JP2009074974A - Mobile station and location derivation method - Google Patents

Mobile station and location derivation method Download PDF

Info

Publication number
JP2009074974A
JP2009074974A JP2007245085A JP2007245085A JP2009074974A JP 2009074974 A JP2009074974 A JP 2009074974A JP 2007245085 A JP2007245085 A JP 2007245085A JP 2007245085 A JP2007245085 A JP 2007245085A JP 2009074974 A JP2009074974 A JP 2009074974A
Authority
JP
Japan
Prior art keywords
distance
base stations
mobile station
reliability
absolute position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007245085A
Other languages
Japanese (ja)
Inventor
Tomoaki Konishi
友明 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007245085A priority Critical patent/JP2009074974A/en
Publication of JP2009074974A publication Critical patent/JP2009074974A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quickly estimate the location of a mobile station with high precision regardless of electric field strength. <P>SOLUTION: The mobile station which can wirelessly communicate with a plurality of base stations 120 comprises: a wireless communication section 222 for wirelessly communicating with the plurality of base stations; a location information acquisition section 250 for acquiring the absolute location information of the plurality of base stations; a delay calculation section 252 for measuring a propagation delay time when transmitting/receiving radio waves to/from the plurality of base stations; a distance calculation section 254 for calculating the distance to each of the plurality of base stations on the basis of the propagation delay time; and a location determination section 258 for determining, on the basis of the absolute location information and distance concerning each of the plurality of base stations, the absolute position of the mobile station. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数の基地局と無線通信が可能な移動局にかかり、さらに詳細には、基地局と送受信される電波の伝搬遅延を用いて移動局の絶対位置を導出する移動局および位置導出方法に関する。   The present invention relates to a mobile station capable of wireless communication with a plurality of base stations. More specifically, the present invention relates to a mobile station for deriving the absolute position of a mobile station using propagation delay of radio waves transmitted and received with the base station, and position derivation. Regarding the method.

近年、携帯電話やPHS(Personal Handy phone System)等に代表される移動局が普及し、場所や時間を問わず通話や情報入手が可能となった。このような移動局は、所定間隔をおいて配される基地局と無線通信を行うことで通信網との接続を行う。そして、基地局は、通信相手の通信可能範囲にある基地局と通信を行い移動局同士の音声通信を確立する。   In recent years, mobile stations such as mobile phones and PHS (Personal Handy phone System) have become widespread, making it possible to make calls and obtain information regardless of location or time. Such a mobile station connects to a communication network by performing wireless communication with base stations arranged at a predetermined interval. Then, the base station communicates with a base station within the communicable range of the communication partner to establish voice communication between the mobile stations.

一方、上述した移動局では、自局の絶対位置を通じて、現在居るところの地図上の位置を表示したり、近くの食事処を検索したりするサービスが供給されている。かかるサービスを受けるためには自局の絶対位置を特定することが条件となるが、上述したような固定的に配される基地局と異なり、移動局は自局の絶対位置を独立して把握する術を有していない。   On the other hand, the mobile station described above is provided with a service for displaying the current location on the map and searching for nearby restaurants through the absolute position of the mobile station. In order to receive such services, it is necessary to specify the absolute position of the local station, but unlike the base stations that are fixedly arranged as described above, the mobile station independently grasps the absolute position of the local station. I don't have the technique to do.

例えば、移動局の位置を特定する手段として、GPS(Global Positioning System)を利用する方法が考えられる。かかるGPSでは、少なくとも3つの衛星からの電波を捕捉し、各衛星との距離を計算して自己の絶対位置を把握することができる。このとき、3つの衛星を捕捉できれば自局の平面上の位置を、4つの衛星を捕捉できればさらに高度を取得することができる。しかし、GPSは比較的高価なシステムであり、計算に時間を要する。また、衛星の電波を受信困難な状況では利用できないといった課題もある。   For example, a method using GPS (Global Positioning System) can be considered as means for specifying the position of the mobile station. In such GPS, radio waves from at least three satellites can be captured, and the distance to each satellite can be calculated to determine its absolute position. At this time, if three satellites can be acquired, the position on the plane of the own station can be acquired, and if four satellites can be acquired, further altitude can be acquired. However, GPS is a relatively expensive system and requires time for calculation. Another problem is that it cannot be used in situations where it is difficult to receive satellite radio waves.

また、各基地局から受信する電波の電界強度とその基地局の位置とを合わせ、三点交差法(三点測位法)用いて絶対位置を計算する技術が知られている(例えば、特許文献1)。さらに、各基地局から受信する電波の電界強度とその基地局の識別符号とを位置管理局に送信し、位置管理局に自局の現在位置を計算させる技術も公開されている(例えば、特許文献2)。
特開平2−044929号公報 特開平9−247737号公報
In addition, a technique is known in which the absolute position is calculated using the three-point intersection method (three-point positioning method) by combining the electric field intensity of the radio wave received from each base station and the position of the base station (for example, Patent Documents). 1). Furthermore, a technique for transmitting the electric field strength of the radio wave received from each base station and the identification code of the base station to the position management station and causing the position management station to calculate the current position of the own station is disclosed (for example, patents). Reference 2).
Japanese Patent Laid-Open No. 2-044929 Japanese Patent Laid-Open No. 9-247737

上述した移動局の絶対位置推定技術は、基地局との距離に応じて受信された電波の電界強度が変化する(減衰する)特性を利用しており、電界強度と距離との関係式を参照して基地局と移動局との距離を導き出している。   The above-mentioned absolute position estimation technology of a mobile station uses the characteristic that the electric field strength of a received radio wave changes (attenuates) according to the distance to the base station. Refer to the relational expression between the electric field strength and the distance. Thus, the distance between the base station and the mobile station is derived.

しかし、建物が密集している環境下においては、マルチパスフェージングやシャドウウイングによって電界強度が増幅または減衰し、本来の電界強度から大きくずれてしまうことがある。従って、電界強度から一意に導出される基地局との距離も、実際の距離から長短いずれにも変動してしまい、移動局の位置特定精度が極端に低下してしまう。   However, in an environment where buildings are densely packed, the electric field strength may be amplified or attenuated due to multipath fading or shadow wing, and may greatly deviate from the original electric field strength. Therefore, the distance from the base station that is uniquely derived from the electric field strength also varies from the actual distance to the long or short, and the position specifying accuracy of the mobile station is extremely reduced.

また、基地局の設置密度が低い地域や、建物が密集している地域では、受信電波の強度が相対的に低く、電界強度の変動に対する距離の変化量も大きくなり、距離推定精度を高めることができないといった問題も生じていた。   Also, in areas where base station installation density is low or where buildings are densely populated, the intensity of received radio waves is relatively low, and the amount of change in distance due to fluctuations in electric field strength increases, increasing distance estimation accuracy. There was also a problem that they could not.

本発明は、このような従来の位置特定技術の問題点に鑑みてなされたものであり、本発明の目的は、電界強度の強弱に拘わらず、迅速かつ高精度に移動局の位置を推定することが可能な、移動局および位置導出方法を提供することである。   The present invention has been made in view of the problems of the conventional position identification technology, and an object of the present invention is to estimate the position of a mobile station quickly and with high accuracy regardless of the strength of electric field strength. It is to provide a mobile station and a position derivation method that can be used.

上記課題を解決するために、本発明のある観点によれば、複数の基地局と無線通信が可能な移動局であって、複数の基地局と無線通信を行う無線通信部と、複数の基地局の絶対位置情報を取得する位置情報取得部と、複数の基地局に電波を送受信した際の伝搬遅延時間を計測する遅延計算部と、伝搬遅延時間に基づいて複数の基地局それぞれとの距離を計算する距離計算部と、複数の基地局それぞれに関する絶対位置情報および距離に基づいて、当該移動局の絶対位置を特定する位置特定部と、を備えることを特徴とする、移動局が提供される。   In order to solve the above problems, according to an aspect of the present invention, a mobile station capable of wireless communication with a plurality of base stations, a wireless communication unit that performs wireless communication with the plurality of base stations, and a plurality of bases The position information acquisition unit that acquires the absolute position information of the station, the delay calculation unit that measures the propagation delay time when radio waves are transmitted to and received from a plurality of base stations, and the distance between each of the plurality of base stations based on the propagation delay time There is provided a mobile station, comprising: a distance calculation unit that calculates a base station; and a position specifying unit that specifies an absolute position of the mobile station based on absolute position information and distance regarding each of a plurality of base stations. The

本発明では、少なくとも3つの基地局の絶対位置と、その基地局からの距離とを用いて、三点交差法(三点測位法)により移動局の絶対位置を把握する。また、基地局からの距離は電波の伝搬遅延を用いて計算される。かかる距離を導出する際、従来の電界強度が、マルチパスフェージングや外乱の影響を受け易いのに対して、伝搬遅延は電波が往復路を経由する時間を計測しているため影響を受け難い。   In the present invention, the absolute position of the mobile station is grasped by the three-point intersection method (three-point positioning method) using the absolute position of at least three base stations and the distance from the base station. The distance from the base station is calculated using the propagation delay of the radio wave. When deriving such a distance, the conventional electric field strength is easily affected by multipath fading and disturbance, whereas the propagation delay is hardly affected because the time taken for the radio wave to travel through the round-trip path is measured.

また、電波の回り込みによって伝搬遅延がさらに大きくなることはあっても、早くなることがないため、その本来の伝搬遅延時間を容易に推定することが可能となる。従って、電界強度の強弱に拘わらず、迅速かつ高精度に移動局の位置を推定することができる。   Further, even if the propagation delay is further increased by the wraparound of the radio wave, it does not become faster, so the original propagation delay time can be easily estimated. Therefore, the position of the mobile station can be estimated quickly and with high accuracy regardless of the strength of the electric field strength.

複数の基地局との距離の信頼性を判断する信頼性判断部をさらに備え、位置特定部は、信頼性判断部の判断結果に応じて、基地局それぞれに関する絶対位置情報および距離の参照に重み付けを行ってもよい。   A reliability determination unit that determines the reliability of the distance to a plurality of base stations is further provided, and the position specifying unit weights the absolute position information and the distance reference for each base station according to the determination result of the reliability determination unit. May be performed.

上記信頼性判断部は、計算された複数の基地局との距離に信頼性に基づく優先順位を決め、信頼性の高い距離を優先的に参照させる。従って、位置特定部が、その信頼性に基づく重み付けを通じて各基地局との距離を参照するため、移動局の絶対位置は、信頼性の低い距離の影響が小さく、信頼性の高い距離の影響が大きくなる。かかる構成により、信頼性の高い距離を用いた三点交差法が実施可能となり、より高精度に移動局の絶対位置を特定することができる。   The reliability determination unit determines a priority order based on the reliability for the calculated distances to the plurality of base stations, and makes a reference to a highly reliable distance preferentially. Therefore, since the position specifying unit refers to the distance to each base station through weighting based on the reliability, the absolute position of the mobile station is less affected by the distance with low reliability and the influence of the distance with high reliability. growing. With this configuration, a three-point intersection method using a highly reliable distance can be implemented, and the absolute position of the mobile station can be specified with higher accuracy.

信頼性判断部は、基地局との距離に応じて信頼性を判断し、距離計算部が計算した距離が長いほど信頼性が高いとしてもよい。   The reliability determination unit may determine the reliability according to the distance from the base station, and the reliability may be higher as the distance calculated by the distance calculation unit is longer.

本発明では電界強度の代わりに伝搬遅延を用いているが、伝搬遅延であっても電波の回り込みによる変動は生じてしまう。しかし、基地局との距離に対する伝搬遅延の変動量の比率は距離が長いほど小さくなるという特性を有している。従って、推定距離が遠いものを優先的に利用することで、より高精度に移動局の絶対位置を特定することが可能となる。   In the present invention, a propagation delay is used instead of the electric field strength. However, even with the propagation delay, fluctuation due to the wraparound of the radio wave occurs. However, the ratio of the fluctuation amount of the propagation delay to the distance from the base station has a characteristic that the longer the distance, the smaller the ratio. Therefore, the absolute position of the mobile station can be specified with higher accuracy by preferentially using the one having a long estimated distance.

信頼性判断部は、距離計算部が複数回計算した距離の分散に応じて信頼性を判断し、分散が小さいほど信頼性が高いとしてもよい。   The reliability determination unit may determine the reliability according to the dispersion of the distances calculated by the distance calculation unit a plurality of times, and the reliability may be higher as the dispersion is smaller.

建物が密集している地域では、複数の建物を通じてマルチパスフェージングが生じ、伝搬経路の分散が大きくなる。従って、分散が大きい場合は、移動局と基地局との伝搬経路が多いと見なして優先順位を下げ、分散が小さい場合は、直接伝搬している電波が多い、即ち本来の伝搬遅延が計測されているとみなして優先順位を上げる。こうして、より高精度に移動局の絶対位置を特定することが可能となる。   In an area where buildings are densely packed, multipath fading occurs through a plurality of buildings, and dispersion of propagation paths increases. Therefore, if the variance is large, it is assumed that there are many propagation paths between the mobile station and the base station, and the priority order is lowered. If the variance is small, there are many radio waves that are directly propagating, that is, the original propagation delay is measured. Raise priority. Thus, the absolute position of the mobile station can be specified with higher accuracy.

上記課題を解決するために、本発明の他の観点によれば、複数の基地局と無線通信が可能な移動局の絶対位置を導出する位置導出方法であって、複数の基地局の絶対位置情報を取得する位置情報取得ステップと、複数の基地局に電波を送受信した際の伝搬遅延時間を計測する遅延計算ステップと、伝搬遅延時間に基づいて複数の基地局それぞれとの距離を計算する距離計算ステップと、複数の基地局それぞれに関する絶対位置情報および距離に基づいて、当該移動局の絶対位置を特定する位置特定ステップと、を含むことを特徴とする、位置導出方法が提供される。   In order to solve the above problems, according to another aspect of the present invention, there is provided a position derivation method for deriving an absolute position of a mobile station capable of wireless communication with a plurality of base stations, the absolute position of the plurality of base stations. A location information acquisition step for acquiring information, a delay calculation step for measuring a propagation delay time when radio waves are transmitted to and received from a plurality of base stations, and a distance for calculating a distance from each of the plurality of base stations based on the propagation delay time There is provided a position deriving method including a calculation step and a position specifying step of specifying an absolute position of the mobile station based on absolute position information and distance regarding each of a plurality of base stations.

上述した移動局における技術的思想に対応する構成要素やその説明は、当該位置導出方法にも適用可能である。   The component corresponding to the technical idea in the mobile station mentioned above and its description are applicable also to the said position derivation method.

以上説明したように本発明の移動局では、電界強度の強弱に拘わらず、迅速かつ高精度に移動局の位置を推定することが可能となる。   As described above, the mobile station of the present invention can quickly and accurately estimate the position of the mobile station regardless of the strength of the electric field strength.

以下に図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

移動局では、自局の近くにある複数の基地局のうち、無線通信を実行するのに最適な基地局を選択するため、基地局が発する制御信号の電界強度を計測して、電界強度が最大となる基地局を通信先として選択している。かかる電界強度の計測機構を利用すると、基地局との距離を推測することができる。しかし、電界強度を用いる距離推定では、その環境によって測定精度が大幅に低下する。このような精度の低い位置情報を用いると、サービス事業者が提供するサービスを十分に受けることができない。   In the mobile station, in order to select the most suitable base station for performing wireless communication among a plurality of base stations near the own station, the electric field strength of the control signal emitted by the base station is measured and the electric field strength is The largest base station is selected as the communication destination. If such a field strength measurement mechanism is used, the distance to the base station can be estimated. However, in the distance estimation using the electric field strength, the measurement accuracy is greatly lowered depending on the environment. If such low-accuracy location information is used, the service provided by the service provider cannot be sufficiently received.

本実施形態では、電界強度の代わりに伝搬遅延を用いて、移動局の絶対位置を推定する。以下の実施形態では、理解を容易にするため、まず、無線通信システム全体の構成を説明し、その後で移動局の構成を詳述する。また、本実施形態の移動局として、上述した携帯電話やPHSの他に、ノート型パーソナルコンピュータ、PDA(Personal Digital Assistant)等の様々な電子機器を適用可能であるが、ここではPHS端末を例に挙げて説明する。   In this embodiment, the absolute position of the mobile station is estimated using a propagation delay instead of the electric field strength. In the following embodiment, in order to facilitate understanding, the configuration of the entire wireless communication system will be described first, and then the configuration of the mobile station will be described in detail. In addition to the mobile phone and PHS described above, various electronic devices such as a notebook personal computer and a PDA (Personal Digital Assistant) can be applied as the mobile station of this embodiment. Will be described.

(無線通信システム100)
図1は、無線通信システム100を説明するためのシステムブロック図である。かかる無線通信システム100は、ユーザが所有するPHS端末110と、基地局120と、インターネット等のIP通信網130と、接続選択サーバ140とを含んで構成される。
(Wireless communication system 100)
FIG. 1 is a system block diagram for explaining the radio communication system 100. The wireless communication system 100 includes a PHS terminal 110 owned by a user, a base station 120, an IP communication network 130 such as the Internet, and a connection selection server 140.

上記無線通信システム100においては、ユーザが自己のPHS端末110から他のPHS端末150への通話回線接続を試みた場合、ユーザのPHS端末110の操作に応じて、無線通信可能領域にある基地局120との無線通信が確立され、基地局120は、図1中(1)に示すように、IP通信網130を介して接続選択サーバ140に他のPHS端末150との通信接続を要求する。   In the wireless communication system 100, when a user attempts to connect a telephone line from his / her PHS terminal 110 to another PHS terminal 150, a base station in a wireless communicable area according to the operation of the user's PHS terminal 110. As shown in (1) of FIG. 1, the base station 120 requests the connection selection server 140 to establish a communication connection with another PHS terminal 150 via the IP communication network 130.

そして、接続選択サーバ140は、図1中(2)に示すように、他のPHS端末150の無線通信可能領域にある基地局120を選定して、通信相手の有する他のPHS端末150との音声通話を設定する。   Then, the connection selection server 140 selects the base station 120 in the wireless communicable area of the other PHS terminal 150 as shown in (2) in FIG. 1, and communicates with the other PHS terminal 150 possessed by the communication partner. Set up a voice call.

そして、音声通話に必要な基地局120の設定が完了すると、接続選択サーバ140は、その音声通話処理を基地局間に渡し、図1中(3)に示すように、ユーザ側および通信相手側の基地局120同士が主体となって音声信号の送受を直接行う。このとき、接続選択サーバ140は、各PHS端末110、150の通信環境の変化、例えば、PHS端末110の移動に応じて適切な基地局120を割り当てるための待機状態に移行する。   When the setting of the base station 120 necessary for the voice call is completed, the connection selection server 140 passes the voice call processing between the base stations, and as shown in (3) in FIG. The base stations 120 perform transmission / reception of audio signals directly. At this time, the connection selection server 140 shifts to a standby state for assigning an appropriate base station 120 according to a change in the communication environment of each PHS terminal 110, 150, for example, movement of the PHS terminal 110.

(PHS端末110)
以下、無線通信システム100におけるPHS端末110の構成を説明する。
(PHS terminal 110)
Hereinafter, the configuration of the PHS terminal 110 in the wireless communication system 100 will be described.

図2は、PHS端末110のハードウェア構成を示した機能ブロック図であり、図3は、PHS端末110の外観を示した斜視図である。PHS端末110は、端末制御部210と、端末メモリ212と、表示部214と、操作部216と、音声入力部218と、音声出力部220と、無線通信部222とを含んで構成される。   FIG. 2 is a functional block diagram showing a hardware configuration of the PHS terminal 110, and FIG. 3 is a perspective view showing an appearance of the PHS terminal 110. As shown in FIG. The PHS terminal 110 includes a terminal control unit 210, a terminal memory 212, a display unit 214, an operation unit 216, a voice input unit 218, a voice output unit 220, and a wireless communication unit 222.

上記端末制御部210は、中央処理装置(CPU)を含む半導体集積回路によりPHS端末110全体を管理および制御する。端末制御部210は、端末メモリ212のプログラムを用いて、PHS端末110を利用した通話機能やメール配信機能も当然にして遂行する。また、後述する、位置情報取得部250、遅延計算部252、距離計算部254、信頼性判断部256、位置特定部258としても機能する。   The terminal control unit 210 manages and controls the entire PHS terminal 110 using a semiconductor integrated circuit including a central processing unit (CPU). The terminal control unit 210 naturally performs a call function and a mail distribution function using the PHS terminal 110 using the program in the terminal memory 212. Further, it also functions as a position information acquisition unit 250, a delay calculation unit 252, a distance calculation unit 254, a reliability determination unit 256, and a position specifying unit 258, which will be described later.

上記端末メモリ212は、ROM、RAM、EEPROM、不揮発性RAM、フラッシュメモリ、HDD(Hard Disk Drive)等で構成され、端末制御部210で処理されるプログラムや音声データ等を記憶する。   The terminal memory 212 includes a ROM, a RAM, an EEPROM, a non-volatile RAM, a flash memory, an HDD (Hard Disk Drive), and the like, and stores a program processed by the terminal control unit 210, audio data, and the like.

上記表示部214は、液晶ディスプレイ、EL(Electro Luminescence)、PDP(Plasma Display Panel)等で構成され、端末メモリ212に記憶された、またはIP通信網130を介してアプリケーション中継サーバ(図示せず)から提供される、WebブラウザやアプリケーションのGUI(Graphical User Interface)を表示することができる。   The display unit 214 includes a liquid crystal display, EL (Electro Luminescence), PDP (Plasma Display Panel), etc., and is stored in the terminal memory 212 or via an IP communication network 130 (not shown). The GUI (Graphical User Interface) of the Web browser or application provided by the user can be displayed.

上記操作部216は、キーボード、十字キー、ジョイスティック等のスイッチから構成され、ユーザの操作入力を受け付ける。   The operation unit 216 includes switches such as a keyboard, a cross key, and a joystick, and receives a user operation input.

上記音声入力部218は、マイク等の音声認識装置で構成され、通話時に入力されたユーザの音声をPHS端末110内で処理可能な電気信号に変換する。   The voice input unit 218 includes a voice recognition device such as a microphone, and converts the user's voice input during a call into an electrical signal that can be processed in the PHS terminal 110.

上記音声出力部220は、スピーカで構成され、PHS端末110で受信した通話相手の音声信号を音声に変えて出力する。また、着信音や、操作部216の操作音、アラーム音等も出力できる。   The voice output unit 220 includes a speaker, and converts the voice signal of the call partner received by the PHS terminal 110 into voice and outputs the voice. In addition, a ring tone, an operation sound of the operation unit 216, an alarm sound, and the like can be output.

上記無線通信部222は、携帯電話網における基地局120と無線通信を行う。かかる無線通信としては、基地局120内でフレームを時分割した複数のタイムスロットをそれぞれPHS端末110のチャネルに割り当てて通信を行う時分割多重方式等がある。   The wireless communication unit 222 performs wireless communication with the base station 120 in the mobile phone network. As such wireless communication, there is a time division multiplexing method in which a plurality of time slots obtained by time division of frames in the base station 120 are respectively assigned to channels of the PHS terminal 110 to perform communication.

次に、図2および図3で説明したハードウェアを用いて遂行される機能および動作について詳述する。   Next, functions and operations performed using the hardware described in FIGS. 2 and 3 will be described in detail.

上記位置情報取得部250は、無線通信部222を介して、複数の基地局120に絶対位置の取得要求を行い、各基地局120に予め記憶された絶対位置情報を取得、端末メモリ212に格納する。   The position information acquisition unit 250 requests acquisition of absolute positions to a plurality of base stations 120 via the wireless communication unit 222, acquires absolute position information stored in advance in each base station 120, and stores the absolute position information in the terminal memory 212. To do.

上記遅延計算部252は、無線通信部222を介して、複数の基地局120それぞれに伝搬遅延測定のための信号を送信し、その信号に対する複数の基地局120からの返信を受信して、その往復路による伝搬遅延時間(0〜20μsec程度)を計測する。かかる伝搬遅延測定は、上述した位置情報取得部250による絶対位置情報の取得信号を用いて同時に行われてもよいし、独立した信号で行われてもよい。   The delay calculation unit 252 transmits a signal for measuring propagation delay to each of the plurality of base stations 120 via the wireless communication unit 222, receives a response from the plurality of base stations 120 to the signal, The propagation delay time (about 0 to 20 μsec) by the round trip is measured. The propagation delay measurement may be performed simultaneously using the absolute position information acquisition signal by the position information acquisition unit 250 described above, or may be performed using an independent signal.

上記距離計算部254は、遅延計算部252で計測された伝搬遅延時間に基づいて複数の基地局120それぞれとの距離を計算する。基本的に伝搬遅延時間と距離とは比例関係にあり、伝搬遅延時間に所定計数(例えば300m/μsec)を乗ずることで各基地局120との距離が求まる。しかし、建物が密集している領域では、伝搬遅延時間もマルチパスフェージング等によって一意には定まらない場合もある。かかる場合には、遅延計算部252による伝搬遅延時間の計測を複数回実行し、距離計算部254は、その複数の伝搬遅延時間を統計的に処理し、確実性の高い伝搬遅延時間を抽出して距離を求めてもよい。   The distance calculation unit 254 calculates a distance from each of the plurality of base stations 120 based on the propagation delay time measured by the delay calculation unit 252. Basically, the propagation delay time and the distance are in a proportional relationship, and the distance from each base station 120 can be obtained by multiplying the propagation delay time by a predetermined count (for example, 300 m / μsec). However, in an area where buildings are densely packed, the propagation delay time may not be uniquely determined due to multipath fading or the like. In such a case, measurement of the propagation delay time by the delay calculation unit 252 is performed a plurality of times, and the distance calculation unit 254 statistically processes the plurality of propagation delay times and extracts a highly reliable propagation delay time. The distance may be obtained.

かかる距離を導出する際、従来の電界強度が、アナログ量を検出するのでマルチパスフェージングや外乱の影響を受け易いのに対して、伝搬遅延は電波の時間を計測しているため影響を受け難い。従って、電界強度に比べて高精度に距離を導出することができる。   When deriving such distances, the conventional electric field strength detects analog quantities and is therefore easily affected by multipath fading and disturbance, whereas propagation delay is less affected by measuring the time of radio waves. . Therefore, the distance can be derived with higher accuracy than the electric field strength.

また、電波の回り込みによって伝搬遅延がさらに大きくなることはあっても、早くなることがないため、その本来の伝搬遅延時間を容易に推定することが可能となる。従って、電界強度の強弱に拘わらず、迅速かつ高精度にPHS端末110の位置を推定することができる。   Further, even if the propagation delay is further increased by the wraparound of the radio wave, it does not become faster, so the original propagation delay time can be easily estimated. Therefore, the position of the PHS terminal 110 can be estimated quickly and with high accuracy regardless of the strength of the electric field strength.

上記信頼性判断部256は、複数の基地局120との距離の信頼性を判断する。本実施形態では、距離計測対象となる基地局120の数が多ければ多いほど、位置特定精度が高くなる。しかし、マルチパスフェージング等により伝搬遅延時間の変動量が多くなった基地局120に関しては、その距離も信頼性に欠ける。従って、信頼性判断部256は、距離計算部254が計算した複数の距離に信頼性に基づく優先順位を決め、後述する位置特定部258に信頼性の高い距離を優先的に参照させる。   The reliability determination unit 256 determines the reliability of the distance to the plurality of base stations 120. In this embodiment, the greater the number of base stations 120 that are distance measurement targets, the higher the position identification accuracy. However, regarding the base station 120 in which the fluctuation amount of the propagation delay time has increased due to multipath fading or the like, the distance is also unreliable. Therefore, the reliability determination unit 256 determines a priority order based on the reliability for the plurality of distances calculated by the distance calculation unit 254, and causes the position specifying unit 258 described later to refer to a highly reliable distance with priority.

上記位置特定部258は、複数の基地局120それぞれに関する絶対位置情報および距離に基づいて、PHS端末110自体の絶対位置を特定する。   The position specifying unit 258 specifies the absolute position of the PHS terminal 110 itself based on the absolute position information and distance regarding each of the plurality of base stations 120.

図4は、位置特定部258によるPHS端末110の位置特定を説明するための説明図である。本実施形態では、少なくとも3つの基地局120の絶対位置と、その基地局120からの距離とを用いて、三点交差法によりPHS端末の絶対位置を把握する。例えば、図4において、距離計算部254が計算した基地局120A、120B、120Cとの距離がそれぞれa、b、cと推定された場合、位置情報取得部250が取得した各基地局120A、120B、120Cそれぞれの絶対位置から距離を半径とする円を描いたときのその交点が、PHS端末110の現在の絶対位置となる。   FIG. 4 is an explanatory diagram for describing the position specification of the PHS terminal 110 by the position specifying unit 258. In the present embodiment, the absolute positions of the PHS terminals are grasped by the three-point intersection method using the absolute positions of at least three base stations 120 and the distances from the base stations 120. For example, in FIG. 4, when the distances to the base stations 120A, 120B, and 120C calculated by the distance calculation unit 254 are estimated as a, b, and c, respectively, the base stations 120A, 120B acquired by the position information acquisition unit 250 , 120C, the intersection of the circles having the radius from the absolute position is the current absolute position of the PHS terminal 110.

また、位置特定部258は、信頼性判断部256の判断結果に応じて、基地局120それぞれに関する絶対位置情報および距離の参照に重み付けを行う。   In addition, the position specifying unit 258 weights the absolute position information and the distance reference regarding each base station 120 according to the determination result of the reliability determining unit 256.

上述したように信頼性判断部256は、計算された複数の基地局120との距離に信頼性に基づく優先順位を定める。ここで、位置特定部258が、その信頼性に基づく重み付けを通じて各基地局120との距離を参照、具体的に、信頼性の高い距離に関しては、100%の重み付けで三点交差法に反映し、信頼性の低い距離は、50%以下の重み付けで反映、もしくは全く反映しないとすると、PHS端末110の絶対位置は、信頼性の低い距離の影響が小さく、信頼性の高い距離の影響が大きくなる。かかる構成により、信頼性の高い距離を用いた三点交差法が実施可能となり、より高精度にPHS端末110の絶対位置を特定することができる。   As described above, the reliability determination unit 256 determines the priority order based on the reliability for the calculated distances from the plurality of base stations 120. Here, the position specifying unit 258 refers to the distance to each base station 120 through weighting based on the reliability. Specifically, the highly reliable distance is reflected in the three-point intersection method with 100% weighting. If the distance with low reliability is reflected with a weight of 50% or less or not reflected at all, the absolute position of the PHS terminal 110 is less affected by the distance with lower reliability, and the influence of the distance with higher reliability is large. Become. With this configuration, a three-point intersection method using a highly reliable distance can be implemented, and the absolute position of the PHS terminal 110 can be specified with higher accuracy.

ここで、信頼性判断部256は、基地局との距離に応じて信頼性を判断することができる。この場合、距離計算部254が計算した距離が長いほど信頼性が高いこととなる。   Here, the reliability determination unit 256 can determine the reliability according to the distance from the base station. In this case, the longer the distance calculated by the distance calculation unit 254, the higher the reliability.

図5は、距離の違いによる信頼性の違いを説明するための説明図である。図5(a)は、PHS端末110と基地局120との距離が短い場合、図5(b)は、距離が長い場合を示している。   FIG. 5 is an explanatory diagram for explaining a difference in reliability due to a difference in distance. FIG. 5A shows a case where the distance between the PHS terminal 110 and the base station 120 is short, and FIG. 5B shows a case where the distance is long.

本実施形態では電界強度の代わりに伝搬遅延を用いているが、伝搬遅延であっても電波の回り込みによる変動は生じてしまう。しかし、図5(a)に示すように、基地局120との距離が短い場合には、距離(真の伝搬遅延時間t)に対する変動量(t―t)の比率は大きいが、基地局120との距離が長い場合には、図5(b)のように、距離(真の伝搬遅延時間t)に対す伝搬遅延時間の変動量(t―t)の比率は小さくなる。従って、基地局120との距離が長ければ長いほど距離に対する変動比率が小さくなる。従って、推定距離が遠いものを優先的に利用することで、より高精度にPHS端末110の絶対位置を特定することが可能となる。 In this embodiment, a propagation delay is used instead of the electric field strength. However, even with the propagation delay, fluctuation due to the wraparound of radio waves occurs. However, as shown in FIG. 5A, when the distance to the base station 120 is short, the ratio of the variation (t 2 −t 1 ) to the distance (true propagation delay time t 1 ) is large. When the distance to the base station 120 is long, as shown in FIG. 5B, the ratio of the fluctuation amount (t 4 −t 3 ) of the propagation delay time to the distance (true propagation delay time t 3 ) is small. Become. Therefore, the longer the distance from the base station 120, the smaller the variation ratio with respect to the distance. Therefore, the absolute position of the PHS terminal 110 can be specified with higher accuracy by preferentially using the one with a long estimated distance.

信頼性判断部256は、距離計算部254が複数回計算した距離の分散に応じて信頼性を判断し、分散が小さいほど信頼性が高いとする。ここで、分散は、距離の散らばりぐあいを表し、平均値と各値との差を2乗して算術平均したもので数値化してもよい。   The reliability determination unit 256 determines the reliability according to the variance of the distances calculated by the distance calculation unit 254 a plurality of times, and assumes that the reliability is higher as the variance is smaller. Here, the variance represents a dispersion of distances, and may be quantified by an arithmetic average obtained by squaring the difference between the average value and each value.

図6は、分散の違いによる信頼性の違いを説明するための説明図である。図6(a)は、PHS端末110と基地局120との距離の分散が大きい場合、図6(b)は、距離の分散が小さい場合を示している。   FIG. 6 is an explanatory diagram for explaining a difference in reliability due to a difference in distribution. 6A shows a case where the dispersion of the distance between the PHS terminal 110 and the base station 120 is large, and FIG. 6B shows a case where the dispersion of the distance is small.

建物が密集している地域では、複数の建物を通じてマルチパスフェージングが生じ、伝搬経路の分散が大きくなる。従って、図6(a)に示すように、分散が大きい場合は、PHS端末110と基地局120との伝搬経路が多いと見なして優先順位を下げ、図6(b)に示すように、分散が小さい場合は、直接伝搬している電波が多い、即ち本来の伝搬遅延が計測されているとみなして優先順位を上げる。こうして、より高精度にPHS端末110の絶対位置を特定することが可能となる。   In an area where buildings are densely packed, multipath fading occurs through a plurality of buildings, and dispersion of propagation paths increases. Therefore, as shown in FIG. 6A, when the variance is large, it is assumed that there are many propagation paths between the PHS terminal 110 and the base station 120, and the priority is lowered. As shown in FIG. Is small, it is assumed that there are many radio waves propagating directly, that is, the original propagation delay is measured, and the priority is raised. In this way, the absolute position of the PHS terminal 110 can be specified with higher accuracy.

(位置導出方法)
次に、上述した移動局としてのPHS端末110を用いて、PHS端末110自体の現在の絶対位置を導出する位置導出方法について説明する。
(Location derivation method)
Next, a position deriving method for deriving the current absolute position of the PHS terminal 110 itself using the PHS terminal 110 as the mobile station described above will be described.

図7は、位置導出方法の処理の流れを示したフローチャートである。まず、PHS端末110は、周辺にある基地局120を検索し、各基地局120識別符号および電界強度リストを作成する(S300)。そして、電界強度リスト中で電界強度が最も強い基地局120に対し、制御チャネル上で距離測定用の専用メッセージを送信する(S302)。   FIG. 7 is a flowchart showing a process flow of the position derivation method. First, the PHS terminal 110 searches for nearby base stations 120, and creates each base station 120 identification code and field strength list (S300). Then, a dedicated message for distance measurement is transmitted on the control channel to the base station 120 having the strongest field strength in the field strength list (S302).

基地局120は、PHS端末110からの専用メッセージを受信すると、自局の絶対位置情報(例えば、経度および緯度)を付加してPHS端末110に返信する(S304)。PHS端末110は、かかる基地局120からの絶対位置情報を取得して(S306:位置情報取得ステップ)、端末メモリ212に記憶する(S308)。   Upon receiving the dedicated message from the PHS terminal 110, the base station 120 adds its own absolute position information (for example, longitude and latitude) and sends it back to the PHS terminal 110 (S304). The PHS terminal 110 acquires the absolute position information from the base station 120 (S306: position information acquisition step) and stores it in the terminal memory 212 (S308).

PHS端末110は、絶対位置情報の取得と並行して、返信された電波の伝搬遅延時間を計測し(S310:遅延計算ステップ)、電波の伝搬速度と伝搬遅延時間に基づいて基地局120との距離を計算する(S312:距離計算ステップ)。そして、PHS端末110は、基地局120の絶対位置および基地局120との距離の組合せに関して、自局の絶対位置を推定するのに十分な数(所定数)を取得したかどうか判断し(S314)、不足していれば、次に電界強度が強い基地局120に対象を移し(S316)、専用メッセージの送信から繰り返す。   In parallel with the acquisition of the absolute position information, the PHS terminal 110 measures the propagation delay time of the returned radio wave (S310: delay calculation step), and based on the radio wave propagation speed and the propagation delay time, The distance is calculated (S312: distance calculation step). Then, regarding the combination of the absolute position of the base station 120 and the distance to the base station 120, the PHS terminal 110 determines whether a sufficient number (predetermined number) for estimating the absolute position of the own station has been acquired (S314). If it is insufficient, the target is moved to the base station 120 having the next highest electric field strength (S316), and the process is repeated from the transmission of the dedicated message.

十分な数の絶対位置情報および距離を取得すると、PHS端末110は、各基地局120から取得した絶対位置情報および距離の信頼性を、その距離または分散に基づいて判断し、重み付けを行う(S318)。そして、各基地局120から取得した絶対位置情報および距離に基づき、三点交差法に従って自局の絶対位置を特定する(S320:位置特定ステップ)。   When a sufficient number of absolute position information and distances are acquired, the PHS terminal 110 determines the reliability of the absolute position information and distance acquired from each base station 120 based on the distance or variance, and performs weighting (S318). ). Then, based on the absolute position information and distance acquired from each base station 120, the absolute position of the own station is specified according to the three-point intersection method (S320: position specifying step).

ここでは、各基地局120の距離を導出した後に、その距離や分散に基づいて信頼性を判断しているが、かかる場合に限られず、当該位置導出方法開始時の電界強度を用いて、信頼性が高いであろう遠距離にある基地局120を予め絞っておき、絞られた基地局120の絶対位置情報および距離のみを三点交差法に用いてもよい。   Here, after deriving the distance of each base station 120, the reliability is determined based on the distance and dispersion. However, the present invention is not limited to this, and the reliability is determined using the electric field strength at the start of the position deriving method. It is also possible to narrow down the base station 120 at a long distance, which is likely to be high, and use only the absolute position information and distance of the narrowed base station 120 for the three-point intersection method.

かかる位置導出方法においても、電界強度の強弱に拘わらず、迅速かつ高精度にPHS端末110の位置を推定することが可能となる。   In such a position deriving method, the position of the PHS terminal 110 can be estimated quickly and with high accuracy regardless of the strength of the electric field strength.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

上述した実施形態では、三点交差法による位置特定計算を自局のPHS端末110内で実行しているが、かかる場合に限られず、複数の基地局120の絶対位置情報および距離を一旦接続選択サーバ140等に送信して、接続選択サーバ140等において位置特定計算が為されるとしてもよい。   In the above-described embodiment, the position specifying calculation by the three-point intersection method is executed in the PHS terminal 110 of the own station. However, the present invention is not limited to this, and the absolute position information and distances of the plurality of base stations 120 are temporarily selected. It may be transmitted to the server 140 or the like, and the position specifying calculation may be performed in the connection selection server 140 or the like.

また、本実施形態においては、PHS端末110と基地局120との往復路による伝搬遅延時間を測定しているが、PHS端末110や基地局120が絶対時間を把握している場合、往路または復路のみによって伝搬遅延時間を取得することも可能である。   Further, in this embodiment, the propagation delay time by the round trip path between the PHS terminal 110 and the base station 120 is measured, but when the PHS terminal 110 or the base station 120 knows the absolute time, the forward path or the return path It is also possible to acquire the propagation delay time only by this.

なお、本明細書の位置導出方法における各工程は、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はなく、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含むとしても良い。   Note that the steps in the position derivation method of the present specification do not necessarily have to be processed in time series in the order described in the flowchart, but are performed in parallel or individually (for example, parallel processing or object-based processing). Processing).

本発明は、複数の基地局と無線通信が可能な移動局にかかり、さらに詳細には、基地局と送受信される電波の伝搬遅延を用いて移動局の絶対位置を導出する移動局および位置導出方法に利用することができる。   The present invention relates to a mobile station capable of wireless communication with a plurality of base stations. More specifically, the present invention relates to a mobile station for deriving the absolute position of a mobile station using propagation delay of radio waves transmitted and received with the base station, and position derivation. Can be used in the way.

無線通信システムを説明するためのシステムブロック図である。It is a system block diagram for demonstrating a radio | wireless communications system. PHS端末のハードウェア構成を示した機能ブロック図である。It is the functional block diagram which showed the hardware constitutions of the PHS terminal. PHS端末の外観を示した斜視図である。It is the perspective view which showed the external appearance of the PHS terminal. 位置特定部によるPHS端末の位置特定を説明するための説明図である。It is explanatory drawing for demonstrating the position specification of the PHS terminal by a position specific part. 距離の違いによる信頼性の違いを説明するための説明図である。It is explanatory drawing for demonstrating the difference in reliability by the difference in distance. 分散の違いによる信頼性の違いを説明するための説明図である。It is explanatory drawing for demonstrating the difference in reliability by the difference in dispersion | distribution. 位置導出方法の処理の流れを示したフローチャートである。It is the flowchart which showed the flow of the process of the position derivation method.

符号の説明Explanation of symbols

110 …PHS端末
120 …基地局
250 …位置情報取得部
252 …遅延計算部
254 …距離計算部
256 …信頼性判断部
258 …位置特定部
110 ... PHS terminal 120 ... base station 250 ... position information acquisition unit 252 ... delay calculation unit 254 ... distance calculation unit 256 ... reliability judgment unit 258 ... position specifying unit

Claims (5)

複数の基地局と無線通信が可能な移動局であって、
前記複数の基地局と無線通信を行う無線通信部と、
前記複数の基地局の絶対位置情報を取得する位置情報取得部と、
前記複数の基地局に電波を送受信した際の伝搬遅延時間を計測する遅延計算部と、
前記伝搬遅延時間に基づいて前記複数の基地局それぞれとの距離を計算する距離計算部と、
前記複数の基地局それぞれに関する絶対位置情報および距離に基づいて、当該移動局の絶対位置を特定する位置特定部と、
を備えることを特徴とする、移動局。
A mobile station capable of wireless communication with a plurality of base stations,
A wireless communication unit that performs wireless communication with the plurality of base stations;
A position information acquisition unit that acquires absolute position information of the plurality of base stations;
A delay calculation unit for measuring a propagation delay time when radio waves are transmitted to and received from the plurality of base stations;
A distance calculation unit for calculating a distance to each of the plurality of base stations based on the propagation delay time;
A position specifying unit that specifies the absolute position of the mobile station based on the absolute position information and distance regarding each of the plurality of base stations;
A mobile station comprising:
前記複数の基地局との距離の信頼性を判断する信頼性判断部をさらに備え、
前記位置特定部は、前記信頼性判断部の判断結果に応じて、前記基地局それぞれに関する絶対位置情報および距離の参照に重み付けを行うことを特徴とする、請求項1に記載の移動局。
A reliability determination unit that determines the reliability of the distance to the plurality of base stations;
The mobile station according to claim 1, wherein the position specifying unit weights reference of absolute position information and distance regarding each of the base stations according to a determination result of the reliability determination unit.
前記信頼性判断部は、前記基地局との距離に応じて信頼性を判断し、前記距離計算部が計算した距離が長いほど信頼性が高いことを特徴とする、請求項2に記載の移動局。   The movement according to claim 2, wherein the reliability determination unit determines reliability according to a distance from the base station, and the reliability is higher as the distance calculated by the distance calculation unit is longer. Bureau. 前記信頼性判断部は、前記距離計算部が複数回計算した距離の分散に応じて信頼性を判断し、該分散が小さいほど信頼性が高いことを特徴とする、請求項2に記載の移動局。   3. The movement according to claim 2, wherein the reliability determination unit determines the reliability according to a variance of the distance calculated by the distance calculation unit a plurality of times, and the reliability is higher as the variance is smaller. Bureau. 複数の基地局と無線通信が可能な移動局の絶対位置を導出する位置導出方法であって、
前記複数の基地局の絶対位置情報を取得する位置情報取得ステップと、
前記複数の基地局に電波を送受信した際の伝搬遅延時間を計測する遅延計算ステップと、
前記伝搬遅延時間に基づいて前記複数の基地局それぞれとの距離を計算する距離計算ステップと、
前記複数の基地局それぞれに関する絶対位置情報および距離に基づいて、当該移動局の絶対位置を特定する位置特定ステップと、
を含むことを特徴とする、位置導出方法。
A position derivation method for deriving an absolute position of a mobile station capable of wireless communication with a plurality of base stations,
A position information acquisition step of acquiring absolute position information of the plurality of base stations;
A delay calculation step for measuring a propagation delay time when radio waves are transmitted to and received from the plurality of base stations;
A distance calculating step of calculating a distance to each of the plurality of base stations based on the propagation delay time;
A position specifying step for specifying the absolute position of the mobile station based on the absolute position information and distance regarding each of the plurality of base stations;
A position derivation method characterized by comprising:
JP2007245085A 2007-09-21 2007-09-21 Mobile station and location derivation method Pending JP2009074974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007245085A JP2009074974A (en) 2007-09-21 2007-09-21 Mobile station and location derivation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007245085A JP2009074974A (en) 2007-09-21 2007-09-21 Mobile station and location derivation method

Publications (1)

Publication Number Publication Date
JP2009074974A true JP2009074974A (en) 2009-04-09

Family

ID=40610078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007245085A Pending JP2009074974A (en) 2007-09-21 2007-09-21 Mobile station and location derivation method

Country Status (1)

Country Link
JP (1) JP2009074974A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047915A (en) * 2009-08-25 2011-03-10 Korea Electrotechnology Research Inst Radio-positioning system and positioning method
CN103038663A (en) * 2010-04-30 2013-04-10 高通股份有限公司 Device for round trip time measurements
WO2013125629A1 (en) * 2012-02-24 2013-08-29 日本電気株式会社 Location detection device, method and program
KR20140015394A (en) * 2011-02-25 2014-02-06 시스벨 테크놀로지 에스.알.엘. Method for estimating the distance of a receiver from a radio transmitter, relative methods for calculating the position of a mobile terminal, mobile terminal and localization device
US8750267B2 (en) 2009-01-05 2014-06-10 Qualcomm Incorporated Detection of falsified wireless access points
US8768344B2 (en) 2008-12-22 2014-07-01 Qualcomm Incorporated Post-deployment calibration for wireless position determination
JP2014526164A (en) * 2011-06-28 2014-10-02 クゥアルコム・インコーポレイテッド Distributed positioning mechanism for wireless communication devices
US8892127B2 (en) 2008-11-21 2014-11-18 Qualcomm Incorporated Wireless-based positioning adjustments using a motion sensor
US9125153B2 (en) 2008-11-25 2015-09-01 Qualcomm Incorporated Method and apparatus for two-way ranging
US9213082B2 (en) 2008-11-21 2015-12-15 Qualcomm Incorporated Processing time determination for wireless position determination
US9332383B2 (en) 2011-09-19 2016-05-03 Qualcomm Incorporated Time of arrival based positioning system
JP2016537617A (en) * 2013-09-26 2016-12-01 ゼットティーイー コーポレーションZte Corporation Terminal auxiliary wireless positioning method and apparatus
US9645225B2 (en) 2008-11-21 2017-05-09 Qualcomm Incorporated Network-centric determination of node processing delay
JP2017194445A (en) * 2016-04-22 2017-10-26 潘 重光ZhongGuang PAN Position acquisition method and apparatus
CN108776324A (en) * 2013-07-25 2018-11-09 高通股份有限公司 For using two-way time by broadcasting the device and method come ranging in a network
CN111033294A (en) * 2017-08-23 2020-04-17 洛希克斯有限公司 System and method for adaptively selecting distance estimates for node location based on error metric information
JP2022511642A (en) * 2018-10-31 2022-02-01 クゥアルコム・インコーポレイテッド Systems and methods that support uplink and downlink positioning procedures in wireless networks
WO2023032277A1 (en) * 2021-09-01 2023-03-09 ソニーグループ株式会社 Position measurement device, position measurement method, and program

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8892127B2 (en) 2008-11-21 2014-11-18 Qualcomm Incorporated Wireless-based positioning adjustments using a motion sensor
US9645225B2 (en) 2008-11-21 2017-05-09 Qualcomm Incorporated Network-centric determination of node processing delay
US9291704B2 (en) 2008-11-21 2016-03-22 Qualcomm Incorporated Wireless-based positioning adjustments using a motion sensor
US9213082B2 (en) 2008-11-21 2015-12-15 Qualcomm Incorporated Processing time determination for wireless position determination
US9125153B2 (en) 2008-11-25 2015-09-01 Qualcomm Incorporated Method and apparatus for two-way ranging
US8831594B2 (en) 2008-12-22 2014-09-09 Qualcomm Incorporated Post-deployment calibration of wireless base stations for wireless position determination
US8768344B2 (en) 2008-12-22 2014-07-01 Qualcomm Incorporated Post-deployment calibration for wireless position determination
US9002349B2 (en) 2008-12-22 2015-04-07 Qualcomm Incorporated Post-deployment calibration for wireless position determination
US8750267B2 (en) 2009-01-05 2014-06-10 Qualcomm Incorporated Detection of falsified wireless access points
JP2011047915A (en) * 2009-08-25 2011-03-10 Korea Electrotechnology Research Inst Radio-positioning system and positioning method
US9247446B2 (en) 2010-04-30 2016-01-26 Qualcomm Incorporated Mobile station use of round trip time measurements
US8781492B2 (en) 2010-04-30 2014-07-15 Qualcomm Incorporated Device for round trip time measurements
JP2014158272A (en) * 2010-04-30 2014-08-28 Qualcomm Inc Device for round trip time measurements
CN103038663A (en) * 2010-04-30 2013-04-10 高通股份有限公司 Device for round trip time measurements
KR101521006B1 (en) 2010-04-30 2015-05-15 퀄컴 인코포레이티드 Device for round trip time measurements
JP2013529432A (en) * 2010-04-30 2013-07-18 クアルコム,インコーポレイテッド Device for round trip time measurement
US9137681B2 (en) 2010-04-30 2015-09-15 Qualcomm Incorporated Device for round trip time measurements
JP2016028506A (en) * 2010-04-30 2016-02-25 クアルコム,インコーポレイテッド Device for round trip time measurement
KR101992469B1 (en) * 2011-02-25 2019-06-24 시스벨 테크놀로지 에스.알.엘. Method for estimating the distance of a receiver from a radio transmitter, relative methods for calculating the position of a mobile terminal, mobile terminal and localization device
KR20140015394A (en) * 2011-02-25 2014-02-06 시스벨 테크놀로지 에스.알.엘. Method for estimating the distance of a receiver from a radio transmitter, relative methods for calculating the position of a mobile terminal, mobile terminal and localization device
US9319840B2 (en) 2011-02-25 2016-04-19 Sisvel Technology S.R.L. Method for estimating the distance of a receiver from a radio transmitter, relative methods for calculating the position of a mobile terminal, mobile terminal and localization device
JP2014513271A (en) * 2011-02-25 2014-05-29 シズベル テクノロジー エス.アール.エル. Method for estimating distance from radio transmitter to receiver, method for calculating position of mobile terminal, mobile terminal, and position specifying device
JP2014526164A (en) * 2011-06-28 2014-10-02 クゥアルコム・インコーポレイテッド Distributed positioning mechanism for wireless communication devices
US9332383B2 (en) 2011-09-19 2016-05-03 Qualcomm Incorporated Time of arrival based positioning system
WO2013125629A1 (en) * 2012-02-24 2013-08-29 日本電気株式会社 Location detection device, method and program
CN108776324B (en) * 2013-07-25 2022-12-13 高通股份有限公司 Apparatus and method for ranging by broadcasting in network using round trip time
CN108776324A (en) * 2013-07-25 2018-11-09 高通股份有限公司 For using two-way time by broadcasting the device and method come ranging in a network
JP2016537617A (en) * 2013-09-26 2016-12-01 ゼットティーイー コーポレーションZte Corporation Terminal auxiliary wireless positioning method and apparatus
KR20190067747A (en) * 2016-04-22 2019-06-17 상하이 파안쓰 투자 관리 유한공사 Position acquistion method and apparatus
JP2019007980A (en) * 2016-04-22 2019-01-17 上海潘氏投資管理有限公司Shang Hai Pan Shi Tou Zi Guan Li You Xian Gong Si Position acquisition method and apparatus
KR20170121034A (en) * 2016-04-22 2017-11-01 파안 중광 Position acquistion method and apparatus
KR101995101B1 (en) 2016-04-22 2019-07-01 상하이 파안쓰 투자 관리 유한공사 Position acquistion method and apparatus
US10466348B2 (en) 2016-04-22 2019-11-05 Shang Hai Pan Shi Tou Zi Guan Li You Xian Gong Si Position acquisition method and apparatus
KR102097235B1 (en) 2016-04-22 2020-04-03 상하이 파안쓰 투자 관리 유한공사 Position acquistion method and apparatus
JP2017194445A (en) * 2016-04-22 2017-10-26 潘 重光ZhongGuang PAN Position acquisition method and apparatus
CN111033294A (en) * 2017-08-23 2020-04-17 洛希克斯有限公司 System and method for adaptively selecting distance estimates for node location based on error metric information
JP2020531824A (en) * 2017-08-23 2020-11-05 ロシックス・インコーポレイテッド Systems and methods for adaptively selecting distance estimates for node positioning based on error index information
JP7410851B2 (en) 2017-08-23 2024-01-10 ザイナー, インコーポレイテッド System and method for adaptively selecting distance estimates for node localization based on error metric information
JP2022511642A (en) * 2018-10-31 2022-02-01 クゥアルコム・インコーポレイテッド Systems and methods that support uplink and downlink positioning procedures in wireless networks
JP7284815B2 (en) 2018-10-31 2023-05-31 クゥアルコム・インコーポレイテッド Systems and methods for supporting uplink and downlink positioning procedures in wireless networks
WO2023032277A1 (en) * 2021-09-01 2023-03-09 ソニーグループ株式会社 Position measurement device, position measurement method, and program

Similar Documents

Publication Publication Date Title
JP2009074974A (en) Mobile station and location derivation method
US9237415B2 (en) Method and system for estimating range of mobile device to wireless installation
JP4349758B2 (en) Positioning device
KR100767550B1 (en) Radio handset and position location system
US9532184B2 (en) Survey techniques for generating location fingerprint data
JP4100320B2 (en) Position detection system and apparatus
EP2286264B1 (en) Location determination
US8081923B1 (en) Method and apparatus for providing location services for a distributed network
US20080194226A1 (en) Method and Apparatus for Providing Location Services for a Distributed Network
KR100439551B1 (en) Equipment and method for the calculation of mobile handset position
EP1493040A1 (en) Locating mobile communication stations, methods and systems
US10849079B2 (en) Power control for synchronization and discovery messages in D2D communication
JP2006080681A (en) System and method for position detection
US9479902B1 (en) Determining a propagation-time adjustment for a wireless coverage area, based on information provided by wireless terminals
EP3475721A1 (en) Combined fine timing measurement (ftm) and non-ftm messaging for position determination
CN109196926B (en) Method and apparatus for estimating a turnover calibration factor
US20140155082A1 (en) Methods and Apparatus for Estimating Time of Arrival Information Associated with a Wireless Signal
JP2008300991A (en) Radio communication system, mobile terminal, base station, and radio communication method
JP2001275148A (en) Distance measurement method and system in mobile communication system and, method and system for measuring position of mobile station
JP2001298768A (en) Mobile station terminal, mobile wireless communication system and method
KR100404397B1 (en) System and method of estimating location of terminal based network in cdma system
US6792381B2 (en) Apparatus and method for locating devices using an acoustic gyroscope
KR20020038925A (en) Car Movingation System a used GPS CDMA Cellular Phone
Chen et al. A constrained equalization scheme for mobile location in non-line-of-sight environments
JP2002243828A (en) Device for measuring location of mobile terminal