JP2009073913A - Method for estimating physical strength of film from atomic force microscopic observation of aqueous resin film - Google Patents

Method for estimating physical strength of film from atomic force microscopic observation of aqueous resin film Download PDF

Info

Publication number
JP2009073913A
JP2009073913A JP2007243494A JP2007243494A JP2009073913A JP 2009073913 A JP2009073913 A JP 2009073913A JP 2007243494 A JP2007243494 A JP 2007243494A JP 2007243494 A JP2007243494 A JP 2007243494A JP 2009073913 A JP2009073913 A JP 2009073913A
Authority
JP
Japan
Prior art keywords
film
atomic force
physical strength
water
wau
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007243494A
Other languages
Japanese (ja)
Inventor
Yasumitsu Sakamoto
泰光 坂本
Satoshi Murayama
智 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Polyurethane Industry Co Ltd
Original Assignee
Nippon Polyurethane Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Polyurethane Industry Co Ltd filed Critical Nippon Polyurethane Industry Co Ltd
Priority to JP2007243494A priority Critical patent/JP2009073913A/en
Publication of JP2009073913A publication Critical patent/JP2009073913A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for estimating physical strength of a film from the microstructural observation of the surface of an aqueous polyurethane resin. <P>SOLUTION: The invention relates to a method for estimating physical strength of a film from the observation of the surface conditions of the film of an aqueous acrylic-modified polyurethane resin in air and in water by using atomic force microscope. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水分散樹脂から得られる被膜の原子間力顕微鏡観察から被膜の物理強度を予測する方法に関する。   The present invention relates to a method for predicting the physical strength of a film from atomic force microscope observation of the film obtained from a water-dispersed resin.

最近、コーティング分野において揮発性有機化合物(VOC)の50%削減が求められいる。このVOC削減の手段として、プラスチックス、木材、金属、皮革、コンクリート等のコーティング分野においてはますます水性樹脂コーティングが重要になってきている。
ポリウレタン樹脂においてもこの水性化への移行は行われているが、有機溶剤タイプに取って代わるところまでは技術が完成していないのが現状である。
この主因は、水分散させるためにポリウレタン分子に親水性を付与しなければならないが、このことがそれ自体は疎水性であるポリウレタン樹脂を耐水性や耐候性で劣ったものにしている。
さらには、水性樹脂からなる被膜は、水中で分散している粒子が分散媒である水の蒸発ともとに相互に密着することから形成される。有機溶剤タイプでは、完全に溶解しているので、形成される被膜はナノオーダーで平滑であるが、水性樹脂ではそこまで平滑にはならず粒子の形状を幾分保って被膜を形成している。
非特許文献1においては、被膜形成温度と表面形状の観察を行い、形成温度が高いほど粒子粒子間の境界が不鮮明になっていくことが開示されている。
Recently, a 50% reduction in volatile organic compounds (VOC) has been required in the coating field. As a means for reducing this VOC, water-based resin coating is becoming increasingly important in the coating field of plastics, wood, metal, leather, concrete and the like.
Although the transition to water-based processing has been carried out in polyurethane resins as well, the present situation is that the technology has not been completed until the organic solvent type is replaced.
The main reason for this is that hydrophilicity must be imparted to the polyurethane molecules in order to disperse in water, which makes the polyurethane resin itself hydrophobic, inferior in water resistance and weather resistance.
Furthermore, the coating film made of an aqueous resin is formed because the particles dispersed in water adhere to each other as the dispersion medium water evaporates. In the organic solvent type, since it is completely dissolved, the formed film is nano-order smooth, but with an aqueous resin, it is not so smooth, and the film is formed while keeping the shape of the particles somewhat. .
Non-Patent Document 1 discloses that the film forming temperature and the surface shape are observed, and the boundary between the particle particles becomes unclear as the forming temperature increases.

D.Bhattacharjee,et al.:"Science and technology of polyurethane dispersions,Process and applications",PU magazine, vol 1(2), p42 (2004)D. Bhattacharjee, et al .: "Science and technology of polyurethane dispersions, Process and applications", PU magazine, vol 1 (2), p42 (2004)

しかしながら、前記文献が開示しているのは水性ポリウレタン樹脂の表面解析に原子間力顕微鏡が用いられることに留まり、その微細形状と被膜の物理強度の関係までは明らかにしていない。
本発明は、特定の条件化での表面観察により水性ポリウレタン樹脂の被膜の物理強度を予測する方法を提供することを目的とする。
However, the above document only discloses that an atomic force microscope is used for surface analysis of an aqueous polyurethane resin, and the relationship between the fine shape and the physical strength of the coating is not clarified.
An object of the present invention is to provide a method for predicting the physical strength of a coating film of an aqueous polyurethane resin by surface observation under specific conditions.

すなわち本発明は、原子間力顕微鏡を用いての水性アクリル変性ポリウレタン樹脂被膜の空気中と水中の表面状態の観察から被膜の物理強度を予測する方法である。   That is, the present invention is a method for predicting the physical strength of a coating film from observation of the surface state of the aqueous acrylic modified polyurethane resin coating film in air and water using an atomic force microscope.

本発明により、長期に浸漬をしなくても被膜の耐水性が予測できること。さらには、フィルムの引張り物性などのように破壊試験をしなくても表面観察という簡易な観察で物理強度が予測できることで、容易に最適な樹脂や最適な被膜形成方法を確率させることができる。また、耐水性のよい塗膜の形状を具現化できる。   According to the present invention, the water resistance of the coating can be predicted without being immersed for a long time. Furthermore, since the physical strength can be predicted by simple observation such as surface observation without performing a destructive test such as the tensile physical properties of the film, the optimum resin and the optimum film forming method can be easily established. Moreover, the shape of the coating film with good water resistance can be realized.

本発明に用いることができる原子間力顕微鏡としては、水中観察できる装置が付属していることが必要である。好ましいタイプとしては、クローズドループタイプであるが、必ずしもこの機種に限定されるものではない。原子間力顕微鏡に用いられる探針としては、カーボンナノチューブ、白金、イリジューム、コバルト、アルミニウム、ダイヤモンド、珪素、窒化珪素及び炭化珪素などで構成されるものが挙げられる。また、原子間力顕微鏡におけるカンチレバーとしては、50nm以下程度の先端径を有するものが好ましく、測定の感度に合わせて選択される。また、カンチレバーのバネ定数としては、0.01〜80N/m程度であり、サンプル表面の物性や、観察環境(空気中あるいは水中)によって選択される。   As an atomic force microscope that can be used in the present invention, it is necessary to attach an apparatus capable of underwater observation. A preferred type is a closed loop type, but is not necessarily limited to this model. Examples of the probe used in the atomic force microscope include those composed of carbon nanotubes, platinum, iridium, cobalt, aluminum, diamond, silicon, silicon nitride, silicon carbide, and the like. The cantilever in the atomic force microscope preferably has a tip diameter of about 50 nm or less, and is selected according to the sensitivity of measurement. Further, the spring constant of the cantilever is about 0.01 to 80 N / m, and is selected according to the physical properties of the sample surface and the observation environment (in air or in water).

被膜の物理強度としては種々のものが予測可能である。その中でも特に水中の表面状態の観察から、耐水性の予測ができるのが本発明の大きな効果である。   Various physical strengths of the coating can be predicted. Among them, the great effect of the present invention is that water resistance can be predicted from observation of the surface state in water.

実際に予測する方法を具体的例に従って説明する。
まず、平均粒径の異なる2種のアクリルウレタンエマルジョンとその9:1の混合物を準備した。
それを以下に記述する方法にて表面状態を観察した。
An actual prediction method will be described according to a specific example.
First, two types of acrylic urethane emulsions having different average particle diameters and a 9: 1 mixture thereof were prepared.
The surface state was observed by the method described below.

<アロファネート変性イソシアネートの合成>
撹拌機、温度計、冷却器及び窒素ガス導入管のついた容量1000mlの反応器に、ヘキサメチレンジイソシアネート(HDI)を800g、数平均分子量400のメトキシポリエチレングリコール(MePEG−400)を200g、オクチル酸ジルコニウム(第一稀元素化学工業製)を0.1g仕込み、110℃で6時間反応を行った。次いで、リン酸を0.1g仕込み、50℃で1時間停止反応を行った。停止反応後の反応液のイソシアネート含量は、35.7質量%であった。この反応液を130℃0.04kPaにて薄膜蒸留を行い、アロファネート変性イソシアネート(NCO−1)を得た。NCO−1の収率は37.1%、イソシアネート含量は、10.8質量%、25℃の粘度は200mPa・S、遊離ジイソシアネート含有量は0.1質量%であった。
<Synthesis of allophanate-modified isocyanate>
In a 1000 ml reactor equipped with a stirrer, thermometer, condenser and nitrogen gas inlet tube, 800 g of hexamethylene diisocyanate (HDI), 200 g of methoxypolyethylene glycol (MePEG-400) having a number average molecular weight of 400, octylic acid 0.1 g of zirconium (manufactured by Daiichi Rare Element Chemical Industry) was charged and reacted at 110 ° C. for 6 hours. Next, 0.1 g of phosphoric acid was added, and a stop reaction was performed at 50 ° C. for 1 hour. The isocyanate content of the reaction liquid after the termination reaction was 35.7% by mass. This reaction solution was subjected to thin film distillation at 130 ° C. and 0.04 kPa to obtain allophanate-modified isocyanate (NCO-1). The yield of NCO-1 was 37.1%, the isocyanate content was 10.8% by mass, the viscosity at 25 ° C. was 200 mPa · S, and the free diisocyanate content was 0.1% by mass.

<エマルジョンの合成>
<WAU−100>
撹拌機、温度計、冷却器及び窒素ガス導入管のついた容量500mlの反応器に、分子量2000のポリカプロラクトンエステルジオール(PCL)を26.9g、ジメチロールプロピオン酸(DMPA)を3.6g、n−ブチルアクリレート(MMA)を37.8gおよび、重合禁止剤としてメトキシキノン(MQ)を0.025gを仕込み、60℃まで昇温した。次にイソホロンジイソシアネート(IPDI)7.2gおよびアロファネート化イソNCO−1を12.6gを仕込み、85℃に加温し、同温度で4時間反応させた。
次いで、2−ヒドロキシエチルメタクリレート(2−HEMA)を27.7g加え、85℃で3時間加熱し、FT−IRでNCO基吸収ピークの消滅を確認した。プレポリマー溶液を30℃以下に冷却し、シクロヘキシルメタクリレート(CHMA)の36.6gを仕込み、均一に混合してウレタンプレポリマーのアクリルモノマー溶液を得た。
得られたアクリルモノマー溶液にトリエチルアミン(TEA)を2.0gを仕込んでカルボキシル基を中和した後、撹拌しながら水を322.3g仕込み、乳化させ水分散液を得た。
次に、過硫酸アンモニウム(APS)の0.6gを反応容器内に加え、5時間ラジカル重合を行って、アクリル変性ポリウレタン水性エマルジョンを得た。固形分測定からアクリルモノマーの重合が99%以上に達していることが確認でき、固形分は35%であった。大塚電子製の電気泳動散乱光度計ELS−800にて測定した平均粒径は100nmであった。
<Synthesis of emulsion>
<WAU-100>
In a 500 ml reactor equipped with a stirrer, thermometer, condenser and nitrogen gas inlet tube, 26.9 g of polycaprolactone ester diol (PCL) with a molecular weight of 2000, 3.6 g of dimethylolpropionic acid (DMPA), 37.8 g of n-butyl acrylate (MMA) and 0.025 g of methoxyquinone (MQ) as a polymerization inhibitor were charged, and the temperature was raised to 60 ° C. Next, 7.2 g of isophorone diisocyanate (IPDI) and 12.6 g of allophanated isoNCO-1 were charged, heated to 85 ° C., and reacted at the same temperature for 4 hours.
Next, 27.7 g of 2-hydroxyethyl methacrylate (2-HEMA) was added and heated at 85 ° C. for 3 hours, and the disappearance of the NCO group absorption peak was confirmed by FT-IR. The prepolymer solution was cooled to 30 ° C. or less, charged with 36.6 g of cyclohexyl methacrylate (CHMA), and mixed uniformly to obtain an acrylic monomer solution of urethane prepolymer.
The resulting acrylic monomer solution was charged with 2.0 g of triethylamine (TEA) to neutralize the carboxyl group, and then, with stirring, 322.3 g of water was charged and emulsified to obtain an aqueous dispersion.
Next, 0.6 g of ammonium persulfate (APS) was added to the reaction vessel, and radical polymerization was performed for 5 hours to obtain an acrylic-modified polyurethane aqueous emulsion. From the solid content measurement, it was confirmed that the polymerization of the acrylic monomer reached 99% or more, and the solid content was 35%. The average particle size measured with an electrophoretic scattering photometer ELS-800 manufactured by Otsuka Electronics was 100 nm.

<WAU−40>
粒径を小さくするためTEAを2.7gに増量した以外は、WAU−100と同様な方法により、エマルジョンを得た。前記装置にて測定した平均粒径は40nmであった。
<WAU-40>
An emulsion was obtained by the same method as WAU-100, except that TEA was increased to 2.7 g in order to reduce the particle size. The average particle diameter measured with the apparatus was 40 nm.

<WAU−BL>
WAU−100の90質量部とWAU−40の10質量部をブレンドして調製した。
<WAU-BL>
It was prepared by blending 90 parts by weight of WAU-100 and 10 parts by weight of WAU-40.

<観察サンプルの作成>
PETフィルム上にウェット膜厚が100μmになるように塗布して、20℃×50%RHの環境下キュアした。
このサンプルを空気中及び純水中にて観察した。
<Preparation of observation sample>
It apply | coated so that the wet film thickness might be set to 100 micrometers on PET film, and it cured in the environment of 20 degreeC x 50% RH.
This sample was observed in air and pure water.

<原子間力顕微鏡による観察>
原子間力顕微鏡:島津製作所製、SPM−9600
カンチレバー;AC240(オリンパス製)振動数70kHz
バネ常数=2N/m
<Observation with atomic force microscope>
Atomic force microscope: Shimadzu Corporation, SPM-9600
Cantilever; AC240 (Olympus) frequency 70kHz
Spring constant = 2N / m

WAU−40の空気中及び水中の観察結果を、図面の「図1」と「図2」に示す。   The observation results of WAU-40 in air and water are shown in FIG. 1 and FIG. 2 of the drawings.

WAU−100の空気中及び水中の観察結果を、図面の「図3」と「図4」に示す。   The observation results of WAU-100 in the air and in water are shown in “FIG. 3” and “FIG. 4” of the drawings.

WAU−BLの空気中及び水中の観察結果を、図面の「図5」と「図6」に示す。   The observation results of WAU-BL in the air and in water are shown in “FIG. 5” and “FIG. 6” of the drawings.

<物理強度の予測>
平均粒径40nmのWAU−40の空気中及び水中の凹凸は谷から谷の距離がそれぞれ9.3nmと8.3nmであり、大きな差異はない。これにより水中での膨潤が小さく耐水性が良好であることが予測される。表面状態を数値化したものを表1に示す。この表にはWAU−100及びWAU−BLも同時に記載した。
<Prediction of physical strength>
In the air and underwater irregularities of WAU-40 with an average particle size of 40 nm, the distance from valley to valley is 9.3 nm and 8.3 nm, respectively, and there is no significant difference. As a result, it is predicted that the swelling in water is small and the water resistance is good. Table 1 shows the numerical value of the surface state. This table also shows WAU-100 and WAU-BL.

Figure 2009073913
Figure 2009073913

表中の表面面積は、縦1μm×横1μmの投影面積に該当する表面面積を示したものである。
Raは、表面粗さのレベルを表す指標であり、数値が大きいほど粗いことを意味している。
The surface area in the table indicates a surface area corresponding to a projected area of 1 μm in length × 1 μm in width.
Ra is an index representing the level of surface roughness, and means that the larger the value, the rougher.

一方、平均粒径100nmのWAU−100空気中及び水中の凹凸は谷から谷の距離がそれぞれ14.6nmと61.3nmと空気中の距離に比して水中の距離が大きくなっており、高さも明確に大きくなっている。このことから膨潤が起こっていることが分かり、その耐水性は、WAU−40よりもかなり劣ることが予想される。   On the other hand, the irregularities in the air and water in the WAU-100 air with an average particle size of 100 nm are 14.6 nm and 61.3 nm in the distance from the valley to the valley, respectively, and the distance in the water is larger than the distance in the air. It is also clearly larger. This shows that swelling has occurred, and its water resistance is expected to be considerably inferior to that of WAU-40.

被膜の物理強度を表2に示す。   The physical strength of the coating is shown in Table 2.

Figure 2009073913
Figure 2009073913

<物理強度の測定方法>
破断時伸び及び接着力は引張り試験機にて測定した。
試験片の作成は、防水材(ダイフレックス製のオータスエコ)上に150g/m2となるように刷毛で塗布し、20℃×50%相対湿度で1週間養生したシートからJIS2号ダンベルで打ち抜いて行った。このようにして作成した試験片を防水材とともに引張り試験を行い、被膜の破断伸びを測定した。
接着力は、防水材と被膜の接着力を測定した。試験片は、防水材上に不織布を置き、上からエマルジョンを防水材との界面に達するまでしみ込ませた。その後、20℃×50%相対湿度で1週間養生したシートを20mm幅に切り、180度ピーリング試験を行った。引き剥がし速度は50mm/minである。
耐水性は、上記伸び試験で作成したシートを50℃温水に1週間浸漬させ引き上げ直後に碁盤目試験をした。マスは5×5=25マス作り、テープで引き剥がした後、シートに残ったマス数で表示した。
<Measurement method of physical strength>
Elongation at break and adhesive strength were measured with a tensile tester.
The test piece was prepared by applying a brush on a waterproof material (Daiflex's OTAS ECO) with a brush so as to be 150 g / m 2, and punching with a JIS No. 2 dumbbell from a sheet cured at 20 ° C. × 50% relative humidity for 1 week. went. The test piece thus prepared was subjected to a tensile test together with a waterproof material, and the elongation at break of the film was measured.
The adhesive strength was measured by measuring the adhesive strength between the waterproof material and the coating. For the test piece, a non-woven fabric was placed on the waterproof material, and the emulsion was impregnated from above until it reached the interface with the waterproof material. Thereafter, the sheet cured at 20 ° C. × 50% relative humidity for 1 week was cut into a width of 20 mm and subjected to a 180 ° peeling test. The peeling speed is 50 mm / min.
For water resistance, the sheet prepared by the above elongation test was immersed in warm water at 50 ° C. for 1 week, and a cross-cut test was performed immediately after the sheet was pulled up. The squares are 5 × 5 = 25 squares, and after peeling off with tape, the number of squares remaining on the sheet is displayed.

上記から予測された内容が実際の測定結果と一致していることが分かる。   From the above, it can be seen that the predicted content matches the actual measurement result.

WAU−BLはWAU−40とWAU−100の1:9のブレンド比であり、通常に考えれば物理強度もWAU−100に近いものであると推定される。
ところが、表面観察ではWAU−40の表面状態に近く、これからの予測は物理強度もWAU−40に近いものが予測され、事実、物性測定結果はその予測を裏付けている。
WAU-BL is a 1: 9 blend ratio of WAU-40 and WAU-100, and the physical strength is estimated to be close to WAU-100 when considered normally.
However, in surface observation, it is close to the surface state of WAU-40, and it is predicted that the physical strength will be close to WAU-40, and the physical property measurement results support the prediction.

原子間力顕微鏡によるWAU−40の空気中の観察結果を示す。The observation result in the air of WAU-40 by an atomic force microscope is shown. 原子間力顕微鏡によるWAU−40の水中の観察結果を示す。The observation result in water of WAU-40 by an atomic force microscope is shown. 原子間力顕微鏡によるWAU−100の空気中の観察結果を示す。The observation result in the air of WAU-100 by an atomic force microscope is shown. 原子間力顕微鏡によるWAU−100の水中の観察結果を示す。The observation result in water of WAU-100 by an atomic force microscope is shown. 原子間力顕微鏡によるWAU−BLの空気中の観察結果を示す。The observation result in the air of WAU-BL by an atomic force microscope is shown. 原子間力顕微鏡によるWAU−BLの水中の観察結果を示す。The observation result in water of WAU-BL by an atomic force microscope is shown.

Claims (1)

原子間力顕微鏡を用いての水性アクリル変性ポリウレタン樹脂被膜の、空気中と水中の表面状態の観察から被膜の物理強度を予測する方法。

A method for predicting the physical strength of a water-based acrylic-modified polyurethane resin film using an atomic force microscope from observation of the surface state in air and water.

JP2007243494A 2007-09-20 2007-09-20 Method for estimating physical strength of film from atomic force microscopic observation of aqueous resin film Pending JP2009073913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007243494A JP2009073913A (en) 2007-09-20 2007-09-20 Method for estimating physical strength of film from atomic force microscopic observation of aqueous resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007243494A JP2009073913A (en) 2007-09-20 2007-09-20 Method for estimating physical strength of film from atomic force microscopic observation of aqueous resin film

Publications (1)

Publication Number Publication Date
JP2009073913A true JP2009073913A (en) 2009-04-09

Family

ID=40609216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007243494A Pending JP2009073913A (en) 2007-09-20 2007-09-20 Method for estimating physical strength of film from atomic force microscopic observation of aqueous resin film

Country Status (1)

Country Link
JP (1) JP2009073913A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102363704A (en) * 2011-06-30 2012-02-29 成都倍大涂料有限公司 Aqueous blocking agent and its preparation method
JP2017087501A (en) * 2015-11-06 2017-05-25 新日鐵住金株式会社 Surface-treated steel plate
CN107236436A (en) * 2017-06-09 2017-10-10 海聚高分子材料科技(广州)有限公司 A kind of aqueous polyurethane composition and its film and preparation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102363704A (en) * 2011-06-30 2012-02-29 成都倍大涂料有限公司 Aqueous blocking agent and its preparation method
JP2017087501A (en) * 2015-11-06 2017-05-25 新日鐵住金株式会社 Surface-treated steel plate
CN107236436A (en) * 2017-06-09 2017-10-10 海聚高分子材料科技(广州)有限公司 A kind of aqueous polyurethane composition and its film and preparation method

Similar Documents

Publication Publication Date Title
Lopez et al. Waterborne Polyurethane− Acrylic hybrid nanoparticles by Miniemulsion polymerization: applications in pressure-sensitive adhesives
CN104098999B (en) UV-heat dual-curing polyurethane coating, and preparation method and application thereof
Daniloska et al. High performance pressure sensitive adhesives by miniemulsion photopolymerization in a continuous tubular reactor
JPWO2007132617A1 (en) Water-based polyisocyanate-modified product, non-yellowing coating composition and adhesive composition
CN101313020A (en) Carbodiimide compound and aqueous curable resin composition containing same
Lee et al. Biodegradable sol–gel coatings of waterborne polyurethane/gelatin chemical hybrids
JP2017071685A (en) Aqueous polyurethane dispersion
JP3794444B2 (en) Aqueous resin composition with improved durability, antifouling coating agent and releasable coating agent
Ma et al. Preparation, properties and application of waterborne hydroxyl-functional polyurethane/acrylic emulsions in two-component coatings
CN111393561A (en) Fluorine-containing polyacrylic resin and hydrophobic composition, preparation method and application thereof, and hydrophobic coating composition and preparation method thereof
JP2009073913A (en) Method for estimating physical strength of film from atomic force microscopic observation of aqueous resin film
Bakhshandeh et al. Siloxane-modified waterborne UV-curable polyurethane acrylate coatings: Chemorheology and viscoelastic analyses
Luo et al. Synthesis and characterization of crosslinking waterborne fluorinated polyurethane‐acrylate with core‐shell structure
Li et al. Synthesis and characterization of high solid content aqueous polyurethane dispersion
JP7038184B2 (en) Thermosetting mold release coating agent and laminate, and method for manufacturing the laminate
Park et al. Synthesis and characterization of sulfonated polyol-based waterborne polyurethane-polyacrylate hybrid emulsions
CN110835397B (en) Self-crosslinking water-based photocuring polyurethane and preparation method and application thereof
JP6318172B2 (en) Water-based adhesive
Ryu et al. Preparation and properties of emulsifier‐/solvent‐free polyurethane‐acrylic hybrid emulsions for binder materials: Effect of the glycidyl methacrylate/acrylonitrile content
Ahmed et al. Design of Eco-Friendly Self-Healing Polymers Containing Hindered Urea-Based Dynamic Reversible Bonds
Li et al. Synthesis and characterization of self-crosslinked polyurethane/polyacrylate composite emulsion based on carbonyl–hydrazide reaction
JP2007023069A (en) Coating composition and coated article
JP4092600B2 (en) Aqueous composite resin dispersion and method for producing the same
CN106866915B (en) Bio-based water-based nano emulsion for canvas coating and preparation method thereof
JP4000614B2 (en) Durable aqueous resin composition, antifouling coating agent and releasable coating agent