JP2009074790A - Auger type ice making machine - Google Patents

Auger type ice making machine Download PDF

Info

Publication number
JP2009074790A
JP2009074790A JP2008211012A JP2008211012A JP2009074790A JP 2009074790 A JP2009074790 A JP 2009074790A JP 2008211012 A JP2008211012 A JP 2008211012A JP 2008211012 A JP2008211012 A JP 2008211012A JP 2009074790 A JP2009074790 A JP 2009074790A
Authority
JP
Japan
Prior art keywords
ice
auger
ice making
making machine
collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008211012A
Other languages
Japanese (ja)
Other versions
JP5253924B2 (en
Inventor
Yasuoki Mizutani
保起 水谷
Akihiko Hirano
明彦 平野
Naoshi Kondo
直志 近藤
Yasumitsu Watanabe
泰光 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2008211012A priority Critical patent/JP5253924B2/en
Publication of JP2009074790A publication Critical patent/JP2009074790A/en
Application granted granted Critical
Publication of JP5253924B2 publication Critical patent/JP5253924B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an auger type ice making machine, improving ice making efficiency while preventing lowering of compression efficiency of ice and reducing load to a driving means. <P>SOLUTION: The ice carried after separated by a rotary blade 50 of a rotating auger 34 is collected in an ice collecting part S and then released. An ice release port 71 of the ice collecting part S is provided to be biased to the rotation center side of the auger 34 with respect to an ice separating position P1 of the rotary blade 50. The top of the ice collecting member 35 is provided with an ice guide part 72 for guiding the ice carried by the auger 34 toward the ice release port 71. A projection piece 65 for regulating the ice from being rotated with the auger 34 is formed on the lower surface of a base member 39 located above the ice collecting member 35. The ice collecting member 35 is removably fixed to the auger 34. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、オーガ式製氷機に関し、更に詳細には、冷凍ケーシングの製氷面で生成された氷を、駆動手段により回転するオーガの回転刃で剥離して搬送し、この搬送される氷を氷収集部で収集した後に放出するオーガ式製氷機に関するものである。   The present invention relates to an auger type ice making machine, and more specifically, the ice generated on the ice making surface of a refrigeration casing is peeled off and conveyed by a rotating blade of an auger rotated by a driving means, and the conveyed ice is iced. The present invention relates to an auger type ice making machine that is discharged after being collected by a collecting unit.

図18は、オーガ式製氷機を、製氷機構部を破断して示した概略構成図である。このオーガ式製氷機10は、ハウジング11の上部に配設された冷凍ケーシング13および該冷凍ケーシング13の内側に配設されたオーガ(回転刃体)14からなる製氷機構部12を備えている。またオーガ式製氷機10は、冷凍ケーシング13の上部に配設されて氷収集部Sを構成する固定刃15と、前記オーガ14を所定の回転速度で定速回転させるギヤードモータ等の駆動手段16と、給水パイプ18を介して冷凍ケーシング13に連結されるリザーバタンク(製氷水タンク)17とを備えている。前記冷凍ケーシング13は、円筒形状をなして内壁面を製氷面21とするシリンダ20と、図示省略した冷凍回路のエバポレーターであってシリンダ20の外側に螺旋状に巻回された冷却パイプ22と、シリンダ20および冷却パイプ22を外部から被覆する所要厚の断熱材23とを備えている。前記オーガ14は、円筒状本体の外周面に螺旋状に突設された回転刃24を備え、回転刃24の刃先面が前記製氷面21に非接触状態で臨んでいる。   FIG. 18 is a schematic configuration diagram showing an auger type ice making machine with the ice making mechanism section broken. The auger type ice making machine 10 includes an ice making mechanism 12 including a refrigeration casing 13 disposed on an upper portion of a housing 11 and an auger (rotary blade) 14 disposed inside the refrigeration casing 13. Further, the auger type ice making machine 10 is provided with a fixed blade 15 which is disposed at the upper part of the refrigeration casing 13 and constitutes the ice collecting part S, and a driving means 16 such as a geared motor for rotating the auger 14 at a predetermined speed. And a reservoir tank (ice making water tank) 17 connected to the refrigeration casing 13 through a water supply pipe 18. The refrigeration casing 13 includes a cylinder 20 having an inner wall surface as an ice making surface 21 and a cooling pipe 22 spirally wound around the outside of the cylinder 20 as an evaporator of a refrigeration circuit (not shown); And a heat insulating material 23 having a required thickness for covering the cylinder 20 and the cooling pipe 22 from the outside. The auger 14 includes a rotary blade 24 that spirally projects from the outer peripheral surface of the cylindrical main body, and the blade tip surface of the rotary blade 24 faces the ice making surface 21 in a non-contact state.

このようなオーガ式製氷機10は、リザーバタンク17に補給した製氷水を、給水パイプ18を介して製氷機構部12内(冷凍ケーシング13とオーガ14との間)に供給したもとで、冷凍回路により冷凍ケーシング13のシリンダ20を冷却することで、該シリンダ20の内部壁面である製氷面21に氷が生成される。そして、駆動手段16を駆動してオーガ14を所定方向へ定速回転させると、前記回転刃24が製氷面21に生成された氷を剥離しながら上方へ搬送する。そして上方へ搬送された氷は、連続して搬送される下方の氷に押されて固定刃15に収集された後、製氷機構部12の上方に連結された氷放出口25を介して氷放出シュート26に押し出され、図示省略した貯氷室へ移送される。このようなオーガ式製氷機に関しては、例えば特許文献1に開示されている。
実公平8−3897号公報
Such an auger type ice making machine 10 supplies ice making water supplied to the reservoir tank 17 to the inside of the ice making mechanism section 12 (between the freezing casing 13 and the auger 14) via a water supply pipe 18 for freezing. By cooling the cylinder 20 of the refrigeration casing 13 by the circuit, ice is generated on the ice making surface 21 that is the inner wall surface of the cylinder 20. When the driving means 16 is driven to rotate the auger 14 at a constant speed in a predetermined direction, the rotary blade 24 conveys the ice generated on the ice making surface 21 upward while peeling. The ice transported upward is pushed by the continuously transported lower ice and collected by the fixed blade 15, and then discharged through the ice discharge port 25 connected to the top of the ice making mechanism 12. It is pushed out by the chute 26 and transferred to an ice storage chamber (not shown). Such an auger type ice making machine is disclosed in Patent Document 1, for example.
Japanese Utility Model Publication 8-3897

ところで、図18に示した従来のオーガ式製氷機10では、シリンダ20の内径は、冷凍ケーシング13の配設部位および固定刃15の配設部位において同径となっている。すなわち、図19に示すように、氷収集部Sにおける固定刃15での氷収集位置P2と、回転刃24による氷剥離位置P1とは、オーガ14の回転中心から径方向外方に略同一距離離間した同位置となっている。このような構造のオーガ式製氷機10では、オーガ14の回転数を増加したり、冷凍ケーシング13の内径(オーガ14の回転刃24の外径)を大きくすることで製氷能力の向上を図ることができるが、固定刃15における氷の収集速度が大きくなり、氷の収集効率が低下する課題があり(収集速度が遅いほど氷の収集効率が向上する)、製氷効率を適切に高めることができなかった。しかも、氷の収集時における圧力が同じ場合には、圧力が上昇する場所がオーガ14の回転中心から離れるほど、駆動手段16にかかるトルク負荷が増大するため、出力の大きな駆動手段16を装備することによって製造コストが嵩むこととなっていた。   Incidentally, in the conventional auger type ice making machine 10 shown in FIG. 18, the inner diameter of the cylinder 20 is the same in the portion where the refrigeration casing 13 is disposed and the portion where the fixed blade 15 is disposed. That is, as shown in FIG. 19, the ice collection position P <b> 2 at the fixed blade 15 in the ice collection unit S and the ice separation position P <b> 1 by the rotary blade 24 are substantially the same distance radially outward from the rotation center of the auger 14. It is the same position apart. In the auger type ice making machine 10 having such a structure, the ice making capacity is improved by increasing the rotation speed of the auger 14 or increasing the inner diameter of the refrigeration casing 13 (the outer diameter of the rotary blade 24 of the auger 14). However, there is a problem that the ice collection speed at the fixed blade 15 increases and the ice collection efficiency decreases (the ice collection efficiency improves as the collection speed is slow), and the ice making efficiency can be appropriately increased. There wasn't. In addition, when the pressure at the time of collecting ice is the same, the torque load applied to the driving means 16 increases as the place where the pressure rises away from the rotation center of the auger 14, and thus the driving means 16 having a large output is equipped. As a result, the manufacturing cost is increased.

そこで本発明では、前述した従来の技術に内在している課題に鑑み、これを好適に解決するべく提案されたものであって、氷の収集効率の低下を防止しながら製氷効率を向上させると共に、駆動手段に対する負荷の低減を図るようにしたオーガ式製氷機を提供することを目的とする。   Therefore, in the present invention, in view of the problems inherent in the above-described conventional technology, it has been proposed to suitably solve this problem, and it is possible to improve ice making efficiency while preventing a decrease in ice collection efficiency. Another object of the present invention is to provide an auger type ice making machine that reduces the load on the driving means.

前記課題を解決し、所期の目的を達成するため、本願の請求項1に係る発明は、
冷凍ケーシングの製氷面に生成された氷を、該冷凍ケーシングに対して回転自在に配設されて駆動手段により回転するオーガの回転刃で剥離して搬送し、この搬送される氷を氷収集部で収集した後に放出するオーガ式製氷機において、
前記氷収集部は、前記回転刃による氷剥離位置に対し前記オーガの回転中心側に偏倚して設けた氷放出口と、前記オーガで搬送される氷を前記氷放出口に向けて案内する氷案内部とを備えることを特徴とする。
In order to solve the above problems and achieve the intended purpose, the invention according to claim 1 of the present application is
Ice generated on the ice making surface of the refrigeration casing is peeled off and transported by a rotary blade of an auger that is rotatably arranged with respect to the refrigeration casing and is rotated by a driving means, and the transported ice is collected in an ice collecting unit. In the auger type ice machine that is discharged after being collected at
The ice collecting unit includes an ice discharge port provided to be deviated toward a rotation center side of the auger with respect to an ice peeling position by the rotary blade, and ice for guiding the ice conveyed by the auger toward the ice discharge port. And a guide unit.

従って、請求項1の発明によれば、氷収集部における氷収集位置が、オーガの回転刃による氷剥離位置より該オーガの回転中心に近い位置に設定され、氷の収集に伴う駆動手段へのトルク負荷が軽減される。従って、駆動手段の故障が起こり難くなると共に、小出力の駆動手段で対応することもできるので製造コストを抑えることも可能となる。そして、収集される氷がオーガの回転中心に向けて移動するため、該氷の収集速度が徐々に小さくなって収集効率が向上すると共に、オーガの回転速度を高めて製氷効率を向上させるようにしても氷の収集効率の大幅な低下を抑え得る。   Therefore, according to the invention of claim 1, the ice collecting position in the ice collecting section is set to a position closer to the rotation center of the auger than the ice peeling position by the rotating blade of the auger. Torque load is reduced. Therefore, failure of the drive means is unlikely to occur, and it is possible to cope with the drive means with a small output, so that the manufacturing cost can be suppressed. Since the collected ice moves toward the center of rotation of the auger, the ice collection speed is gradually reduced to improve the collection efficiency, and the rotation speed of the auger is increased to improve the ice making efficiency. However, a significant drop in ice collection efficiency can be suppressed.

請求項2に係る発明では、前記オーガは、前記冷凍ケーシングの製氷面に臨む第1の周面より突出させて前記回転刃が設けられる円筒形のオーガ本体と、駆動手段の出力軸部に連結されて、該駆動手段の回転をオーガ本体に伝達する動力伝達部とを備え、
前記オーガ本体は、該オーガ本体の上方に設けられる前記氷収集部の氷放出口に連通する氷放出路が内側に形成されることを要旨とする。
請求項2に係る発明によれば、駆動手段との間に動力伝達部を設けることで、駆動手段とオーガ本体との間で熱伝導を抑制でき、駆動手段の結露や製氷効率の低下を回避できる。
In the invention according to claim 2, the auger is connected to the cylindrical auger body provided with the rotary blade so as to protrude from the first peripheral surface facing the ice making surface of the refrigeration casing, and the output shaft portion of the driving means. And a power transmission part for transmitting the rotation of the driving means to the auger body,
The gist of the auger main body is that an ice discharge path communicating with an ice discharge port of the ice collecting unit provided above the auger main body is formed inside.
According to the second aspect of the present invention, by providing the power transmission portion between the driving means and the driving means, the heat conduction can be suppressed between the driving means and the auger body, and the condensation of the driving means and the decrease in ice making efficiency are avoided. it can.

請求項3に係る発明では、前記氷案内部は、前記オーガ本体における第1の周面に螺旋状に設けられる回転刃の上端に対応させて該オーガ本体の上端部に連結され、前記氷放出口の上方を通るよう架設されることを要旨とする。
請求項3に係る発明によれば、最も大きな荷重がかかるオーガ本体の上部に氷案内部を設けることで、氷案内部で当該荷重を支持することができ、オーガ本体への負荷を軽減できる。
In the invention according to claim 3, the ice guide portion is connected to the upper end portion of the auger body so as to correspond to the upper end of the rotary blade spirally provided on the first peripheral surface of the auger body. The gist is that it is constructed so as to pass above the exit.
According to the invention which concerns on Claim 3, by providing the ice guide part in the upper part of the auger main body to which the largest load is applied, the said load can be supported by an ice guide part, and the load to an auger main body can be reduced.

請求項4に係る発明では、前記動力伝達部は、前記オーガ本体の上端部に設けた前記氷案内部によって、前記出力軸部に連結する接続部と該オーガ本体とを連結し、
前記氷案内部は、前記氷収集部に位置して、該オーガ本体の回転方向と交差して延在するよう設けられることを要旨とする。
請求項4に係る発明によれば、オーガと共に回転する氷案内部によって氷を氷放出口に向けて円滑に案内することができる。
In the invention which concerns on Claim 4, the said power transmission part connects the connection part and this auger main body which are connected with the said output shaft part by the said ice guide part provided in the upper end part of the said auger main body,
The gist of the invention is that the ice guide portion is provided at the ice collecting portion so as to extend so as to intersect with the rotation direction of the auger body.
According to the fourth aspect of the present invention, the ice can be smoothly guided toward the ice discharge port by the ice guide portion that rotates together with the auger.

請求項5に係る発明では、前記氷案内部は、前記オーガ本体の回転中心を通る半径方向のラインに対して、回転中心から外側に向かうにつれて該オーガ本体の回転方向前側に偏倚するよう延在する部位を備えていることを要旨とする。
請求項5に係る発明によれば、オーガと共に回転する氷案内部によって氷を氷放出口に向けて更に円滑に案内することができる。
In the invention according to claim 5, the ice guide portion extends so as to be biased toward the front side in the rotation direction of the auger body as it goes outward from the rotation center with respect to a radial line passing through the rotation center of the auger body. The gist is that it has a part to be used.
According to the fifth aspect of the present invention, the ice can be guided more smoothly toward the ice discharge port by the ice guide portion that rotates together with the auger.

請求項6に係る発明では、前記氷収集部は、前記氷が前記オーガと共に回転するのを規制する回転規制部を備えることを要旨とする。
請求項6に係る発明によれば、収集される氷がオーガの回転と共に回転しないので、氷収集部における該氷の収集が適切になされる。
The gist of the invention according to claim 6 is that the ice collecting part includes a rotation restricting part that restricts rotation of the ice together with the auger.
According to the sixth aspect of the invention, since the ice to be collected does not rotate with the rotation of the auger, the ice is appropriately collected in the ice collecting unit.

請求項7に係る発明では、前記オーガの回転刃により上方へ搬送された氷を、該オーガの回転中心側に変向させる傾斜案内面が、該オーガの上方に設けた案内部材に形成されることを要旨とする。
請求項7に係る発明によれば、オーガの回転刃により搬送された氷が、オーガの回転中心方向へ円滑に変向されるので、該氷の収集が適切になされるようにし得る。
In the invention which concerns on Claim 7, the inclination guide surface which changes the ice conveyed upward with the rotary blade of the said auger to the rotation center side of this auger is formed in the guide member provided above this auger. This is the gist.
According to the seventh aspect of the invention, since the ice conveyed by the rotating blade of the auger is smoothly turned toward the rotation center of the auger, the ice can be collected appropriately.

請求項8に係る発明では、前記回転規制部は、前記オーガの半径方向に交差させて斜めに延在するように設けられることを要旨とする。
請求項8に係る発明によれば、オーガの回転刃により搬送された氷が、回転規制部の角度によりオーガの回転中心方向へ円滑に変向されるので、該氷の収集がより適切になされるようにし得る。
The gist of the invention according to claim 8 is that the rotation restricting portion is provided so as to extend obliquely so as to intersect the radial direction of the auger.
According to the eighth aspect of the invention, the ice transported by the rotary blade of the auger is smoothly turned toward the rotation center direction of the auger according to the angle of the rotation restricting portion, so that the ice is collected more appropriately. You can do so.

請求項9に係る発明では、前記氷案内部により前記オーガの回転中心側に移動した氷を、前記氷放出口の方向に変向させる放出案内面が、前記氷収集部に設けられることを要旨とする。
請求項9に係る発明によれば、オーガの回転中心側に収集された氷が、放出案内面により氷放出口へ円滑に変向されるので、収集された氷の放出が適切になされるようにし得る。
The invention according to claim 9 is characterized in that the ice collecting portion is provided with a discharge guide surface for turning the ice moved to the rotation center side of the auger by the ice guide portion toward the ice discharge port. And
According to the invention of claim 9, since the ice collected on the rotation center side of the auger is smoothly turned to the ice discharge port by the discharge guide surface, the collected ice is appropriately discharged. Can be.

請求項10に係る発明では、前記氷放出口および前記氷案内部は、前記オーガに対し着脱可能に装着される氷収集部材に設けられることを要旨とする。
請求項10に係る発明によれば、氷収集部材を装着することで単位空間当たりの密度が高められた氷の生成仕様とすることができると共に、該氷収集部材を装着しないことで単位空間当たりの密度が低い氷の生成仕様とすることができ、氷収集部材の有無により両仕様に簡単に対応することができる。また、何れかの仕様によって実施に供されている途中で、逆の仕様に変更することも可能である。
The gist of the invention according to claim 10 is that the ice discharge port and the ice guide portion are provided in an ice collecting member that is detachably attached to the auger.
According to the tenth aspect of the present invention, it is possible to achieve the specification of generating ice with the density per unit space being increased by mounting the ice collecting member, and the unit per unit space by not mounting the ice collecting member. The specifications for generating ice with a low density can be made, and both specifications can be easily accommodated by the presence or absence of an ice collecting member. Moreover, it is also possible to change to the reverse specification in the middle of implementation by any specification.

本発明に係るオーガ式製氷機によれば、氷の収集効率の低下を防止しながら製氷効率を向上させると共に、駆動手段に対する負荷の低減を図り得る。   According to the auger type ice making machine according to the present invention, it is possible to improve the ice making efficiency while preventing the ice collecting efficiency from being lowered, and to reduce the load on the driving means.

次に、本発明に係るオーガ式製氷機につき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。   Next, an auger type ice making machine according to the present invention will be described below with reference to the accompanying drawings by way of preferred embodiments.

図1は、本発明の実施例1に係るオーガ式製氷機30を一部破断して示した概略構成図であり、図2は、実施例1のオーガ式製氷機30の主要構成部材を分離して示した分解斜視図である。実施例1のオーガ式製氷機30は、冷凍ケーシング33およびオーガ(回転刃体)34からなる製氷機構部32と、オーガ34を所定速度で定速回転させる駆動手段36と、製氷機構部32が内部に収容されたリザーバタンク(製氷水タンク)37とを備えている。実施例1のオーガ式製氷機30は、後述するように、製氷機構部32がリザーバタンク37の内部に臨み、該製氷機構部32の冷凍ケーシング33およびオーガ34が、リザーバタンク37内に貯留された製氷水に浸漬した状態に配設されている。なお説明の便宜上、水平に配設される後述の駆動手段36が延在する方向を製氷機の左右方向(図1における左方が製氷機の左側、右方を右側)とし、垂直に配設される後述の回転軸56の延在方向を製氷機の上下方向(図1の上方を製氷機の上側、下方を下側)とする。   FIG. 1 is a schematic configuration diagram showing a part of an auger type ice making machine 30 according to a first embodiment of the present invention, and FIG. 2 is a diagram illustrating main components of the auger type ice making machine 30 according to the first embodiment. It is the exploded perspective view shown. The auger type ice making machine 30 according to the first embodiment includes an ice making mechanism section 32 including a refrigeration casing 33 and an auger (rotating blade body) 34, a driving unit 36 that rotates the auger 34 at a constant speed, and an ice making mechanism section 32. A reservoir tank (ice making water tank) 37 accommodated therein is provided. In the auger type ice making machine 30 according to the first embodiment, as will be described later, the ice making mechanism 32 faces the inside of the reservoir tank 37, and the refrigeration casing 33 and the auger 34 of the ice making mechanism 32 are stored in the reservoir tank 37. It is arranged in a state immersed in ice making water. For convenience of explanation, the direction in which the drive means 36, which will be described later, extends horizontally is the left-right direction of the ice making machine (the left side in FIG. 1 is the left side of the ice making machine and the right side is the right side), The extending direction of the later-described rotating shaft 56 is the vertical direction of the ice making machine (the upper side in FIG. 1 is the upper side of the ice making machine and the lower side is the lower side).

前記製氷機構部32およびリザーバタンク37は、図1に示すように、該製氷機構部32で製氷された氷が貯留される貯氷室105の上部壁面に取付けられるフレーム38の上壁部90に対して下方から固定され、駆動手段36は該上壁部90に対して上方から固定されている。製氷機構部32および駆動手段36は、後述する案内部材としても機能するベース部材39に夫々連結することで、フレーム38に適切に取付けられる。また、実施例1のオーガ式製氷機30は、後述するように、剥離後の氷の単位空間当たりの密度を高めることができる氷収集部材35を、オーガ34の上部に着脱自在に装着し得るようになっている。従って、オーガ34の上部に前記氷収集部材35を装着した場合(図1、図6)には、単位空間当たりの密度を高めた氷が生成され、オーガ34の上部に氷収集部材35を装着しない場合(図7)には、単位空間当たりの密度が低い氷が生成されるよう構成されている。なお、ここでいう「単位空間当たりの密度が高い氷」とは、剥離後の氷を氷収集部材35で収集する際に、該氷を適度に押し固めることで得られる所謂「チップ状の氷」を意味し、「単位空間当たりの密度が低い氷」とは、剥離後の氷に含有した余剰の製氷水を分離させた所謂「フレーク状の氷」を意味する。   As shown in FIG. 1, the ice making mechanism portion 32 and the reservoir tank 37 are provided with respect to the upper wall portion 90 of the frame 38 attached to the upper wall surface of the ice storage chamber 105 in which the ice made by the ice making mechanism portion 32 is stored. The driving means 36 is fixed to the upper wall portion 90 from above. The ice making mechanism 32 and the drive means 36 are appropriately attached to the frame 38 by being connected to a base member 39 that also functions as a guide member described later. Further, as will be described later, the auger type ice making machine 30 according to the first embodiment can detachably mount an ice collecting member 35 that can increase the density per unit space of the peeled ice on the auger 34. It is like that. Therefore, when the ice collecting member 35 is attached to the upper part of the auger 34 (FIGS. 1 and 6), ice having a higher density per unit space is generated, and the ice collecting member 35 is attached to the upper part of the auger 34. When not (FIG. 7), it is configured to generate ice having a low density per unit space. Here, “ice having a high density per unit space” means so-called “chip-like ice” obtained by appropriately pressing and solidifying the separated ice when it is collected by the ice collecting member 35. "Ice having low density per unit space" means so-called "flaky ice" obtained by separating excess ice making water contained in the ice after peeling.

冷凍ケーシング33は、図1および図2に示すように、製氷面となる内部壁面40および外部壁面41を有する所要厚の円筒状に構成され、冷凍回路(図示省略)における冷却パイプ(エバポレータ)42が、内部壁面40と外部壁面41との間で周方向へ螺旋状に配設された構造となっている。この冷凍ケーシング33は、熱伝導性および防錆性等に優れた素材(例えばステンレス鋼等)から形成されており、冷凍回路の運転下に冷却パイプ42内に循環する冷媒により、内部壁面40および外部壁面41の両面が好適に冷却されるよう構成されている。そして、冷凍ケーシング33の上端面には、前記ベース部材39に当該冷凍ケーシング33を固定する第1組付ボルトB1が締結される第1ボルト締結孔47が、円周方向へ所要間隔毎(等間隔)に複数個(実施例では6個)穿設されている。また、冷凍ケーシング33の下端面には、オーガ34の下端部を外側から摺接支持するリング状の支持部材44が配設されている。   As shown in FIGS. 1 and 2, the refrigeration casing 33 is configured in a cylindrical shape having a required thickness having an inner wall surface 40 and an outer wall surface 41 serving as an ice making surface, and a cooling pipe (evaporator) 42 in a refrigeration circuit (not shown). However, the inner wall surface 40 and the outer wall surface 41 are spirally arranged in the circumferential direction. The refrigeration casing 33 is made of a material excellent in thermal conductivity, rust prevention, etc. (for example, stainless steel), and the internal wall surface 40 and the refrigeration casing 33 are formed by the refrigerant circulating in the cooling pipe 42 under the operation of the refrigeration circuit. Both surfaces of the external wall surface 41 are configured to be suitably cooled. And the 1st bolt fastening hole 47 to which the 1st assembly | attachment volt | bolt B1 which fixes the said freezing casing 33 to the said base member 39 is fastened to the upper end surface of the freezing casing 33 is carried out for every required space | interval (etc. A plurality (six in the embodiment) are formed at intervals. A ring-shaped support member 44 that slides and supports the lower end portion of the auger 34 from the outside is disposed on the lower end surface of the refrigeration casing 33.

オーガ34は、図1〜図3に示すように、耐摩耗性および防錆性等に優れた素材(例えばステンレス鋼等)から所要厚の円筒状に形成され、前記冷凍ケーシング33内に収容され得る形状・サイズに構成されている。実施例1におけるオーガ34は、上方および下方に開口した円筒状本体の外周面に合計4個の回転刃50が螺旋状に突設されており、冷凍ケーシング33の内側に収容した際には、各回転刃50の刃先面が内部壁面40に非接触状態で近接するよう構成されている。また、オーガ34の上部における円筒中心(回転中心)には、前記駆動手段36の出力部に連結される回転軸56の下端部が一体回転可能に嵌着される支持ボス部52が形成されると共に、該支持ボス部52とオーガ内周面との間に複数(実施例では6本)のスポーク部51が周方向に離間して設けられている。そして、各スポーク部51が配設されたオーガ34の上部内側には、生成された氷の通過を許容する氷通過口53が、各スポーク部51の間に画成されている。また、オーガ34の下部外側には、冷凍ケーシング33の下端に取り付けた前記支持部材44に内側から摺接する支持片54が形成されていると共に、該支持片54には適宜数の通水口55が形成されている。なお前記各スポーク部51は、その長さ方向の略中間部分に段部を設けた形状とされ、支持ボス部52に隣接した側が一段低くなっており、後述する氷収集部材35の装着を許容するよう構成される。   As shown in FIGS. 1 to 3, the auger 34 is formed in a cylindrical shape having a required thickness from a material excellent in wear resistance and rust prevention (for example, stainless steel) and is accommodated in the refrigeration casing 33. It is configured to obtain the shape and size. In the auger 34 according to the first embodiment, a total of four rotary blades 50 project in a spiral manner on the outer peripheral surface of a cylindrical main body opened upward and downward, and when accommodated inside the refrigeration casing 33, The blade edge surface of each rotary blade 50 is configured to be close to the inner wall surface 40 in a non-contact state. A support boss 52 is formed at the center (rotation center) of the upper portion of the auger 34, and the lower end of the rotary shaft 56 connected to the output portion of the driving means 36 is fitted so as to be integrally rotatable. In addition, a plurality of (six in the embodiment) spoke portions 51 are provided in the circumferential direction between the support boss portion 52 and the auger inner peripheral surface. An ice passage port 53 that allows the generated ice to pass therethrough is defined between the spoke portions 51 inside the auger 34 where the spoke portions 51 are disposed. A support piece 54 is formed on the outside of the lower part of the auger 34 so as to be in sliding contact with the support member 44 attached to the lower end of the refrigeration casing 33 from the inside. Is formed. Each of the spoke portions 51 is formed in a shape having a step portion at a substantially intermediate portion in the length direction, and the side adjacent to the support boss portion 52 is lowered by one step, and mounting of an ice collecting member 35 described later is allowed. Configured to do.

ベース部材39は、図1、図2および図4に示すように、冷凍ケーシング33の外形寸法と略同一の外形寸法に形成されたフランジ状の円盤部材であって、その下側に冷凍ケーシング33を組付け得るようになっている。ベース部材39の中心部分には貫通口60が形成され、前記回転軸56の挿通を許容するようになっている。そして、ベース部材39の上面には、前記駆動手段36の係合突部100に嵌合連結される円筒リブ61が突設されている。また、ベース部材39の外周縁に隣接した部位には、当該ベース部材39と前記冷凍ケーシング33とを組付ける第1組付ボルトB1が挿通する第1ボルト通孔62が、同心円上において所要間隔毎に複数個(実施例では6個)形成されている。すなわち各第1ボルト通孔62は、前記冷凍ケーシング33の上端面に形成した各第1ボルト締結孔47に夫々整合するように形成されている。また、前記各第1ボルト通孔62が形成された部位から径方向内側の部位には、当該ベース部材39をフレーム38の上壁部90に固定する第2組付ボルトB2が締結される第2ボルト締結孔63が、同心円上において所要間隔毎に複数個(実施例では6個)形成されている。   As shown in FIGS. 1, 2 and 4, the base member 39 is a flange-shaped disk member having an outer dimension substantially the same as the outer dimension of the refrigeration casing 33. Can be assembled. A through hole 60 is formed in the central portion of the base member 39 to allow the rotation shaft 56 to be inserted. A cylindrical rib 61 is provided on the upper surface of the base member 39 so as to be fitted and connected to the engaging protrusion 100 of the driving means 36. Further, at a portion adjacent to the outer peripheral edge of the base member 39, a first bolt through hole 62 through which the first assembly bolt B1 for assembling the base member 39 and the refrigeration casing 33 is inserted is a required interval on a concentric circle. A plurality (6 in the embodiment) are formed for each. That is, each first bolt through hole 62 is formed so as to be aligned with each first bolt fastening hole 47 formed in the upper end surface of the refrigeration casing 33. A second assembled bolt B2 for fastening the base member 39 to the upper wall portion 90 of the frame 38 is fastened to a portion radially inward from the portion where the first bolt through holes 62 are formed. A plurality of (two in the embodiment) two-bolt fastening holes 63 are formed on the concentric circles at required intervals.

また、図4に示すように、前記ベース部材39の下面には、冷凍ケーシング33の内壁面に隣接する部位に、下方および回転中心方向へ鋭角状に膨出して傾斜案内面64Aを備えた固定刃64が、同心円上において所要間隔毎に複数個(実施例では6個)形成されている。各固定刃64は、オーガ34の各回転刃50により冷凍ケーシング33の内部壁面40に沿って略垂直上方へ移動した氷を、オーガ34の回転と共に回転することを防止すると共に、前記傾斜案内面64Aによってオーガ34の回転中心方向(水平方向)へ変向させるよう機能する。なお、固定刃64は、円形のベース部材39の半径方向に対して交差するよう延在させてもよい。ベース部材39の下面は、内側部分が外周部分と比べて凹設され、内側部分と外周部分との間に半径方向外側から内側に向かうにつれて上方傾斜するガイド面67が設けられている。このガイド面67は、傾斜案内面として機能し、オーガ34の回転刃50により上方へ搬送された氷を、オーガ34の回転中心側に変向させる。なお、実施例1の固定刃64は、ガイド面67から突設される。更に、ベース部材39の下面においてオーガ34の上部開口部に臨む部位には、該ベース部材39の中心から外周端方向へ直線状または曲線状に延在する複数の突条片(回転規制片)65が、略放射状に突設されている。これら突条片65は、ベース部材39と後述する氷収集部材35との間に搬送された氷に上方から接触して、該氷収集部材35において収集される当該氷がオーガ34の回転と共に回転することを防止するために機能する。更に、ベース部材39の下面における中心部分には、下方および径方向外方へ膨出する放出案内面66が形成されている。この放出案内面66は、氷収集部材35の後述する氷放出口71に臨むように位置して、氷収集部材35に沿って回転中心方向(水平方向)に移動した氷を、オーガ34の回転と共に回転することを防止すると共に下方向へ変向させ、かつ下方向へ変向した氷を氷放出口71へ送り出すよう機能する。   Further, as shown in FIG. 4, the lower surface of the base member 39 is fixed to the portion adjacent to the inner wall surface of the refrigeration casing 33 with an inclined guide surface 64 </ b> A that bulges downward and toward the center of rotation at an acute angle. A plurality of blades 64 are formed on the concentric circles (six in the embodiment) at required intervals. Each fixed blade 64 prevents the ice that has moved substantially vertically upward along the inner wall surface 40 of the refrigeration casing 33 by each rotary blade 50 of the auger 34 from rotating with the rotation of the auger 34, and the inclined guide surface. 64A functions to change the direction of rotation of the auger 34 in the direction of the rotation center (horizontal direction). Note that the fixed blade 64 may extend so as to intersect the radial direction of the circular base member 39. The lower surface of the base member 39 has an inner portion that is recessed as compared with the outer peripheral portion, and a guide surface 67 that is inclined upward from the radially outer side to the inner side is provided between the inner portion and the outer peripheral portion. The guide surface 67 functions as an inclined guide surface, and changes the ice conveyed upward by the rotary blade 50 of the auger 34 to the rotation center side of the auger 34. Note that the fixed blade 64 of the first embodiment protrudes from the guide surface 67. Furthermore, a plurality of protrusions (rotation restricting pieces) extending in a straight line or a curved line from the center of the base member 39 toward the outer peripheral end at a portion facing the upper opening of the auger 34 on the lower surface of the base member 39. 65 protrudes substantially radially. These protrusions 65 come into contact with the ice conveyed between the base member 39 and an ice collecting member 35 described later from above, and the ice collected in the ice collecting member 35 rotates with the rotation of the auger 34. It works to prevent you from doing. Further, a discharge guide surface 66 that bulges downward and radially outward is formed at the central portion of the lower surface of the base member 39. The discharge guide surface 66 is positioned so as to face an ice discharge port 71 (to be described later) of the ice collecting member 35, and the ice moved in the rotation center direction (horizontal direction) along the ice collecting member 35 is rotated by the auger 34. In addition, it functions to prevent the ice from rotating together with the ice and to change the direction downward and to send the ice changed downward to the ice discharge port 71.

そして、実施例1のオーガ式製氷機30は、図2および図5に示すように、オーガ34の上部開口部に氷収集部材35を着脱可能に装着し得るようになっており、この氷収集部材35と前記ベース部材39とにより氷収集部Sを形成するようになっている。すなわち、オーガ34の上部開口部に氷収集部材35を装着した場合(図1、図6)には、剥離後の氷が氷収集部Sに収集されることで、単位空間当たりの密度が高められた氷が生成され、オーガ34の上部開口部に該氷収集部材35を装着しない場合(図7)には、氷収集部Sが形成されていないので、単位空間当たりの密度が低い氷が生成されるよう構成されている。この氷収集部材35は、オーガ34の外形寸法と略同一の外形寸法に形成されたフランジ状の円盤部材であって、オーガ34に組付けた際には該オーガ34の上部開口部を覆蓋するようになっている。そして、氷収集部材35の中心部分には、前記回転軸56が遊嵌状態で挿通して回転可能に摺接する貫通口70が形成され、また貫通口70の径方向外側には、該貫通口70を挟んで2個の氷放出口71,71が略扇状に形成されている。   As shown in FIGS. 2 and 5, the auger type ice making machine 30 according to the first embodiment is configured such that an ice collecting member 35 can be detachably attached to the upper opening of the auger 34. The ice collecting part S is formed by the member 35 and the base member 39. That is, when the ice collecting member 35 is attached to the upper opening of the auger 34 (FIGS. 1 and 6), the peeled ice is collected in the ice collecting portion S, thereby increasing the density per unit space. When the generated ice is generated and the ice collecting member 35 is not attached to the upper opening of the auger 34 (FIG. 7), the ice collecting portion S is not formed. Configured to be generated. The ice collecting member 35 is a flange-shaped disk member formed to have substantially the same outer dimensions as the auger 34, and covers the upper opening of the auger 34 when assembled to the auger 34. It is like that. A through-hole 70 is formed in the central portion of the ice collecting member 35 so as to be slidably contacted with the rotary shaft 56 in a loosely fitted state. Two ice discharge ports 71 and 71 are formed in a substantially fan shape with 70 interposed therebetween.

また、氷収集部材35の上面には、該氷収集部材35の外周端から氷放出口71,71に向けて直線状または湾曲状に延在する氷押圧案内片(氷案内部)72,72が突設されている。これら氷押圧案内片72,72は、図5に矢印で表示するように、オーガ34の外周面から回転中心方向に搬送される氷を、回転中心に隣接して設けた氷放出口71,71に向けて押すように機能する。従って、図5に示すように、剥離後の氷を収集する部分である氷収集位置P2が、冷凍ケーシング33の内部壁面40に生成された氷をオーガ34の回転刃50が剥離する氷剥離位置P1(回転刃50の刃先面の位置)よりも、該オーガ34の回転中心に近くなるように設定されている。これにより、氷収集部材35で収集される氷は、オーガ34の回転中心に移動するに従って収集速度が徐々に小さくなるので、氷収集効率が向上するようになる。また、収集される氷がオーガ34の回転中心に向けて移動するため、駆動手段36に対するトルク負荷が軽減されるようになる。なお、各氷放出口71,71の開口サイズを変更することで、氷収集部材35による氷収集度合を調整することが可能であり、例えば開口サイズを小さくするほど、単位空間当たりの密度を高めた氷を生成し得る。   Further, on the upper surface of the ice collecting member 35, ice pressing guide pieces (ice guiding portions) 72, 72 extending linearly or curvedly from the outer peripheral end of the ice collecting member 35 toward the ice discharge ports 71, 71. Is protruding. As indicated by arrows in FIG. 5, these ice pressing guide pieces 72 and 72 are provided with ice discharge ports 71 and 71 provided adjacent to the rotation center for the ice conveyed from the outer peripheral surface of the auger 34 toward the rotation center. It works to push towards. Therefore, as shown in FIG. 5, the ice collecting position P2 which is a part for collecting the ice after peeling is an ice peeling position where the rotary blade 50 of the auger 34 peels the ice generated on the inner wall surface 40 of the refrigeration casing 33. It is set to be closer to the rotation center of the auger 34 than P1 (the position of the cutting edge surface of the rotary blade 50). Thereby, the ice collecting efficiency is improved because the ice collected by the ice collecting member 35 gradually decreases in speed as it moves to the rotation center of the auger 34. Further, since the collected ice moves toward the rotation center of the auger 34, the torque load on the driving means 36 is reduced. In addition, it is possible to adjust the ice collection degree by the ice collecting member 35 by changing the opening size of each ice discharge port 71, 71. For example, the density per unit space is increased as the opening size is reduced. Ice can be produced.

リザーバタンク37は、図1および図2に示すように、前記製氷機構部32を収容可能なサイズに形成され、冷凍ケーシング33の外形サイズより大径の外筒部80と、オーガ34の内径サイズより小径の内筒部81と、これら外筒部80および内筒部81の下端間に設けられる底壁部82とから形成されている。外筒部80の上端縁内側は全面的に開口していると共に、内筒部81の上端縁内側も全面的に開口しており、かつ内筒部81の高さは外筒部80の高さと同一または適宜低く設定されている。従ってリザーバタンク37は、最大で内筒部81の開口位置まで製氷水を貯留することが可能となっている。そして外筒部80の上端縁には、径方向外方へ延出しかつ周方向全周に亘って延在するリブ83が形成されており、このリブ83には、当該リザーバタンク37をフレーム38の上壁部90に組付けるための第3組付ボルトB3が締結される第3ボルト締結孔84が、周方向へ所要間隔毎に複数個(実施例では7個)形成されている。また内筒部81は、図1に示すように、オーガ34の内側に突出するようになり、該内筒部81の上端開口部が製氷機構部32におけるオーガ34の氷通過口53に下方から整合して、該氷通過口53から落下放出された氷の氷放出シュートとして機能するようになっている。なお、外筒部80の一部に形成された膨出部85には、図2に示したフロートスイッチ45およびウォータバルブ46が臨むよう構成されている。   As shown in FIGS. 1 and 2, the reservoir tank 37 is formed in a size that can accommodate the ice making mechanism portion 32, and has an outer cylinder portion 80 having a diameter larger than the outer size of the refrigeration casing 33 and the inner diameter size of the auger 34. The inner cylinder part 81 having a smaller diameter and the bottom wall part 82 provided between the outer cylinder part 80 and the lower end of the inner cylinder part 81 are formed. The inner side of the upper end edge of the outer cylinder part 80 is fully open, the inner side of the upper end edge of the inner cylinder part 81 is also fully open, and the height of the inner cylinder part 81 is the height of the outer cylinder part 80. Is set to be the same as or low as appropriate. Therefore, the reservoir tank 37 can store the ice making water up to the opening position of the inner cylinder portion 81 at the maximum. A rib 83 extending outward in the radial direction and extending over the entire circumference in the circumferential direction is formed at the upper end edge of the outer cylindrical portion 80, and the reservoir tank 37 is attached to the frame 38 on the rib 83. A plurality of third bolt fastening holes 84 (seven in the embodiment) are formed in the circumferential direction for fastening the third assembly bolts B3 for assembling to the upper wall 90. Further, as shown in FIG. 1, the inner cylinder portion 81 protrudes to the inside of the auger 34, and the upper end opening portion of the inner cylinder portion 81 extends from below to the ice passage port 53 of the auger 34 in the ice making mechanism portion 32. In alignment, it functions as an ice discharge chute for the ice dropped and discharged from the ice passage port 53. It should be noted that the float switch 45 and the water valve 46 shown in FIG. 2 face the bulging portion 85 formed in a part of the outer cylinder portion 80.

フレーム38は、前記リザーバタンク37の最大直径より左右方向の寸法を大きく設定した上壁部90と、この上壁部90の左端および右端から夫々垂直下方へ延在し、前記リザーバタンク37の最大高さ寸法より高さ寸法を大きく設定した左縦壁部91および右縦壁部92と、左縦壁部91の下端から左方向へ水平に延出した左支持部93および右縦壁部92の下端から右方向へ水平に延出した右支持部94とを備えている。上壁部90の略中央部分には、前記ベース部材39の円筒リブ61の挿通を許容する円形開口部95が形成されていると共に、該ベース部材39を上壁部90に固定する第2組付ボルトB2の挿通を許容する第2ボルト通孔96が、円形開口部95の端縁に沿って同一円周上に所要間隔毎に複数個(実施例では6個)形成されている。また、上壁部90に設けた第2ボルト通孔96の外側には、前記リザーバタンク37を上壁部90に固定する第3組付ボルトB3の挿通を許容する第3ボルト通孔99が、同一円周状に所要間隔毎に複数個(実施例では7個)形成されている。そして、上壁部90の前端縁および後端縁には、該上壁部90の端縁に沿って左右方向に延在する補強リブ97,97が、該上壁部90に一体的に形成されている。なお、フレーム38の形態は、図2に例示のものに限定されず、製氷機構部32およびリザーバタンク37等の各構成部材を適切に固定保持し得るものであれば、これ以外の形態のものであってもよい。   The frame 38 has an upper wall 90 having a left and right dimension larger than the maximum diameter of the reservoir tank 37, and extends vertically downward from the left end and the right end of the upper wall 90, respectively. The left vertical wall portion 91 and the right vertical wall portion 92 having a height dimension larger than the height dimension, and the left support portion 93 and the right vertical wall portion 92 that extend horizontally from the lower end of the left vertical wall portion 91 to the left. And a right support portion 94 extending horizontally in the right direction from the lower end. A circular opening 95 that allows insertion of the cylindrical rib 61 of the base member 39 is formed in a substantially central portion of the upper wall 90, and a second set for fixing the base member 39 to the upper wall 90 is provided. A plurality of (6 in the embodiment) second bolt through holes 96 that allow the insertion of the attached bolts B2 are formed along the edge of the circular opening 95 on the same circumference at every required interval. Further, outside the second bolt through hole 96 provided in the upper wall portion 90, there is a third bolt through hole 99 that allows insertion of the third assembled bolt B3 that fixes the reservoir tank 37 to the upper wall portion 90. A plurality (seven in the embodiment) of the same circumference are formed at every required interval. Reinforcing ribs 97, 97 extending in the left-right direction along the edge of the upper wall 90 are formed integrally with the upper wall 90 at the front edge and the rear edge of the upper wall 90. Has been. The form of the frame 38 is not limited to that illustrated in FIG. 2, and any other form can be used as long as each component such as the ice making mechanism 32 and the reservoir tank 37 can be appropriately fixed and held. It may be.

駆動手段36は、例えば減速ギア機構を兼備した電気モータ等であって、図1に示すように、本体下面に突出した係合突部100に臨む出力軸部(図示省略)に、前記回転軸56の上端部が連結されるようになっている。この駆動手段36は、フレーム38の上壁部90に下方から固定された前記ベース部材39の円筒リブ61に対して係合突部100を嵌合させると共に、該ベース部材39の上面に配設された支持ブラケット98に固定することで、フレーム38の上部に対し安定的に固定される。従って、実施例1のオーガ式製氷機30は、オーガ34を回転する駆動手段36が製氷機構部32の上方に配設され、駆動手段36がオーガ34の上部に連結されて該オーガ34が懸吊された状態に配設され、よってオーガ34の上部から該オーガ34の内側へ生成された氷を放出落下することが可能となっている。ここで、図1の符号101はベアリングであり、符号102は半円弧状の2つの部材から構成されるスリーブであり、該スリーブ102を回転軸56に設けた嵌合溝に嵌合させることで、オーガ34を固定した回転軸56が下方へ脱落することを防止するよう機能する。なお、駆動手段36の形態はこれに限定されず、オーガ34を所定の回転速度で定速回転させることで、回転刃50による氷の剥離および氷収集部材35による氷の収集を適切に行ない得るようにするものであれば、様々な形態のものが実施可能である。   The drive means 36 is, for example, an electric motor that also has a reduction gear mechanism. As shown in FIG. 1, the drive means 36 has an output shaft portion (not shown) that protrudes from the lower surface of the main body and an output shaft portion (not shown) on the rotating shaft. The upper end portions of 56 are connected. The drive means 36 fits the engaging protrusion 100 to the cylindrical rib 61 of the base member 39 fixed to the upper wall portion 90 of the frame 38 from below, and is disposed on the upper surface of the base member 39. By being fixed to the support bracket 98, the upper portion of the frame 38 is stably fixed. Therefore, in the auger type ice making machine 30 of the first embodiment, the driving means 36 for rotating the auger 34 is disposed above the ice making mechanism 32, and the driving means 36 is connected to the upper portion of the auger 34 so that the auger 34 is suspended. It is arranged in a suspended state, so that it is possible to discharge and drop the ice generated from the upper part of the auger 34 to the inside of the auger 34. Here, reference numeral 101 in FIG. 1 denotes a bearing, and reference numeral 102 denotes a sleeve composed of two semicircular arc-shaped members. By fitting the sleeve 102 into a fitting groove provided on the rotating shaft 56, The rotary shaft 56 to which the auger 34 is fixed functions to prevent the downward rotation of the rotary shaft 56. The form of the drive means 36 is not limited to this, and the auger 34 is rotated at a constant speed at a predetermined rotational speed, whereby the ice can be appropriately separated by the rotary blade 50 and the ice can be collected by the ice collecting member 35. Various configurations can be implemented as long as the above is achieved.

前記各構成部材から構成された実施例1のオーガ式製氷機30は、第1組付ボルトB1を、ベース部材39の各第1ボルト通孔62を介して冷凍ケーシング33の第1ボルト締結孔47に締結することで、ベース部材39に対して冷凍ケーシング33が組付けられる。そして、第2組付ボルトB2を、フレーム38の各第2ボルト通孔96を介して冷凍ケーシング33の各第2ボルト締結孔63へ締結することで、フレーム38の下面に対して冷凍ケーシング33が組付けられる。また、オーガ34に形成された支持ボス部52に対して回転軸56を固定した後、ベース部材39の貫通口60に該回転軸56を下方から挿通させることで、冷凍ケーシング33の内側にオーガ34が収容される。そして、オーガ34の回転軸56に駆動手段36の出力軸部を連結させたもとで、図示省略した適宜の固定手段等により、フレーム38の上面に対して駆動手段36を組付ける。最後に、第3組付ボルトB3を、フレーム38の各第3ボルト通孔99を介してリザーバタンク37の第3ボルト締結孔84へ締結することで、フレーム38の下面に対してリザーバタンク37を組付ける。なお、単位空間当たりの密度を高めた氷を生成する仕様の製氷機とする場合には、オーガ34をベース部材39に組付けるに先立ち、該オーガ34の上部開口部に前記氷収集部材35を装着しておく。但し、各構成部材の組付けは、ここに記載の順序に限定されるものではない。   In the auger type ice making machine 30 according to the first embodiment, which is constituted by the respective constituent members, the first assembled bolt B1 is connected to the first bolt fastening hole of the refrigeration casing 33 through the first bolt through holes 62 of the base member 39. By fastening to 47, the refrigeration casing 33 is assembled to the base member 39. Then, the second assembled bolt B2 is fastened to each second bolt fastening hole 63 of the refrigeration casing 33 via each second bolt through hole 96 of the frame 38, so that the refrigeration casing 33 is against the lower surface of the frame 38. Is assembled. Further, after fixing the rotating shaft 56 to the support boss portion 52 formed on the auger 34, the rotating shaft 56 is inserted from below into the through-hole 60 of the base member 39, so that the auger is placed inside the refrigeration casing 33. 34 is accommodated. Then, with the output shaft portion of the driving means 36 connected to the rotating shaft 56 of the auger 34, the driving means 36 is assembled to the upper surface of the frame 38 by appropriate fixing means not shown. Finally, the third assembly bolt B3 is fastened to the third bolt fastening hole 84 of the reservoir tank 37 via the third bolt through holes 99 of the frame 38, so that the reservoir tank 37 is against the lower surface of the frame 38. Assemble. In addition, in the case of an ice making machine of a specification that generates ice with increased density per unit space, the ice collecting member 35 is placed in the upper opening of the auger 34 before the auger 34 is assembled to the base member 39. Wear it. However, the assembly of the constituent members is not limited to the order described here.

このようにして組立てられた実施例1のオーガ式製氷機30は、図1に示すように、製氷機構部32の冷凍ケーシング33およびオーガ34が、製氷水を貯留するリザーバタンク37の外筒部80および内筒部81の間に臨み、該リザーバタンク37内に収容されている。そして、リザーバタンク37の内筒部81は、オーガ34の内側に臨んでいる。また、図1および図5に示すように、氷収集部材35の直径がオーガ34の筒体状本体と同一となっており、氷収集部材35の氷押圧案内片72,72による氷収集位置P2は、オーガ34の回転刃50による氷剥離位置P1より、該オーガ34の回転中心に近接している。更に、オーガ34に組付けた氷収集部材35の上面とベース部材39の下面とが所要間隔で対面している。   As shown in FIG. 1, the auger type ice making machine 30 of the first embodiment assembled in this way has a freezing casing 33 and an auger 34 of an ice making mechanism 32, and an outer cylinder part of a reservoir tank 37 for storing ice making water. It faces between 80 and the inner cylinder part 81 and is accommodated in the reservoir tank 37. The inner cylinder portion 81 of the reservoir tank 37 faces the inside of the auger 34. As shown in FIGS. 1 and 5, the diameter of the ice collecting member 35 is the same as that of the cylindrical body of the auger 34, and the ice collecting position P <b> 2 by the ice pressing guide pieces 72, 72 of the ice collecting member 35 is used. Is closer to the center of rotation of the auger 34 than the ice peeling position P1 by the rotary blade 50 of the auger 34. Further, the upper surface of the ice collecting member 35 assembled to the auger 34 and the lower surface of the base member 39 face each other at a required interval.

そして、実施例1のオーガ式製氷機30は、ウォータバルブ46を介して規定量の製氷水をリザーバタンク37内へ供給した際には、該リザーバタンク37に貯留された該製氷水に、冷凍ケーシング33および前記オーガ34が浸漬された状態となる。すなわち製氷機構部32は、該製氷機構部32内に供給される前の製氷水により、外周面(冷凍ケーシング33の外部壁面41)が包み込まれるよう構成されている。換言すると、実施例1のオーガ式製氷機30の製氷機構部32は、リザーバタンク37内に収容されると共に製氷水に浸漬して外気に接触しないため、該製氷水が図18に示した従来のオーガ式製氷機10における断熱材23として機能し、製氷機構部32を低温状態に保温するための断熱材を不要とし得る構造となっている。また、冷凍回路により冷却された冷凍ケーシング33がリザーバタンク37内の製氷水に浸漬されるため、製氷機構部32内に供給される前の製氷水を該冷凍ケーシング33に接触させて適宜冷却し得るようになっている。   When the auger type ice making machine 30 according to the first embodiment supplies a specified amount of ice making water into the reservoir tank 37 via the water valve 46, the ice making water stored in the reservoir tank 37 is frozen. The casing 33 and the auger 34 are immersed. That is, the ice making mechanism portion 32 is configured such that the outer peripheral surface (the outer wall surface 41 of the refrigeration casing 33) is wrapped by the ice making water before being supplied into the ice making mechanism portion 32. In other words, the ice making mechanism 32 of the auger type ice making machine 30 according to the first embodiment is housed in the reservoir tank 37 and immersed in the ice making water so as not to contact the outside air. Therefore, the ice making water is the conventional ice making water shown in FIG. It functions as the heat insulating material 23 in the auger type ice making machine 10 and has a structure that can eliminate the need for a heat insulating material for keeping the ice making mechanism 32 in a low temperature state. Further, since the refrigeration casing 33 cooled by the refrigeration circuit is immersed in the ice making water in the reservoir tank 37, the ice making water before being supplied into the ice making mechanism 32 is brought into contact with the refrigeration casing 33 and appropriately cooled. To get.

更に、実施例1のオーガ式製氷機30は、図1に示すように、垂直移動する氷を中心方向へ変向させる固定刃64および氷収集部材35が、オーガ34を回転させる駆動手段36に近接した位置に配設されている。すなわち、氷を収集するに際しては、オーガ34の円筒状本体および冷凍ケーシング33に、氷を収集するためのスラスト荷重等が殆ど発生しないため、これらオーガ34および冷凍ケーシング33を頑強な構成とする必要がなく、製氷機構部32の軽量化およびコンパクト化が図られている。また、氷収集部材35による氷収集位置P2が、オーガ34の回転中心に近接しているため、該氷収集部材35による氷の収集に際して駆動手段36に対するトルク負荷が軽減され得る。   Further, in the auger type ice making machine 30 according to the first embodiment, as shown in FIG. 1, the fixed blade 64 and the ice collecting member 35 for turning the vertically moving ice toward the center are provided to the driving means 36 for rotating the auger 34. It is arranged at a close position. That is, when collecting ice, the auger 34 and the refrigeration casing 33 are required to have a robust structure because the cylindrical body of the auger 34 and the refrigeration casing 33 hardly generate a thrust load for collecting ice. The ice making mechanism 32 is reduced in weight and size. Further, since the ice collecting position P2 by the ice collecting member 35 is close to the rotation center of the auger 34, the torque load on the driving means 36 when collecting ice by the ice collecting member 35 can be reduced.

更にまた、実施例1のオーガ式製氷機30は、図1に示すように、製氷機構部32がリザーバタンク37内に収容された状態に配設され、該製氷機構部32がリザーバタンク37の底壁部82から下方に貫通する構造となっていない。このため、製氷機構部32からの製氷水の漏水が発生することはなく、また製氷機構部32とリザーバタンク37との境界部分にメカニカルシール等を施す必要がないため、長期の使用にあっても漏水トラブルが発生し難くなっている。一方、リザーバタンク37は、単一部材として構成されると共に他の構成部材が装着されていないので、第3組付ボルトB3の締付けまたは弛み外し操作だけでフレーム38に対する着脱が可能となっている。   Furthermore, the auger type ice making machine 30 according to the first embodiment is arranged in a state where the ice making mechanism portion 32 is accommodated in the reservoir tank 37 as shown in FIG. The structure does not penetrate downward from the bottom wall portion 82. For this reason, there is no leakage of ice making water from the ice making mechanism section 32, and it is not necessary to provide a mechanical seal or the like at the boundary between the ice making mechanism section 32 and the reservoir tank 37. However, it is difficult for water leakage problems to occur. On the other hand, since the reservoir tank 37 is configured as a single member and is not mounted with other components, the reservoir tank 37 can be attached to and detached from the frame 38 only by tightening or loosening the third assembly bolt B3. .

(実施例1の作用)
次に、前述のように構成された実施例1のオーガ式製氷機30の作用につき説明する。なお、ここでは、氷収集部材35を装備して単位空間当たりの密度が高められた氷を生成するオーガ式製氷機30の作用について説明する。
(Operation of Example 1)
Next, the operation of the auger type ice making machine 30 of the first embodiment configured as described above will be described. Here, the operation of the auger type ice making machine 30 that generates the ice with the increased density per unit space equipped with the ice collecting member 35 will be described.

ウォータバルブ46を介してリザーバタンク37内に規定量の製氷水を供給すると、図1に示すように、製氷機構部32における冷凍ケーシング33およびオーガ34が、リザーバタンク37内に貯留された製氷水に浸漬され、製氷機構部32内(冷凍ケーシング33とオーガ34との間)にも通水口55を介して製氷水が流入する。この状態で、図示省略した冷凍回路を作動させて冷却パイプ42に冷媒を供給すると、冷凍ケーシング33全体が冷却されて製氷面となる内部壁面40および外部壁面41の両方が冷却される。従って、冷凍ケーシング33の内部壁面40に氷が生成される一方、外部壁面41に接触する(製氷機構部32内に流入する前の製氷水)も適宜冷却される。なお、製氷機構部32に供給される前の製氷水は冷凍ケーシング33に接触しながら適宜冷却されるが、製氷の進行に伴い、ウォータバルブ46を介して常温の製氷水がリザーバタンク37内の水位を一定に維持するように追加供給されるので、該冷凍ケーシング33の外部壁面41に生成される氷は僅かであり、場合によっては氷が殆ど生成されない。ここで、供給される製氷水の温度が低くて、冷凍ケーシング33の外部壁面41における氷の生成が促進され、徐々に成長した氷がリザーバタンク37に接触するおそれがある場合には、冷凍ケーシング33の外部壁面41を少量の断熱材で覆うようにして、該外部壁面41における氷の生成を抑制するようにしてもよい。この場合の断熱材としては、製氷水に浸漬しても問題のない材質のものが採用される。   When a specified amount of ice making water is supplied into the reservoir tank 37 via the water valve 46, the refrigeration casing 33 and the auger 34 in the ice making mechanism portion 32 are stored in the reservoir tank 37 as shown in FIG. The ice making water also flows into the ice making mechanism 32 (between the freezing casing 33 and the auger 34) through the water passage 55. In this state, when the refrigeration circuit (not shown) is operated and the refrigerant is supplied to the cooling pipe 42, the entire refrigeration casing 33 is cooled to cool both the inner wall surface 40 and the outer wall surface 41, which are ice making surfaces. Therefore, while ice is generated on the inner wall surface 40 of the refrigeration casing 33, the ice-making water that is in contact with the outer wall surface 41 (the ice-making water before flowing into the ice-making mechanism 32) is appropriately cooled. The ice-making water before being supplied to the ice-making mechanism 32 is appropriately cooled while being in contact with the refrigeration casing 33. However, as ice making progresses, the ice-making water at room temperature is passed through the water valve 46 in the reservoir tank 37. Since the water is additionally supplied so as to keep the water level constant, little ice is generated on the outer wall surface 41 of the refrigeration casing 33, and in some cases, almost no ice is generated. Here, when the temperature of the supplied ice making water is low, the generation of ice on the outer wall surface 41 of the refrigeration casing 33 is promoted, and there is a possibility that the gradually grown ice may come into contact with the reservoir tank 37. The outer wall surface 41 of 33 may be covered with a small amount of heat insulating material to suppress the formation of ice on the outer wall surface 41. As the heat insulating material in this case, a material having no problem even if it is immersed in ice making water is employed.

冷凍ケーシング33の内部壁面40に氷が生成され始めると、内部壁面40に生成された氷は、駆動手段36により定速回転するオーガ34の各回転刃50により氷剥離位置P1において順次剥離されると共に、内部壁面40に沿って垂直上方へ搬送される。そして、オーガ34の上端部に到達した氷は、ベース部材39に設けた各固定刃64およびガイド面67により水平方向へ搬送方向が変向され、該オーガ34の回転中心方向に向けて移動するようになる。なお、各回転刃50により上方へ搬送された氷が各固定刃64に接触するに際し、含有されている未氷結の製氷水の一部を氷と分離させる。   When ice begins to be generated on the inner wall surface 40 of the refrigeration casing 33, the ice generated on the inner wall surface 40 is sequentially peeled off at the ice peeling position P1 by the rotary blades 50 of the auger 34 rotating at a constant speed by the driving means 36. At the same time, it is conveyed vertically upward along the inner wall surface 40. Then, the ice that has reached the upper end of the auger 34 is moved in the horizontal direction by the fixed blades 64 and the guide surfaces 67 provided on the base member 39 and moves toward the center of rotation of the auger 34. It becomes like this. In addition, when the ice conveyed upward by each rotary blade 50 contacts each fixed blade 64, a part of the unfrozen ice-making water contained is separated from the ice.

そして、オーガ34の上端部に到達して各固定刃64およびガイド面67により水平方向へ搬送方向が変向された氷は、図6に示すように、氷収集部材35とベース部材39とにより形成された氷収集部S内を移動し、氷収集部材35の上面に設けた氷押圧案内片72,72およびベース部材39の下面に設けた各突条片65により、オーガ34の回転中心に向けて氷収集部材35の上面を移動する。そして、氷収集部材35の上面を移動する氷は、オーガ34の回転中心に向けて移動する過程で氷収集位置P2において徐々に押し付けられ、単位空間当たりの密度が高められた氷となる。すなわち、氷収集部Sにおいて氷収集部材35の上面に移動した氷は、各突条片65および放出案内面66によりオーガ34の回転に伴う周方向への回転が規制され、この回転規制状態のもとで各氷押圧案内片72,72により側方から押圧されて徐々に収集され、オーガ34の回転中心に向けて移動する過程で単位空間当たりの密度が高められた氷となる。そして、氷放出口71,71に到達して単位空間当たりの密度が高められた氷は、前記放出案内面66により下方向に搬送方向が変更されて氷放出口71,71に向けて押され、該氷放出口71,71からオーガ34の各氷通過口53に向け落下する。なお、各氷放出口71に押し出された氷は、オーガ34の回転軸56、支持ボス部52またはスポーク部51等に接触して折れて落下する。オーガ34の回転中心に隣接した部位から各氷通過口53に落下した氷は、リザーバタンク37の内筒部81内を通過して貯氷室105内へ落下放出する。   Then, the ice that has reached the upper end portion of the auger 34 and whose direction of conveyance has been changed in the horizontal direction by the fixed blades 64 and the guide surfaces 67 is caused by the ice collecting member 35 and the base member 39 as shown in FIG. The auger 34 is moved around the center of the auger 34 by moving inside the formed ice collecting section S and by the ice pressing guide pieces 72 and 72 provided on the upper surface of the ice collecting member 35 and the respective protrusions 65 provided on the lower surface of the base member 39. The upper surface of the ice collecting member 35 is moved toward. Then, the ice moving on the upper surface of the ice collecting member 35 is gradually pressed at the ice collecting position P2 in the process of moving toward the rotation center of the auger 34, and becomes ice with an increased density per unit space. That is, the ice that has moved to the upper surface of the ice collecting member 35 in the ice collecting section S is restricted from rotating in the circumferential direction along with the rotation of the auger 34 by each protrusion 65 and the discharge guide surface 66. Originally, the ice is pressed from the side by the ice pressing guide pieces 72, 72, collected gradually, and becomes ice having an increased density per unit space in the process of moving toward the rotation center of the auger 34. Then, the ice that has reached the ice discharge ports 71 and 71 and whose density per unit space has been increased is changed by the discharge guide surface 66 in the downward direction and is pushed toward the ice discharge ports 71 and 71. The ice falls from the ice discharge ports 71, 71 toward the ice passage ports 53 of the auger 34. In addition, the ice pushed out to each ice discharge port 71 contacts the rotating shaft 56 of the auger 34, the support boss part 52, the spoke part 51, etc., and falls and falls. Ice that has fallen into each ice passage port 53 from a portion adjacent to the rotation center of the auger 34 passes through the inner cylinder portion 81 of the reservoir tank 37 and falls into the ice storage chamber 105.

一方、オーガ34の上部開口部に氷収集部材35を装備せずに氷を生成するオーガ式製氷機30においては、次のように作用する。オーガ34の上方開口部に移動した氷は、図7に示すように、固定刃64の放出案内面64Aおよびガイド面67により変向された後、該オーガ34の上部開口部に前記氷収集部材35が配設されていないので(前記氷収集部Sが形成されないので)、オーガ34の内周面に隣接した部位から各氷通過口53に向け自由落下する。従って、オーガ34の内周面に隣接した部位(回転中心から離間した部位)から各氷通過口53に落下した氷は、密度が殆ど高くならない状態で、リザーバタンク37の内筒部81内を通過して貯氷室105内へ落下放出する。   On the other hand, the auger type ice making machine 30 that generates ice without installing the ice collecting member 35 in the upper opening of the auger 34 operates as follows. The ice moved to the upper opening of the auger 34 is turned by the discharge guide surface 64A and the guide surface 67 of the fixed blade 64 as shown in FIG. Since 35 is not disposed (because the ice collecting portion S is not formed), it freely falls from the portion adjacent to the inner peripheral surface of the auger 34 toward each ice passage port 53. Therefore, the ice that has fallen into each ice passage port 53 from a portion adjacent to the inner peripheral surface of the auger 34 (a portion separated from the rotation center) passes through the inner cylinder portion 81 of the reservoir tank 37 in a state where the density hardly increases. Pass through and drop into the ice storage chamber 105.

従って、実施例1のオーガ式製氷機30によれば、次のような作用効果を奏する。先ず、氷収集部Sにおける氷押圧案内片72,72による氷収集位置P2を、オーガ34の回転刃50による氷剥離位置P1より該オーガ34の回転中心に近い位置に設定したことにより、氷の収集に伴う駆動手段36へのトルク負荷が軽減される。従って、駆動手段36の故障等が起こり難くなると共に、小出力の駆動手段で対応することもできるので製造コストを抑えることも可能となる。そして、氷収集部Sにおいて収集される氷がオーガ34の回転中心に向けて移動するため、氷の収集速度が徐々に小さくなって収集効率が向上すると共に、オーガ34の回転速度を高めて製氷効率を向上させるようにしても氷の収集効率の大幅な低下を抑え得る。更に、オーガ34を回転する駆動手段36を、製氷機構部32におけるオーガ34の上方に配設し、該駆動手段36をオーガ34の上部に連結して該オーガ34を懸吊する構成としたので、オーガ34の回転刃50により冷凍ケーシング33から剥離した氷を、オーガ34の上方開口部(氷通過口53)から該オーガ34内へ落下放出させることが可能であり、図18に示した従来のオーガ式製氷機10のように、生成された氷を氷放出口25を介して氷放出シュート26に押し出す必要がないので氷の搬送効率の向上も図られる。   Therefore, according to the auger type ice making machine 30 of the first embodiment, the following operational effects can be obtained. First, the ice collecting position P2 by the ice pressing guide pieces 72, 72 in the ice collecting unit S is set to a position closer to the rotation center of the auger 34 than the ice peeling position P1 by the rotary blade 50 of the auger 34. Torque load on the driving means 36 accompanying collection is reduced. Therefore, failure of the driving means 36 is less likely to occur, and the manufacturing cost can be reduced because the driving means with a small output can be used. And since the ice collected in the ice collecting part S moves toward the rotation center of the auger 34, the ice collection speed is gradually reduced to improve the collection efficiency, and the rotation speed of the auger 34 is increased to make ice. Even if the efficiency is improved, a significant decrease in ice collection efficiency can be suppressed. Further, the drive means 36 for rotating the auger 34 is disposed above the auger 34 in the ice making mechanism 32, and the drive means 36 is connected to the upper part of the auger 34 so that the auger 34 is suspended. The ice peeled from the refrigeration casing 33 by the rotary blade 50 of the auger 34 can be dropped and released into the auger 34 from the upper opening (ice passing port 53) of the auger 34, which is shown in FIG. Unlike the auger type ice making machine 10, it is not necessary to push the generated ice to the ice discharge chute 26 through the ice discharge port 25, so that the ice transport efficiency can be improved.

また氷収集部Sでは、氷収集部材35の上面に設けた氷押圧案内片72,72およびベース部材39の下面に設けた突条片65により、オーガ34の回転と共に氷が回転しないようにしたもとで、該氷を該オーガ34の回転中心方向へ移動させながら適切に収集させ得る。更に、氷収集部材35がオーガ34に対して着脱可能に装着し得るよう構成されているので、氷収集部材35を装着することで単位空間当たりの密度が高められた氷の生成仕様とすることができると共に、氷収集部材35を装着しないことで単位空間当たりの密度が低い氷の生成仕様とすることができ、該氷収集部材35の有無により両仕様に簡単に対応することができる。しかも、何れかの仕様により実施されている途中で、逆の仕様に変更することも可能である。   In the ice collecting section S, the ice pressing guide pieces 72 and 72 provided on the upper surface of the ice collecting member 35 and the protrusion 65 provided on the lower surface of the base member 39 prevent the ice from rotating with the rotation of the auger 34. Originally, the ice can be appropriately collected while moving toward the center of rotation of the auger 34. Further, since the ice collecting member 35 can be detachably attached to the auger 34, the ice collecting member 35 is attached so that the density per unit space is increased. In addition, by not attaching the ice collecting member 35, it is possible to make the specification for generating ice with a low density per unit space, and it is possible to easily cope with both specifications depending on the presence or absence of the ice collecting member 35. Moreover, it is possible to change to the reverse specification while being implemented according to any specification.

なお、実施例1のオーガ式製氷機30では、冷凍ケーシング33およびオーガ34から構成される製氷機構部32がリザーバタンク37内に貯留した製氷水に浸漬された状態で製氷運転を行なうようになっているので、製氷水が適宜冷却された状態で製氷機構部32に供給され、冷凍ケーシング33の内部壁面40(製氷面43)における氷の生成が促進されて製氷効率の向上が期待できる。そして、リザーバタンク37および該リザーバタンク37に貯留された製氷水が断熱材としての機能を発現するようになり、製氷機構部32を低温状態に保温するための断熱材が不要となって製氷機の製造コストを抑え得る。また、冷凍ケーシング33の外部壁面41に、氷の生成を抑制するために断熱材を装着するとしても、これに使用される断熱材は少量でよいので、製氷機の製造コストには殆ど影響がない。更に、リザーバタンク37が製氷機構部32の周囲に配設されるので、製氷機自体の小型化も図られる。   In the auger type ice making machine 30 according to the first embodiment, the ice making operation is performed in a state where the ice making mechanism portion 32 including the refrigeration casing 33 and the auger 34 is immersed in the ice making water stored in the reservoir tank 37. Therefore, the ice-making water is supplied to the ice-making mechanism 32 in an appropriately cooled state, and the generation of ice on the inner wall surface 40 (ice-making surface 43) of the refrigeration casing 33 is promoted, so that improvement in ice-making efficiency can be expected. Then, the reservoir tank 37 and the ice making water stored in the reservoir tank 37 exhibit a function as a heat insulating material, and the heat insulating material for keeping the ice making mechanism portion 32 in a low temperature state becomes unnecessary, and the ice making machine Manufacturing costs can be reduced. Even if a heat insulating material is attached to the outer wall surface 41 of the refrigeration casing 33 in order to suppress the formation of ice, only a small amount of heat insulating material is used for this, so the manufacturing cost of the ice making machine is hardly affected. Absent. Furthermore, since the reservoir tank 37 is disposed around the ice making mechanism 32, the ice making machine itself can be downsized.

(変更例1)
図8は、実施例1の変更例1に係るオーガ式製氷機120を一部破断して示した概略構成図である。この変更例1に係るオーガ式製氷機120は、前述した実施例1のオーガ式製氷機30と同様に、製氷機構部32におけるオーガ34の上方に配設した駆動手段36を該オーガ34の上部に連結して該オーガ34を懸吊した構成とし、かつ製氷機構部32を構成する冷凍ケーシング33、オーガ34および氷収集部材35等の基本的構成を実施例1と同一としたもとで、リザーバタンク37をなくした構造となっている。すなわち、変更例1のオーガ式製氷機120は、冷凍ケーシング33とオーガ34との間に画成された空間を、製氷水を貯留する製氷水貯留部126として機能するよう構成されている。そして、冷凍ケーシング33の下端部には、オーガ34の内径と同一径の開口部122Aを形成した円盤状部材122が固定され、この円盤状部材122の上面とオーガ34の下端部との間にシール部材124が配設され、製氷水貯留部126に貯留された製氷水が漏出することを防止するようになっている。
(Modification 1)
FIG. 8 is a schematic configuration diagram showing a part of the auger type ice making machine 120 according to the first modification of the first embodiment. The auger type ice making machine 120 according to the first modified example is similar to the auger type ice making machine 30 of the first embodiment described above in that the driving means 36 disposed above the auger 34 in the ice making mechanism 32 is provided above the auger 34. The auger 34 is connected to the suspension and the basic configuration of the refrigeration casing 33, the auger 34, the ice collecting member 35 and the like constituting the ice making mechanism 32 is the same as that of the first embodiment. The reservoir tank 37 is eliminated. That is, the auger type ice making machine 120 according to the first modification is configured so that the space defined between the refrigeration casing 33 and the auger 34 functions as an ice making water storage unit 126 that stores ice making water. A disc-shaped member 122 having an opening 122A having the same diameter as the inner diameter of the auger 34 is fixed to the lower end portion of the refrigeration casing 33, and between the upper surface of the disc-shaped member 122 and the lower end portion of the auger 34. A seal member 124 is provided to prevent the ice making water stored in the ice making water storage unit 126 from leaking.

従って、変更例1に係るオーガ式製氷機120では、オーガ34および該オーガ34の上部に配設した氷収集部材35が、前記実施例1のオーガ式製氷機30と同一に構成されているので、実施例1と同様に、氷の収集に伴う駆動手段36へのトルク負荷の軽減や、氷の収集効率の向上等の作用効果が得られる。そして、オーガ34に氷収集部材35を装着することで単位空間当たりの密度が高められた氷の生成仕様とすることができると共に、該氷収集部材35を装着しないことで単位空間当たりの密度が低い氷の生成仕様とすることができる。また、生成された氷はオーガ34の上方開口部(氷通過口53)から該オーガ34内へ落下放出させることができるので、図18に示した従来のオーガ式製氷機10のように、生成された氷を氷放出口25を介して氷放出シュート26に押し出す必要がなく、氷の搬送効率の向上も図られる。なお、図8では図示省略したが、冷凍ケーシング33の外側に、必要に応じて断熱材を配設すれば、冷凍ケーシング33の冷却効率の向上が期待できる。   Therefore, in the auger type ice making machine 120 according to the modified example 1, the auger 34 and the ice collecting member 35 disposed on the auger 34 are configured in the same manner as the auger type ice making machine 30 of the first embodiment. As in the first embodiment, effects such as a reduction in torque load on the driving means 36 accompanying the collection of ice and an improvement in ice collection efficiency can be obtained. By installing the ice collecting member 35 on the auger 34, it is possible to make the specification of generating ice with a higher density per unit space, and by not mounting the ice collecting member 35, the density per unit space can be increased. Low ice production specifications can be achieved. Further, since the generated ice can be dropped and released into the auger 34 from the upper opening (ice passing port 53) of the auger 34, the generated ice is generated like the conventional auger type ice making machine 10 shown in FIG. It is not necessary to push out the formed ice to the ice discharge chute 26 through the ice discharge port 25, and the ice transport efficiency can be improved. Although not shown in FIG. 8, if a heat insulating material is provided outside the refrigeration casing 33 as necessary, an improvement in the cooling efficiency of the refrigeration casing 33 can be expected.

(変更例2)
図9は、実施例1の変更例2に係るオーガ式製氷機130を一部破断して示した概略構成図である。この変更例2に係るオーガ式製氷機130は、前述した実施例1のオーガ式製氷機30と同様に、製氷機構部32におけるオーガ34の上方に配設した駆動手段36を該オーガ34の上部に連結して該オーガ34を懸吊した構成とし、かつ製氷機構部32を構成する冷凍ケーシング33および氷収集部材35等の基本的構成を実施例1と同一としたもとで、オーガ34の形状を変更したものである。すなわち前記オーガ34は、上方に開放する有底円筒状で、その底部132Aに該オーガ34の内径と同一径の開口部132Bを設けた円筒状部材132を、該開口部132Bの内端縁部を該オーガ34の下端部に整合した状態で固定してあり、製氷水を貯留し得る製氷水貯留部134を当該オーガ34に設けた構成となっている。従って、冷凍ケーシング33が製氷水貯留部134内に臨んだ状態でオーガ34の外側に位置し、円筒状部材132の外壁部132Cが該冷凍ケーシング33の外側に位置しており、オーガ34の製氷水貯留部134に所定量の製氷水を貯留させた際には、該製氷水に冷凍ケーシング33が浸漬された状態に配設される。
(Modification 2)
FIG. 9 is a schematic configuration diagram illustrating a part of the auger type ice making machine 130 according to the second modification of the first embodiment. In the auger type ice making machine 130 according to the second modified example, the driving means 36 disposed above the auger 34 in the ice making mechanism portion 32 is provided at the upper part of the auger 34 in the same manner as the auger type ice making machine 30 of the first embodiment. The auger 34 is suspended by being connected to the basic structure of the refrigeration casing 33 and the ice collecting member 35 constituting the ice making mechanism 32. The shape has been changed. That is, the auger 34 has a bottomed cylindrical shape that opens upward, and a cylindrical member 132 having an opening 132B having the same diameter as the inner diameter of the auger 34 is provided at the bottom 132A of the inner end edge of the opening 132B. Is fixed in a state aligned with the lower end portion of the auger 34, and the auger 34 is provided with an ice making water storage portion 134 capable of storing ice making water. Therefore, the refrigeration casing 33 faces the inside of the ice making water storage portion 134 and is located outside the auger 34. The outer wall portion 132C of the cylindrical member 132 is located outside the refrigeration casing 33, and the ice making of the auger 34 is performed. When a predetermined amount of ice making water is stored in the water storage part 134, the refrigeration casing 33 is disposed in the ice making water.

従って、変更例2に係るオーガ式製氷機130では、オーガ34の上部に配設した氷収集部材35が、前記実施例1のオーガ式製氷機30と同一に構成されているので、実施例1と同様に、氷の収集に伴う駆動手段36へのトルク負荷の軽減や、氷の収集効率の向上等の作用効果が得られる。そして、オーガ34に氷収集部材35を装着することで単位空間当たりの密度が高められた氷の生成仕様とすることができると共に、該氷収集部材35を装着しないことで単位空間当たりの密度が低い氷の生成仕様とすることができる。また、生成された氷はオーガ34の上方開口部(氷通過口53)から該オーガ34内へ落下放出させることができるので、図18に示した従来のオーガ式製氷機10のように、生成された氷を氷放出口25を介して氷放出シュート26に押し出す必要がなく、氷の搬送効率の向上も図られる。更に、オーガ34に設けた製氷水貯留部134内に貯留された製氷水に冷凍ケーシング33が浸漬されるので、製氷水が適宜冷却された状態で製氷のために供給されるようになり、冷凍ケーシング33の製氷面における氷の生成が促進されて製氷効率の向上が図られる。また、オーガ34に製氷水貯留部134を設けたので、オーガ式製氷機130全体の小型化が図られる。更に、オーガ34の製氷水貯留部134に貯留される製氷水が冷凍ケーシング33の断熱材として機能するので、製氷機構部32を低温状態に保温するための断熱材が不要となる。また、冷凍ケーシング33の外部壁面41に、氷の生成を抑制するために断熱材を装着するとしても、これに使用される断熱材は少量でよい。従って、断熱材が不要もしくは少量となるので、断熱材の材料費および成形費用が削減されて製氷機の製造コストを抑え得る。更にまた、リザーバタンク37が製氷機構部32の周囲に配設されるので、製氷機自体の小型化も図られる。   Accordingly, in the auger type ice making machine 130 according to the modified example 2, the ice collecting member 35 disposed on the upper part of the auger 34 is configured in the same manner as the auger type ice making machine 30 of the first embodiment. In the same manner as above, effects such as reduction of torque load on the driving means 36 accompanying ice collection and improvement of ice collection efficiency can be obtained. By installing the ice collecting member 35 on the auger 34, it is possible to make the specification of generating ice with a higher density per unit space, and by not mounting the ice collecting member 35, the density per unit space can be increased. Low ice production specifications can be achieved. Further, since the generated ice can be dropped and released into the auger 34 from the upper opening (ice passing port 53) of the auger 34, the generated ice is generated like the conventional auger type ice making machine 10 shown in FIG. It is not necessary to push out the formed ice to the ice discharge chute 26 through the ice discharge port 25, and the ice transport efficiency can be improved. Furthermore, since the refrigeration casing 33 is immersed in the ice making water stored in the ice making water storage section 134 provided in the auger 34, the ice making water is supplied for ice making in an appropriately cooled state. Ice generation on the ice making surface of the casing 33 is promoted to improve ice making efficiency. Moreover, since the ice making water storage part 134 is provided in the auger 34, the auger type ice making machine 130 as a whole can be reduced in size. Furthermore, since the ice making water stored in the ice making water storage part 134 of the auger 34 functions as a heat insulating material for the refrigeration casing 33, a heat insulating material for keeping the ice making mechanism part 32 in a low temperature state becomes unnecessary. Moreover, even if it installs a heat insulating material in order to suppress the production | generation of ice on the external wall surface 41 of the freezing casing 33, the heat insulating material used for this may be a small amount. Therefore, since the heat insulating material is unnecessary or becomes a small amount, the material cost and the molding cost of the heat insulating material can be reduced, and the manufacturing cost of the ice making machine can be suppressed. Furthermore, since the reservoir tank 37 is disposed around the ice making mechanism 32, the ice making machine itself can be downsized.

(変更例3)
図10は、実施例1の変更例3に係るオーガ式製氷機140を一部破断して示した概略構成図である。変更例3のオーガ式製氷機140は、前述した実施例1のオーガ式製氷機30と同様に、製氷機構部32の上方に配設した駆動手段36をオーガ34の上部に連結して該オーガ34を懸吊した構成とし、かつ製氷機構部32を構成する冷凍ケーシング33および氷収集部材35等の基本的構成を実施例1と同一としたもとで、冷凍ケーシング33の形状を変更したものである。すなわち前記冷凍ケーシング33は、オーガ34の内径サイズより小径の筒部142Aと、この筒部142Aの下端部から径方向外方へ延出して当該冷凍ケーシング33の外径と同一外径に形成された底部142Bとからなる円筒状部材142を、該底部142Bの外端縁部を該冷凍ケーシング33の下端部に整合した状態で固定し、製氷水を貯留し得る製氷水貯留部144を当該冷凍ケーシング33に設けた構成となっている。従って、オーガ34が製氷水貯留部144内に臨んだ状態で冷凍ケーシング33の内側に位置し、円筒状部材142の筒部142Aが該オーガ34の内側に位置しており、冷凍ケーシング33の製氷水貯留部144に所定量の製氷水を貯留させた際には、該製氷水にオーガ34が浸漬された状態に配設される。
(Modification 3)
FIG. 10 is a schematic configuration diagram illustrating a part of the auger type ice making machine 140 according to the third modification of the first embodiment. The auger type ice making machine 140 according to the third modification is similar to the auger type ice making machine 30 according to the first embodiment described above by connecting the driving means 36 disposed above the ice making mechanism 32 to the upper part of the auger 34. The configuration of the refrigeration casing 33 is changed while the basic configuration of the refrigeration casing 33 and the ice collecting member 35 constituting the ice making mechanism 32 is the same as that of the first embodiment. It is. That is, the refrigeration casing 33 has a cylindrical portion 142A having a smaller diameter than the inner diameter size of the auger 34, and extends radially outward from the lower end portion of the cylindrical portion 142A to have the same outer diameter as the outer diameter of the refrigeration casing 33. The cylindrical member 142 composed of the bottom 142B is fixed in a state where the outer edge of the bottom 142B is aligned with the lower end of the refrigeration casing 33, and the ice-making water storage 144 that can store ice-making water is The configuration is provided in the casing 33. Therefore, the auger 34 is located inside the refrigeration casing 33 with the ice making water reservoir 144 facing the inside, and the cylindrical portion 142A of the cylindrical member 142 is located inside the auger 34. When a predetermined amount of ice making water is stored in the water storage part 144, the auger 34 is disposed in the ice making water.

従って、変更例3に係るオーガ式製氷機140では、オーガ34および該オーガ34の上部に配設した氷収集部材35が、前記実施例1のオーガ式製氷機30と同一に構成されているので、実施例1と同様に、氷の収集に伴う駆動手段36へのトルク負荷の軽減や、氷の収集効率の向上等の作用効果が得られる。そして、オーガ34に氷収集部材35を装着することで単位空間当たりの密度が高められた氷の生成仕様とすることができると共に、該氷収集部材35を装着しないことで単位空間当たりの密度が低い氷の生成仕様とすることができる。また、生成された氷はオーガ34の上方開口部(氷通過口53)から該オーガ34内へ落下放出させることができるので、図18に示した従来のオーガ式製氷機10のように、生成された氷を氷放出口25を介して氷放出シュート26に押し出す必要がなく、氷の搬送効率の向上も図られる。更に、冷凍ケーシング33および円筒状部材142が冷却されるので、製氷水貯留部144に貯留された製氷水が適宜冷却された状態で製氷のために供給されるようになり、冷凍ケーシング33の製氷面における氷の生成が促進されて製氷効率の向上が図られる。また、冷凍ケーシング33に製氷水貯留部144を設けたので、オーガ式製氷機140全体の小型化が図られる。なお、図10では図示省略したが、冷凍ケーシング33の外側に、必要に応じて断熱材を配設すれば、冷凍ケーシング33の冷却効率の向上が期待できる。   Therefore, in the auger type ice making machine 140 according to the modified example 3, the auger 34 and the ice collecting member 35 disposed on the upper part of the auger 34 are configured in the same way as the auger type ice making machine 30 of the first embodiment. As in the first embodiment, effects such as a reduction in torque load on the driving means 36 accompanying the collection of ice and an improvement in ice collection efficiency can be obtained. By installing the ice collecting member 35 on the auger 34, it is possible to make the specification of generating ice with a higher density per unit space, and by not mounting the ice collecting member 35, the density per unit space can be increased. Low ice production specifications can be achieved. Further, since the generated ice can be dropped and released into the auger 34 from the upper opening (ice passing port 53) of the auger 34, the generated ice is generated like the conventional auger type ice making machine 10 shown in FIG. It is not necessary to push out the formed ice to the ice discharge chute 26 through the ice discharge port 25, and the ice transport efficiency can be improved. Further, since the refrigeration casing 33 and the cylindrical member 142 are cooled, the ice making water stored in the ice making water storage unit 144 is supplied for ice making in an appropriately cooled state, and the ice making of the refrigeration casing 33 is made. The generation of ice on the surface is promoted to improve ice making efficiency. Moreover, since the ice making water storage part 144 is provided in the freezing casing 33, the auger type ice making machine 140 as a whole can be downsized. Although not shown in FIG. 10, if a heat insulating material is provided outside the refrigeration casing 33 as necessary, an improvement in the cooling efficiency of the refrigeration casing 33 can be expected.

図11は、本発明の実施例2に係るオーガ式製氷機110を一部破断して示した概略構成図である。実施例2のオーガ式製氷機110は、製氷機構部32における冷凍ケーシング33の上方に、オーガ34の回転刃50により剥離して上方へ搬送される氷を収集する氷収集部Sが設けられている。すなわち、シリンダ20の上端に設けた氷放出口114は、前記オーガ34の回転刃50による氷剥離位置P1に対し、該オーガ34の回転中心側に偏倚して設けられている。また、シリンダ20の製氷機構部32の上方部分には、オーガ34で搬送される氷を前記氷放出口114に向けて案内する傾斜部(氷案内部)112が、上方に向かうに従って先細となる形状に形成されている。そして、氷放出口114と傾斜部112との間には、搬送される氷がオーガ34と共に回転するのを規制する固定刃(回転規制部)113が配設されている。すなわち、固定刃113による氷収集部Sでの氷収集位置P2が、オーガ34の回転刃50による氷剥離位置P1より該オーガ34の回転中心に近い位置に設定されている。これにより、冷凍ケーシング33の製氷面43に生成された氷は、駆動手段により定速回転するオーガ34の回転刃50により氷剥離位置P1において剥離された後に氷収集部Sへ搬送され、傾斜部112を通過しながら固定刃113に移動し、該固定刃113における氷収集位置P2において収集された後に、氷放出口114を介して製氷機外へ放出される。   FIG. 11 is a schematic configuration diagram showing a part of the auger type ice making machine 110 according to the second embodiment of the present invention. In the auger type ice making machine 110 according to the second embodiment, an ice collecting unit S that collects the ice peeled off by the rotary blade 50 of the auger 34 and conveyed upward is provided above the refrigeration casing 33 in the ice making mechanism unit 32. Yes. That is, the ice discharge port 114 provided at the upper end of the cylinder 20 is provided to be deviated toward the rotation center side of the auger 34 with respect to the ice peeling position P1 by the rotary blade 50 of the auger 34. In addition, an inclined portion (ice guide portion) 112 that guides the ice transported by the auger 34 toward the ice discharge port 114 is tapered toward an upper portion of the ice making mechanism portion 32 of the cylinder 20 as it goes upward. It is formed into a shape. Between the ice discharge port 114 and the inclined portion 112, a fixed blade (rotation restricting portion) 113 for restricting the conveyed ice from rotating together with the auger 34 is disposed. That is, the ice collection position P2 in the ice collecting unit S by the fixed blade 113 is set to a position closer to the rotation center of the auger 34 than the ice peeling position P1 by the rotary blade 50 of the auger 34. As a result, the ice generated on the ice making surface 43 of the refrigeration casing 33 is peeled off at the ice peeling position P1 by the rotary blade 50 of the auger 34 that rotates at a constant speed by the driving means, and then conveyed to the ice collecting part S to be inclined. It moves to the fixed blade 113 while passing through 112, and is collected at the ice collection position P <b> 2 in the fixed blade 113, and then discharged to the outside of the ice making machine through the ice discharge port 114.

従って、実施例2のオーガ式製氷機110では、固定刃113による氷収集部Sでの氷収集位置P2を、オーガ34の回転刃50による氷剥離位置P1より該オーガ34の回転中心に近い位置に設定したことにより、氷収集部Sにおいて氷を収集することに伴う駆動手段36のトルク負荷が軽減される。そして、固定刃113による氷の収集がオーガ34の回転中心に近い位置で行なわれるため、該氷の収集速度が小さくなって収集効率が向上するようになると共に、オーガ34の回転速度を高めて製氷効率を向上させても氷の収集効率の大幅な低下を抑え得る。   Therefore, in the auger type ice making machine 110 according to the second embodiment, the ice collecting position P2 in the ice collecting unit S by the fixed blade 113 is closer to the rotation center of the auger 34 than the ice peeling position P1 by the rotating blade 50 of the auger 34. As a result, the torque load on the driving means 36 associated with collecting ice in the ice collecting unit S is reduced. Since the ice collection by the fixed blade 113 is performed at a position close to the center of rotation of the auger 34, the ice collection speed is reduced, the collection efficiency is improved, and the rotation speed of the auger 34 is increased. Even if the ice making efficiency is improved, it is possible to suppress a significant decrease in ice collecting efficiency.

図12に示すように、実施例3に係るオーガ式製氷機は、氷を生成する製氷機構部230と、外部水源に接続する給水手段Wから給水される製氷水を製氷機構部230に供給する給水機構280と、製氷機構部230の冷凍ケーシング264を冷却する冷凍回路を構成する図示しない冷凍機構とを備えている。製氷機構部230は、製氷機本体に内部画成された図示しない貯氷室の上方に配置され、製氷機構部230から落下した氷が貯氷室で貯留されるようになっている。   As shown in FIG. 12, the auger type ice making machine according to the third embodiment supplies ice making water supplied from an ice making mechanism 230 for generating ice and water supply means W connected to an external water source to the ice making mechanism 230. A water supply mechanism 280 and a refrigeration mechanism (not shown) constituting a refrigeration circuit for cooling the refrigeration casing 264 of the ice making mechanism 230 are provided. The ice making mechanism 230 is arranged above an ice storage chamber (not shown) defined in the ice making machine main body, and ice falling from the ice making mechanism 230 is stored in the ice storage chamber.

前記製氷機構部230は、製氷機本体の内部に固定されたベース232に配設される(図12または図13参照)。図14に示すように、製氷機構部230は、給水機構280から供給される製氷水を受ける給水パーツ234と、この給水パーツ234に載置固定された軸受部244と、この軸受部244に、軸線を上下に延在させて冷凍ケーシング264に対し回転可能に配設されたオーガ250と、このオーガ250の外側に配置された円筒形の冷凍ケーシング264と、この冷凍ケーシング264の上部を覆う案内部材274とを組合わせて本体部分が基本的に構成される。ここで、実施例3の製氷機構部230では、円筒形の冷凍ケーシング264の内部に画成される収容空間265にオーガ250が回転可能に収容され、オーガ250の外周面(第1の周面)252aが冷凍ケーシング264における収容空間265を画成する製氷面(冷凍ケーシング264の内周面)264aに臨むようになっている(図12または図15参照)。また製氷機構部230は、オーガ250を回転駆動するギヤードモータ等の駆動手段276を備え、駆動手段276によりオーガ250が冷凍ケーシング264の収容空間265で回転される。   The ice making mechanism 230 is disposed on a base 232 fixed inside the ice making machine main body (see FIG. 12 or FIG. 13). As shown in FIG. 14, the ice making mechanism 230 includes a water supply part 234 that receives the ice making water supplied from the water supply mechanism 280, a bearing 244 that is placed and fixed on the water supply part 234, and the bearing 244. An auger 250 having an axis extending up and down so as to be rotatable with respect to the refrigeration casing 264, a cylindrical refrigeration casing 264 disposed outside the auger 250, and a guide that covers an upper portion of the refrigeration casing 264 The main body portion is basically configured by combining the member 274. Here, in the ice making mechanism 230 of the third embodiment, the auger 250 is rotatably accommodated in the accommodating space 265 defined inside the cylindrical refrigeration casing 264, and the outer peripheral surface of the auger 250 (first peripheral surface). ) 252a faces the ice making surface (inner peripheral surface of the refrigeration casing 264) 264a that defines the storage space 265 in the refrigeration casing 264 (see FIG. 12 or FIG. 15). In addition, the ice making mechanism 230 includes driving means 276 such as a geared motor that rotationally drives the auger 250, and the auger 250 is rotated in the accommodation space 265 of the refrigeration casing 264 by the driving means 276.

前記製氷機構部230は、給水機構280から供給された製氷水が、冷凍機構により冷却された冷凍ケーシング264の製氷面264aで氷結し、駆動手段276で回転されるオーガ250の回転刃254により製氷面264aの氷を剥離するよう構成される。また製氷機構部230は、剥離した氷をオーガ250の回転下に製氷面264aとオーガ250の外周面252aとの間の搬送空間257を回転刃254により上方に押し上げ、冷凍ケーシング264と案内部材274との間に設けられた氷収集部Sにおいて、氷を案内部材274により回転中心側に案内して、オーガ250の回転中心に開口するよう設けられた氷放出路235aを介して貯氷室に放出するようになっている(図12参照)。   In the ice making mechanism 230, the ice making water supplied from the water supply mechanism 280 freezes on the ice making surface 264 a of the refrigeration casing 264 cooled by the refrigeration mechanism, and is made by the rotating blade 254 of the auger 250 rotated by the driving means 276. The surface 264a is configured to peel off ice. Further, the ice making mechanism 230 pushes up the transported space 257 between the ice making surface 264 a and the outer peripheral surface 252 a of the auger 250 with the rotary blade 254 while rotating the auger 250, and the refrigeration casing 264 and the guide member 274. In the ice collecting section S provided between the two, the guide member 274 guides the ice to the rotation center side and discharges it to the ice storage chamber through the ice discharge path 235a provided to open to the rotation center of the auger 250. (See FIG. 12).

前記給水パーツ234は、合成樹脂の成形品であって、給水機構280からの製氷水の導入部分として機能すると共に、軸受部244および該軸受部244を介してオーガ250および冷凍ケーシング264が載置される基礎部分としても機能する(図12参照)。給水パーツ234は、図14に示すように、上下の端面が開口する中空の円筒本体235と、この円筒本体235の下端に該円筒本体235の半径方向外側に延出するフランジ部236とが一体的に設けられている。給水パーツ234は、円筒本体235の下側開口をベース232に設けた氷の通過口に整合させて立設されて、フランジ部236がベース232に固定される。また給水パーツ234には、円筒本体235の上下に貫通する中空部分により、オーガ250で剥離して冷凍ケーシング264の上方に押し上げられた氷を氷収集部Sから貯氷室に案内する氷放出路235aが形成される。   The water supply part 234 is a molded product of synthetic resin, and functions as an introduction portion of ice making water from the water supply mechanism 280, and the auger 250 and the refrigeration casing 264 are placed via the bearing portion 244 and the bearing portion 244. It also functions as a basic part (see FIG. 12). As shown in FIG. 14, the water supply part 234 includes a hollow cylindrical body 235 whose upper and lower end surfaces are open, and a flange portion 236 that extends outward in the radial direction of the cylindrical body 235 at the lower end of the cylindrical body 235. Provided. The water supply part 234 is erected so that the lower opening of the cylindrical main body 235 is aligned with the ice passage provided in the base 232, and the flange portion 236 is fixed to the base 232. The water supply part 234 has an ice discharge path 235a that guides the ice separated from the auger 250 and pushed up above the refrigeration casing 264 from the ice collecting section S to the ice storage chamber by a hollow portion that penetrates the cylindrical body 235 vertically. Is formed.

前記軸受部244は、オーガ250を回転自在に支持する剛性を有する部材であって、実施例3ではステンレス等の金属材料から形成されている。図15に示すように、軸受部244は、上下の端面が開口する中空円筒形の軸部245と、この軸部245の下端に設けられ、軸部245の半径方向内側から外側に向かうにつれて下方傾斜するテーパ部246と、このテーパ部246の傾斜下端に半径方向外側に延出形成された載置部247とを備えている。また、軸部245の下部には、該軸部245の内外方向に貫通する給水孔248が、該軸部245の周方向に離間して複数設けられている。そして、軸受部244は、軸部245を給水パーツ234の円筒本体235の外周面を覆うように被せて、フランジ部236に載置した載置部247を該フランジ部236に対して固定することで、給水パーツ234に対して同軸的に取り付けられる。実施例3の製氷機構部230は、冷凍ケーシング264と給水パーツ234とで製氷水が貯留される製氷水貯留部が形成され、該製氷水貯留部に対し給水パーツ234の給水部240、軸受部244の給水孔248およびオーガ本体252の供給孔253を介して製氷水が供給される。なお、軸受部244は、給水パーツ234に取り付けた際に、給水パーツ234における円筒本体235の外周面と軸受部244における軸部245の内周面との間に戻し空間242が画成される(図12参照)。   The bearing portion 244 is a rigid member that rotatably supports the auger 250. In the third embodiment, the bearing portion 244 is formed of a metal material such as stainless steel. As shown in FIG. 15, the bearing portion 244 is provided at a hollow cylindrical shaft portion 245 whose upper and lower end surfaces are open, and a lower end of the shaft portion 245, and is lowered as it goes from the radially inner side to the outer side of the shaft portion 245. The taper part 246 which inclines, and the mounting part 247 extended and formed in the radial direction outer side at the inclination lower end of this taper part 246 are provided. In addition, a plurality of water supply holes 248 penetrating in the inner and outer directions of the shaft portion 245 are provided in the lower portion of the shaft portion 245 so as to be spaced apart from each other in the circumferential direction of the shaft portion 245. The bearing portion 244 covers the shaft portion 245 so as to cover the outer peripheral surface of the cylindrical main body 235 of the water supply part 234, and fixes the placement portion 247 placed on the flange portion 236 to the flange portion 236. Thus, it is coaxially attached to the water supply part 234. In the ice making mechanism unit 230 of the third embodiment, an ice making water storage part in which ice making water is stored is formed by the refrigeration casing 264 and the water supply part 234, and the water supply part 240 and the bearing part of the water supply part 234 are formed in the ice making water storage part. Ice making water is supplied through the water supply hole 248 of 244 and the supply hole 253 of the auger body 252. When the bearing portion 244 is attached to the water supply part 234, a return space 242 is defined between the outer peripheral surface of the cylindrical body 235 in the water supply part 234 and the inner peripheral surface of the shaft portion 245 in the bearing portion 244. (See FIG. 12).

図15に示すように、前記オーガ250は、冷凍ケーシング264の製氷面264aに臨む外周面(第1の周面)252aに回転刃254を有し、軸受部244に回転自在に保持されたオーガ本体252と、このオーガ本体252の上部に設けられ、駆動手段276との接続部分となる動力伝達部258とを備えている。ここで実施例3のオーガ250は、回転刃254の刃先部256を除くオーガ本体252および動力伝達部258が合成樹脂から一体成形されている。   As shown in FIG. 15, the auger 250 has a rotary blade 254 on an outer peripheral surface (first peripheral surface) 252 a that faces the ice making surface 264 a of the refrigeration casing 264, and an auger that is rotatably held by the bearing portion 244. A main body 252 and a power transmission portion 258 provided on the upper portion of the auger main body 252 and serving as a connection portion with the driving means 276 are provided. Here, in the auger 250 of the third embodiment, the auger main body 252 and the power transmission unit 258 excluding the cutting edge portion 256 of the rotary blade 254 are integrally formed from synthetic resin.

図15に示すように、前記オーガ本体252は、上下に開口する中空の円筒形を基本とした形状であって、該円筒形の軸方向に貫通する軸空間252cを内側に備えると共に、外周面252aに回転刃254が螺旋状に設けられている。オーガ本体252の軸空間252cは、軸受部244の軸部245の外径に整合する寸法に設定され、軸部245に軸空間252cを嵌め合わせることで、オーガ250が軸受部244に対して同軸的に取り付けられる。また、オーガ本体252の下端外周には、半径方向外側に延出する載置片252dが全周に亘って設けられ、オーガ250を軸受部244に取り付けた際に、載置片252dが軸受部244の載置部247に載置されるようになっている。更に、オーガ本体252の下端内周(軸空間252cの下側開口縁)には、半径方向内側から外側に向かうにつれて下方傾斜するよう斜めに形成された傾斜部252eが設けられ、オーガ250を軸受部244に取り付けた際に、傾斜部252eが軸受部244のテーパ部246の上側に重なるようになっている。オーガ250は、軸受部244の載置部247に載置される構成であり、回転軸等が給水パーツ234を貫通して下方に突出していない。更にまた、オーガ本体252の上端内周には、半径方向内側に延出する庇状片252fが全周に亘って設けられ、オーガ250を軸受部244に取り付けた際に、軸受部244の軸部245上方を庇状片252fで覆うようになっている。ここで、庇状片252fの内周縁で画成される軸空間252cの上側開口縁は、軸受部244の軸部245と給水パーツ234の円筒本体235との間に設けられる戻し空間242の直上に位置するよう構成される(図12参照)。これにより、庇状片252fの内周縁から滴下する融氷水等が戻し空間242で受容され、貯氷室への滴下を防止できる。   As shown in FIG. 15, the auger body 252 has a shape based on a hollow cylindrical shape that opens upward and downward, and has an axial space 252 c that penetrates in the axial direction of the cylindrical shape on the inner side, and an outer peripheral surface. A rotary blade 254 is spirally provided on 252a. The shaft space 252 c of the auger body 252 is set to a size that matches the outer diameter of the shaft portion 245 of the bearing portion 244, and the auger 250 is coaxial with the bearing portion 244 by fitting the shaft space 252 c to the shaft portion 245. Attached. Further, a mounting piece 252d extending outward in the radial direction is provided on the outer periphery of the lower end of the auger body 252, and when the auger 250 is attached to the bearing portion 244, the mounting piece 252d is the bearing portion. It is mounted on the mounting portion 247 of 244. Furthermore, an inclined portion 252e that is formed to be inclined downwardly from the inner side in the radial direction to the outer side is provided on the inner periphery of the lower end of the auger body 252 (the lower opening edge of the axial space 252c). When attached to the portion 244, the inclined portion 252 e overlaps the upper side of the tapered portion 246 of the bearing portion 244. The auger 250 is configured to be mounted on the mounting portion 247 of the bearing portion 244, and the rotating shaft or the like does not protrude downward through the water supply part 234. Furthermore, a flange-like piece 252f extending radially inward is provided on the inner periphery of the upper end of the auger body 252 over the entire circumference, and when the auger 250 is attached to the bearing portion 244, the shaft of the bearing portion 244 is provided. The upper portion of the portion 245 is covered with a hook-shaped piece 252f. Here, the upper opening edge of the shaft space 252c defined by the inner periphery of the bowl-shaped piece 252f is directly above the return space 242 provided between the shaft portion 245 of the bearing portion 244 and the cylindrical body 235 of the water supply part 234. (See FIG. 12). Thereby, melted ice water or the like dripping from the inner peripheral edge of the bowl-shaped piece 252f is received in the return space 242 and can be prevented from dripping into the ice storage chamber.

前記オーガ本体252には、内周面252b下部における軸受部244の給水孔248と径方向に重なる位置に、該内周面252bを凹ませて供給凹部252gが全周に亘って設けられている(図15参照)。またオーガ本体252は、該オーガ本体252の内外方向に貫通する供給孔253が、供給凹部252gに対応する位置に開口させて、周方向に離間して複数設けられている。そして、軸受部244の給水孔248と供給凹部252gとが連通すると共に、供給凹部252gと供給孔253とが連通するよう構成され、製氷水がオーガ本体252の外周面252aと冷凍ケーシング264の製氷面264aとの間に供給される。   The auger body 252 is provided with a supply recess 252g over the entire circumference at a position overlapping the water supply hole 248 of the bearing portion 244 in the radial direction at the lower portion of the inner peripheral surface 252b. (See FIG. 15). The auger body 252 is provided with a plurality of supply holes 253 penetrating in the inner and outer directions of the auger body 252 at positions corresponding to the supply recesses 252g and spaced apart in the circumferential direction. The water supply hole 248 of the bearing portion 244 and the supply recess 252g communicate with each other, and the supply recess 252g and the supply hole 253 communicate with each other, so that the ice making water is formed on the outer peripheral surface 252a of the auger main body 252 and the ice casing 264. Supplied between the surface 264a.

図16に示すように、前記オーガ本体252には、複数(実施例では2本)の回転刃254,254が、冷凍ケーシング264の製氷面264aに臨む外周面252aに設けられている。オーガ本体252は、冷凍ケーシング264における収容空間265の内径より氷の搬送空間257分を見込んで外径が小さく設定され、冷凍ケーシング264の製氷面264aとオーガ本体252における回転刃254を除く外周面252aとの間に搬送空間257が画成される(図12参照)。一方、各回転刃254は、オーガ本体252の外周面252aから突出するように設けられ、オーガ250を軸受部244に組み付けた際に、回転刃254における氷剥離位置となる刃先256aと冷凍ケーシング264の製氷面264aとが僅かなクリアランスをあけて対向するようになっている。   As shown in FIG. 16, the auger body 252 is provided with a plurality of (two in the embodiment) rotary blades 254, 254 on the outer peripheral surface 252a facing the ice making surface 264a of the refrigeration casing 264. The auger body 252 has an outer diameter set to be smaller than the inner diameter of the storage space 265 in the refrigeration casing 264 in consideration of the ice transfer space 257, and the outer peripheral surface excluding the ice making surface 264a of the refrigeration casing 264 and the rotary blade 254 in the auger body 252. A conveyance space 257 is defined between the space 252a (see FIG. 12). On the other hand, each rotary blade 254 is provided so as to protrude from the outer peripheral surface 252 a of the auger body 252, and when the auger 250 is assembled to the bearing portion 244, the blade edge 256 a and the refrigeration casing 264 that become the ice peeling position in the rotary blade 254. The ice making surface 264a is opposed to the ice making surface 264a with a slight clearance.

前記各回転刃254は、オーガ本体252の外周面252aにおいて上から下に向かうにつれてオーガ250の回転方向前側から後側へ巻き付くように、適宜のリード角を持たせて螺旋状に設けられている。なお、実施例3の回転刃254は、オーガ本体252の外周面252aにおおよそ半周(約180°)に亘って形成されている(図16参照)。実施例3のオーガ本体252は、2本の回転刃254,254が180°位相をずらした関係で配置され、各回転刃254の上端が、オーガ本体252の上端面において動力伝達部258の後述するスポーク部(氷案内部)259が接続する部位の回転方向前側近傍に位置している。前述した如く製氷機構部230は、オーガ250の回転刃254により冷凍ケーシング264の製氷面264aの氷を剥離すると共に、螺旋状の回転刃254によりオーガ250の回転に伴って氷を搬送空間257を介して上方に搬送している。従って、オーガ本体252の上部では、搬送する氷の量が多くなり、オーガ本体252の下部と比べて回転刃254に負荷がかかる。そこで、各回転刃254の上端を、オーガ本体252における動力伝達部258のスポーク部259が接続する部位の回転方向前側近傍に配置して、回転刃254における負荷がかかる上部に対応して動力を伝達することで、氷を適切に剥離・搬送することができる。   Each rotary blade 254 is provided in a spiral shape with an appropriate lead angle so that it winds from the front side to the rear side in the rotational direction of the auger 250 as it goes from top to bottom on the outer peripheral surface 252a of the auger body 252. Yes. In addition, the rotary blade 254 of Example 3 is formed in the outer peripheral surface 252a of the auger main body 252 over the substantially half circumference (about 180 degrees) (refer FIG. 16). In the auger body 252 of the third embodiment, the two rotary blades 254 and 254 are arranged with a 180 ° phase shifted relationship, and the upper end of each rotary blade 254 is the later-described power transmission unit 258 on the upper end surface of the auger main body 252. The spoke part (ice guide part) 259 to be connected is located in the vicinity of the front side in the rotational direction of the part to be connected. As described above, the ice making mechanism 230 separates the ice on the ice making surface 264a of the refrigeration casing 264 with the rotary blade 254 of the auger 250, and the ice in the conveyance space 257 as the auger 250 rotates with the spiral rotary blade 254. It is conveyed upward through. Accordingly, the amount of ice to be conveyed increases at the upper part of the auger body 252, and a load is applied to the rotary blade 254 as compared with the lower part of the auger body 252. Therefore, the upper end of each rotary blade 254 is disposed near the front side in the rotational direction of the portion of the auger body 252 where the spokes 259 of the power transmission unit 258 are connected, and the power corresponding to the upper part of the rotary blade 254 where the load is applied. By transmitting, the ice can be appropriately peeled and transported.

図15に示すように、動力伝達部258は、オーガ本体252の上端に設けられたスポーク部259と、このスポーク部259に設けられ、駆動手段276の出力軸部277への接続部分となる接続ボス部(接続部)260とから構成される。スポーク部259は、オーガ本体252の軸中心を通って該オーガ本体252の径方向に延在する中央連結片259aと、この中央連結片259aの両端に夫々設けられ、該中央連結片259aに対しオーガ250の回転方向に角度を変えて延在してオーガ本体252の上端面に接続する一対の側部連結片259b,259bとを備える屈曲形状に形成される(図16参照)。ここで、スポーク部259は、各側部連結片259bが中央連結片259aの延在方向に対して半径方向内側から外側へ向かうにつれてオーガ250の回転方向前側に偏倚するよう延在し、両側部連結片259b,259bが互いに180°位相をずらした位置関係になっている。なお、スポーク部259には、各側部連結片259bの半径方向外側の上角部が斜めに切り欠かれた斜面部259cが設けられている。このように、スポーク部259の両側部連結片259b,259bを、オーガ250の回転中心を通る半径方向のラインに対して角度を設けて延在させる構成とすることで、オーガ250の回転につれて氷を半径方向内側へ向けて円滑に案内することができる。   As shown in FIG. 15, the power transmission part 258 is provided with a spoke part 259 provided at the upper end of the auger body 252 and a connection part provided on the spoke part 259 and serving as a connection part to the output shaft part 277 of the driving means 276. It is comprised from the boss | hub part (connection part) 260. FIG. The spokes 259 are provided at a central connecting piece 259a extending in the radial direction of the auger main body 252 through the axial center of the auger main body 252, and at both ends of the central connecting piece 259a. The auger 250 is formed in a bent shape including a pair of side connecting pieces 259b and 259b that extend at different angles in the rotation direction and connect to the upper end surface of the auger body 252 (see FIG. 16). Here, the spoke portion 259 extends so that each side connecting piece 259b is biased toward the front side in the rotational direction of the auger 250 as it goes from the radially inner side to the outer side with respect to the extending direction of the central connecting piece 259a. The connecting pieces 259b and 259b are in a positional relationship in which the phases are shifted from each other by 180 °. The spoke portion 259 is provided with a slope portion 259c in which the upper corner portion on the radially outer side of each side connecting piece 259b is cut obliquely. In this manner, the both side connecting pieces 259b and 259b of the spoke portion 259 are configured to extend at an angle with respect to the radial line passing through the rotation center of the auger 250, so that the ice as the auger 250 rotates. Can be smoothly guided radially inward.

前記接続ボス部260は、スポーク部259における中央連結片259aの上部に設けられ、オーガ本体252の軸中心に配置されている(図14参照)。接続ボス部260は、外形が円形に形成されて、中央に上方に開口する軸溝260aが設けられると共に、軸溝260aの内周面から半径方向外側に凹ませたキー溝260bが軸溝260aの上下に亘って設けられている。なお、接続ボス部260の上部外周縁には、仕切り壁260cが全周に亘って立設され、軸溝260aに挿入した駆動手段276の出力軸部277を伝って流下する水等の流体を仕切り壁260cにより受止めて、オーガ本体252の内側中央に設けた氷放出路235aを介して流体が貯氷室に落下しないようになっている(図15参照)。   The connection boss portion 260 is provided on the upper portion of the central coupling piece 259a in the spoke portion 259 and is disposed at the axial center of the auger body 252 (see FIG. 14). The connecting boss portion 260 has a circular outer shape and is provided with a shaft groove 260a that opens upward in the center, and a key groove 260b that is recessed radially outward from the inner peripheral surface of the shaft groove 260a. It is provided over the upper and lower sides. A partition wall 260c is erected over the entire outer periphery of the connection boss portion 260, and fluid such as water flowing down through the output shaft portion 277 of the driving means 276 inserted into the shaft groove 260a. The fluid is prevented from falling into the ice storage chamber through the ice discharge path 235a provided in the center of the auger body 252 by being received by the partition wall 260c (see FIG. 15).

前記動力伝達部258は、接続ボス部260において中央連結片259aから半径方向外側に延出して氷放出口235bが臨む底部に、上から下に向かうにつれて半径方向内側に傾斜して、中央連結片259aの側面に接続する放出案内面261を備えている。動力伝達部258は、製氷運転に際して、駆動手段276により回転するスポーク部259の両側部連結片259b,259bが、搬送空間257を介してオーガ本体252の上方に案内部材274との間に設けられた氷収集部Sに搬送された氷を半径方向内側(回転中心側)に向けて案内するようになっている。また、スポーク部259の中央連結片259aおよび放出案内面261は、駆動手段276により回転したもとで、両側部連結片259b,259bで移動された氷を、回転刃254による氷剥離位置となる刃先256aに対してオーガ250の回転中心側に偏倚して設けられた氷放出路235aの氷放出口(給水パーツ234における円筒本体235の上側開口)235bに向けて下方へ案内するようになっている。このように、動力伝達部258は、駆動手段276と着脱容易に接続する機能だけでなく、オーガ本体252の回転刃254により搬送空間257を介して上方に案内された氷を、氷放出口235bに向けて案内する氷案内部としても機能する。   The power transmission portion 258 extends radially outward from the central coupling piece 259a in the connection boss portion 260 and inclines radially inward from the top toward the bottom where the ice discharge port 235b faces, and the central coupling piece A discharge guide surface 261 connected to the side surface of 259a is provided. The power transmission unit 258 is provided between the guide member 274 above the auger main body 252 via the conveying space 257 with both side connecting pieces 259b and 259b of the spoke unit 259 rotated by the driving means 276 during the ice making operation. The ice transported to the ice collecting section S is guided radially inward (rotation center side). Further, the central connecting piece 259a and the discharge guide surface 261 of the spoke part 259 are rotated by the driving means 276, and the ice moved by the both side connecting pieces 259b and 259b becomes the ice peeling position by the rotary blade 254. It guides downward toward the ice discharge port (upper side opening of the cylindrical body 235 in the water supply part 234) 235b of the ice discharge path 235a provided to be offset toward the rotation center side of the auger 250 with respect to the blade edge 256a. Yes. As described above, the power transmission unit 258 not only has a function of easily connecting to the driving unit 276 but also the ice guided upward through the conveying space 257 by the rotary blade 254 of the auger body 252 to the ice discharge port 235b. It also functions as an ice guide that guides you towards

前記オーガ250の動力伝達部258は、回転刃254が製氷面264aに引っ掛かる等の何らかの原因でオーガ本体252の回転に対して過剰な負荷がかかった際に、駆動手段276をオーガ250のロックから保護する保護手段としても機能するように構成される。例えばオーガ250は、オーガ本体252に過負荷がかかった際に、スポーク部259、オーガ本体252とスポーク部259との連結部分またはスポーク部259と接続ボス部260との連結部分が破断するように設定されている。なお、オーガ250は、スポーク部259や前述した連結部分に切欠等により脆弱部を予め設けて、オーガ250のロックに際して脆弱部で破断させるよう構成してもよい。このように、オーガ250の動力伝達部258を保護手段として機能する構成とすることで、駆動手段276の過負荷を回避して、オーガ250と比較して高価な駆動手段276や冷凍ケーシング264等の故障を防止できる。   The power transmission unit 258 of the auger 250 causes the driving means 276 to be locked from the lock of the auger 250 when an excessive load is applied to the rotation of the auger body 252 due to some reason such as the rotary blade 254 being caught on the ice making surface 264a. It is also configured to function as a protection means for protecting. For example, in the auger 250, when an overload is applied to the auger body 252, the spoke part 259, the connection part between the auger body 252 and the spoke part 259, or the connection part between the spoke part 259 and the connection boss part 260 is broken. Is set. Note that the auger 250 may be configured such that a weak portion is provided in advance in the spoke portion 259 or the connecting portion described above by a notch or the like, and the auger 250 is broken when the auger 250 is locked. In this way, by configuring the power transmission unit 258 of the auger 250 to function as a protection unit, an overload of the driving unit 276 is avoided, and the driving unit 276 and the refrigeration casing 264 that are more expensive than the auger 250 are used. Can be prevented.

前記案内部材274は、冷凍ケーシング264の上部を覆う円盤状の部材であって、外径寸法が冷凍ケーシング264の外径と略同一に設定されている(図13または図14参照)。案内部材274は、外周部分が冷凍ケーシング264の上端面に取り付けられ、収容空間265の上部を覆う部位が、中央に動力伝達部258の接続ボス部260が挿通する挿通孔274aを設けた平面部分と、この平面部分および外周部分を接続する傾斜案内面274bとからなる外周部分より上方に膨出した裁頭円錐形状に形成される。傾斜案内面274bは、案内部材274の半径方向外側から内側に向かうにつれて上方傾斜するよう形成される。また、案内部材274は、冷凍ケーシング264にスポーク部259の上方を覆うようにネジ等で取り付けた際に、平面部分がスポーク部259の上端面に平行に延在し、傾斜案内面274bがスポーク部259の斜面部259cに対して平行に延在するよう構成される。なお、実施例3の案内部材274は、冷凍ケーシング264の外周縁に立設された保持片266aにより半径方向への位置規制がされるようになっている。そして、冷凍ケーシング264に案内部材274を取り付けると、挿通孔274aを挿通して接続ボス部260が案内部材274の上面に突出すると共に、案内部材274の下面がスポーク部259の上面に対して氷より小さい間隔で対向し、オーガ250の回転と共にスポーク部259が案内部材274の下面に沿って移動するよう構成される。   The guide member 274 is a disk-shaped member that covers the upper portion of the refrigeration casing 264, and has an outer diameter dimension that is substantially the same as the outer diameter of the refrigeration casing 264 (see FIG. 13 or FIG. 14). The guide member 274 has an outer peripheral portion attached to the upper end surface of the refrigeration casing 264, and a portion covering the upper portion of the accommodation space 265 has a flat portion provided with an insertion hole 274 a through which the connection boss portion 260 of the power transmission portion 258 is inserted. And a truncated conical shape that bulges upward from the outer peripheral portion composed of the planar guide portion and the inclined guide surface 274b connecting the outer peripheral portion. The inclined guide surface 274b is formed so as to be inclined upward from the radially outer side to the inner side of the guide member 274. Further, when the guide member 274 is attached to the refrigeration casing 264 with a screw or the like so as to cover the upper portion of the spoke portion 259, the plane portion extends in parallel to the upper end surface of the spoke portion 259, and the inclined guide surface 274b is the spoke. It is comprised so that it may extend in parallel with respect to the slope part 259c of the part 259. FIG. Note that the guide member 274 of the third embodiment is configured such that its position in the radial direction is regulated by a holding piece 266a provided upright on the outer peripheral edge of the refrigeration casing 264. When the guide member 274 is attached to the refrigeration casing 264, the connection boss portion 260 protrudes from the upper surface of the guide member 274 through the insertion hole 274a, and the lower surface of the guide member 274 is iced against the upper surface of the spoke portion 259. The spoke portions 259 are configured to move along the lower surface of the guide member 274 with the rotation of the auger 250.

前記製氷機構部230には、冷凍ケーシング264と案内部材274との間に氷収集部Sが設けられ、冷凍ケーシング264の製氷面264aとオーガ本体252の外周面252aとの間の搬送空間257が氷収集部Sの外周部分に連通する。また製氷機構部230では、収容空間265の中央に配置された給水パーツ234の円筒本体235で画成される氷放出路235aの氷放出口235bが、氷収集部Sの中央部に開口するようになっている。そして、オーガ250の回転により冷凍ケーシング264の上方に搬送されて氷収集部Sに到来した氷は、案内部材274により上方への移動が阻まれて、案内部材274の傾斜案内面274bにより半径方向内側(回転中心側)に変向するよう案内される。また氷は、スポーク部259によっても半径方向内側へ案内されて、オーガ250の回転中心に上下に貫通して設けられた氷放出路235aを介して貯氷室に落下する。   The ice making mechanism 230 is provided with an ice collecting part S between the refrigeration casing 264 and the guide member 274, and a conveying space 257 between the ice making surface 264 a of the refrigeration casing 264 and the outer peripheral surface 252 a of the auger body 252 is provided. It communicates with the outer peripheral part of the ice collecting part S. Further, in the ice making mechanism 230, the ice discharge port 235b of the ice discharge path 235a defined by the cylindrical body 235 of the water supply part 234 disposed in the center of the accommodation space 265 opens at the center of the ice collecting unit S. It has become. Then, the ice that has been conveyed above the refrigeration casing 264 by the rotation of the auger 250 and has arrived at the ice collecting section S is prevented from moving upward by the guide member 274, and is radially moved by the inclined guide surface 274 b of the guide member 274. Guided to turn inside (rotation center side). The ice is also guided radially inward by the spoke portion 259 and falls into the ice storage chamber through an ice discharge path 235 a provided vertically through the rotation center of the auger 250.

実施例3の製氷機構部230では、接続ボス部260の軸溝260aおよびキー溝260bを出力軸部277およびキーの外形に完全に一致する寸法で形成するのではなく、軸溝260aおよびキー溝260bが出力軸部277およびキーの外形より若干大きな相似形状で形成されている。すなわち、駆動手段276の出力軸部277とオーガ250の動力伝達部258との接続構造は、遊びを持たせてあり、出力軸部277の位置ずれを吸収し得る構成となっている。前述した如く製氷機構部230は、オーガ本体252を軸受部244で保持してオーガ250の回転中心を位置合わせする構成であるから、駆動手段276の回転駆動が伝達できればよく、駆動手段276の出力軸部277を動力伝達部258に接続する際に、オーガ250の回転中心と出力軸部277とを厳密に位置合わせする必要がなく、寸法精度を低く設定し得る。また、製氷運転において、オーガ250にかかるスラスト荷重およびラジアル荷重は、軸受部244で支持されるので、駆動手段276に対するオーガ250からの負荷を軽減し得る。すなわち、駆動手段276を支持する架台278や、出力軸部277と動力伝達部258との接続構造は、要求される強度が小さくなるので、簡易な構造を採用してコストを低減できる。   In the ice making mechanism 230 according to the third embodiment, the shaft groove 260a and the key groove 260b of the connection boss 260 are not formed with dimensions that completely match the outer shapes of the output shaft 277 and the key. 260b is formed in a similar shape slightly larger than the outer shape of the output shaft portion 277 and the key. In other words, the connection structure between the output shaft portion 277 of the driving means 276 and the power transmission portion 258 of the auger 250 is configured to allow play and absorb the positional deviation of the output shaft portion 277. As described above, the ice making mechanism unit 230 is configured to hold the auger body 252 with the bearing unit 244 and align the rotation center of the auger 250. Therefore, the ice making mechanism unit 230 only needs to be able to transmit the rotational drive of the drive unit 276. When connecting the shaft portion 277 to the power transmission portion 258, it is not necessary to strictly align the rotation center of the auger 250 and the output shaft portion 277, and the dimensional accuracy can be set low. Further, in the ice making operation, the thrust load and the radial load applied to the auger 250 are supported by the bearing portion 244, so that the load from the auger 250 on the driving means 276 can be reduced. That is, since the frame 278 that supports the driving means 276 and the connection structure between the output shaft portion 277 and the power transmission portion 258 require less strength, a simple structure can be adopted to reduce the cost.

前記製氷機構部230は、オーガ250の内側に該オーガ本体252の軸方向に上下に貫通する氷放出路235aを設け、氷案内部であるスポーク部259で半径方向内側に収集する構成であるので、実施例1の製氷機構部32と同様の作用効果を生じる。また、氷放出路235aが給水パーツ234の円筒本体235で兼用される構成であるので、部品点数を少なくすることができ、また製氷機構部230を小型化することができる。更に、製氷機構部230は、出力軸部277が動力伝達部258の軸溝260aに上方から挿入される構成であり、駆動手段276を上方に引き上げるだけで出力軸部277と動力伝達部258との接続を簡単に解除できる。そして製氷機構部230は、駆動手段276、架台278および案内部材274を冷凍ケーシング264から取り外すことで、オーガ250を軸受部244から簡単に上方に引き抜くことができる。しかも、製氷機構部230は、製氷水貯留空間から製氷水を排水することなくオーガ250を取り外すことができる。すなわち、製氷機構部230は、オーガ250の洗浄や取り替え等のメンテナンス作業が行ない易い。   The ice making mechanism 230 has a configuration in which an ice discharge passage 235a penetrating vertically in the axial direction of the auger body 252 is provided inside the auger 250 and is collected radially inward by a spoke portion 259 which is an ice guide portion. The same effects as the ice making mechanism 32 of the first embodiment are produced. Further, since the ice discharge path 235a is configured to be shared by the cylindrical body 235 of the water supply part 234, the number of parts can be reduced, and the ice making mechanism 230 can be downsized. Further, the ice making mechanism section 230 is configured such that the output shaft section 277 is inserted into the shaft groove 260a of the power transmission section 258 from above, and the output shaft section 277, the power transmission section 258, and the like only by pulling the drive means 276 upward. Can be easily disconnected. The ice making mechanism unit 230 can easily pull the auger 250 upward from the bearing unit 244 by removing the driving unit 276, the gantry 278, and the guide member 274 from the refrigeration casing 264. Moreover, the ice making mechanism 230 can remove the auger 250 without draining the ice making water from the ice making water storage space. That is, the ice making mechanism unit 230 can easily perform maintenance work such as cleaning or replacement of the auger 250.

(別例)
実施例1では、ベース部材39に設けた回転規制部65を、該ベース部材39の下面から突出する突条片としたが、収集される氷の周方向への回転を規制するものであれば、回転規制部65はこれ以外の形態であってもよい。例えば回転規制部65は、複数の溝部を放射状に設けて全体が波板状となるように形成してもよい。
(Another example)
In the first embodiment, the rotation restricting portion 65 provided on the base member 39 is a protruding piece protruding from the lower surface of the base member 39. However, as long as the rotation of the collected ice in the circumferential direction is restricted. The rotation restricting portion 65 may have other forms. For example, the rotation restricting portion 65 may be formed such that a plurality of groove portions are provided in a radial shape so as to be entirely corrugated.

実施例1および該実施例1の変更例1〜3では、オーガ34を回転する駆動手段36を製氷機構部32の上方に配設した構成を例示したが、製氷機構部32の下方に駆動手段36を配設する構成であってもよい。すなわち、製氷機構部32の下方において駆動手段36をフレーム38に固定し、オーガ34の上部に連結した回転軸56を下方に延長させ、該回転軸56の下端部を駆動手段36に連結すればよい。   In the first embodiment and the first to third modifications of the first embodiment, the configuration in which the driving means 36 for rotating the auger 34 is disposed above the ice making mechanism portion 32 is exemplified. However, the driving means is provided below the ice making mechanism portion 32. The structure which arrange | positions 36 may be sufficient. That is, the driving means 36 is fixed to the frame 38 below the ice making mechanism 32, the rotating shaft 56 connected to the upper portion of the auger 34 is extended downward, and the lower end of the rotating shaft 56 is connected to the driving means 36. Good.

実施例1〜3では、内部壁面のみを製氷面としたオーガ式製氷機を例示したが、本願発明は、内部壁面および外部壁面の両面または外部壁面を製氷面としたオーガ式製氷機にも適用可能である。   In Examples 1 to 3, the auger type ice making machine having only the inner wall surface as the ice making surface is illustrated, but the present invention is also applied to the auger type ice making machine having both the inner wall surface and the outer wall surface as the ice making surface. Is possible.

図17に示す案内部材326の変更例の如く、氷の半径方向内側への円滑な移動を補助する回転規制部327を該案内部材326の下面に設けてもよい。変更例の案内部材326は、平面部分の下面に、半径方向に対して交差するように斜めに延在すると共に下方に突出して回転規制部327が複数設けられ、変更例では90°づつ位相をずらして4つの回転規制部327が設けられている。変更例の回転規制部327は、半径方向内側から外側に向かうについてオーガ250の回転方向前側から後側に延在するよう形成されている。この際、動力伝達部258のスポーク部259を途中で屈曲する形状ではなく、直線的な形状としてもよい。なお、回転規制部327と動力伝達部258のスポーク部259とは干渉しないよう構成されている。   As in the modified example of the guide member 326 shown in FIG. 17, a rotation restricting portion 327 that assists the smooth movement of ice in the radial direction may be provided on the lower surface of the guide member 326. The guide member 326 of the modified example is provided with a plurality of rotation restricting portions 327 extending obliquely on the lower surface of the plane portion so as to intersect the radial direction and projecting downward. In the modified example, the phase is shifted by 90 °. Four rotation restricting portions 327 are provided while being shifted. The rotation restriction portion 327 of the modified example is formed so as to extend from the front side to the rear side in the rotational direction of the auger 250 from the inner side to the outer side in the radial direction. At this time, the spoke portion 259 of the power transmission portion 258 may have a linear shape instead of a shape that is bent halfway. The rotation restricting portion 327 and the spoke portion 259 of the power transmission portion 258 are configured not to interfere with each other.

実施例3の動力伝達部は、駆動手段の出力軸部とオーガ本体とを連結し、出力軸の回転駆動によりオーガ本体を回転し得る構成であれば、出力軸とオーガの回転中心との間の半径方向の位置ずれを吸収する構成としてもよい。前述した如く、オーガは、軸受部により回転中心を合わせて位置決めされる構成であるので、駆動手段の出力軸部をオーガの回転中心と厳密に位置合わせする必要はない。すなわち、動力伝達部を、出力軸部とオーガの回転中心との間の半径方向の位置ずれを吸収する構成とすることで、出力軸部と動力伝達部との組み付けが容易になり、駆動手段の組み付け精度および動力伝達部の寸法精度を低く設定することができる。また、駆動手段にかかる負荷を軽減することもできる。   If the power transmission part of Example 3 connects the output shaft part of the drive means and the auger body and the auger body can be rotated by the rotational drive of the output shaft, the power transmission part is between the output shaft and the rotation center of the auger. It is good also as a structure which absorbs position shift of the radial direction. As described above, since the auger is positioned by aligning the rotation center with the bearing portion, it is not necessary to strictly align the output shaft portion of the driving means with the rotation center of the auger. That is, the power transmission unit is configured to absorb the positional deviation in the radial direction between the output shaft unit and the rotation center of the auger, so that the assembly of the output shaft unit and the power transmission unit is facilitated, and the driving means Assembly accuracy and dimensional accuracy of the power transmission unit can be set low. In addition, the load on the driving means can be reduced.

実施例1に係るオーガ式製氷機を一部破断して示した概略構成図である。1 is a schematic configuration diagram showing a part of an auger type ice making machine according to a first embodiment. 実施例1のオーガ式製氷機の主要構成部材を分離して示した分解斜視図である。It is the disassembled perspective view which isolate | separated and showed the main structural members of the auger type ice making machine of Example 1. FIG. オーガの構成を上側から見た斜視図である。It is the perspective view which looked at the structure of the auger from the upper side. ベース部材の構成を下側から見た斜視図である。It is the perspective view which looked at the structure of the base member from the lower side. 氷収集部材の構成を上側から見た斜視図である。It is the perspective view which looked at the structure of the ice collection member from the upper side. 氷収集部材を装備した場合における氷の生成、搬送および収集、放出状態を示したオーガ式製氷機の主要部の説明断面図である。It is explanatory sectional drawing of the principal part of the auger type ice making machine which showed the production | generation of ice, a conveyance, collection, and discharge | release state at the time of equip | installing with an ice collection member. 氷収集部材を装着しない場合における氷の生成、搬送および放出状態を示したオーガ式製氷機の主要部の説明断面図である。It is explanatory drawing sectional drawing of the principal part of the auger type ice making machine which showed the production | generation, conveyance, and discharge | release state of ice when not mounting | wearing an ice collection member. 実施例1の変更例1に係るオーガ式製氷機を一部破断して示した概略構成図である。FIG. 3 is a schematic configuration diagram illustrating a part of an auger type ice making machine according to a first modification of the first embodiment. 実施例1の変更例2に係るオーガ式製氷機を一部破断して示した概略構成図である。It is the schematic block diagram which fractured | ruptured and showed the auger type ice making machine which concerns on the modification 2 of Example 1. FIG. 実施例1の変更例3に係るオーガ式製氷機を一部破断して示した概略構成図である。FIG. 6 is a schematic configuration diagram showing a part of an auger type ice making machine according to a third modification of the first embodiment. 実施例2に係るオーガ式製氷機を一部破断して示した概略構成図である。It is the schematic block diagram which fractured | ruptured and showed the auger type ice making machine based on Example 2. FIG. 実施例3に係るオーガ式製氷機の製氷機構部および給水機構を示す縦断面図である。It is a longitudinal cross-sectional view which shows the ice making mechanism part and water supply mechanism of an auger type ice making machine based on Example 3. FIG. 実施例3の製氷機構部を示す斜視図である。FIG. 10 is a perspective view showing an ice making mechanism unit of Example 3. 実施例3の製氷機構部を分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows the ice making mechanism part of Example 3. FIG. 実施例3のオーガを収容した冷凍ケーシングを縦断して示す斜視図である。It is a perspective view which cuts and shows the refrigeration casing which accommodated the auger of Example 3. FIG. 実施例3のオーガを示す平面図である。6 is a plan view showing an auger according to Embodiment 3. FIG. 変更例の案内部材を示す平面図である。It is a top view which shows the guide member of the example of a change. 従来実施に係るオーガ式製氷機を一部破断して示した概略構成図である。It is the schematic block diagram which fractured | ruptured and showed the auger type ice making machine concerning conventional implementation. 図18のX−X線断面図であって、回転刃による氷剥離位置と固定刃による氷収集位置とが、オーガの回転中心から略同一の位置にあることを示している。It is XX sectional drawing of FIG. 18, Comprising: It has shown that the ice peeling position by a rotary blade and the ice collection position by a fixed blade are in the substantially same position from the rotation center of an auger.

符号の説明Explanation of symbols

33,264 冷凍ケーシング,34,250 オーガ,35 氷収集部材,
36,276 駆動手段,39 ベース部材(案内部材),40,264a 製氷面,
50,254 回転刃,64A,274b 傾斜案内面,
65,113,327 回転規制部,67 ガイド面(傾斜案内面),
66,261 放出案内面,71,114,235b 氷放出口,
72,112 氷案内部,235a 氷放出路,252 オーガ本体,
252a 外周面(第1の周面),258 動力伝達部,
259 スポーク部(氷案内部),260 接続部,274,326 案内部材,
277 出力軸部,S 氷収集部,P1 氷剥離位置
33,264 refrigerated casing, 34,250 auger, 35 ice collecting member,
36,276 driving means, 39 base member (guide member), 40,264a ice making surface,
50,254 rotary blade, 64A, 274b inclined guide surface,
65,113,327 rotation restricting portion, 67 guide surface (inclined guide surface),
66,261 discharge guide surface, 71,114,235b ice discharge port,
72,112 ice guide, 235a ice discharge path, 252 auger body,
252a outer peripheral surface (first peripheral surface), 258 power transmission unit,
259 Spoke part (ice guide part), 260 connection part, 274,326 guide member,
277 Output shaft, S ice collector, P1 ice peeling position

Claims (10)

冷凍ケーシング(33,264)の製氷面(40,264a)に生成された氷を、該冷凍ケーシング(33,264)に対して回転自在に配設されて駆動手段(36,276)により回転するオーガ(34,250)の回転刃(50,254)で剥離して搬送し、この搬送される氷を氷収集部(S)で収集した後に放出するオーガ式製氷機において、
前記氷収集部(S)は、前記回転刃(50,254)による氷剥離位置(P1)に対し前記オーガ(34,250)の回転中心側に偏倚して設けた氷放出口(71,114,235b)と、前記オーガ(34,250)で搬送される氷を前記氷放出口(71,114,235b)に向けて案内する氷案内部(72,112,259)とを備える
ことを特徴とするオーガ式製氷機。
The rotating blades of the auger (34,250) in which the ice produced on the ice making surface (40,264a) of the refrigeration casing (33,264) is rotatably arranged with respect to the refrigeration casing (33,264) and is rotated by drive means (36,276) In the auger type ice making machine that peels and transports at (50,254) and collects the transported ice after it is collected by the ice collecting part (S),
The ice collecting section (S) includes an ice discharge port (71, 114, 235b) provided to be deviated toward the rotation center side of the auger (34, 250) with respect to an ice peeling position (P1) by the rotary blade (50, 254), and the auger. An auger type ice making machine comprising an ice guide part (72, 112, 259) for guiding the ice conveyed by (34, 250) toward the ice discharge port (71, 114, 235b).
前記オーガ(250)は、前記冷凍ケーシング(264)の製氷面(264a)に臨む第1の周面(252a)より突出させて前記回転刃(254)が設けられる円筒形のオーガ本体(252)と、駆動手段(276)の出力軸部(277)に連結されて、該駆動手段(276)の回転をオーガ本体(252)に伝達する動力伝達部(258)とを備え、
前記オーガ本体(252)は、該オーガ本体(252)の上方に設けられる前記氷収集部(S)の氷放出口(235b)に連通する氷放出路(235a)が内側に形成される請求項1記載のオーガ式製氷機。
The auger (250) protrudes from the first peripheral surface (252a) facing the ice making surface (264a) of the refrigeration casing (264), and has a cylindrical auger body (252) provided with the rotary blade (254). And a power transmission part (258) coupled to the output shaft part (277) of the drive means (276) and transmitting the rotation of the drive means (276) to the auger body (252),
The auger body (252) has an ice discharge path (235a) formed therein, which communicates with an ice discharge port (235b) of the ice collecting section (S) provided above the auger body (252). The auger type ice making machine according to 1.
前記氷案内部(259)は、前記オーガ本体(252)における第1の周面(252a)に螺旋状に設けられる回転刃(254)の上端に対応させて該オーガ本体(252)の上端部に連結され、前記氷放出口(235b)の上方を通るよう架設される請求項2記載のオーガ式製氷機。   The ice guide part (259) corresponds to the upper end of the rotary blade (254) spirally provided on the first peripheral surface (252a) of the auger body (252). The auger type ice making machine according to claim 2, wherein the auger type ice making machine is constructed so as to pass through the ice discharge port (235b). 前記動力伝達部(258)は、前記オーガ本体(252)の上端部に設けた前記氷案内部(259)によって、前記出力軸部(277)に連結する接続部(260)と該オーガ本体(252)とを連結し、
前記氷案内部(259)は、前記氷収集部(S)に位置して、該オーガ本体(252)の回転方向と交差して延在するよう設けられる請求項2または3記載のオーガ式製氷機。
The power transmission part (258) is connected to the output shaft part (277) by the ice guide part (259) provided at the upper end of the auger body (252) and the auger body ( 252),
The auger type ice making device according to claim 2 or 3, wherein the ice guiding portion (259) is provided at the ice collecting portion (S) so as to extend so as to intersect with a rotation direction of the auger body (252). Machine.
前記氷案内部(259)は、前記オーガ本体(252)の回転中心を通る半径方向のラインに対して、回転中心から外側に向かうにつれて該オーガ本体(252)の回転方向前側に偏倚するよう延在する部位を備えている請求項3または4記載のオーガ式製氷機。   The ice guide portion (259) extends so as to be biased toward the front side in the rotational direction of the auger body (252) with respect to the radial line passing through the rotational center of the auger body (252). The auger type ice making machine according to claim 3 or 4, further comprising an existing part. 前記氷収集部(S)は、前記氷が前記オーガ(34,250)と共に回転するのを規制する回転規制部(65,113,327)を備える請求項1〜5の何れか一項に記載のオーガ式製氷機。   The auger type ice making machine according to any one of claims 1 to 5, wherein the ice collecting unit (S) includes a rotation regulating unit (65, 113, 327) that regulates rotation of the ice together with the auger (34, 250). 前記オーガ(34,250)の回転刃(50,254)により上方へ搬送された氷を、該オーガ(34,250)の回転中心側に変向させる傾斜案内面(64A,67,274b)が、該オーガ(34,250)の上方に設けた案内部材(39,274)に形成される請求項1〜6の何れか一項に記載のオーガ式製氷機。   An inclined guide surface (64A, 67, 274b) for turning the ice conveyed upward by the rotary blade (50, 254) of the auger (34, 250) to the rotation center side of the auger (34, 250) is provided on the auger (34, 250). The auger type ice making machine according to any one of claims 1 to 6, wherein the auger type ice making machine is formed on a guide member (39,274) provided above. 前記回転規制部(65,327)は、前記オーガ(34,250)の半径方向に交差させて斜めに延在するように設けられる請求項6記載のオーガ式製氷機。   The auger type ice making machine according to claim 6, wherein the rotation restricting portion (65,327) is provided so as to extend obliquely so as to intersect with a radial direction of the auger (34,250). 前記氷案内部(72,259)により前記オーガ(34,250)の回転中心側に移動した氷を、前記氷放出口(71,235b)の方向に変向させる放出案内面(66,261)が、前記氷収集部(S)に設けられる請求項1〜8の何れか一項に記載のオーガ式製氷機。   A discharge guide surface (66,261) for turning the ice moved to the rotation center side of the auger (34,250) by the ice guide portion (72,259) in the direction of the ice discharge port (71,235b) is provided in the ice collection portion ( The auger type ice making machine according to any one of claims 1 to 8, provided in S). 前記氷放出口(71)および前記氷案内部(72)は、前記オーガ(34)に対し着脱可能に装着される氷収集部材(35)に設けられる請求項1〜9の何れか一項に記載のオーガ式製氷機。   The said ice discharge port (71) and the said ice guide part (72) are provided in the ice collection member (35) detachably mounted | worn with respect to the said auger (34). The described auger type ice maker.
JP2008211012A 2007-08-31 2008-08-19 Auger ice machine Expired - Fee Related JP5253924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008211012A JP5253924B2 (en) 2007-08-31 2008-08-19 Auger ice machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007226748 2007-08-31
JP2007226748 2007-08-31
JP2008211012A JP5253924B2 (en) 2007-08-31 2008-08-19 Auger ice machine

Publications (2)

Publication Number Publication Date
JP2009074790A true JP2009074790A (en) 2009-04-09
JP5253924B2 JP5253924B2 (en) 2013-07-31

Family

ID=40609934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211012A Expired - Fee Related JP5253924B2 (en) 2007-08-31 2008-08-19 Auger ice machine

Country Status (1)

Country Link
JP (1) JP5253924B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001996A1 (en) * 2008-07-04 2010-01-07 ホシザキ電機株式会社 Auger type ice making machine
WO2010021175A1 (en) * 2008-08-19 2010-02-25 ホシザキ電機株式会社 Auger-type ice maker
JP2012047414A (en) * 2010-08-27 2012-03-08 Sanyo Electric Co Ltd Auger type ice-making machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021675U (en) * 1983-07-15 1985-02-14 富士電機株式会社 Auger ice maker
JPH01144777U (en) * 1988-03-29 1989-10-04
JPH02298772A (en) * 1989-05-12 1990-12-11 Sanyo Electric Co Ltd Auger type ice making apparatus
JPH07260300A (en) * 1994-03-23 1995-10-13 Sanyo Electric Co Ltd Auger type ice making machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021675U (en) * 1983-07-15 1985-02-14 富士電機株式会社 Auger ice maker
JPH01144777U (en) * 1988-03-29 1989-10-04
JPH02298772A (en) * 1989-05-12 1990-12-11 Sanyo Electric Co Ltd Auger type ice making apparatus
JPH07260300A (en) * 1994-03-23 1995-10-13 Sanyo Electric Co Ltd Auger type ice making machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001996A1 (en) * 2008-07-04 2010-01-07 ホシザキ電機株式会社 Auger type ice making machine
JP2010014371A (en) * 2008-07-04 2010-01-21 Hoshizaki Electric Co Ltd Auger type ice making machine
WO2010021175A1 (en) * 2008-08-19 2010-02-25 ホシザキ電機株式会社 Auger-type ice maker
JP2012047414A (en) * 2010-08-27 2012-03-08 Sanyo Electric Co Ltd Auger type ice-making machine

Also Published As

Publication number Publication date
JP5253924B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
US8281610B2 (en) Ice-making device for refrigerator
KR101392927B1 (en) An ice bucket for unlaying ice curdling and refrigerator having the same
US9326529B2 (en) Beverage dispenser for partially frozen beverages with an improved drive and sealing system
US7360377B2 (en) Refrigerator
KR101555755B1 (en) Ice bin and ice crushing method using the same
CN103185431A (en) Refrigerator
JP5253924B2 (en) Auger ice machine
CN108759216B (en) Ice crushing device and refrigerator
JP5492259B2 (en) Auger ice machine
KR101555756B1 (en) Ice bin and ice transferring method using the same
KR20060053211A (en) Refrigerator
KR101236771B1 (en) Ice storage device for ice maker
WO2010021175A1 (en) Auger-type ice maker
JP3839000B2 (en) Auger assembly
JP5275925B2 (en) Auger ice machine
JP4994321B2 (en) Auger ice machine
CN114659311B (en) Ice making device of air conditioner and air conditioner with same
JP5469933B2 (en) Auger ice machine
JP5367315B2 (en) Auger ice machine
CN215571431U (en) Automatic ice discharging mechanism
CN220728578U (en) Assembly structure of non-base evaporator and reduction gearbox of ice machine and ice machine
JP5421673B2 (en) Auger ice machine
CN116147271A (en) Refrigerator with a refrigerator body
JP2005127584A (en) Ice making machine
CN116558186A (en) Refrigerator with a refrigerator body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees