JP2009078239A - Low dew point air manufacturing apparatus - Google Patents

Low dew point air manufacturing apparatus Download PDF

Info

Publication number
JP2009078239A
JP2009078239A JP2007250530A JP2007250530A JP2009078239A JP 2009078239 A JP2009078239 A JP 2009078239A JP 2007250530 A JP2007250530 A JP 2007250530A JP 2007250530 A JP2007250530 A JP 2007250530A JP 2009078239 A JP2009078239 A JP 2009078239A
Authority
JP
Japan
Prior art keywords
air
dew point
adsorbent
low dew
production apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007250530A
Other languages
Japanese (ja)
Other versions
JP5464393B2 (en
Inventor
Hiroyuki Hatano
博之 幡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007250530A priority Critical patent/JP5464393B2/en
Publication of JP2009078239A publication Critical patent/JP2009078239A/en
Application granted granted Critical
Publication of JP5464393B2 publication Critical patent/JP5464393B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low dew point air manufacturing apparatus which can cut considerably power consumption and further increase considerably a manufactured air volume, and manufacture the low dew point air in a large quantity effectively. <P>SOLUTION: A cooler carrying out an isothermal dehumidification is provided on a dehumidifying portion in a duct to which an adsorbent or an adsorbent holding member is supplied, and a conduction heating device is provided on a regenerating part regenerating a dehumidifying agent or a dehumidifying agent holding member after the dehumidification at the dehumidifying portion. In an example of Fig.1, a heat exchanger 14 for cooling the dehumidifying portion is provided on the dehumidifying portion 14 supplying an adsorbent particle 15 to the duct 11 to guide cooling water from a cooling tower 19 enabling the isothermal dehumidification. The dehumidifying agent particle 15 after moisture adsorption is sent to the regenerating part 17, regenerates using a part of exhaust air from an objective air conditioning space 21, and at the same time enables a regeneration by the conduction heating device 20. A heat exchanger 23 utilizing waste heat is also provided on the regenerating part to enable the use of various kinds of outside waste heat. An adiabatic humidifying is carried out to the exhaust air from the objective air conditioning space 21 by a cooling tower 25, and the cooling of air supply is carried out. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は乾燥装置或いは室内等の目的空間に低露点空気を供給するために用いる吸着剤を用いた減湿システムに関し、特に吸着剤を除湿部で等温除湿を可能とし、再生部で伝導加熱乾燥を行うことにより製品空気あるいは目的空間からの還気を少量使うことを可能とし、超低露点空気を低消費電力で大量に製造することを可能とした低露点空気製造装置に関する。   The present invention relates to a dehumidification system using an adsorbent used for supplying low dew point air to a target space such as a drying apparatus or a room, and in particular, the adsorbent can be dehumidified at a dehumidifying part and conductively heated and dried at a regeneration part. The present invention relates to a low dew point air production apparatus that makes it possible to use a small amount of product air or return air from a target space, and to produce a large amount of ultra-low dew point air with low power consumption.

従来より半導体やLi電池製造工程において品質を安定させるため、絶対湿度の少ない低露点空気を供給することが行われ、特に低露点空気とした超低露点空気を製造して供給することも行われている。このような低露点空気の製造に際しては、従来よりハニカム状ローターを用いる方式、或いは、圧力スイング(PSA)式等による超低露点空気製造装置が商品化され用いられている。   Conventionally, low dew point air with low absolute humidity has been supplied to stabilize quality in semiconductor and Li battery manufacturing processes, and in particular, ultra low dew point air with low dew point air has been manufactured and supplied. ing. In the production of such low dew point air, an ultra low dew point air production apparatus using a honeycomb rotor or a pressure swing (PSA) type has been commercialized and used.

スイング式の低露点空気製造装置は、原料空気を圧縮機によって圧縮して当該空気中のドレンを一旦除去し、その後吸着剤を収納した吸着塔を通過させる手法であるが、この手法では、最初に空気を圧縮するための大きな動力が必要となり、しかも吸着塔の吸着剤の再生に別途精製給気を使用しているため、消費エネルギーが多く、また設備機器が大型化し、ランニングコストも大きくなる問題がある。   The swing type low dew point air production apparatus is a method in which raw air is compressed by a compressor to temporarily remove drain in the air, and then passes through an adsorption tower containing an adsorbent. Requires a large amount of power to compress the air and uses a separate purified air supply to regenerate the adsorbent in the adsorption tower, which consumes a lot of energy, increases the equipment size, and increases the running cost. There's a problem.

それに対して低露点空気製造装置においては、強力な冷凍機で例えば7℃以下まで事前冷却することにより等湿除湿に近い断熱除湿を行っている。その際、外気をそのまま冷却すると結露による潜熱除去負荷が増加し、効率が低下する問題がある。そのため目的空間からの排気と外気を混合することで絶対湿度を下げ顕熱除去のみを行うようにしている。   On the other hand, in a low dew point air production apparatus, adiabatic dehumidification close to isohumidity dehumidification is performed by precooling to, for example, 7 ° C. or less with a powerful refrigerator. At that time, if the outside air is cooled as it is, there is a problem that the latent heat removal load due to condensation increases and efficiency is lowered. Therefore, the absolute humidity is lowered by mixing the exhaust from the target space and the outside air, and only the sensible heat is removed.

例えば図11(ムンタース社操作マニュアルより引用加筆)に示すローターを用いた低露点空気製造装置の例においては、−60℃露点空気を作る場合、外気420m3/hと室内還気540m3/hを混合し、このうち160m3/hをパージ再生用に用いて製品空気800m3/hを製造している。そのため、毎時800m3/hの低露点空気製造において14kW程度の消費電力を要し、そのうち5kW以上をプレクーラとしての事前冷却用冷凍機、7kW程度を再生電気ヒーターに使っている。これに加えて、温度を低下させるための冷凍機の消費電力が別途加わり、超低露点空気製造は電力多消費型となっている。また、今後も需要が増加する−100℃低露点空気製造装置においては180m3/hの低露点空気製造で9kWの電力消費を必要としている。   For example, in the example of the low dew point air production apparatus using the rotor shown in FIG. 11 (quoted from the Munters operation manual), when producing -60 ° C. dew point air, outside air 420 m 3 / h and indoor return air 540 m 3 / h are mixed. Of these, 160 m3 / h is used for purge regeneration to produce 800 m3 / h of product air. For this reason, about 14 kW of power is required in the production of low dew point air of 800 m 3 / h per hour, of which 5 kW or more is used as a precooling refrigerator as a precooler, and about 7 kW is used as a regenerative electric heater. In addition to this, the power consumption of the refrigerator for lowering the temperature is added separately, and the ultra-low dew point air production is a high power consumption type. Further, in the -100 ° C. low dew point air production apparatus, which will continue to increase in the future, a power consumption of 9 kW is required for producing a low dew point air of 180 m 3 / h.

またこの方式では、乾燥用の電気ヒータにより空気を200℃まで加熱し、断熱乾燥を行っているが、それにより大幅なエクセルギー損失を招いており、乾燥時間が長くなる。また、ロータ内の解析を行うとRe数が400程度の層流となっており、物質移動や伝熱速度がさらに小さくなっている。そのため、排気湿度は57g/kg程度までにしか増加していない。これは温度が高いため相対湿度では0.5%までしか増加していないことと関連している。
この様子は低露点空気用に縦軸を対数軸にした図8の温度湿度線図に示すように、外気と室内換気を混合し、160m3/h分を200℃まで温度を上げることにより相対湿度0.5%程度の再生用空気とするとき、それが除湿剤粒子の除湿限界となる。また、このようにして乾燥させた除湿剤粒子を用い、混合気の800m3/hを等温除湿に近い温度変化になるように7℃まで温度を低下させている。なお、外気のみを使用すると7℃では飽和湿度を越えるため結露し、潜熱除去のエネルギーがより必要になるため、室内換気との混合により低湿度原料を作る必要がある。その後、断熱除湿すると−60℃レベルの低露点空気製造が可能となる。図中、−60℃、−80℃、−90℃、−100℃の湿度レベルを太い破線で示している。
In this method, air is heated to 200 ° C. by an electric heater for drying and adiabatic drying is performed. However, this results in a significant exergy loss and a longer drying time. Further, when the analysis in the rotor is performed, a laminar flow having a Re number of about 400 is obtained, and mass transfer and heat transfer speed are further reduced. Therefore, the exhaust humidity has increased only to about 57 g / kg. This is related to the fact that the relative humidity increases only to 0.5% due to the high temperature.
As shown in the temperature-humidity diagram of Fig. 8 with the vertical axis representing the logarithmic axis for low dew point air, the ambient humidity is mixed with the outside air and the relative humidity is increased by increasing the temperature to 200 ° C by 160 m3 / h. When the air for regeneration is about 0.5%, it becomes the dehumidifying limit of the dehumidifying agent particles. In addition, using the dehumidifying agent particles thus dried, the temperature is lowered to 7 ° C. so that the temperature of the air-fuel mixture is changed to 800 m 3 / h, which is close to isothermal dehumidification. If only the outside air is used, condensation will occur at 7 ° C. because it exceeds the saturation humidity, and more energy for removing latent heat will be required. Therefore, it is necessary to make a low-humidity raw material by mixing with indoor ventilation. After that, when the heat is dehumidified, low dew point air production at −60 ° C. can be produced. In the figure, humidity levels of −60 ° C., −80 ° C., −90 ° C., and −100 ° C. are indicated by thick broken lines.

なお、2段のローターを用いて除湿を行い−70〜−75℃程度の中間到達露点温度まで除湿を行った後、非再生式除湿器を用いて−90℃以下の最終到達露点温度まで除湿する技術が特許文献1に開示されている。また、3段のローターを用いて順に除湿を行い、そのローターには再生区域と除湿区域に移行する前にパージ区域を設け、ローターからの減湿空気をパージ領域に導入するようにした技術は特許文献2に開示されている。更に、ローターを用いた低濃度ガス収着機において、ローターを円周方向に複数分割し、形成した扇形部分が第1段収着ゾーン、第2段収着ゾーン、予冷ゾーン、再生ゾーンとして機能するようにした技術は特許文献3に開示されている。
特開平07−754号公報 特許第3483752号公報 特許第2673300公報
In addition, after dehumidifying using a two-stage rotor and dehumidifying to an intermediate ultimate dew point temperature of about −70 to −75 ° C., using a non-regenerative dehumidifier, dehumidifying to a final ultimate dew point temperature of −90 ° C. or lower. The technique to do is disclosed by patent document 1. FIG. In addition, the technology in which dehumidification is performed sequentially using a three-stage rotor, the rotor is provided with a purge zone before moving to the regeneration zone and the dehumidification zone, and the dehumidified air from the rotor is introduced into the purge zone. It is disclosed in Patent Document 2. Furthermore, in a low-concentration gas sorption machine using a rotor, the rotor is divided into a plurality of parts in the circumferential direction, and the formed sector functions as a first stage sorption zone, a second stage sorption zone, a precooling zone, and a regeneration zone The technique made to do so is disclosed in Patent Document 3.
Japanese Patent Application Laid-Open No. 07-754 Japanese Patent No. 3483752 Japanese Patent No. 2673300

前記のように、スイング式の低露点空気製造装置は電力多消費型であり、設備も大型化しコスト高になると共に、ローターを用いた低露点空気製造装置においても多くの消費電力を必要とする問題がある。   As described above, the swing type low dew point air production apparatus is a power consuming type, and the equipment becomes large and expensive, and the low dew point air production apparatus using the rotor requires a large amount of power consumption. There's a problem.

したがって本発明は、消費電力を大幅にカットすることができ、また、製造風量も大幅に増加させることができると共に、各種廃熱も使用できるようにしてより効率的な低露点空気を製造できる低露点空気製造装置を提供することを主たる目的とする。   Therefore, according to the present invention, the power consumption can be greatly cut, the production air volume can be greatly increased, and various waste heats can be used to produce more efficient low dew point air. The main purpose is to provide a dew point air production apparatus.

本発明に係る低露点空気製造装置においては、上記課題を解決するため第1に、除湿剤の乾燥再生に際して伝導加熱乾燥を行い、それにより排気温度の飽和蒸気圧まで湿度を上げることができるようにする。例えば図10の表(流動層ハンドブック日本粉体工業技術協会編p190表1.8より引用)における塩化ビニルの乾燥における伝熱体内装型として示すように、出口空気温度49.5℃で伝導加熱乾燥を行うと、湿度91%で排気することができる。ここでは60℃に設定して乾燥を行ったが、この時も排気温度がほぼ40℃相対湿度100%で乾燥することができた。排気温度を90℃、相対湿度90%とすると湿度(絶対)は約1kg/kgとなり。従来の−60℃露点空気製造プロセス例の1/20程度の再生用空気風量となる。即ち、8m3/h程度の流量で再生が可能となり、製品あるいは目的空間内の排気を使ってもほとんど負担にならないことがわかる。   In the low dew point air production apparatus according to the present invention, firstly, in order to solve the above problems, conductive heating drying is performed during drying regeneration of the dehumidifying agent, thereby increasing the humidity to the saturated vapor pressure of the exhaust temperature. To. For example, as shown as a heat transfer body internal type in the drying of vinyl chloride in the table of FIG. 10 (cited from Table 1.8 of p190 in the Fluidized Bed Handbook Japan Powder Industrial Technology Association), conductive heating at an outlet air temperature of 49.5 ° C. When drying is performed, exhaust can be performed at a humidity of 91%. Here, the drying was performed at 60 ° C., but at this time, the drying could be performed at an exhaust temperature of about 40 ° C. and a relative humidity of 100%. If the exhaust temperature is 90 ° C and the relative humidity is 90%, the humidity (absolute) is about 1 kg / kg. The air volume for regeneration is about 1/20 of the conventional -60 ° C. dew point air production process example. In other words, it can be regenerated at a flow rate of about 8 m 3 / h, and it can be seen that there is almost no burden even if the exhaust in the product or the target space is used.

このように伝導加熱を用いることによる効果を更に流動層(FB)乾燥試験によってその効果を確かめた。そのときの本発明における作動状況を図7に示す。この試験においては同図の下部にH[ON/OFF]として示すようにヒーターをオンオフ制御して電熱ヒーターを加熱したものであり、それにより同図のφoutのように100%の排気湿度を得ることができ、その際にφFBとして示す流動層(FB)内部の湿度は急速に低下し、除湿効果が高いことがわかる。なお、この試験中における外気の温湿度変化は図示のとおりである。   Thus, the effect by using conductive heating was further confirmed by a fluidized bed (FB) drying test. FIG. 7 shows the operating state in the present invention at that time. In this test, the heater was turned on and off as indicated by H [ON / OFF] at the bottom of the figure to heat the electric heater, thereby obtaining 100% exhaust humidity as shown in φout in the figure. It can be seen that the humidity inside the fluidized bed (FB) indicated as φFB at that time rapidly decreases and the dehumidifying effect is high. In addition, the temperature and humidity change of the outside air during this test is as shown in the figure.

また本発明においては上記課題を解決するため第2に、空気を除湿剤で除湿する除湿部において外気温度と平衡な水道水あるいはクーリングタワー冷却水による冷却によって実現される等温除湿を行うことにより除湿限界まで問題なく除湿を行い、また少ない室内還気あるいは製品空気を除湿剤の再生に利用することによって省エネルギー性の高い除湿を行うことができるようにし、また廃熱利用も可能とする。   In the present invention, in order to solve the above-mentioned problem, secondly, the dehumidification limit is achieved by performing isothermal dehumidification realized by cooling with tap water or cooling tower cooling water that is in equilibrium with the outside air temperature in a dehumidifying section that dehumidifies air with a dehumidifying agent. In addition, it is possible to perform dehumidification without problems, and to use less indoor return air or product air for regeneration of the dehumidifying agent so that dehumidification with high energy saving can be performed, and waste heat can be used.

即ち、図9の温度湿度線図(低露点用)に示すように、外気4.2と室内換気5.4を混合し、200℃まで温度を上げることにより相対湿度0.5%程度の乾燥空気として除湿剤粒子を再生するとき、それが除湿限界となる。その後外気800m3/hを除湿限界まで等温除湿すると約12kg/hを除湿することで−60℃レベルの低露点空気製造が可能となる。外気温度と同じレベルで等温除湿するためには水道水あるいはクーリングタワー冷却水による冷却で十分なため水循環動力のみが必要となり大幅な省エネルギーが可能となる。また、除湿剤再生時に必要な混合空気量は1kg/kgの条件にすると12m3/hで済むことになる。図中、−60℃、−80℃、−90℃、−100℃の絶対湿度レベルを太い破線で示している。   That is, as shown in the temperature-humidity diagram (for low dew point) in FIG. 9, the outside air 4.2 and the indoor ventilation 5.4 are mixed and dried to a relative humidity of about 0.5% by raising the temperature to 200 ° C. When regenerating the dehumidifying agent particles as air, it becomes the dehumidifying limit. Thereafter, when the outside air of 800 m 3 / h is dehumidified to the dehumidification limit, the low dew point air at a level of −60 ° C. can be produced by dehumidifying about 12 kg / h. In order to perform isothermal dehumidification at the same level as the outside air temperature, it is sufficient to cool with tap water or cooling tower cooling water, so only water circulation power is required, and significant energy saving is possible. In addition, the amount of mixed air necessary for regeneration of the dehumidifying agent is 12 m3 / h under the condition of 1 kg / kg. In the figure, the absolute humidity levels of −60 ° C., −80 ° C., −90 ° C., and −100 ° C. are indicated by thick broken lines.

上記のような本発明による等温除湿を行うシステムにおいては、30℃の外気から出発しても何の問題もなく除湿限界まで湿度を下げることが可能となる。また、再生に室内還気を用いると約80℃への昇温で−60℃露点空気製造のための除湿限界が達成できるため、より省エネルギーとなる。さらに、ヒーターによる高温化をする必要がないため排熱利用もし易くなる。ただし、この場合は再生時の所用風量が排気温度の低下により絶対湿度が低下するため50−100m3/hとなる。
また、一旦−60℃の低露点空気を800m3/h作り、その内の一部を使って再生すると200℃への昇温により、外気のみから−100℃の超低露点空気約800m3/hも上記−60℃低露点空気約788m3/hと併せて製造可能となる。ここで200℃まで温度を上げる必要のある風量は除湿量自体が前記−60℃空気製造と同様であるため12m3/h程度で十分となり、ヒーター消費電力を少なくできる。
ここで、中間で製造された−60℃低露点空気を原料空気とすると、除湿量はさらに少量となるため、除湿剤再生時に必要な風量と消費電力も減少し、より省エネルギー性が増すことになる。
In the system for performing isothermal dehumidification according to the present invention as described above, it is possible to reduce the humidity to the dehumidification limit without any problems even when starting from the outside air at 30 ° C. In addition, when indoor return air is used for regeneration, the dehumidification limit for producing -60 ° C. dew point air can be achieved by raising the temperature to about 80 ° C., thereby further saving energy. Furthermore, since it is not necessary to raise the temperature with a heater, it becomes easy to use waste heat. However, in this case, the required air volume at the time of regeneration is 50-100 m <3> / h because the absolute humidity decreases due to a decrease in exhaust temperature.
Moreover, once the low dew point air of −60 ° C. is made 800 m 3 / h and regenerated using a part of the air, the temperature is raised to 200 ° C., and the ultra low dew point air of −100 ° C. is about 800 m 3 / h from the outside air alone. It can be manufactured together with the above-mentioned -60 ° C. low dew point air of about 788 m 3 / h. Here, the amount of air that needs to be raised to 200 ° C. is about 12 m 3 / h because the dehumidification amount itself is the same as that in the above-mentioned −60 ° C. air production, and the heater power consumption can be reduced.
Here, if -60 ° C. low dew point air produced in the middle is used as the raw material air, the amount of dehumidification is further reduced, so that the amount of air and power consumption required for regeneration of the dehumidifying agent are reduced, and energy saving is further increased. Become.

前記のような本発明について、より具体的構成として以下のような構成を採用する。即ち、本発明に係る低露点空気製造装置は、前記課題を解決するため、吸着剤または吸着剤保持部材が供給されるダクト内の除湿部に等温除湿を行う冷却器を設け、前記除湿部で除湿後の除湿剤または除湿剤保持部材を再生する再生部に伝導加熱装置を設けたことにより少量の製品空気あるいは目的空間からの還気で再生可能としたことを特徴とする。   In the present invention as described above, the following configuration is adopted as a more specific configuration. That is, the low dew point air production apparatus according to the present invention is provided with a cooler that performs isothermal dehumidification in a dehumidifying part in a duct to which an adsorbent or an adsorbent holding member is supplied in order to solve the above-described problem. A regenerative unit that regenerates the dehumidifying agent or dehumidifying agent holding member after dehumidification is provided with a conductive heating device so that it can be regenerated with a small amount of product air or return air from the target space.

本発明に係る他の低露点空気製造装置は、前記低露点空気製造装置において、前記除湿部では吸着剤粒子または吸着剤保持部材が、ダクト内の空気流の方向と逆方向に移動して、互いに向流接触することを特徴とする。   In another low dew point air production apparatus according to the present invention, in the low dew point air production apparatus, the adsorbent particles or the adsorbent holding member moves in a direction opposite to the direction of the air flow in the duct in the dehumidifying unit, It is characterized by being in countercurrent contact with each other.

本発明に係る他の低露点空気製造装置は、前記低露点空気製造装置において、除湿空気を供給する目的空間からの排気をクーリングタワーに送り、断熱増湿を行って冷却水を生成し、該冷却水でダクト内或いは目的空間に供給して冷却作用を行うことを特徴とする。   Another low dew point air production apparatus according to the present invention is the low dew point air production apparatus, wherein the exhaust from the target space for supplying the dehumidified air is sent to the cooling tower to perform adiabatic humidification to generate cooling water, A cooling action is performed by supplying water into the duct or the target space with water.

本発明に係る他の低露点空気製造装置は、前記低露点空気製造装置において、下方から空気が供給される垂直なダクト内に、複数の空気透過性傾斜板をジグザグ状に垂直方向に設け、
上部から吸着剤を最上部の傾斜板から順次下部の傾斜板に流下させることにより空気と吸着剤とを向流接触させることを特徴とする。
In another low dew point air production apparatus according to the present invention, in the low dew point air production apparatus, a plurality of air permeable inclined plates are provided in a vertical direction in a zigzag shape in a vertical duct to which air is supplied from below.
The adsorbent is caused to flow from the uppermost inclined plate to the lower inclined plate sequentially to bring the air and the adsorbent into countercurrent contact.

本発明に係る他の低露点空気製造装置は、前記低露点空気製造装置において、下方から空気が供給される垂直なダクト内に複数の空気透過性の空気分散板を、垂直方向に複数、吸着剤粒子を貯溜可能に、且つ貯留した粒子を流下可能に設け、
前記空気分散板上の粒子を前記下方からの空気により流動層化し、
上部から吸着剤を最上部の空気分散板上に流下させることにより空気と吸着剤とを向流接触させることを特徴とする。
Another low dew point air production apparatus according to the present invention is the low dew point air production apparatus, wherein a plurality of air permeable air dispersion plates are adsorbed in a vertical direction in a vertical duct to which air is supplied from below. The agent particles can be stored and the stored particles can flow down,
The particles on the air dispersion plate are fluidized by the air from below,
The adsorbent is caused to flow down onto the uppermost air dispersion plate from the upper part to bring the air and the adsorbent into countercurrent contact.

本発明に係る他の低露点空気製造装置は、前記低露点空気製造装置において、前記低露点空気製造装置を垂直あるいは平面上に、第1の装置で処理した空気を他の装置で処理するように直列に配置し、各装置で処理した空気の一部を各装置における吸着剤再生に用いることを特徴とする。   Another low dew point air production apparatus according to the present invention is such that in the low dew point air production apparatus, the low dew point air production apparatus is processed vertically or on a plane, and the air treated by the first device is treated by another device. A part of the air processed in each device is used for adsorbent regeneration in each device.

本発明に係る他の低露点空気製造装置は、前記低露点空気製造装置において、前記再生部は、横方向に別個の流動層を複数列設した横型流動層であり、前記吸着剤保持部材を前記横型流動層を順に通過移動させて再生処理を行い、前記複数の流動層は吸着剤保持部材の移動方向順に、高温から低温になるように設定したことを特徴とする。   In another low dew point air production apparatus according to the present invention, in the low dew point air production apparatus, the regeneration unit is a horizontal fluidized bed in which a plurality of separate fluidized beds are arranged in the lateral direction, and the adsorbent holding member is The horizontal fluidized bed is passed through and regenerated in order, and the plurality of fluidized beds are set so as to change from a high temperature to a low temperature in the moving direction of the adsorbent holding member.

本発明に係る他の低露点空気製造装置は、前記低露点空気製造装置において、前記再生部は、ロータリーキルン、傾斜樋、または移動層として伝導加熱を行うものであり、出口側が最も高い温度で入口側が最も低い温度になるように加熱用伝熱管を配置することを特徴とする。   Another low dew point air production apparatus according to the present invention is the low dew point air production apparatus, wherein the regeneration unit conducts conduction heating as a rotary kiln, a sloping gutter, or a moving layer, and the outlet side has an inlet at the highest temperature. The heat transfer tube is arranged so that the side has the lowest temperature.

本発明は上記のように構成したので、消費電力を大幅にカットすることができ、また、製造風量も大幅に増加させることができると共に、各種廃熱も使用できるようにしてより効率的な低露点空気を製造できる。   Since the present invention is configured as described above, the power consumption can be greatly cut, the production air volume can be greatly increased, and various types of waste heat can be used. Dew point air can be produced.

本発明は少ない消費電力で製造風量を大幅に増加すると共により効率的な低露点空気を製造できるようにするという課題を、吸着剤または吸着剤保持部材が供給されるダクト内の除湿部に等温除湿を行う冷却器を設け、前記除湿部で除湿後の除湿剤または除湿剤保持部材を再生する再生部に伝導加熱装置を設けることによって実現した。   An object of the present invention is to provide an isothermal solution for a dehumidifying part in a duct to which an adsorbent or an adsorbent holding member is supplied, while greatly increasing the production air volume with low power consumption and allowing more efficient low dew point air to be produced. This is realized by providing a cooler for performing dehumidification, and providing a conductive heating device in the regenerating unit for regenerating the dehumidifying agent or the dehumidifying agent holding member after dehumidifying in the dehumidifying unit.

前記のような原理に基づく本発明について、実際の装置に用いるときの例を順に説明する。図1は本発明による低露点空気製造装置を除湿剤粒子循環型空調システムに用いた例を示しており、図示の例においてはダクト11内に送風機12により導入した外気を、除湿剤粒子を貯留している粒子貯槽13からダクト内の除湿部14に供給する。図示の例では除湿剤粒子貯槽から除湿剤粒子15を流下させ、下方の収集部16でこれを収集し、再生部17に流下搬送している。除湿部14には除湿部冷却用熱交換器18を設け、粒子自体を冷却すると共に除湿剤粒子によって蒸気を吸着し、温度が上昇する除湿空気を冷却する。図1の例では除湿部冷却用熱交換器18に対して、外部に設けたクーリングタワー19で冷却した冷却水を循環供給している。   Examples of the present invention based on the above principle will be described in order when used in an actual apparatus. FIG. 1 shows an example in which a low dew point air production apparatus according to the present invention is used in a dehumidifying agent particle circulation type air conditioning system. In the illustrated example, outside air introduced by a blower 12 is stored in a duct 11 and dehumidifying agent particles are stored. The particle storage tank 13 is supplied to the dehumidifying section 14 in the duct. In the example shown in the figure, the dehumidifying agent particles 15 are caused to flow down from the dehumidifying agent particle storage tank, collected by the lower collecting unit 16, and conveyed down to the regeneration unit 17. The dehumidifying section 14 is provided with a heat exchanger 18 for cooling the dehumidifying section, which cools the particles themselves, adsorbs vapors with the dehumidifying agent particles, and cools the dehumidified air whose temperature rises. In the example of FIG. 1, cooling water cooled by a cooling tower 19 provided outside is circulated and supplied to the heat exchanger 18 for cooling the dehumidifying part.

再生部17には図中略示している伝導加熱装置20を備え、また目的空調空間21からの換気の一部を乾燥用空気として空気導入部22から導入して外部に排出し、更に外部の各種廃熱自体、或いはその廃熱と熱交換した熱媒体を導入する廃熱利用熱交換器23を設けた例を示している。伝導加熱装置20としては種々の装置を用いることができ、除湿剤粒子との直接接触加熱手段、或いは輻射加熱手段等が利用可能である。また、廃熱利用熱交換器23によっても伝導加熱が可能である。空気導入部22に導入する再生用空気は、本発明において伝導加熱装置20を用いることにより、前記のような本発明の原理に詳述したような機能を行い、再生に必要な室内換気の風量を1/20以下にすることが可能である。それにより、室内還気がもっている低温・低湿度の熱をクーリングタワー19からの冷却水の更なる冷却等、他の用途にも有効に利用することができる。   The regeneration unit 17 is provided with a conductive heating device 20 schematically shown in the drawing, and a part of the ventilation from the target air-conditioned space 21 is introduced as air for drying from the air introduction unit 22 and discharged to the outside. The example which provided the waste heat utilization heat exchanger 23 which introduce | transduces waste heat itself or the heat medium heat-exchanged with the waste heat is shown. Various devices can be used as the conductive heating device 20, and direct contact heating means with the dehumidifying agent particles, radiation heating means, or the like can be used. In addition, conductive heating is also possible by the waste heat utilization heat exchanger 23. The regeneration air introduced into the air introduction unit 22 performs the function described in detail in the principle of the present invention as described above by using the conductive heating device 20 in the present invention, and the air volume of indoor ventilation necessary for regeneration. Can be reduced to 1/20 or less. Thereby, the low-temperature and low-humidity heat that the indoor return air has can be used effectively for other purposes such as further cooling of the cooling water from the cooling tower 19.

また、図1に示す例においては、室内からの低露点空気をクーリングタワー25に供給し、断熱増湿し冷却水を生成し、この冷却水を除湿後に室内に供給する空気を冷却する給気冷却器26との間で循環させる例を示している。それにより製造した低露点空気の温度を低下させ、別途必要であった目的空間の冷房動力を削減することができる。   Further, in the example shown in FIG. 1, low-dew point air from the room is supplied to the cooling tower 25, adiabatic and humidified to generate cooling water, and cooling the air supplied to the room after dehumidifying the cooling water. An example of circulation with the container 26 is shown. As a result, the temperature of the produced low dew point air can be lowered, and the cooling power of the target space that was separately required can be reduced.

上記のような装置により、目的空間に低露点空気を供給するための減湿システムとして、ダクト11内の減湿部14にクーリングタワー19などからの冷却水による熱交換器18を設置することで吸着剤粒子15による等温除湿操作を行って減湿することができる。その後、除湿剤粒子15は再生部17に移送されて再生され、粒子貯槽13で貯留されるが、この時、粒子再生は伝導加熱装置20による再生のため、必要風量を大幅に減らすことができる。それにより、再生用空気として目的空調空間である低露点空気供給空間からの排気、あるいは、製品の低露点空気の一部を使うことを可能とし、低露点空気を大量に製造することができる。   As a dehumidification system for supplying low dew point air to the target space by means of the apparatus as described above, adsorption is performed by installing a heat exchanger 18 using cooling water from the cooling tower 19 or the like in the dehumidification section 14 in the duct 11. It is possible to perform dehumidification by performing an isothermal dehumidification operation with the agent particles 15. Thereafter, the dehumidifying agent particles 15 are transferred to the regeneration unit 17 and regenerated, and stored in the particle storage tank 13. At this time, since the particle regeneration is regeneration by the conduction heating device 20, the required air volume can be greatly reduced. . As a result, exhaust from the low dew point air supply space, which is the target air-conditioned space, or a part of the low dew point air of the product can be used as regeneration air, and a large amount of low dew point air can be produced.

本発明は更に図2のような低露点空気製造装置として実施することもできる。即ち図2に示す例においては除湿剤をシート状の物体に付着し、或いはシート状のものと一体製造してシート状吸着剤保持部材30とした例を示している。このようなシート状吸着剤保持部材30は図中4枚示しているように複数枚重ねて、搬送ローラ31により除湿部ダクト32、再生部33、冷却部34、吸着材保持部材貯蔵部35の順に循環可能としている。図示の例では、吸着材保持部材貯蔵部35では複数枚のシート状吸着剤保持部材30を水平に重ねているのに対して、除湿部ダクト32ではこれを分離して図中水平に搬送し、再生部33では搬送ローラ31から搬送されるシート状吸着剤保持部材30を水平−垂直方向変換部42で垂直方向に分離して搬送し、垂直−水平方向変換部43で水平方向に重ね、以降は吸着剤保持部材貯蔵部35内まで重ねて搬送するように構成している。   The present invention can also be implemented as a low dew point air production apparatus as shown in FIG. That is, in the example shown in FIG. 2, an example is shown in which the dehumidifying agent is attached to a sheet-like object or manufactured integrally with a sheet-like object to form a sheet-like adsorbent holding member 30. A plurality of such sheet-like adsorbent holding members 30 are stacked as shown in the figure, and the dehumidifying section duct 32, the regenerating section 33, the cooling section 34, and the adsorbent holding member storage section 35 are stacked by the transport roller 31. Circulation is possible in order. In the illustrated example, the adsorbent holding member storage unit 35 has a plurality of sheet-like adsorbent holding members 30 stacked horizontally, whereas the dehumidifying unit duct 32 separates them and transports them horizontally in the figure. In the reproducing unit 33, the sheet-like adsorbent holding member 30 conveyed from the conveying roller 31 is separated and conveyed in the vertical direction by the horizontal-vertical direction converting unit 42, and is stacked in the horizontal direction by the vertical-horizontal direction converting unit 43. Thereafter, the adsorbent holding member storage unit 35 is configured to be stacked and conveyed.

図2の例においては除湿部ダクト32に吸気口36から外気、或いは目的空調空間39からの排気との混合気を導入し、排気口37から送風ダクト38を介して目的空調空間39に除湿空気を供給するようにしている。この除湿部ダクト32内において、シート状吸着剤保持部材30は前記空気流と反対方向に搬送するように設定しており、それにより除湿部ダクト32内でシート状吸着剤保持部材は向流接触することとなり、効率的な除湿を行うことができる。この除湿部ダクトには冷却用熱交換器としての冷却管40を多数配置し、等温除湿を可能としている。なお、図示実施例では4枚のシート状吸着剤保持部材を重ねて用いる例を示しているが、より多数のシート状吸着剤保持部材を重ねて用いることも可能である。更に冷却用熱交換器としての冷却管は平板状熱交換器を用いる等、種々の熱交換器を用いることができる。   In the example of FIG. 2, a mixture of outside air from the intake port 36 or exhaust gas from the target air-conditioning space 39 is introduced into the dehumidifying part duct 32, and dehumidified air enters the target air-conditioned space 39 from the exhaust port 37 through the air duct 38. To supply. In the dehumidifying part duct 32, the sheet-like adsorbent holding member 30 is set so as to be conveyed in the direction opposite to the air flow, so that the sheet-like adsorbent holding member is counter-contacted in the dehumidifying part duct 32. Therefore, efficient dehumidification can be performed. A large number of cooling pipes 40 serving as cooling heat exchangers are arranged in the dehumidifying section duct to enable isothermal dehumidification. In the illustrated embodiment, an example in which four sheet-like adsorbent holding members are used in an overlapping manner is shown, but a larger number of sheet-like adsorbent holding members can be used in an overlapping manner. Further, various heat exchangers such as a flat plate heat exchanger can be used as the cooling pipe as the cooling heat exchanger.

再生部33においては仕切壁34によって室内を複数の流動層41に区切り、分離した各シート状吸着剤保持部材30を各仕切壁44に形成したスリットを通して搬送可能としている。区切られた複数の流動層41内では、各々の下方から導入する所定温度の空気によって流動層内粒子が流動し、それに接触することによりここを通過する各シート状吸着剤保持部材30を伝導加熱する。横方向に列設した流動層41において、シート状吸着剤保持部材30が移動する方向の順に導入する温風の温度を高温から低温になるように変化させ、最後の流動層41においては除湿部ダクト32から目的空調空間39に供給する除湿空気の一部を導入している。各流動層に導入される流動用空気は、各々の流動層の上部に設けた排出口45から排出している。冷却部34には冷却用熱交換器を備え、吸着剤再生時に温度上昇したシート状吸着剤保持部材30を冷却して吸着剤保持部材貯蔵部35に送っている。   In the regeneration unit 33, the interior of the room is divided into a plurality of fluidized beds 41 by the partition walls 34, and the separated sheet-like adsorbent holding members 30 can be conveyed through slits formed in the partition walls 44. In the plurality of separated fluidized beds 41, particles in the fluidized bed flow by air of a predetermined temperature introduced from below, and each sheet-like adsorbent holding member 30 passing therethrough is conductively heated by coming into contact therewith. To do. In the fluidized bed 41 arranged in the horizontal direction, the temperature of the hot air introduced in order of the moving direction of the sheet-like adsorbent holding member 30 is changed from a high temperature to a low temperature. Part of the dehumidified air supplied from the duct 32 to the target air-conditioned space 39 is introduced. Flowing air introduced into each fluidized bed is discharged from a discharge port 45 provided at the top of each fluidized bed. The cooling unit 34 includes a cooling heat exchanger, and cools the sheet-like adsorbent holding member 30 whose temperature has increased during regeneration of the adsorbent and sends it to the adsorbent holding member storage unit 35.

上記のような装置においても、除湿部ダクト32内にクーリングタワーなどからの冷却水を導く冷却管40を設置することで等温除湿操作をおこなって減湿することができると共に、再生部33において流動層41による伝導加熱を行うことにより再生することができる。それにより、再生用空気として目的空調空間34としての低露点空気供給空間からの排気、あるいは、製品の低露点空気を使うことを可能とし、低露点空気を大量に製造することができる。   Even in the apparatus as described above, it is possible to perform dehumidification by performing an isothermal dehumidification operation by installing the cooling pipe 40 that guides cooling water from a cooling tower or the like in the dehumidifying section duct 32, and in the regeneration section 33, the fluidized bed It can be regenerated by conducting conductive heating with 41. As a result, exhaust from the low dew point air supply space as the target air-conditioned space 34 or the low dew point air of the product can be used as regeneration air, and a large amount of low dew point air can be produced.

図3に示す実施例においては、垂直なダクト54内に複数の空気透過性の傾斜板46をジグザグ状に設置し、上部から吸着剤粒子を傾斜板46上で層状に順次下部の傾斜板46に移動しながら流下させ、下部の吸気口43から供給された空気と接触させることにより、吸着剤47と空気の接触効率を向上させ、かつ、吸着剤47の粒子と空気を向流接触させて目的空調空間57に除湿空気を供給している。この時、冷却配管48を傾斜板46の下部、または傾斜板内部、或いは吸着剤粒子層内のいずれに設置し、等温除湿を可能とする。   In the embodiment shown in FIG. 3, a plurality of air-permeable inclined plates 46 are installed in a zigzag manner in a vertical duct 54, and adsorbent particles are sequentially layered on the inclined plate 46 from the upper portion of the lower inclined plate 46. The adsorbent 47 is brought into contact with the air supplied from the lower intake port 43 to improve the contact efficiency between the adsorbent 47 and the air, and the adsorbent 47 particles are brought into countercurrent contact with the air. Dehumidified air is supplied to the target conditioned space 57. At this time, the cooling pipe 48 is installed below the inclined plate 46, inside the inclined plate, or inside the adsorbent particle layer, so that isothermal dehumidification is possible.

この例においても図中傾斜して配置した再生部50内に給気口51から室内排気の一部等の空気を導入して再生を行い、また空気供給口51から導入した加圧空気により粒子を流動状態にしエアスライド状態にする。その際内部に設けた伝導加熱部53で伝導加熱行うことを可能とする。また、この再生部50では必要に応じて外部の廃熱を用いて加熱を行い、また、再生後の除湿剤を冷却する熱交換器を設けても良い。更に、傾斜状の再生部をロータリーキルン状にして伝導加熱を行うこともできる。また図3の例においては、再生部50で再生した除湿剤粒子は、掃気口54からの加圧空気により搬送管55を通して、上方の除湿剤貯槽56に搬送している。   In this example as well, regeneration is performed by introducing a part of the indoor exhaust air from the air supply port 51 into the regenerative unit 50 arranged in an inclined manner in the drawing, and particles are also generated by the pressurized air introduced from the air supply port 51. To a fluidized state and air slide state. At that time, it is possible to conduct conduction heating by the conduction heating unit 53 provided inside. In addition, the regeneration unit 50 may be heated using external waste heat as necessary, and a heat exchanger for cooling the dehumidifier after regeneration may be provided. Furthermore, conductive heating can be performed by making the inclined regenerative part into a rotary kiln. In the example of FIG. 3, the dehumidifying agent particles regenerated by the regenerating unit 50 are conveyed to the upper dehumidifying agent storage tank 56 through the conveying pipe 55 by the pressurized air from the scavenging port 54.

上記のような垂直なダクトを用いて上方から降下する除湿剤粒子と空気流とを向流接触させる手法は、図3に示す例のほか、例えば図4に示すように実施することもできる。即ち図4に示す例においては、垂直なダクト54内に水平に複数段の多孔性の空気分散板60を設け、上側の空気分散板から下側の空気分散板に除湿粒子47の流下を誘導する誘導板61を設けると共に、この誘導板61の上端部を上部側の空気分散板より上方に突出させることによりダクト内に垂直方向に複数の流動層62を形成する。図示実施例では垂直方向に4段の流動層62が形成され、各流動層62において下方から供給される空気が多孔性の空気分散板60を通って吸着剤粒子47を流動化させ、その状態で除湿を行うことができるようにする。各流動層62には外部のクーリングタワー等からの冷却水を供給し、ここでも等温除湿を可能とする。その他の再生部等の構成は前記図3に示した例と同様であるので、ここでの説明は省略する。   The method of bringing the dehumidifying agent particles descending from above and the air flow into counter-current contact using the vertical duct as described above can be implemented as shown in FIG. 4 in addition to the example shown in FIG. That is, in the example shown in FIG. 4, a plurality of porous air dispersion plates 60 are provided horizontally in a vertical duct 54, and the flow of the dehumidifying particles 47 is guided from the upper air dispersion plate to the lower air dispersion plate. A plurality of fluidized beds 62 are formed in the duct in the vertical direction by providing the guide plate 61 to be projected and projecting the upper end portion of the guide plate 61 upward from the air dispersion plate on the upper side. In the illustrated embodiment, four stages of fluidized beds 62 are formed in the vertical direction, and the air supplied from below in each fluidized bed 62 fluidizes the adsorbent particles 47 through the porous air dispersion plate 60, So that it can be dehumidified. Cooling water from an external cooling tower or the like is supplied to each fluidized bed 62 to enable isothermal dehumidification here. Other configurations of the reproduction unit and the like are the same as those in the example shown in FIG. 3, and a description thereof is omitted here.

上記のように吸着剤による流動層62を垂直方向に複数形成し、上部から吸着剤を順次下部の空気分散板60上の流動層62に移動し、下部から空気を供給することにより、吸着剤粒子と空気の接触効率を向上させ、かつ、吸着剤粒子と空気を向流接触させることができる。   As described above, a plurality of fluidized beds 62 made of an adsorbent are formed in the vertical direction, the adsorbent is sequentially moved from the upper part to the fluidized bed 62 on the lower air dispersion plate 60, and air is supplied from the lower part, whereby the adsorbent is obtained. The contact efficiency between the particles and air can be improved, and the adsorbent particles and air can be brought into countercurrent contact.

図5には更に他の実施例を示す。図5に示す例においては、前記図3に示すような垂直ダクト65〜67に多孔性の傾斜板46を設け、上方から順に除湿剤粒子47を流下させる低露点空気製造装置68〜70を図中3個独立して同一平面内に並設し、第1低露点空気製造装置68で処理した空気を順次第2低露点空気製造装置69、第3低露点空気製造装置70で処理することにより、順に露点の低い空気を製造することができるようにする。このように低露点空気製造装置において、後段の伝導加熱乾燥装置に供給する乾燥空気として処理空気、或いは換気の一部を使うことで乾燥度を更に上げることを可能としている。また、各装置で処理された空気の一部は、各々のシステムの吸着剤再生用に用いることにより、低露点になるほど再生処理に必要な空気量を減らすことを可能とし、後段で必要になる高温空気製造エネルギーを低下させ、全体の低露点空気製造システムとして効率を高めることができる。   FIG. 5 shows still another embodiment. In the example shown in FIG. 5, low dew point air production apparatuses 68 to 70 are provided which are provided with a porous inclined plate 46 in the vertical ducts 65 to 67 as shown in FIG. 3 and flow down the dehumidifying agent particles 47 in order from above. Three of them are arranged in parallel in the same plane, and the air processed by the first low dew point air production device 68 is sequentially processed by the second low dew point air production device 69 and the third low dew point air production device 70. In order, air with a low dew point can be produced. As described above, in the low dew point air production apparatus, it is possible to further increase the dryness by using the processing air or a part of ventilation as the dry air supplied to the subsequent conduction heating drying apparatus. In addition, a part of the air processed in each device can be used for regeneration of the adsorbent in each system, so that the amount of air required for regeneration processing can be reduced as the dew point becomes lower, and is necessary in the subsequent stage. The high-temperature air production energy can be reduced, and the efficiency of the overall low dew point air production system can be increased.

このようなシステムにおいて、前段の低露点空気製造装置で−60℃低露点空気製造を行い、その空気の一部を後段低露点空気製造装置の粒子乾燥に用いることにより−100℃超低露点空気製造が可能となる。この時、2段であれば粒子乾燥温度を約200℃、3段とすると粒子乾燥温度を150℃以下にできる。またこの時、処理空気温度を30℃ではなく、10℃まで下げると2段で150℃の乾燥となり、また、3段とすると100℃以下の乾燥温度にすることができる。   In such a system, -60 ° C. low dew point air production is performed with the former low dew point air production apparatus, and a part of the air is used for particle drying of the latter low dew point air production apparatus, thereby allowing the air to be used at a temperature exceeding -100 ° C. Manufacture is possible. At this time, if there are two stages, the particle drying temperature can be reduced to about 150 ° C. or less if the particle drying temperature is about 200 ° C. and three stages. At this time, if the processing air temperature is lowered to 10 ° C. instead of 30 ° C., the drying temperature is 150 ° C. in two stages, and if it is three stages, the drying temperature can be 100 ° C. or less.

図5に示す例においては独立した低露点空気製造装置を複数同一平面内に並設した例を示したが、これを図6に示すように、独立した低露点空気製造装置を1つのダクト中に複数垂直方向に並設しても良い。図6に示す例においては、下方の吸気口43から除湿する空気が供給される垂直ダクト65内に下方から順に第1低露点空気製造装置71、第2低露点空気製造装置72、第3低露点空気製造装置73を配置し、各装置の除湿部を同一のダクト74内に配置する。なお、各低露点空気製造装置の構成は前記図5に示すものと同様であるので、詳細な説明は省略する。
図6に示す例においては、前記の構成によって各装置で処理された空気の一部は、各々のシステムの吸着剤再生用に用いることにより、低露点になるほど再生処理に必要な空気量を減らすことを可能とし、後段で必要になる高温空気製造エネルギーを低下させ、全体の低露点空気製造システムとして効率を高めることができる。
In the example shown in FIG. 5, an example in which a plurality of independent low dew point air production apparatuses are arranged in the same plane is shown. However, as shown in FIG. 6, the independent low dew point air production apparatuses are arranged in one duct. A plurality of them may be arranged in the vertical direction. In the example shown in FIG. 6, the first low dew point air production device 71, the second low dew point air production device 72, and the third low low temperature are sequentially supplied from the lower side into the vertical duct 65 to which air to be dehumidified is supplied from the lower intake port 43. A dew point air production apparatus 73 is arranged, and a dehumidifying part of each apparatus is arranged in the same duct 74. In addition, since the structure of each low dew point air production apparatus is the same as that of the said FIG. 5, detailed description is abbreviate | omitted.
In the example shown in FIG. 6, a part of the air processed by each device with the above configuration is used for the regeneration of the adsorbent of each system, so that the amount of air required for the regeneration process is reduced as the dew point becomes lower. This makes it possible to reduce the high-temperature air production energy required in the subsequent stage and increase the efficiency of the overall low dew point air production system.

前記のような本発明は、半導体やLi電池製造などための低湿度空気製造装置としてとして用いられる以外に、低露点を必要とする低温冷凍倉庫の除湿機等の種々の分野で利用することができる。   The present invention as described above can be used in various fields such as a dehumidifier of a low-temperature refrigeration warehouse that requires a low dew point, in addition to being used as a low-humidity air production apparatus for semiconductor and Li battery production. it can.

本発明の実施例1の説明図である。It is explanatory drawing of Example 1 of this invention. 本発明の実施例2の説明図である。It is explanatory drawing of Example 2 of this invention. 本発明の実施例3の説明図である。It is explanatory drawing of Example 3 of this invention. 本発明の実施例4の説明図である。It is explanatory drawing of Example 4 of this invention. 本発明の実施例5の説明図である。It is explanatory drawing of Example 5 of this invention. 本発明の実施例6の説明図である。It is explanatory drawing of Example 6 of this invention. 本発明によるFB乾燥試験結果を示す図である。It is a figure which shows the FB drying test result by this invention. 従来のロータ式装置の作動を示す低露点用の湿度線図である。It is a humidity diagram for low dew points which shows the operation | movement of the conventional rotor type | mold apparatus. 本発明の原理を示す低露点用の湿度線図である。It is a humidity diagram for low dew points showing the principle of the present invention. S−PVC粉末乾燥処理における熱風受熱型と伝熱体内装型の比較した表である。It is the table | surface which compared the hot air heat receiving type | mold in the S-PVC powder drying process, and the heat exchanger interior type. 従来の−60℃露点空気製造フロー図である。It is a conventional -60 degreeC dew point air manufacture flowchart.

符号の説明Explanation of symbols

11 ダクト
12 送風機
13 粒子貯槽
14 除湿部
15 除湿剤粒子
16 収集部
17 再生部
18 除湿部冷却用熱交換器
19 クーリングタワー
20 伝導加熱装置
21 目的空調空間
22 空気導入部
23 廃熱利用熱交換器
25 クーリングタワー
26 給気冷却器
DESCRIPTION OF SYMBOLS 11 Duct 12 Air blower 13 Particle storage tank 14 Dehumidification part 15 Dehumidifier particle | grains 16 Collection part 17 Reproduction | regeneration part 18 Dehumidification part cooling heat exchanger 19 Cooling tower 20 Conduction heating apparatus 21 Target air-conditioning space 22 Air introduction part 23 Waste heat utilization heat exchanger 25 Cooling tower 26 Supply air cooler

Claims (8)

吸着剤または吸着剤保持部材が供給されるダクト内の除湿部に等温除湿を行う冷却器を設け、
前記除湿部で除湿後の除湿剤または除湿剤保持部材を再生する再生部に伝導加熱装置を設けたことを特徴とする低露点空気製造装置。
A cooler that performs isothermal dehumidification is provided in the dehumidifying section in the duct to which the adsorbent or the adsorbent holding member is supplied,
A low dew point air production apparatus characterized in that a conduction heating device is provided in a regeneration unit for regenerating a dehumidifier or a dehumidifying agent holding member after dehumidification in the dehumidifying unit.
前記除湿部では吸着剤粒子または吸着剤保持部材が、ダクト内の空気流の方向と逆方向に移動して、互いに向流接触することを特徴とする請求項1記載の低露点空気製造装置。   2. The low dew point air production apparatus according to claim 1, wherein the adsorbent particles or the adsorbent holding member are moved in a direction opposite to the direction of the air flow in the duct in the dehumidifying section and are in countercurrent contact with each other. 除湿空気を供給する目的空間からの排気をクーリングタワーに送り、断熱増湿を行って冷却水を生成し、該冷却水でダクト内或いは目的空間に供給して冷却作用を行うことを特徴とする請求項1記載の低露点空気製造装置。   Claims characterized in that exhaust from a target space for supplying dehumidified air is sent to a cooling tower, adiabatic humidification is performed to generate cooling water, and the cooling water is supplied to the inside of the duct or the target space for cooling. Item 2. The low dew point air production apparatus according to Item 1. 下方から空気が供給される垂直なダクト内に、複数の空気透過性傾斜板をジグザグ状に垂直方向に設け、
上部から吸着剤を最上部の傾斜板から順次下部の傾斜板に流下させることにより空気と吸着剤とを向流接触させることを特徴とする請求項1記載の低露点空気製造装置。
In a vertical duct to which air is supplied from below, a plurality of air permeable inclined plates are provided in a vertical direction in a zigzag shape,
2. The low dew point air production apparatus according to claim 1, wherein air and the adsorbent are brought into countercurrent contact by causing the adsorbent to flow downward from the uppermost inclined plate to the lower inclined plate from the upper part.
下方から空気が供給される垂直なダクト内に複数の空気透過性の空気分散板を、垂直方向に複数、吸着剤粒子を貯溜可能に、且つ貯留した粒子を流下可能に設け、
前記空気分散板上の粒子を前記下方からの空気により流動層化し、
上部から吸着剤を最上部の空気分散板上に流下させることにより空気と吸着剤とを向流接触させることを特徴とする請求項1記載の低露点空気製造装置。
A plurality of air-permeable air dispersion plates are provided in a vertical duct to which air is supplied from below, and a plurality of adsorbent particles can be stored in the vertical direction, and the stored particles can flow down,
The particles on the air dispersion plate are fluidized by the air from below,
The low dew point air production apparatus according to claim 1, wherein air and the adsorbent are brought into countercurrent contact by causing the adsorbent to flow down from the upper part onto the uppermost air dispersion plate.
前記低露点空気製造装置を垂直あるいは平面上に、第1の装置で処理した空気を他の装置で処理するように直列に配置し、各装置で処理した空気の一部を各装置における吸着剤再生に用いることを特徴とする請求項1記載の低露点空気製造装置。   The low dew point air production apparatus is arranged vertically or on a plane in series so that the air processed by the first apparatus is processed by another apparatus, and a part of the air processed by each apparatus is adsorbent in each apparatus. The low dew point air production apparatus according to claim 1, wherein the low dew point air production apparatus is used for regeneration. 前記再生部は、横方向に別個の流動層を複数列設した横型流動層であり、
前記吸着剤保持部材を前記横型流動層を順に通過移動させて再生処理を行い、
前記複数の流動層は吸着剤保持部材の移動方向順に、高温から低温になるように設定したことを特徴とする請求項1記載の低露点空気製造装置。
The regeneration unit is a horizontal fluidized bed in which a plurality of separate fluidized beds are arranged in the lateral direction,
The adsorbent holding member is sequentially moved through the horizontal fluidized bed to perform a regeneration process,
The low dew point air production apparatus according to claim 1, wherein the plurality of fluidized beds are set so as to change from a high temperature to a low temperature in the order of movement of the adsorbent holding member.
前記再生部は、ロータリーキルン、傾斜樋、または移動層として伝導加熱を行うものであり、
出口側が最も高い温度で入口側が最も低い温度になるように加熱用伝熱管を配置することを特徴とする請求項1記載の低露点空気製造装置。
The regeneration unit performs conduction heating as a rotary kiln, a sloping rod, or a moving layer,
2. The low dew point air production apparatus according to claim 1, wherein the heat transfer tubes for heating are arranged so that the outlet side has the highest temperature and the inlet side has the lowest temperature.
JP2007250530A 2007-09-27 2007-09-27 Low dew point air production equipment Expired - Fee Related JP5464393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007250530A JP5464393B2 (en) 2007-09-27 2007-09-27 Low dew point air production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007250530A JP5464393B2 (en) 2007-09-27 2007-09-27 Low dew point air production equipment

Publications (2)

Publication Number Publication Date
JP2009078239A true JP2009078239A (en) 2009-04-16
JP5464393B2 JP5464393B2 (en) 2014-04-09

Family

ID=40653399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007250530A Expired - Fee Related JP5464393B2 (en) 2007-09-27 2007-09-27 Low dew point air production equipment

Country Status (1)

Country Link
JP (1) JP5464393B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110118463A (en) * 2019-06-14 2019-08-13 杨葆 A kind of freezer absorption type defrosting equipment
CN112928620A (en) * 2021-02-08 2021-06-08 刘呆红 High-efficient dehumidification switch board
CN116480498A (en) * 2023-05-12 2023-07-25 湖北万邦电机股份有限公司 Air inlet treatment equipment of generator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399353U (en) * 1977-01-13 1978-08-11
JPH07185252A (en) * 1993-12-28 1995-07-25 Kureha Chem Ind Co Ltd Apparatus for removal of organic solvent in soil
JPH1076134A (en) * 1996-09-02 1998-03-24 Shinko Pantec Co Ltd Gas treating device and its treatment
JP2002219327A (en) * 2001-01-30 2002-08-06 Denso Corp Dehumidifier
JP3483752B2 (en) * 1997-12-26 2004-01-06 高砂熱学工業株式会社 Dry dehumidification system
JP2004216212A (en) * 2003-01-09 2004-08-05 Daihatsu Motor Co Ltd Apparatus for drying compressed air and apparatus for drying/reheating compressed air
JP2005337559A (en) * 2004-05-26 2005-12-08 National Institute Of Advanced Industrial & Technology Small desiccant air conditioning system
JP2006021096A (en) * 2004-07-07 2006-01-26 Fuji Silysia Chemical Ltd Packed-bed type heat-exchanging adsorption apparatus and method of obtaining gas of specified concentration adsorbate using it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399353U (en) * 1977-01-13 1978-08-11
JPH07185252A (en) * 1993-12-28 1995-07-25 Kureha Chem Ind Co Ltd Apparatus for removal of organic solvent in soil
JPH1076134A (en) * 1996-09-02 1998-03-24 Shinko Pantec Co Ltd Gas treating device and its treatment
JP3483752B2 (en) * 1997-12-26 2004-01-06 高砂熱学工業株式会社 Dry dehumidification system
JP2002219327A (en) * 2001-01-30 2002-08-06 Denso Corp Dehumidifier
JP2004216212A (en) * 2003-01-09 2004-08-05 Daihatsu Motor Co Ltd Apparatus for drying compressed air and apparatus for drying/reheating compressed air
JP2005337559A (en) * 2004-05-26 2005-12-08 National Institute Of Advanced Industrial & Technology Small desiccant air conditioning system
JP2006021096A (en) * 2004-07-07 2006-01-26 Fuji Silysia Chemical Ltd Packed-bed type heat-exchanging adsorption apparatus and method of obtaining gas of specified concentration adsorbate using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110118463A (en) * 2019-06-14 2019-08-13 杨葆 A kind of freezer absorption type defrosting equipment
CN112928620A (en) * 2021-02-08 2021-06-08 刘呆红 High-efficient dehumidification switch board
CN116480498A (en) * 2023-05-12 2023-07-25 湖北万邦电机股份有限公司 Air inlet treatment equipment of generator
CN116480498B (en) * 2023-05-12 2024-02-20 湖北万邦电机股份有限公司 Air inlet treatment equipment of generator

Also Published As

Publication number Publication date
JP5464393B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
US10702825B2 (en) Dehumidification air conditioning apparatus
Rambhad et al. Solid desiccant dehumidification and regeneration methods—A review
AU2019203411B2 (en) System and method for improving the performance of desiccant dehumidification equipment for low-humidity applications
JP2005525528A (en) Sorptive heat exchanger and associated cooling sorption method
CN105358915B (en) Dehydrating unit and dehumidification system
US20210055010A1 (en) Method and system for dehumidification and atmospheric water extraction with minimal energy consumption
JP2010091130A (en) Desiccant air conditioner supplying dry air at ultralow dew-point temperature
JP2012166128A (en) Dehumidifier
JP2012166128A5 (en)
CN101368753A (en) Liquid-solid mixed dehumidifier and dehumidification method
CN103140273B (en) Moisture trap and dehumanization method
JP5464393B2 (en) Low dew point air production equipment
CN105698363A (en) Efficient dehumidification and cold-supply air-conditioning device based on CO2 heat pump
JP2002320817A (en) Dehumidifying device and dehumidifying method
JPH07163830A (en) Dry dehumidifier and air conditioner used therewith
JP5686311B2 (en) Gas removal system
JP2011064439A (en) Desiccant air conditioner supplying dry air at ultralow dew-point temperature
JP2007170786A (en) Ventilation system
JP4565111B2 (en) Fluidized bed desiccant air conditioning system
JP2013096665A (en) Desiccant air conditioner
JP2004116854A (en) Replaceably ventilable low dew point chamber and air conditioning method of low dew point chamber by displaceable ventilation
JP2000061251A (en) Dehumidifier
CN217503833U (en) Rotary dehumidifier for civil air defense facility
KR102597628B1 (en) Hybrid Desiccant Dehumidifier Without Regenerative Exhaust And Dehumidification Method
JP2004271081A (en) Desiccant air conditioning method and air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140108

R150 Certificate of patent or registration of utility model

Ref document number: 5464393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees