能であり、この羽根車ハブ2に接続された主軸5が案内羽根ハブ4の後端から突き出ている。この主軸5には、図示を省略したが、羽根車ハブ2を駆動する原動機であるモータが接続されている。羽根車ハブ2の外周側であって、周方向複数箇所には、羽根車翼1が取り付けられている。この羽根車翼1は、内筒部11の軸方向に直角方向、すなわち軸流ポンプ100の半径方向軸線(翼旋回軸)6の回りに回動可能である。   The impeller hub 2 is rotatable in the inner cylinder portion 11, and the main shaft 5 connected to the impeller hub 2 protrudes from the rear end of the guide vane hub 4. Although not shown, the main shaft 5 is connected to a motor that is a prime mover for driving the impeller hub 2. Impeller blades 1 are attached to the outer peripheral side of the impeller hub 2 at a plurality of locations in the circumferential direction. The impeller blade 1 is rotatable in a direction perpendicular to the axial direction of the inner cylinder portion 11, that is, around a radial axis (blade turning shaft) 6 of the axial flow pump 100.

可動翼軸流ポンプ100の子午面断面における羽根車ハブ2の外径は円弧状であり、円弧の半径はR5である。R5の円弧の中心は、翼旋回軸6上にあり、軸流ポンプ100の中心軸13との交点よりも羽根車翼1の反対側に、延在している。羽根車ハブ2は、上流側端部における外径が前部カバー12の後端部の外径とほぼ同じであり、羽根車ハブ2の下流側端部における外径は、案内羽根ハブ4の前端部外径とほぼ同じである。したがって、羽根車ハブ2は、翼旋回軸6部が最も流路に突き出た形状となっている。   The outer diameter of the impeller hub 2 in the meridional section of the movable blade axial flow pump 100 is an arc, and the radius of the arc is R5. The center of the arc of R5 is on the blade rotation shaft 6 and extends to the opposite side of the impeller blade 1 from the intersection with the central shaft 13 of the axial flow pump 100. The impeller hub 2 has an outer diameter at the upstream end substantially the same as the outer diameter of the rear end of the front cover 12, and the outer diameter at the downstream end of the impeller hub 2 is equal to that of the guide vane hub 4. It is almost the same as the outer diameter of the front end. Therefore, the impeller hub 2 has a shape in which the blade rotation shaft 6 part protrudes most into the flow path.

羽根車ハブ2に取り付けられた羽根車翼1では、羽根車ハブ2側である内径端側で、この羽根車翼1を回動させる回動軸14が僅かに流路に露出している。回動軸14の露出部よりも外径側に、羽根車翼1の内径側端部が位置している。ここで、羽根車翼1の内径側端部も半径R6の円弧状をしており、翼旋回軸6上にその中心を有している。羽根車翼1の内径端の円弧径R6は、羽根車ハブ2の外周半径R5よりも大きい。   In the impeller blade 1 attached to the impeller hub 2, the rotating shaft 14 that rotates the impeller blade 1 is slightly exposed to the flow path on the inner diameter end side that is the impeller hub 2 side. The inner diameter side end of the impeller blade 1 is located on the outer diameter side of the exposed portion of the rotating shaft 14. Here, the inner diameter side end of the impeller blade 1 also has an arc shape with a radius R <b> 6, and has its center on the blade rotation shaft 6. The arc diameter R6 of the inner diameter end of the impeller blade 1 is larger than the outer peripheral radius R5 of the impeller hub 2.

羽根車翼1の外径側端部も円弧状に形成されており、その円弧の中心は翼旋回軸6と軸流ポンプ100の中心軸との交点である。この円弧の半径は、R4である。ケーシング10は、翼旋回軸6と軸流ポンプ100の中心軸13との交点を中心とする半径R3の円弧で、その内周面が切削された形状となっている。ここで、羽根車翼1の外径端の円弧径R4は、ケーシング10の内周形成円弧の半径R5よりも僅かに小径である。なお、羽根車翼1の軸方向長さは内径端側が外径端側よりも長く、羽根車翼1は子午面形状が擬似台形となっている。   The outer diameter side end of the impeller blade 1 is also formed in an arc shape, and the center of the arc is the intersection of the blade swirl shaft 6 and the central axis of the axial flow pump 100. The radius of this arc is R4. The casing 10 is a circular arc having a radius R3 centering on the intersection of the blade swirl shaft 6 and the central shaft 13 of the axial flow pump 100, and has an inner peripheral surface cut. Here, the arc diameter R4 of the outer diameter end of the impeller blade 1 is slightly smaller than the radius R5 of the inner circumference forming arc of the casing 10. The axial length of the impeller blade 1 is longer on the inner diameter end side than on the outer diameter end side, and the impeller blade 1 has a pseudo trapezoidal meridian shape.

このように構成した本実施例の軸流ポンプ100では、羽根車翼1を翼旋回軸6の回りに回動可能とするために、羽根車翼1の内径端の曲率R6を、羽根車ハブ2の外径面の曲率R5よりも大きくしているので、羽根車翼1の後部または後方で、流れ8を制御して、円筒部11の外周面形状に沿わずにはく離することを防止できる。したがって、羽根車翼1の出口の内径側(ハブ側)に、流れのはく離により羽根車翼1が十分な仕事をしていなかった領域が形成されるのを回避できる。この流れの改善により、羽根車翼1の上流側(入口)から下流側(出口)に至る全域で、羽根車翼1が十分な仕事をするようになる。   In the axial flow pump 100 of the present embodiment configured as described above, the curvature R6 of the inner diameter end of the impeller blade 1 is set as the impeller hub 1 so that the impeller blade 1 can be rotated around the blade rotation shaft 6. 2 is larger than the curvature R5 of the outer diameter surface of the impeller blade 2. Therefore, the flow 8 can be controlled at the rear portion or the rear portion of the impeller blade 1 to prevent separation without following the outer peripheral surface shape of the cylindrical portion 11. . Accordingly, it is possible to avoid the formation of a region where the impeller blade 1 was not performing sufficient work due to the separation of the flow on the inner diameter side (hub side) of the outlet of the impeller blade 1. Due to this improvement in the flow, the impeller blade 1 performs sufficient work in the entire region from the upstream side (inlet) to the downstream side (outlet) of the impeller blade 1.

すなわち、本実施例によれば、より効率良く水にエネルギーを与えることが可能となり、軸流ポンプの効率が向上する。また、羽根車翼1の下流側で発生するはく離が流れを乱して、案内羽根3に悪影響を与える恐れがあったが、流れの乱れを防止したのでこの悪影響を防止できる。さらに、案内羽根3のハブ側における損失も低減される。これにより、可動翼軸流ポンプ100のエネルギー消費を低減できる。   That is, according to the present embodiment, energy can be given to water more efficiently, and the efficiency of the axial flow pump is improved. Further, the separation generated on the downstream side of the impeller blade 1 may disturb the flow and adversely affect the guide blade 3. However, since the disturbance of the flow is prevented, this adverse effect can be prevented. Furthermore, the loss on the hub side of the guide vane 3 is also reduced. Thereby, the energy consumption of the movable blade axial flow pump 100 can be reduced.

上記実施例においては、羽根車翼1の根本側と羽根車ハブ2の外周とをともに円弧状に形成し、かつ、羽根車翼1の根本側のRの中心と、羽根車ハブ2の外周のRの中心位置とを変えている。しかしながら、羽根車ハブの外周形状はこれに限るものではなく、羽根車翼1の根本側のRより曲率の小さい球面または楕円球面、これら球面を近似するような自由曲面としてもよい。   In the above embodiment, the root side of the impeller blade 1 and the outer periphery of the impeller hub 2 are both formed in an arc shape, and the center of R on the root side of the impeller blade 1 and the outer periphery of the impeller hub 2 are formed. The center position of R is changed. However, the outer peripheral shape of the impeller hub is not limited to this, and may be a spherical surface or an elliptical spherical surface having a smaller curvature than R on the root side of the impeller blade 1, or a free curved surface approximating these spherical surfaces.

ただし、上記自由曲面とした場合には、可動翼軸流ポンプとしての機能である羽根車翼2の可動性を保持するために、羽根車翼1の根本側の曲率を、対向する羽根車ハブ2の曲率よりも大きくしなければならない。羽根車翼1を通過する流れが、ハブ側で羽根車ハブ2の外周面に沿わないで流れて、はく離していた領域の流れ7を、羽根車ハブ2の外周面に沿う流れとすることが可能になる。   However, in the case of the above-described free-form surface, in order to maintain the mobility of the impeller blade 2 that is a function as a movable blade axial flow pump, the curvature of the root side of the impeller blade 1 is set to the opposite impeller hub. Must be greater than 2 curvature. The flow passing through the impeller blade 1 flows without being along the outer peripheral surface of the impeller hub 2 on the hub side, and the flow 7 in the separated area is defined as a flow along the outer peripheral surface of the impeller hub 2. Is possible.

これにより、羽根車翼1の出口側であってハブ側の流れが改善され、羽根車翼1の入口から出口に至る全域で、羽根車の回転動力が効率的に作動流体である水に付与され、可動翼軸流ポンプの効率が向上する。さらに、従来は羽根車翼1を通過した流れ中にはく離により乱れ7が生じることがあったが、この乱れ7を防止または低減できるので、羽根車翼1の下流側に配置される案内羽根3に乱れ7の影響が及ぶのを回避できる。したがって、案内羽根3のハブ側における損失も低減し、可動翼軸流ポンプのエネルギー消費が小さくなる。   Thereby, the flow on the outlet side of the impeller blade 1 and on the hub side is improved, and the rotational power of the impeller is efficiently applied to the water that is the working fluid in the entire region from the inlet to the outlet of the impeller blade 1. Thus, the efficiency of the movable blade axial flow pump is improved. Furthermore, in the past, turbulence 7 may have occurred due to separation in the flow that has passed through the impeller blade 1, but since this turbulence 7 can be prevented or reduced, the guide blade 3 disposed on the downstream side of the impeller blade 1. It is possible to avoid the influence of the disturbance 7. Therefore, the loss on the hub side of the guide vane 3 is also reduced, and the energy consumption of the movable blade axial flow pump is reduced.

上記実施例では、羽根車翼1のチップ側をR4の円弧加工し、ケーシング10の内周面もR3の円弧加工しているが、ハブ側と同様に曲率の小さな自由曲面としてもよい。羽根車翼1のチップ側の形状を、同心球面から曲率の小さい自由曲面にすると、羽根車翼1を通過する流れを、チップ側で従来よりも直線に近い流れとすることができる。なお、羽根車翼1を旋回軸6回りに回転させて向きを変えた場合、羽根車翼1のチップが同心球面ではないので、羽根車翼1のチップとこのチップに対向するケーシング10の内周面間の隙間が変化する。   In the above embodiment, the tip side of the impeller blade 1 is processed with an arc of R4, and the inner peripheral surface of the casing 10 is also processed with an arc of R3. However, similar to the hub side, it may be a free curved surface with a small curvature. When the shape of the impeller blade 1 on the tip side is changed from a concentric spherical surface to a free curved surface having a small curvature, the flow passing through the impeller blade 1 can be made closer to a straight line on the tip side than before. When the impeller blade 1 is rotated around the pivot axis 6 to change the direction, the tip of the impeller blade 1 is not a concentric spherical surface. The gap between the peripheral surfaces changes.

羽根車翼1のチップ側の隙間を広げると、漏れ流れが増大する。そのため、曲率を小さくして得られる損失の低減以上に、可動翼軸流ポンプの効率が低下する場合も生じる。羽根車翼1のチップの位置は、羽根車翼1の最大外径位置であり、主軸5を回転させたときの周方向速度が最大となる位置である。チップの位置で周速が最大となることから、羽根車翼1の2つの表面である圧力面と負圧面との圧力差もチップ位置で最大かそれに近くなる。   When the gap on the tip side of the impeller blade 1 is widened, the leakage flow increases. For this reason, the efficiency of the movable blade axial flow pump may be reduced more than the reduction in loss obtained by reducing the curvature. The position of the tip of the impeller blade 1 is the maximum outer diameter position of the impeller blade 1, and is the position where the circumferential speed when the main shaft 5 is rotated becomes maximum. Since the peripheral speed is maximized at the tip position, the pressure difference between the pressure surface and the suction surface, which are the two surfaces of the impeller blade 1, is also at or near the tip position.

したがって、羽根車翼1のハブ側における漏れ流れよりも可動翼軸流ポンプの効率に対する影響が大きくなる。このことから、曲率の大きい自由曲面を羽根車翼1のハブ面に採用するときは、隙間での漏れ流れによる損失の増加を考慮して、羽根車翼1およびケーシング10の内周面の曲率等を決定する。   Therefore, the influence on the efficiency of the movable blade axial flow pump is greater than the leakage flow on the hub side of the impeller blade 1. Therefore, when a free curved surface having a large curvature is adopted for the hub surface of the impeller blade 1, the curvature of the inner peripheral surface of the impeller blade 1 and the casing 10 is taken into consideration in consideration of an increase in loss due to leakage flow in the gap. Etc.

本発明の他の実施例を、図2を用いて説明する。図2は、可動翼軸流ポンプの子午面断面図である。本実施例が上記実施例と相違するのは、羽根車翼1のハブ側形状および羽根車ハブ2の外周面形状を、同心球面としたことにある。羽根車ハブ2の外周は軸方向にR1の円弧面で形成されており、羽根車翼1のハブ面はR2の円弧面で形成されている。羽根車翼1は、翼旋回軸6を中心に回転可能である。   Another embodiment of the present invention will be described with reference to FIG. FIG. 2 is a meridional cross-sectional view of the movable blade axial flow pump. This embodiment is different from the above embodiment in that the shape of the impeller blade 1 on the hub side and the shape of the outer peripheral surface of the impeller hub 2 are concentric spherical surfaces. The outer periphery of the impeller hub 2 is formed by an arc surface of R1 in the axial direction, and the hub surface of the impeller blade 1 is formed by an arc surface of R2. The impeller blade 1 can rotate around the blade rotation axis 6.

本実施例では、上記特徴に加えて、羽根車ハブ2の外周径を、羽根車翼1が配置されている位置よりも上流側でD1に、下流側でD3としている。そして、径D3を径D1よりも大きくしている。本実施例によれば、上記実施例と同様に、羽根車翼1を通過した流れがハブ側でも羽根車ハブ2の外周面に沿って流れるようになり、はく離による流れの損失を回避できる。これにより、可動翼軸流ポンプのエネルギー消費を低減できる。   In this embodiment, in addition to the above features, the outer peripheral diameter of the impeller hub 2 is D1 on the upstream side and D3 on the downstream side of the position where the impeller blades 1 are disposed. The diameter D3 is larger than the diameter D1. According to this embodiment, as in the above embodiment, the flow that has passed through the impeller blades 1 flows along the outer peripheral surface of the impeller hub 2 even on the hub side, and flow loss due to separation can be avoided. Thereby, the energy consumption of a movable blade axial flow pump can be reduced.

図3および図4を用いて、本発明に係る可動翼軸流ポンプのさらに他の実施例を説明する。これらの図は、可動翼軸流ポンプの子午面断面図である。ポンプの運転範囲が、小水量域から大流量域まで、より広い範囲で運転されるポンプに適している。   Still another embodiment of the movable blade axial flow pump according to the present invention will be described with reference to FIGS. These drawings are meridional cross-sectional views of the movable blade axial flow pump. It is suitable for a pump that operates in a wider range from a small water volume range to a large flow rate range.

上記各実施例に示したポンプを用いて作動範囲を広げるためには、羽根車翼1を翼旋回軸6回りに大旋回させる必要がある。その際、羽根車翼1のハブ面と羽根車ハブ2の外周面との隙間を大きくしないと、羽根車翼1のハブが羽根車ハブ2に干渉する。その結果、羽根車翼1のチップ側ほどではないが、羽根車翼1のハブ側でも、隙間が増大すると漏れ流れが増大し、可動翼軸流ポンプの損失が増加する。   In order to widen the operating range using the pumps shown in the above embodiments, it is necessary to make the impeller blade 1 swivel about the blade swivel shaft 6. At that time, unless the gap between the hub surface of the impeller blade 1 and the outer peripheral surface of the impeller hub 2 is increased, the hub of the impeller blade 1 interferes with the impeller hub 2. As a result, although not as much as the tip side of the impeller blade 1, even on the hub side of the impeller blade 1, when the gap increases, the leakage flow increases and the loss of the movable blade axial flow pump increases.

この不具合を解消するために、本実施例では、羽根車翼1のハブ側の隙間における漏れ流れを低減する形状とした。具体的には、羽根車翼1のハブ側形状を半径R2の円弧状とし、それに対応する羽根車ハブ2の外周の子午面断面形状を半径R1(R1<R2)の円弧状とし、半径R1、R2の円弧の中心を、主軸5の中心軸線上の同一位置としている。また、当然のことながら、翼旋回軸6回りに羽根車翼1が回動可能である。   In order to solve this problem, in this embodiment, the shape of the impeller blade 1 is reduced in the leakage flow in the gap on the hub side. Specifically, the shape of the hub side of the impeller blade 1 is an arc shape with a radius R2, the corresponding meridional cross-sectional shape of the outer periphery of the impeller hub 2 is an arc shape with a radius R1 (R1 <R2), and the radius R1 The center of the arc of R2 is the same position on the central axis of the main shaft 5. As a matter of course, the impeller blade 1 can be rotated around the blade rotation axis 6.

羽根車翼1の下流には、周方向にほぼ等ピッチで、複数枚の案内羽根3が配置されている。案内羽根3のハブ径または案内羽根ハブ4の外径は、羽根車ハブ2が羽根車翼1に対向する部分の最小径よりも大径である。すなわち、可動翼軸流ポンプの中心線側に配置される羽根車ハブ2の外径は、羽根車翼2の上流側の直径D1から流れ方向に徐々に増加し、翼旋回軸6部で最大直径2*R1になり、その後徐々に減少して最小直径D2になる。そして、案内羽根ハブ4の入口側ではD2またはD2より僅かに大きな外径となり、案内羽根3に対向する部分では2*R1よりも小さな直径になっている。   A plurality of guide vanes 3 are arranged at a substantially equal pitch in the circumferential direction downstream of the impeller blade 1. The hub diameter of the guide blade 3 or the outer diameter of the guide blade hub 4 is larger than the minimum diameter of the portion where the impeller hub 2 faces the impeller blade 1. That is, the outer diameter of the impeller hub 2 disposed on the center line side of the movable blade axial flow pump gradually increases in the flow direction from the diameter D1 on the upstream side of the impeller blade 2, and reaches the maximum at the blade swirl shaft 6 portion. The diameter becomes 2 * R1, and then gradually decreases to the minimum diameter D2. The outer diameter of the guide vane hub 4 is slightly larger than D2 or D2, and the diameter of the portion facing the guide vane 3 is smaller than 2 * R1.

図3に記載した実施例では、案内羽根ハブ4の外径は、流れの上流側で、羽根車ハブ2の最小径D2よりわずかに大きな径の円筒形であり、案内羽根3を過ぎた部分から徐々に直径が減少している。一方図4に示した実施例では、羽根車ハブ2の下流側の直径D2とほぼ同じ外径から徐々に案内羽根ハブ4の外径が増大し、案内羽根3部では同一径の円筒形であり、案内羽根3を過ぎると図3に示した実施例同様に、案内羽根ハブ4の外径は徐々に減少する。   In the embodiment shown in FIG. 3, the outer diameter of the guide vane hub 4 is a cylindrical shape having a diameter slightly larger than the minimum diameter D <b> 2 of the impeller hub 2 on the upstream side of the flow, and a portion past the guide vane 3. The diameter gradually decreases from. On the other hand, in the embodiment shown in FIG. 4, the outer diameter of the guide vane hub 4 gradually increases from substantially the same outer diameter as the downstream diameter D2 of the impeller hub 2, and the guide vane 3 has a cylindrical shape with the same diameter. Yes, after passing through the guide vane 3, the outer diameter of the guide vane hub 4 gradually decreases as in the embodiment shown in FIG.

このように案内羽根ハブ4の外径を構成すると、図3の実施例の場合には、羽根車翼1を通過する流れがハブ側ではく離を生じて、流れの乱れとなる領域を低減できる。したがって、羽根車翼1の出口側のハブ側で発生したはく離による流れの乱れが、案内羽根3まで及ぶのを回避でき、案内羽根3のハブ側の損失を低減することができる。したがって、可動翼軸流ポンプのエネルギー消費を低減できる。   If the outer diameter of the guide vane hub 4 is configured in this way, in the case of the embodiment of FIG. 3, the flow passing through the impeller blades 1 is separated on the hub side, and the region where the flow is disturbed can be reduced. . Therefore, it is possible to avoid the disturbance of the flow caused by the separation generated on the hub side on the outlet side of the impeller blade 1 from reaching the guide blade 3, and to reduce the loss on the hub side of the guide blade 3. Therefore, energy consumption of the movable blade axial flow pump can be reduced.

また、図4に示した実施例では、羽根車翼1から案内羽根3へ水が流れる領域でのエネルギー消費をさらに低減するために、羽根車の下流に設けた案内羽根3のハブ側形状を上記形状として、縮流量域を設けている。羽根車翼1の出口側のハブ側で発生したはく離による流れの乱れ領域をさらに低減することが可能になる。それとともに、羽根車翼1の出口側のハブ側で発生したはく離による流れの乱れが整流され、案内羽根3に流れの乱れが及ぶのを回避できる。   Further, in the embodiment shown in FIG. 4, in order to further reduce the energy consumption in the region where water flows from the impeller blade 1 to the guide blade 3, the shape of the guide blade 3 provided on the hub side downstream of the impeller is changed. As the shape, a contracted flow rate region is provided. It is possible to further reduce the flow turbulence region due to the separation generated on the hub side on the outlet side of the impeller blade 1. At the same time, the turbulence of the flow caused by the separation generated on the hub side on the outlet side of the impeller blade 1 is rectified, and the turbulence of the flow on the guide blade 3 can be avoided.

図1に示した実施例における羽根車翼1および羽根車ハブ2に、図4に示した案内羽根3および案内羽根ハブ4を組み合わせて可動翼軸流ポンプを構成した例を、図5に子午面断面で示す。羽根車翼1のハブ面は半径R5の円弧形であり、羽根車ハブ2の外径の子午面形状は、半径R6の円弧形である。そして、半径R5の円と半径R6の円の中心は、同一位置ではない。なお、羽根車翼1のハブ形状は、円弧の他に楕円形または、それに類似する自由曲面でもよい。   An example in which the impeller blade 1 and the impeller hub 2 in the embodiment shown in FIG. 1 are combined with the guide vane 3 and the guide vane hub 4 shown in FIG. Shown in cross section. The hub surface of the impeller blade 1 has an arc shape with a radius R5, and the meridional shape of the outer diameter of the impeller hub 2 has an arc shape with a radius R6. And the center of the circle of radius R5 and the circle of radius R6 is not the same position. The hub shape of the impeller blade 1 may be an elliptical shape or a free curved surface similar to the circular shape in addition to the circular arc.

案内羽根ハブ4の入口側の外径は、羽根車ハブ2の出口側の外径D2とほぼ同じにし、水の流れの方向に次第に大きくなる縮流量域が形成された形状としている。なお、図3に示した実施例のように、案内羽根ハブ4の外径を入口側でほぼ一定の外径とし、この一定径を羽根車ハブ2の最大外径2*R1よりも小さくしてもよい。   The outer diameter on the inlet side of the guide vane hub 4 is substantially the same as the outer diameter D2 on the outlet side of the impeller hub 2, and a shape in which a contracted flow rate region that gradually increases in the direction of water flow is formed. As in the embodiment shown in FIG. 3, the outer diameter of the guide vane hub 4 is set to an almost constant outer diameter on the inlet side, and this constant diameter is made smaller than the maximum outer diameter 2 * R1 of the impeller hub 2. May be.

本実施例によれば、羽根車翼1を過ぎる流れが、ハブ側で羽根車ハブ2外周面形状に沿わずに外径側に流れてはく離していた領域を、低減することができるとともに羽根車翼1を通過する流れの乱れを整流でき、案内羽根まで流れの乱れが及ぶのを回避できる。したがって、可動翼軸流ポンプのエネルギー消費を抑制できる。   According to the present embodiment, it is possible to reduce the region where the flow passing through the impeller blades 1 does not follow the outer peripheral surface shape of the impeller hub 2 on the hub side and is separated from the outer diameter side, and the blades. The turbulence of the flow passing through the vehicle blade 1 can be rectified, and the turbulence of the flow up to the guide vanes can be avoided. Therefore, energy consumption of the movable blade axial flow pump can be suppressed.

本発明に係る可動翼軸流ポンプの一実施例の子午面形状図。The meridian surface shape figure of one Example of the movable blade axial flow pump which concerns on this invention. 本発明に係る可動翼軸流ポンプの他の実施例の子午面形状図。The meridian surface shape figure of the other Example of the movable blade axial flow pump which concerns on this invention. 本発明に係る可動翼軸流ポンプのさらに他の実施例の子午面形状図。The meridian surface shape figure of the further another Example of the movable blade axial flow pump which concerns on this invention. 図3に示した可動翼軸流ポンプの子午面形状図。FIG. 4 is a meridional shape diagram of the movable blade axial flow pump shown in FIG. 3. 本発明に係る可動翼軸流ポンプのさらに他の実施例の子午面形状図。The meridian surface shape figure of the further another Example of the movable blade axial flow pump which concerns on this invention.

符号の説明Explanation of symbols

1…羽根車翼、2…羽根車ハブ、3…案内羽根、4…案内羽根ハブ、5…主軸、6…翼旋回軸、7、8…羽根車出口側の流れ、10…ケーシング、R1…羽根車ハブの子午面を象る円弧径、R2…羽根車翼のハブ形状を象る円弧径、R3…羽根車ケーシングの内周を象る円弧径、R4…羽根車翼のチップを象る円弧径、R5…羽根車ハブ子午面を象る円弧径、R6…羽根車翼のハブ形状を象る円弧径、D1…羽根車ハブの上流側の円筒直径、D2…羽根車ハブの下流側の円筒直径、D3…羽根車ハブの下流側の円筒直径。   DESCRIPTION OF SYMBOLS 1 ... Impeller blade, 2 ... Impeller hub, 3 ... Guide blade, 4 ... Guide blade hub, 5 ... Main shaft, 6 ... Blade rotation shaft, 7, 8 ... Flow on impeller exit side, 10 ... Casing, R1 ... Arc diameter representing the meridian surface of the impeller hub, R2 ... arc diameter representing the hub shape of the impeller blade, R3 ... arc diameter representing the inner periphery of the impeller casing, R4 ... representing the tip of the impeller blade Arc diameter, R5: Arc diameter representing the impeller hub meridian plane, R6: Arc diameter representing the hub shape of the impeller blade, D1: Cylindrical diameter upstream of the impeller hub, D2: Downstream side of the impeller hub The cylindrical diameter of D3, ... the downstream cylindrical diameter of the impeller hub.

Claims (6)

羽根車ハブの外周側に間隔をおいて設けられた複数の羽根車翼が各翼ごとに設定された翼旋回軸の回りに回動可能である可動翼軸流ポンプにおいて、前記羽根車翼の内径端形状を円弧形状とし、前記羽根車ハブの外周面の子午面形状が、前記羽根車翼の内径端円弧の中心位置と同じ中心位置で羽根車ハブの子午面形状を円弧で形成したときの円弧の曲率よりも小さい曲率の曲線形状であることを特徴とする可動翼軸流ポンプ。   In a movable vane axial flow pump in which a plurality of impeller blades provided at intervals on the outer peripheral side of the impeller hub are rotatable around a blade swirl axis set for each blade, When the inner diameter end shape is an arc shape, and the meridional shape of the outer peripheral surface of the impeller hub is the same center position as the center position of the inner diameter end arc of the impeller blade, the meridional shape of the impeller hub is formed by an arc. A movable blade axial flow pump characterized by having a curved shape with a curvature smaller than the curvature of the arc. 羽根車ハブの外周側に間隔をおいて設けられた複数の羽根車翼が各翼ごとに設定された翼旋回軸の回りに回動可能である可動翼軸流ポンプにおいて、前記羽根車ハブの下流側に周方向に間隔をおいて配置された複数の案内羽根を有する案内羽根ハブを配置し、前記案内羽根が位置する部分の前記案内羽根ハブの外径は、前記羽根車ハブの最小外径よりも大きく、羽根車ハブの最大外径よりも小さく形成されていることを特徴とする可動翼軸流ポンプ。   In the movable blade axial flow pump in which a plurality of impeller blades provided at intervals on the outer peripheral side of the impeller hub are rotatable around a blade swirl axis set for each blade, the impeller hub includes: A guide vane hub having a plurality of guide vanes arranged at intervals in the circumferential direction on the downstream side is arranged, and the outer diameter of the guide vane hub at the portion where the guide vanes are located is the smallest outside of the impeller hub. A movable blade axial flow pump characterized in that it is larger than the diameter and smaller than the maximum outer diameter of the impeller hub. 前記羽根車ハブの外径が、上流端で下流端よりも小さいことを特徴とする請求項1または2に記載の可動翼軸流ポンプ。   The movable blade axial flow pump according to claim 1 or 2, wherein the outer diameter of the impeller hub is smaller at the upstream end than at the downstream end. 前記案内羽根ハブの案内羽根取付け部の外径が、前記羽根車ハブの下流端の外径より大きいことを特徴とする請求項1または2に記載の可動翼軸流ポンプ。   The movable blade axial flow pump according to claim 1 or 2, wherein an outer diameter of a guide blade mounting portion of the guide blade hub is larger than an outer diameter of a downstream end of the impeller hub. 前記案内羽根ハブの外径を、羽根車ハブの下流端の外径より流れ方向に徐々に大きくして縮流量域を設けたことを特徴とする請求項4に記載の可動翼軸流ポンプ。   5. The movable blade axial flow pump according to claim 4, wherein an outer diameter of the guide blade hub is gradually increased in a flow direction from an outer diameter of a downstream end of the impeller hub to provide a contracted flow rate region. 前記案内羽根の外径端が取り付けられるほぼ円筒状のケーシングを有し、このケーシングの前記羽根車翼に対向する内周面の子午面断面形状と羽根車翼の外径端の形状を同心円形状としたことを特徴とする請求項1または2に記載の可動翼軸流ポンプ。   It has a substantially cylindrical casing to which the outer diameter end of the guide vane is attached, and the meridional cross-sectional shape of the inner peripheral surface of the casing facing the impeller blade and the outer diameter end of the impeller blade are concentric. The movable blade axial flow pump according to claim 1 or 2, wherein
JP2007247462A 2007-09-25 2007-09-25 Movable blade axial flow pump Expired - Fee Related JP4882939B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007247462A JP4882939B2 (en) 2007-09-25 2007-09-25 Movable blade axial flow pump
CN201410053634.3A CN103758780B (en) 2007-09-25 2008-08-20 Movable vane type axial-flow pump
CN200810211039.2A CN101398011B (en) 2007-09-25 2008-08-20 Movable vane type axial-flow pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007247462A JP4882939B2 (en) 2007-09-25 2007-09-25 Movable blade axial flow pump

Publications (2)

Publication Number Publication Date
JP2009079493A true JP2009079493A (en) 2009-04-16
JP4882939B2 JP4882939B2 (en) 2012-02-22

Family

ID=40516785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007247462A Expired - Fee Related JP4882939B2 (en) 2007-09-25 2007-09-25 Movable blade axial flow pump

Country Status (2)

Country Link
JP (1) JP4882939B2 (en)
CN (2) CN103758780B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102588329A (en) * 2012-03-13 2012-07-18 张仁田 Axial-flow type water pump with blade-type adjustable line segment
JP2016523341A (en) * 2013-06-28 2016-08-08 ザイレム・アイピー・マネジメント・ソシエテ・ア・レスポンサビリテ・リミテ Propeller pump for pumping liquid
CN106958534A (en) * 2017-04-28 2017-07-18 合肥工业大学 A kind of axial-flow pump impeller for improving anti-cavitation performance
CN110159585A (en) * 2019-05-23 2019-08-23 西华大学 A kind of disk impeller of pump
CN117366008A (en) * 2023-10-31 2024-01-09 兰州理工大学 Multiphase mixed transmission impeller with high light and heavy phase separation resistance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105673559B (en) * 2016-04-13 2018-04-06 上海理工大学 Efficient meridionally-accelerated axial flow fan with casing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885399A (en) * 1981-11-13 1983-05-21 Hitachi Ltd Pullout type axial pump with movable blades
JPS58172495A (en) * 1982-04-02 1983-10-11 Hitachi Ltd Mechanical type blade movable device
DE4226204A1 (en) * 1992-08-07 1994-02-10 Halberg Maschbau Gmbh & Co Rotationally secure attachment of blade foot to flow machine hub - uses toothed position rings to ensure chosen angular setting is maintained
CN2152105Y (en) * 1992-11-27 1994-01-05 卜漱和 Two-way axial-flow pump

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102588329A (en) * 2012-03-13 2012-07-18 张仁田 Axial-flow type water pump with blade-type adjustable line segment
JP2016523341A (en) * 2013-06-28 2016-08-08 ザイレム・アイピー・マネジメント・ソシエテ・ア・レスポンサビリテ・リミテ Propeller pump for pumping liquid
CN106958534A (en) * 2017-04-28 2017-07-18 合肥工业大学 A kind of axial-flow pump impeller for improving anti-cavitation performance
CN106958534B (en) * 2017-04-28 2023-05-16 合肥工业大学 Axial flow pump impeller capable of improving cavitation resistance
CN110159585A (en) * 2019-05-23 2019-08-23 西华大学 A kind of disk impeller of pump
CN110159585B (en) * 2019-05-23 2024-02-13 西华大学 Disc pump impeller
CN117366008A (en) * 2023-10-31 2024-01-09 兰州理工大学 Multiphase mixed transmission impeller with high light and heavy phase separation resistance
CN117366008B (en) * 2023-10-31 2024-03-12 兰州理工大学 Multiphase mixed transmission impeller with high light and heavy phase separation resistance

Also Published As

Publication number Publication date
CN103758780B (en) 2016-03-23
CN103758780A (en) 2014-04-30
CN101398011A (en) 2009-04-01
CN101398011B (en) 2014-07-30
JP4882939B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
US9353630B2 (en) Turbine rotor
US20100068028A1 (en) Reduced tip clearance losses in axial flow fans
JP4882939B2 (en) Movable blade axial flow pump
JP6234600B2 (en) Turbine
WO2011007466A1 (en) Impeller and rotary machine
JP2008175124A (en) Centrifugal compressor
JP5398515B2 (en) Radial turbine blades
JP2006046168A (en) Axial-flow pump and mixed flow pump
JP5314441B2 (en) Centrifugal hydraulic machine
JP2009257094A (en) Runner vane of axial flow hydraulic machine
CN105518307A (en) Centrifugal rotor
JP2007291874A (en) Axial flow hydro-turbine runner
WO2018155546A1 (en) Centrifugal compressor
WO2017072843A1 (en) Rotary machine
WO2008082428A1 (en) Reduced tip clearance losses in axial flow fans
JPWO2018179112A1 (en) Compressor scroll shape and turbocharger
JP2013204422A (en) Turbine
EP3705697B1 (en) Turbine and turbocharger
JP5409265B2 (en) Impeller and rotating machine
JP6239258B2 (en) Axial water turbine
JP6407763B2 (en) Axial flow hydraulic machine runner vane, axial flow hydraulic machine runner and axial flow hydraulic machine
JP6234343B2 (en) Rotating machine
JP5344838B2 (en) Fluid machinery
JP5248422B2 (en) Turbomachine and turbine runner
JP2017180115A (en) Impeller and rotary machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4882939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees