JP2009076603A - Manufacturing method of thermoelectric conversion module for power generation, and thermoelectric conversion module for power generation - Google Patents

Manufacturing method of thermoelectric conversion module for power generation, and thermoelectric conversion module for power generation Download PDF

Info

Publication number
JP2009076603A
JP2009076603A JP2007242957A JP2007242957A JP2009076603A JP 2009076603 A JP2009076603 A JP 2009076603A JP 2007242957 A JP2007242957 A JP 2007242957A JP 2007242957 A JP2007242957 A JP 2007242957A JP 2009076603 A JP2009076603 A JP 2009076603A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion module
power generation
type
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007242957A
Other languages
Japanese (ja)
Inventor
Takehisa Hino
武久 日野
Yujiro Nakatani
祐二郎 中谷
Keiichi Sasaki
恵一 佐々木
Kengo Wakamatsu
建吾 若松
Takahiko Shindou
尊彦 新藤
Yoshiyasu Ito
義康 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007242957A priority Critical patent/JP2009076603A/en
Publication of JP2009076603A publication Critical patent/JP2009076603A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a manufacturing method of a thermoelectric conversion element having an inexpensive manufacturing cost and high manufacturing efficiency; and the thermoelectric conversion module having high output density per unit area. <P>SOLUTION: This thermoelectric conversion module for power generation is manufactured by a first process in which a grid-like honeycomb spacer formed of a material having a thickness of 0.2 mm-0.8 mm is put in the top opening part of a honeycomb molding die, and 0.5 mm-1.5 mm square rod-shaped P-type and N-type thermoelectric element are alternately inserted through each grid in the honeycomb molding die the top opening part of which is partitioned in a grid shape by the honeycomb spacer, a second process in which an insulating resin is impregnated and cured to mold it as a block in a gap mutually between the P-type and N-type thermoelectric elements installed in the honeycomb molding die with a fixed space existing between them, a third process in which the block is cut in the direction perpendicular to the longitudinal direction of each element for every prescribed thickness to make block pieces, and a fourth process in which after plating so that the P-type and N-type thermoelectric elements on both sides of the block piece are alternately and electrically connected in series, an electrode is soldered to the forefront and last elements in an element group connected in series. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、温度差を電気に直接変換する発電用熱電変換モジュールの製造方法および発電用熱電変換モジュールに関する。   The present invention relates to a method for manufacturing a thermoelectric conversion module for power generation that directly converts a temperature difference into electricity, and a thermoelectric conversion module for power generation.

熱電材料は、ペルチェ効果を利用した温調素子と、ゼーベック効果を利用した発電素子 の2通りに応用される。   Thermoelectric materials are applied in two ways: temperature control elements that use the Peltier effect and power generation elements that use the Seebeck effect.

前者のペルチェ効果を利用した温調素子は、温度調節に使用され、可搬用温冷蔵庫のほか、光通信の普及により、レーザー発振子の冷却用として必要不可欠なものとなってきている。   The former temperature control element using the Peltier effect is used for temperature control, and has become indispensable for cooling a laser oscillator with the spread of optical communication in addition to a portable temperature refrigerator.

その反面、後者のゼーベック効果を利用した発電素子については、産業排熱を利用した数W〜数十Wクラスの発電システムの検討がなされているが、熱電変換効率が低い、発電コストが高いなどの問題があり実用化に至っていない。   On the other hand, for the power generation element using the latter Seebeck effect, a power generation system of several W to several tens W class using industrial waste heat has been studied, but the thermoelectric conversion efficiency is low, the power generation cost is high, etc. Has not yet been put into practical use.

近年、工場内に設置されている発電機などにおいては、各種のセンサーを設置して遠隔監視/制御が行なわれている。これらのセンサーは、電池、若しくは100V電源から電気が供給されるが、電池を使用した場合には当然時間の経過に伴って消耗するため、一定期間ごとに電池交換を行なう必要があった。   In recent years, in a generator installed in a factory, various sensors are installed and remote monitoring / control is performed. These sensors are supplied with electricity from a battery or a 100 V power source. However, when the battery is used, it is naturally consumed with the passage of time, so that it is necessary to replace the battery at regular intervals.

ところで、センサーの駆動電力は種類にもよるが、一般に数十〜百数十mWであり、一方発電機の運転時は発熱していることから、発電機の発熱温度と外気温との温度差を利用すれば、熱電変換モジュールによりセンサーの駆動電源が得られる可能性はある。   By the way, although the driving power of the sensor depends on the type, it is generally several tens to hundreds of tens of mW. On the other hand, heat is generated during operation of the generator, so the temperature difference between the heat generation temperature of the generator and the outside temperature If this is used, there is a possibility that a driving power source for the sensor can be obtained by the thermoelectric conversion module.

図5は、従来の熱電変換モジュールを用いた熱電発電システムを模式的に示す図である。   FIG. 5 is a diagram schematically showing a thermoelectric power generation system using a conventional thermoelectric conversion module.

この熱電発電システムは、図5に示すように熱電変換モジュール1の上面に熱伝導シート2を設け、その上面にヒートシンク3を配置する構成とし、熱電変換モジュール1より得られる発電電力を出力端子4より取出してDC/DCコンバータ5に与えて所望の電圧に変換している。   As shown in FIG. 5, this thermoelectric power generation system is configured such that a heat conductive sheet 2 is provided on the upper surface of the thermoelectric conversion module 1 and a heat sink 3 is disposed on the upper surface, and the generated power obtained from the thermoelectric conversion module 1 is output to the output terminal 4. It is taken out and given to the DC / DC converter 5 to be converted into a desired voltage.

しかしながら、図5に示すような熱電発電システムの構成では、発電機から発生する熱量が少ないため、多数の熱電変換モジュールを直列に接続しなければ、センサーの駆動に必要な電力を得ることができず、しかも発電コストに費用が嵩むばかりでなく、満足な設置面積あたりの希望発電量を得ることができなかった。   However, in the configuration of the thermoelectric power generation system as shown in FIG. 5, since the amount of heat generated from the generator is small, the power necessary for driving the sensor can be obtained unless a large number of thermoelectric conversion modules are connected in series. In addition, the power generation cost is not only expensive, but also the desired amount of power generation per installation area cannot be obtained.

因みに、P型及びN型熱電半導体材料を用いて、ゼーベック効果による温度差発電やペルチェ効果による電子冷却・発熱を可能とする熱電素子の製造方法としては、一対の基板に挟まれるように柱状のP型熱電材料とN型熱電材料を電気的に交互に接合するに際して、基板にパターンニングされた電極に有する凹部に熱電材料を設置するようにしたもの(特許文献1)や、P型熱電材料及びN型熱電材料切断・削除することによってP型熱電材料が接合された基板とN型熱電材料が接合された基板を向い合せて組立る際に、第1の基板及び第2の基板とP型熱電材料とN型熱電材料とを接合剤を用いて仮装着するようにしたもの(特許文献2)があるが、いずれも基板と熱電材料との設置又は装着するときの課題をテーマにしたものであり、単位面積当たりの発電量を多くするためのものではない。
特開2006−278352 特開2006−261152
By the way, as a method of manufacturing a thermoelectric element that uses P-type and N-type thermoelectric semiconductor materials to enable temperature difference power generation by the Seebeck effect and electronic cooling / heating by the Peltier effect, a columnar shape is sandwiched between a pair of substrates. When the P-type thermoelectric material and the N-type thermoelectric material are electrically joined alternately, the thermoelectric material is installed in the concave portion of the electrode patterned on the substrate (Patent Document 1), or the P-type thermoelectric material When the substrate to which the P-type thermoelectric material is bonded and the substrate to which the N-type thermoelectric material are bonded face each other by cutting and deleting the N-type thermoelectric material, the first substrate and the second substrate and P Type thermoelectric material and N-type thermoelectric material are temporarily mounted using a bonding agent (Patent Document 2), both of which are themes when installing or mounting a substrate and a thermoelectric material Is, Not intended for position to increase the amount of power generation per area.
JP 2006-278352 A JP 2006-261152 A

一般に市販されている熱電変換モジュールは、ペルチェ素子として使用することを前提として作製されており、通常1.5mm〜2.0mm角のビスマス・テルル系材料をサイコロ状に切断した多数の素子を1〜1.5mmの間隔で直列に配列したものである。   A commercially available thermoelectric conversion module is manufactured on the assumption that it is used as a Peltier element. Usually, a large number of elements obtained by cutting a bismuth-tellurium-based material of 1.5 mm to 2.0 mm square into a dice are 1 They are arranged in series at intervals of ˜1.5 mm.

このような熱電変換モジュールを製造するには、まず20〜40mmの棒状に作製したビスマス・テルル一方向凝固棒材を厚さ1〜2mm程度のウェハ形状にワイヤーソーなどを利用して切断した後、ダイシングソーにて所定のサイコロ形状に切断される。   In order to manufacture such a thermoelectric conversion module, first, a bismuth-tellurium unidirectionally solidified bar made into a 20 to 40 mm rod shape is cut into a wafer shape with a thickness of about 1 to 2 mm using a wire saw or the like. Then, it is cut into a predetermined dice shape with a dicing saw.

その後、サイコロ状の熱電変換素材をP,N交互に直列となるように並べ、半田で電極に接続することによって熱電変換モジュールを製造していた。この場合、ダイシングソーの精度で言えば、素子寸法は1mm以下とすることができる。   Then, the thermoelectric conversion module was manufactured by arranging the dice-like thermoelectric conversion materials so that P and N were alternately arranged in series and connected to the electrodes with solder. In this case, in terms of the accuracy of the dicing saw, the element size can be 1 mm or less.

しかしながら、ビスマス・テルル系熱電変換材料は脆性材料であり、1mm以下とすることによりチッピングにより使用できない素材の発生率が高くなる、素子の位置決め治具の精度が厳密となる、素子の組立のコストが上がるなどの問題が生じる。   However, bismuth-tellurium-based thermoelectric conversion materials are brittle materials, and if they are 1 mm or less, the incidence of materials that cannot be used due to chipping increases, the accuracy of element positioning jigs becomes strict, and the cost of element assembly Problems such as rising.

さらに、機械を用いた熱電変換モジュールの組立工程に特有な問題として、半田付け時の余剰な半田による素子相互間の短絡があり、この短絡を防止する目的で素子相互間を1〜1.5mmの間隔をとって作製している。   Furthermore, as a problem peculiar to the assembly process of the thermoelectric conversion module using a machine, there is a short circuit between elements due to excessive solder at the time of soldering. It is produced with the interval of.

このようにして製造された熱電変換モジュールをセンサー用などの電源として使用する場合、昇圧電気回路(DC/DCコンバータ)の最低入力電圧を発電する必要がある。   When the thermoelectric conversion module manufactured in this way is used as a power source for a sensor or the like, it is necessary to generate a minimum input voltage of a step-up electric circuit (DC / DC converter).

また、熱電変換モジュールの設置面積は限られているため、出力密度の高いモジュールが必要となる。この場合、単位面積あたりの起電圧は、単位面積あたりにP型素子とN型素子の素子対が何組あるかで決定され、この素子対が多いほど、起電圧が大きくなる。   Moreover, since the installation area of the thermoelectric conversion module is limited, a module with high output density is required. In this case, the electromotive voltage per unit area is determined by the number of element pairs of P-type elements and N-type elements per unit area, and the electromotive voltage increases as the number of element pairs increases.

しかしながら、従来の熱電変換モジュールでは、素子寸法が大きく、素子間隔が広いため、使用希望条件にて十分な起電圧を得ることができなかった。   However, since the conventional thermoelectric conversion module has a large element size and a wide element interval, it has not been possible to obtain a sufficient electromotive voltage under desired use conditions.

本発明は、上記のような事情に鑑みてなされたもので、単位面積あたりの起電圧が高く、かつ製作コストが安価で製作効率の高い発電用熱電変換モジュールの製造方法および発電用熱電変換モジュールを提供することを目的とする。   The present invention has been made in view of the above circumstances, and a method for producing a thermoelectric conversion module for power generation and a thermoelectric conversion module for power generation that have a high electromotive voltage per unit area, a low production cost, and a high production efficiency. The purpose is to provide.

本発明は、上記の目的を達成するため、ハニカム成形型の上面開口部に0.2mm〜0.8mmの厚さの板材で組まれた格子状のハニカムスペーサーを挟み込み、このハニカムスペーサーにより上面開口部が格子状に仕切られたハニカム成形型内に各格子を通して0.5mm〜1.5mm角の棒状のP型熱電素子及びN型熱電素子を交互に挿入する第1の工程と、このハニカム成形型内に一定の間隔を存して設置されたP型熱電素子及びN型熱電素子相互間の間隙に絶縁樹脂を含浸硬化させてブロックとして成形する第2の工程と、この第2の工程で成形されたブロックを各素子の長手方向に対して直交する方向に所定の厚さ毎に切断してブロック片とする第3の工程と、この第3の工程で切断されたブロック片の両面側のP型熱電素子とN型熱電素子とが交互に電気的に直列接続されるようにメッキした後、直列接続された素子群の最先及び最終の素子に出力端子となる電極を半田付けする第4の工程とにより発電用熱電変換モジュールを製造する。   In order to achieve the above object, the present invention sandwiches a lattice-shaped honeycomb spacer made of a plate material having a thickness of 0.2 mm to 0.8 mm in the upper surface opening of the honeycomb mold, and the upper surface opening is formed by the honeycomb spacer. A first step of alternately inserting 0.5 mm to 1.5 mm square rod-shaped P-type thermoelectric elements and N-type thermoelectric elements through each grid into a honeycomb mold in which the portions are partitioned in a grid pattern; In a second step of forming a block by impregnating and curing an insulating resin in a gap between a P-type thermoelectric element and an N-type thermoelectric element installed at a certain interval in the mold, and in this second step A third step of cutting the formed block into a block piece by cutting at a predetermined thickness in a direction orthogonal to the longitudinal direction of each element, and both sides of the block piece cut in the third step P-type and N-type thermoelectric elements And the fourth step of soldering the electrode serving as the output terminal to the first and last elements of the series-connected elements after plating so that they are alternately electrically connected in series, and the thermoelectric conversion module for power generation Manufacturing.

本発明によれば、製作コストが安価で製作効率の高い熱電変換モジュールを製造することができ、単位面積あたりの出力密度の高い熱電変換モジュールを得ることができる。   According to the present invention, a thermoelectric conversion module with low manufacturing cost and high manufacturing efficiency can be manufactured, and a thermoelectric conversion module with high output density per unit area can be obtained.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明による発電用熱電変換モジュールの製造方法を説明するための第1の実施形態を示す工程図である。   FIG. 1 is a process diagram showing a first embodiment for explaining a method for producing a thermoelectric conversion module for power generation according to the present invention.

図1において、棒状のP型素子6及びN型素子7は、等方性高密度黒鉛素材(例えば東洋炭素(株)製ISO−88等)により所望の棒状形状になるような2分割鋳型を作製し、これらを組合せた鋳型内に溶解したビスマス・テルルを注湯し、凝固させた後、鋳型を元の2分割鋳型に分離することによって、棒状のビスマス・テルル素材として作製したものである(図示せず)。この棒状のビスマス・テルル素材は0.5mm〜1.5mm角、または0.8mm〜1.1mmφで100mm長さ以上のものを容易に得ることができる。   In FIG. 1, the rod-shaped P-type element 6 and N-type element 7 are two-part molds that have a desired rod-like shape made of isotropic high-density graphite material (for example, ISO-88 manufactured by Toyo Tanso Co., Ltd.). It is prepared as a rod-shaped bismuth and tellurium material by pouring and solidifying bismuth and tellurium dissolved in a mold that combines these, solidifying, and then separating the mold into the original two-part mold. (Not shown). This rod-shaped bismuth and tellurium material can be easily obtained in a range of 0.5 mm to 1.5 mm square, or 0.8 mm to 1.1 mmφ and 100 mm or more.

次に角形絶縁箱らなるハニカム成形型8の上面開口部に0.2mm〜0.8mm、ここでは例えば0.5mmの厚さの板材で格子状に組んだハニカムスペーサー9を挟み込み、このハニカムスペーサー9により上面開口部が格子状に仕切られたハニカム成形型8内に各格子を通して上述した例えば0.5mm角の棒状のP型素子6及びN型素子7を交互に挿入することで、各素子は縦及び横方向に一定の間隔(0.5mmの間隔)で配置される。   Next, a honeycomb spacer 9 assembled in a lattice shape with a plate material having a thickness of 0.2 mm to 0.8 mm, for example, 0.5 mm, is sandwiched in the opening on the upper surface of the honeycomb forming die 8 such as a rectangular insulating box. For example, the above-described 0.5 mm square rod-shaped P-type elements 6 and N-type elements 7 are alternately inserted through the respective lattices into the honeycomb forming die 8 in which the upper surface openings are partitioned in a lattice shape by 9. Are arranged at constant intervals (0.5 mm intervals) in the vertical and horizontal directions.

このハニカム成形型8内に設置されたP型素子6及びN型素子7相互間に存する間隙に容器10内に収容された絶縁樹脂を含浸硬化させ、全体が一体化されたプロック11を成形する。   An insulating resin accommodated in the container 10 is impregnated and cured in a gap existing between the P-type element 6 and the N-type element 7 installed in the honeycomb forming die 8 to form a block 11 in which the whole is integrated. .

次にこのブロック11を各素子の長手方向に対して直交する方向に所定の厚さ毎にカッター12により切断してブロック片とし、その両面側(切断面)のP型素子とN型素子とが交互に電気的に直列接続されるようにメッキした後、通電の出入口となる最先端及び最終端の素子にマイクロソルダリング技術により図示しない電極を半田付けし、熱電変換モジュール13を製作する。   Next, this block 11 is cut by a cutter 12 at a predetermined thickness in a direction orthogonal to the longitudinal direction of each element to form block pieces, and P-type elements and N-type elements on both sides (cut planes) Are plated so that they are alternately electrically connected in series, and then an electrode (not shown) is soldered to the most advanced element and the last element serving as an entrance / exit for energization by a micro soldering technique to manufacture the thermoelectric conversion module 13.

このような製造方法によれば、各素子相互間がハニカムスペーサー9の厚み、ここでは0.5mmの厚みに相当する間隔でP型素子6とN型素子7が配置されるので、素材にチッピングを生じさせることなく単位面積当たりの本数が40本/cm2以上の実装密度の高い熱電変換モジュールを効率的に作製することができる。また、大量生産品においても素子間隔を0.5mm以下とすることが可能である。   According to such a manufacturing method, the P-type element 6 and the N-type element 7 are arranged at an interval corresponding to the thickness of the honeycomb spacer 9 between the elements, in this case 0.5 mm. In this way, it is possible to efficiently manufacture a thermoelectric conversion module having a high mounting density of 40 / cm 2 or more per unit area without causing the above-described problem. In addition, the element spacing can be 0.5 mm or less even in mass-produced products.

因みに、一般に市販されている熱電変換モジュールは、機械を用いた組立工程の都合から、通常1.5mm〜2.0mm角の素子を1mm〜1.5mmの間隔で組立られていることから、単位面積当たりの実装密度が本発明に比べて低く、単位面積あたりの起電圧を高めることに限界があった。   Incidentally, a commercially available thermoelectric conversion module usually has 1.5 mm to 2.0 mm square elements assembled at intervals of 1 mm to 1.5 mm because of the assembly process using a machine. The mounting density per area is lower than that of the present invention, and there is a limit to increasing the electromotive voltage per unit area.

ここで、本発明方法により製作された熱電変換モジュール(発明モジュール)による発生電圧と従来の熱電変換モジュール(従来モジュール)による発生電圧の測定結果を表1により検証すると次の通りである。

Figure 2009076603
Here, the measurement results of the voltage generated by the thermoelectric conversion module (invention module) manufactured by the method of the present invention and the voltage generated by the conventional thermoelectric conversion module (conventional module) are verified by Table 1 as follows.
Figure 2009076603

上記表1において、代表的な使用条件としては、低温側温度25℃、入熱0.28W/cm2である。また、発明モジュールが設置面積42mm角(1764mm2)でP/N対が392対であるのに対して、従来モジュールが設置面積40mm角(1600mm2)でP/N対が127対である。 In Table 1 above, typical use conditions are a low temperature side temperature of 25 ° C. and a heat input of 0.28 W / cm 2 . The invention module has an installation area of 42 mm square (1764 mm 2 ) and P / N pairs of 392 pairs, whereas the conventional module has an installation area of 40 mm square (1600 mm 2 ) and P / N pairs of 127 pairs.

発明モジュールの単位面積あたりの素子対数は44.8本/cm2と従来モジュールの15.8本/cm2に対し、約2.8倍となっている。また、熱起電圧は素子数にほぼ比例するため、発明モジュールの起電圧は1.61Vと従来品に対して3倍以上になっている。 Element logarithm per unit area of the invention the module 44.8 present / cm 2 to 15.8 present / cm 2 conventional module, which is about 2.8 times. Further, since the thermoelectromotive voltage is almost proportional to the number of elements, the electromotive voltage of the inventive module is 1.61 V, which is more than three times that of the conventional product.

ところで、現状のDC/DCコンバーターの最小起動電圧は、0.9V(例えばリニアテクノロジー社リニアレギュレーターIC LTC3025等を使用した場合)必要である。   By the way, the minimum starting voltage of the current DC / DC converter requires 0.9 V (for example, when a linear regulator IC LTC3025 or the like is used).

上記表1から明らかなように、代表的な使用条件(低温側温度25℃、入熱0.28W/cm2、センサー設置面積40〜42mm四方角)において、従来モジュールではDC/DCコンバーターを起動するために十分な電圧を得ることができないが、発明モジュールではDC/DCコンバーターを起動するために十分な電圧が得られることが分かる。 As is clear from Table 1 above, the DC / DC converter is activated in the conventional module under typical usage conditions (low temperature 25 ° C., heat input 0.28 W / cm 2 , sensor installation area 40 to 42 mm square). It can be seen that sufficient voltage is not obtained to activate the DC / DC converter in the inventive module, although sufficient voltage cannot be obtained to achieve this.

図2〜図4に本発明により作製した熱電変換モジュールを熱源に設置した状態を示す模式図である。   It is a schematic diagram which shows the state which installed the thermoelectric conversion module produced by this invention in FIG.

図2〜図4において、いずれも設置される熱源側鋼板14は板表面の研削を行い、平面度が0.02mm以下となるよう調整している。   2 to 4, the heat source side steel plate 14 to be installed is ground on the surface of the plate, and the flatness is adjusted to 0.02 mm or less.

図2は熱源側板14がフェライトもしくはマルテンサイト系鋼板等の磁石が吸着する材料を用いた場合の設置例(以下、設置例1と呼ぶ)を示している。すなわち、図2に示すように熱源側鋼板14に熱伝導を良好にするための熱伝導シート15を貼付け、その上面に前述した図1に示す工程により製作された熱電変換モジュール13とその上に熱伝導シート2を介してヒートシンク3を設けた構成の発電機を設置し、この発電機のヒートシンク3に鋼板からなる枠体の下面周囲部に磁石16を張付けた押え治具17の開口部を挿通させ、ヒートシンク3の熱伝導シート2側に有するフランジ部を上から押え付けるようにして磁石16を熱源側鋼板14に吸着させることで、小型発電機を熱源側鋼板14に密着させた状態で固定するものである。   FIG. 2 shows an installation example (hereinafter referred to as installation example 1) in which the heat source side plate 14 uses a material such as ferrite or a martensitic steel plate that adsorbs a magnet. That is, as shown in FIG. 2, a heat conduction sheet 15 for improving heat conduction is attached to the heat source side steel plate 14, and the thermoelectric conversion module 13 manufactured by the process shown in FIG. A generator having a configuration in which a heat sink 3 is provided via a heat conductive sheet 2 is installed, and an opening portion of a holding jig 17 in which a magnet 16 is stretched around the lower surface of a frame made of a steel plate is attached to the heat sink 3 of the generator. In a state where the small generator is brought into close contact with the heat source side steel plate 14 by inserting the magnet 16 to the heat source side steel plate 14 so as to press the flange portion on the heat conductive sheet 2 side of the heat sink 3 from above. It is to be fixed.

図3は発電機を熱源側鋼板14に設置してボルトにより固定した例(以下設置例2と呼ぶ)を示している。すなわち、図3に示すように熱源側鋼板14に熱伝導を良好にするための熱伝導シート15を貼付け、その上面に熱電変換モジュール13とその上に熱伝導シート2を介してヒートシンク3を設けた構成の発電機を設置し、この発電機のヒートシンク部に枠状の鋼板からなる押え治具18の開口部を挿通させ、ヒートシンク3の熱伝導シート2側に有するフランジ部を上から押え付けるようにして予め押え治具18及び熱源側鋼板14にそれぞれ設けられたタップもしくはネジ穴19にボルト20を螺挿することで、発電機を熱源側鋼板14に密着させた状態で固定するものである。   FIG. 3 shows an example (hereinafter referred to as installation example 2) in which the generator is installed on the heat source side steel plate 14 and fixed with bolts. That is, as shown in FIG. 3, a heat conduction sheet 15 for improving heat conduction is pasted on the heat source side steel sheet 14, and a heat sink 3 is provided on the upper surface of the thermoelectric conversion module 13 and the heat conduction sheet 2 thereon. The generator having the above-described configuration is installed, the opening of the holding jig 18 made of a frame-shaped steel plate is inserted into the heat sink portion of the generator, and the flange portion on the heat conductive sheet 2 side of the heat sink 3 is pressed from above. Thus, the generator is fixed in a state of being in close contact with the heat source side steel plate 14 by screwing bolts 20 into taps or screw holes 19 provided in advance in the holding jig 18 and the heat source side steel plate 14, respectively. is there.

図4は発電機を熱源側鋼板14に設置して真空脱気によって固定した例(以下設置例3と呼ぶ)を示している。すなわち、図4に示すように熱源側鋼板14に熱伝導を良好にするための熱伝導シート15を貼付け、その上面に熱電変換モジュール13とその上に熱伝導シート2を介してヒートシンク3を設けた構成の発電機を設置し、この発電機のヒートシンク部に鋼板からなる枠体の下面周囲部に真空パッキング21を設けた押え治具22の開口部を挿通させ、ヒートシンク3の熱伝導シート2側に有するフランジ部を上から押え付けて真空パッキング21を真空引きすることで、発電機を熱源側鋼板14に密着させた状態で固定するものである。   FIG. 4 shows an example in which the generator is installed on the heat source side steel plate 14 and fixed by vacuum degassing (hereinafter referred to as installation example 3). That is, as shown in FIG. 4, a heat conductive sheet 15 for improving heat conduction is attached to the heat source side steel plate 14, and a heat sink 3 is provided on the upper surface of the thermoelectric conversion module 13 via the heat conductive sheet 2. The heat generator 2 of the heat sink 3 is inserted through the opening of the holding jig 22 provided with the vacuum packing 21 around the lower surface of the frame made of a steel plate. The generator is fixed in a state of being in close contact with the heat source side steel plate 14 by pressing the flange portion provided on the side from above and evacuating the vacuum packing 21.

表2は、設置例1〜3において、熱電変換モジュールにP/N対が392個、モジュール寸法が42mm角、モジュール高さ3mmのものを使用し、気温25℃で入熱を0.28W/cm2与えたときのDC/DCコンバータの入力前後の発生電圧(平均値)を示すものである。 Table 2 shows that in installation examples 1 to 3, a thermoelectric conversion module with 392 P / N pairs, a module size of 42 mm square, and a module height of 3 mm was used, and the heat input was 0.28 W / at 25 ° C. It shows the generated voltage (average value) before and after the input of the DC / DC converter when cm 2 is given.

なお、上記表2には同一条件にて市販のモジュール(40mm角モジュール、P/N対が127個、モジュール高さ3mm)を評価した結果(従来例)を併せて示している。

Figure 2009076603
Table 2 also shows the results (conventional example) of evaluating commercially available modules (40 mm square modules, 127 P / N pairs, 3 mm module height) under the same conditions.
Figure 2009076603

上記表2から分かるように、従来例ではDC/DCコンバータ入力後の起電圧が0Vであるのに対し、本発明による設置例ではいずれも3.0Vの出力が得られることが確認できた。   As can be seen from Table 2 above, in the conventional example, the electromotive voltage after the input of the DC / DC converter is 0V, whereas in the installation examples according to the present invention, it is confirmed that an output of 3.0V can be obtained.

本発明による熱電変換モジュールの製造方法を説明するための第1の実施形態を示す工程図。Process drawing which shows 1st Embodiment for demonstrating the manufacturing method of the thermoelectric conversion module by this invention. 本発明により作製した熱電変換モジュールを熱源に設置した状態の第1の例を示す模式図。The schematic diagram which shows the 1st example of the state which installed the thermoelectric conversion module produced by this invention in the heat source. 本発明により作製した熱電変換モジュールを熱源に設置した状態の第2の例を示す模式図。The schematic diagram which shows the 2nd example of the state which installed the thermoelectric conversion module produced by this invention in the heat source. 本発明により作製した熱電変換モジュールを熱源に設置した状態の第3の例を示す模式図。The schematic diagram which shows the 3rd example of the state which installed the thermoelectric conversion module produced by this invention in the heat source. 従来の熱電変換モジュールを熱源に設置した状態を示す模式図。The schematic diagram which shows the state which installed the conventional thermoelectric conversion module in the heat source.

符号の説明Explanation of symbols

2…熱伝導シート、3…ヒートシンク、5…DC/DCコンバータ、6…P型素子、7…N型素子、8…ハニカム成形型、9…ハニカムスペーサー、10…容器、11…ブロック、12…カッター、13…熱電変換モジュール、14…熱源側鋼板、15…熱伝導シート、16…磁石、17,18,22…押え治具、19…ネジ穴、20…ボルト、21…真空パッキング   2 ... heat conduction sheet, 3 ... heat sink, 5 ... DC / DC converter, 6 ... P-type element, 7 ... N-type element, 8 ... honeycomb forming mold, 9 ... honeycomb spacer, 10 ... container, 11 ... block, 12 ... Cutter, 13 ... Thermoelectric conversion module, 14 ... Heat source side steel plate, 15 ... Heat conduction sheet, 16 ... Magnet, 17, 18, 22 ... Holding jig, 19 ... Screw hole, 20 ... Bolt, 21 ... Vacuum packing

Claims (4)

ハニカム成形型の上面開口部に0.2mm〜0.8mmの厚さの板材で組まれた格子状のハニカムスペーサーを挟み込み、このハニカムスペーサーにより上面開口部が格子状に仕切られたハニカム成形型内に各格子を通して0.5mm〜1.5mm角の棒状のP型熱電素子及びN型熱電素子を交互に挿入する第1の工程と、
このハニカム成形型内に一定の間隔を存して設置されたP型熱電素子及びN型熱電素子相互間の間隙に絶縁樹脂を含浸硬化させてブロックとして成形する第2の工程と、
この第2の工程で成形されたブロックを各素子の長手方向に対して直交する方向に所定の厚さ毎に切断してブロック片とする第3の工程と、
この第3の工程で切断されたブロック片の両面側のP型熱電素子とN型熱電素子とが交互に電気的に直列接続されるようにメッキした後、直列接続された素子群の最先及び最終の素子に出力端子となる電極を半田付けする第4の工程と
からなる発電用熱電モジュールの製造方法。
A honeycomb-shaped honeycomb spacer assembled with a plate material having a thickness of 0.2 mm to 0.8 mm is sandwiched in the upper surface opening of the honeycomb mold, and the upper surface opening is partitioned into a lattice by the honeycomb spacer. A first step of alternately inserting rod-shaped P-type thermoelectric elements and N-type thermoelectric elements of 0.5 mm to 1.5 mm square through each grid;
A second step of forming a block by impregnating and curing an insulating resin in a gap between the P-type thermoelectric element and the N-type thermoelectric element installed in the honeycomb mold at a certain interval;
A third step in which the block formed in the second step is cut into a block piece by cutting at a predetermined thickness in a direction orthogonal to the longitudinal direction of each element;
After plating so that the P-type thermoelectric elements and N-type thermoelectric elements on both sides of the block piece cut in the third step are alternately electrically connected in series, the first of the elements connected in series And a fourth step of soldering an electrode serving as an output terminal to the final element.
請求項1記載の発電用モジュールの製造方法において、
P型熱電素子とN型熱電素子の材料としてビスマスおよびテルルを含む材料を用いることを特徴とする発電用熱電変換モジュールの製造方法。
In the manufacturing method of the power generation module according to claim 1,
A method for producing a thermoelectric conversion module for power generation, wherein a material containing bismuth and tellurium is used as a material for a P-type thermoelectric element and an N-type thermoelectric element.
請求項1又は請求項2記載の発電用熱電変換モジュールの製造方法において、
前記熱電変換素子の単位面積当たりの本数が40本/cm2以上であることを特徴とする発電用熱電変換モジュールの製造方法。
In the manufacturing method of the thermoelectric conversion module for electric power generation of Claim 1 or Claim 2,
The method for producing a thermoelectric conversion module for power generation, wherein the number of thermoelectric conversion elements per unit area is 40 / cm 2 or more.
請求項1乃至請求項3のいずれかに記載の方法により製造されたことを特徴とする発電用熱電変換モジュール。   A thermoelectric conversion module for power generation manufactured by the method according to any one of claims 1 to 3.
JP2007242957A 2007-09-19 2007-09-19 Manufacturing method of thermoelectric conversion module for power generation, and thermoelectric conversion module for power generation Pending JP2009076603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007242957A JP2009076603A (en) 2007-09-19 2007-09-19 Manufacturing method of thermoelectric conversion module for power generation, and thermoelectric conversion module for power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007242957A JP2009076603A (en) 2007-09-19 2007-09-19 Manufacturing method of thermoelectric conversion module for power generation, and thermoelectric conversion module for power generation

Publications (1)

Publication Number Publication Date
JP2009076603A true JP2009076603A (en) 2009-04-09

Family

ID=40611322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007242957A Pending JP2009076603A (en) 2007-09-19 2007-09-19 Manufacturing method of thermoelectric conversion module for power generation, and thermoelectric conversion module for power generation

Country Status (1)

Country Link
JP (1) JP2009076603A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011044115A3 (en) * 2009-10-05 2011-07-07 Board Of Regents Of The University Of Oklahoma Method for thin film thermoelectric module fabrication
JP2012080761A (en) * 2010-09-10 2012-04-19 Toshiba Corp Temperature difference power generation apparatus and thermoelectric conversion element frame
CN103413888A (en) * 2013-08-21 2013-11-27 电子科技大学 Pouring-type thermoelectric device and manufacturing method thereof
JP2014090542A (en) * 2012-10-29 2014-05-15 Mitsumi Electric Co Ltd Power generator and power generation system
US9059363B2 (en) 2009-04-14 2015-06-16 The Board Of Regents Of The University Of Oklahoma Thermoelectric materials
JP2019062054A (en) * 2017-09-26 2019-04-18 三菱マテリアル株式会社 Thermoelectric conversion cell and thermoelectric conversion module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148636A (en) * 1995-11-27 1997-06-06 Aisin Seiki Co Ltd Manufacture of thermoelectric device
JPH09199765A (en) * 1995-11-13 1997-07-31 Ngk Insulators Ltd Thermoelectric conversion module and manufacture thereof
JPH09293909A (en) * 1996-02-26 1997-11-11 Matsushita Electric Works Ltd Thermoelectric module and method for manufacturing it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199765A (en) * 1995-11-13 1997-07-31 Ngk Insulators Ltd Thermoelectric conversion module and manufacture thereof
JPH09148636A (en) * 1995-11-27 1997-06-06 Aisin Seiki Co Ltd Manufacture of thermoelectric device
JPH09293909A (en) * 1996-02-26 1997-11-11 Matsushita Electric Works Ltd Thermoelectric module and method for manufacturing it

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9059363B2 (en) 2009-04-14 2015-06-16 The Board Of Regents Of The University Of Oklahoma Thermoelectric materials
WO2011044115A3 (en) * 2009-10-05 2011-07-07 Board Of Regents Of The University Of Oklahoma Method for thin film thermoelectric module fabrication
US8216871B2 (en) 2009-10-05 2012-07-10 The Board Of Regents Of The University Of Oklahoma Method for thin film thermoelectric module fabrication
JP2012080761A (en) * 2010-09-10 2012-04-19 Toshiba Corp Temperature difference power generation apparatus and thermoelectric conversion element frame
JP2014090542A (en) * 2012-10-29 2014-05-15 Mitsumi Electric Co Ltd Power generator and power generation system
CN103413888A (en) * 2013-08-21 2013-11-27 电子科技大学 Pouring-type thermoelectric device and manufacturing method thereof
CN103413888B (en) * 2013-08-21 2015-11-04 电子科技大学 A kind of casting type thermoelectric device and preparation method thereof
JP2019062054A (en) * 2017-09-26 2019-04-18 三菱マテリアル株式会社 Thermoelectric conversion cell and thermoelectric conversion module

Similar Documents

Publication Publication Date Title
JP2009076603A (en) Manufacturing method of thermoelectric conversion module for power generation, and thermoelectric conversion module for power generation
KR102009446B1 (en) Thermoelectric module and method for manufacturing the same
JP2011129838A (en) Thermoelectric conversion module and method of manufacturing the same
KR20110139210A (en) Method of producing thermoelectric conversion device
CN105374927A (en) Thermoelectric module and manufacturing method thereof
JP2006186255A (en) Thermoelectric conversion element
KR101822415B1 (en) Thermoelectric conversion module
KR20100071601A (en) Thermoelectric module comprising spherical thermoelectric elements and process for preparing the same
KR102120273B1 (en) Thermoelectric module and thermoelectric generator
KR101218272B1 (en) generating apparatus with piezoeletric element
JP6225756B2 (en) Thermoelectric conversion module
JPH0818109A (en) Thermoionic element and manufacture thereof
JP2009043808A (en) Thermoelectric device and manufacturing method of thermoelectric device
JP2002158379A (en) Aggregation of thermoelectric conversion elements, method of manufacturing the same and thermoelectric module
JP4706819B2 (en) Thermoelectric device
JP2010161297A (en) Thermoelectric conversion module and method for manufacturing the same
KR102154007B1 (en) Thermoelectric conversion module
JPH10313134A (en) Manufacture of thermoelectric module
JP2016178147A (en) Thermoelectric power generation device
JPH1187787A (en) Production of thermoelectrtc module
JP4124150B2 (en) Thermoelectric module manufacturing method
JPH098364A (en) Production of thermoelectric conversion element
KR20160030760A (en) Apparatus for fixing thermoelectric device elements
JPH10335710A (en) Thermal conversion element and its manufacture
JP2006013133A (en) Thermoelectric conversion module and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120207