JP2009073831A - Farnesol derivative and production method thereof - Google Patents

Farnesol derivative and production method thereof Download PDF

Info

Publication number
JP2009073831A
JP2009073831A JP2008223466A JP2008223466A JP2009073831A JP 2009073831 A JP2009073831 A JP 2009073831A JP 2008223466 A JP2008223466 A JP 2008223466A JP 2008223466 A JP2008223466 A JP 2008223466A JP 2009073831 A JP2009073831 A JP 2009073831A
Authority
JP
Japan
Prior art keywords
farnesol
group
acid
carboxylic acid
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008223466A
Other languages
Japanese (ja)
Inventor
Jiro Takada
二郎 高田
Yukimasa Fukui
亨昌 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008223466A priority Critical patent/JP2009073831A/en
Publication of JP2009073831A publication Critical patent/JP2009073831A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a farnesol derivative that is solid at room temperature, because of its high melting temperature, highly soluble in water, and can exhibit the useful action of fanesol in vivo. <P>SOLUTION: The farnesol carboxylate derivative is represented by general formula (1) (where R<SP>1</SP>means a carboxylate residue bearing a nitrogen-substituted group). The farnesol carboxylate derivative can be produced by the esterification reaction between an amino acid bearing a protective group protecting amino, hydroxy, thiol groups or the like and farnesol; or N,N-dialkyl amino acid hydrohalide is used to carry out esterification reaction with farnesol in the presence of an activated esterification reagent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ファルネソール誘導体およびその製造方法、特にその固形化と水溶性の改良に関する。   The present invention relates to a farnesol derivative and a method for producing the same, particularly to solidification and improvement of water solubility.

ファルネソールは3つのイソプレンを持つセスキテルペンの1種類であり、バラ、レモングラス、シトロネラの精油に含まれる無色の液体であり水に全く溶けず、揮発性の化合物である。ファルネソールは香料や皮膚保護剤として使われ、医薬としては高脂血症防止効果、真菌に対する抗菌効果、酸化的障害に対する防護効果など優れた効果が期待されている。   Farnesol is a kind of sesquiterpene having three isoprenes, is a colorless liquid contained in essential oils of rose, lemongrass and citronella, is not soluble in water at all, and is a volatile compound. Farnesol is used as a fragrance and a skin protective agent, and as a pharmaceutical, excellent effects such as an antihyperlipidemic effect, an antibacterial effect against fungi, and a protective effect against oxidative damage are expected.

しかしながら、ファルネソールは液体であり水に全く溶解しない揮発性の化合物である。このため、ファルネソールの水溶性製剤または水性化粧品の調製には大量の非イオン性界面活性剤の添加による可溶化法が検討されるが、大量の界面活性剤はアナフィラキシーショック等の重篤な問題を生じる場合がある。
そこで、融点が高く室温で固形であり、同時に高い水溶性を有し、生体内でファルネソールの有用な作用を呈することができる誘導体が求められている。
However, farnesol is a volatile compound that is liquid and does not dissolve in water at all. For this reason, a solubilization method by adding a large amount of a nonionic surfactant is considered for the preparation of a water-soluble preparation of farnesol or an aqueous cosmetic, but a large amount of the surfactant causes serious problems such as anaphylactic shock. May occur.
Accordingly, there is a need for a derivative that has a high melting point, is solid at room temperature, and at the same time has high water solubility, and can exhibit the useful action of farnesol in vivo.

本発明は前記技術の課題に鑑みなされたものであり、その目的は融点が高く室温で固形であり、同時に高い水溶性を有し、生体内でファルネソールの有用な作用を呈することができる誘導体を提供することである。   The present invention has been made in view of the above-described technical problems, and its purpose is to provide a derivative that has a high melting point and is solid at room temperature, and at the same time has high water solubility, and can exhibit a useful action of farnesol in vivo. Is to provide.

前記目的を達成するために本発明者等が鋭意検討を行った結果、特定のファルネソールカルボン酸エステル誘導体が、高い融点を持ち室温で固形であり、優れた水溶性を持ち、生体内でファルネソールの有用な作用を呈することができることを見いだし、本発明を完成するに至った。
すなわち、本発明にかかるファルネソールカルボン酸エステル誘導体は、下記一般式(1):
As a result of intensive studies by the present inventors in order to achieve the above object, a specific farnesol carboxylic acid ester derivative has a high melting point and is solid at room temperature, has excellent water solubility, It has been found that a useful action can be exhibited, and the present invention has been completed.
That is, the farnesol carboxylic acid ester derivative according to the present invention has the following general formula (1):

Figure 2009073831
(式中、Rは窒素置換基を有するカルボン酸残基を意味する。)
で表されることを特徴とする。
Figure 2009073831
(In the formula, R 1 means a carboxylic acid residue having a nitrogen substituent.)
It is represented by.

また、本発明は、窒素置換基を有するカルボン酸残基が、アミノ酸、N-アシルアミノ酸、N-アルキルアミノ酸、N,N-ジアルキルアミノ酸、ピリジンカルボン酸及びそれらの生理学的に許容されるハロゲン化水素酸塩、アルキルスルホン酸塩、酸性糖塩の残基からなる群より選択されることを特徴とするファルネソールカルボン酸エステル誘導体を提供する。   In the present invention, the carboxylic acid residue having a nitrogen substituent is an amino acid, an N-acylamino acid, an N-alkylamino acid, an N, N-dialkylamino acid, a pyridinecarboxylic acid, or a physiologically acceptable halogenated thereof. There is provided a farnesol carboxylic acid ester derivative characterized in that it is selected from the group consisting of residues of hydrogenate, alkylsulfonate, and acidic sugar salt.

また、本発明にかかるファルネソールカルボン酸エステル誘導体の製造方法は、1級または2級アミノ基、あるいは側鎖に水酸基またはチオール基を有するアミノ酸の前記アミノ基、水酸基及びチオール基を保護基で保護し、該保護基結合アミノ酸とファルネソールとをエステル化反応させることを特徴とする。
また、本発明にかかるファルネソールカルボン酸エステル誘導体の別の製造方法は、N,N-ジアルキルアミノ酸のハロゲン化水素酸塩を用いて活性エステル化試薬の存在下にファルネソールとエステル化反応させることを特徴とする。
Further, the method for producing a farnesol carboxylate derivative according to the present invention protects the amino group, hydroxyl group and thiol group of an amino acid having a primary or secondary amino group or a side chain with a hydroxyl group or a thiol group with a protecting group. The protective group-binding amino acid and farnesol are esterified.
Another method for producing a farnesol carboxylic acid ester derivative according to the present invention is characterized in that an esterification reaction with farnesol is performed in the presence of an active esterification reagent using a hydrohalide salt of an N, N-dialkylamino acid. And

なお、一般式(1)で表されるファルネソール誘導体には、ファルネシル基(−[CHCH=CH(CH)CH−H)の2位の水素と3位のメチル基のトランス体とシス体、6位の水素と7位メチル基のトランス体とシス体が存在するが、本発明はこれらの異性体(すなわち、(2E,6E)体、(2E,6Z)体、(2Z,6E)体、(2Z,6Z)体、ならびにそれらの混合体)を包含するものである。 In addition, the farnesol derivative represented by the general formula (1) includes trans of a hydrogen atom at the 2-position and a methyl group at the 3-position of the farnesyl group (— [CH 2 CH═CH (CH 3 ) CH 2 ] 3 —H). Isomers and cis isomers, hydrogens at the 6-position and trans isomers and cis-isomers at the 7-position methyl group exist, but the present invention includes these isomers (ie, (2E, 6E) isomer, (2E, 6Z) isomer, 2Z, 6E), (2Z, 6Z), and mixtures thereof).

本発明によれば、高い融点を持ち室温で固形であり、優れた水溶性を持ち、生体内でファルネソールの有用な作用を呈することができるファルネソールカルボン酸エステル誘導体が提供される。本発明にかかるファルネソールカルボン酸エステル誘導体は、虚血急性期投与における予防効果だけでなく、虚血再潅流後の亜急性期・慢性期における治療的投与においても虚血あるいは虚血に伴う起炎性物質が発症や憎悪に関与している疾病に対して治療効果を発揮することができる。   According to the present invention, there is provided a farnesol carboxylic acid ester derivative that has a high melting point, is solid at room temperature, has excellent water solubility, and can exhibit the useful action of farnesol in vivo. The farnesol carboxylate derivative according to the present invention has not only a preventive effect in ischemic acute administration but also inflammation caused by ischemia or ischemia in therapeutic administration in the subacute phase and chronic phase after ischemia-reperfusion. It is possible to exert a therapeutic effect on diseases in which a sex substance is involved in onset or hatred.

以下、本発明の好適な実施形態について説明する。
本発明は、下記一般式(1)であらわされるファルネソールカルボン酸エステル誘導体及びその製造方法に関する。
Hereinafter, preferred embodiments of the present invention will be described.
The present invention relates to a farnesol carboxylic acid ester derivative represented by the following general formula (1) and a method for producing the same.

Figure 2009073831
(式中、Rは窒素置換基を有するカルボン酸残基を意味する。)
Figure 2009073831
(In the formula, R 1 means a carboxylic acid residue having a nitrogen substituent.)

の窒素置換基を有するカルボン酸残基の好ましい例としては、アミノ酸、N-アシルアミノ酸、N-アルキルアミノ酸、N,N-ジアルキルアミノ酸、ピリジンカルボン酸およびそれらの生理学的に許容されるハロゲン化水素酸塩、アルキルスルホン酸塩、酸性糖塩の残基からなる群より選択されるものが挙げられる。
本発明において、「カルボン酸残基」とは、カルボン酸のカルボキシル基(COOH)からOH基が除去された残基を意味する。
Preferred examples of carboxylic acid residues having a nitrogen substituent of R 1 include amino acids, N-acyl amino acids, N-alkyl amino acids, N, N-dialkyl amino acids, pyridine carboxylic acids and their physiologically acceptable halogens. Examples thereof include those selected from the group consisting of residues of hydrofluoric acid salts, alkylsulfonic acid salts, and acidic sugar salts.
In the present invention, “carboxylic acid residue” means a residue obtained by removing an OH group from a carboxyl group (COOH) of a carboxylic acid.

窒素置換基を有するカルボン酸残基において、アルキル置換アミノ基のアルキル基とは、炭素数1〜6の直鎖もしくは分岐のアルキル基、例えばメチル基、エチル基、n-プロピル基、n-ペンチル基、n-ヘキシル基、イソプロピル基、イソブチル基、1-メチルプロピル基、tert-ブチル基、1-エチルプロピル基、イソアミル基などを例示することが可能であり、特にメチル基、エチル基が好ましい。アシル置換アミノ基のアシル基とは炭素数1〜6の直鎖もしくは分岐のアルキル基を炭化水素鎖とするアシル基が好ましく、アルキル基部分の具体例については前述の通りである。   In the carboxylic acid residue having a nitrogen substituent, the alkyl group of the alkyl-substituted amino group is a linear or branched alkyl group having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, or an n-pentyl group. Group, n-hexyl group, isopropyl group, isobutyl group, 1-methylpropyl group, tert-butyl group, 1-ethylpropyl group, isoamyl group and the like can be exemplified, and methyl group and ethyl group are particularly preferable. . The acyl group of the acyl-substituted amino group is preferably an acyl group in which a linear or branched alkyl group having 1 to 6 carbon atoms is a hydrocarbon chain, and specific examples of the alkyl group moiety are as described above.

また、アミノ基とカルボニル基の間は、好ましくは炭素数1〜6の直鎖、分岐または環状のアルキレン基で結合される。分岐状のアルキレン基とは、例えば、イソプロピル基、イソブチル基、1-メチルプロピル基、tert-ブチル基、1-エチルプロピル基などのアルキル基から誘導されたアルキレン基を意味する。環状アルキレン基とは、シクロペンタン環、シクロヘキサン環、あるいはメチルシクロヘキサン環などを構造中に含むアルキレン基を意味する。アルキレン基として特に好ましいのはメチレン基あるいはエチレン基である。   The amino group and the carbonyl group are preferably bonded with a linear, branched or cyclic alkylene group having 1 to 6 carbon atoms. The branched alkylene group means an alkylene group derived from an alkyl group such as isopropyl group, isobutyl group, 1-methylpropyl group, tert-butyl group, and 1-ethylpropyl group. The cyclic alkylene group means an alkylene group containing a cyclopentane ring, a cyclohexane ring, a methylcyclohexane ring or the like in the structure. Particularly preferred as the alkylene group is a methylene group or an ethylene group.

窒素置換基を有するカルボン酸残基中の窒素置換基は塩を形成してもよく、例えば、ハロゲン化水素酸塩としては、塩酸塩、臭化水素酸塩などが好ましい。本発明において、ハロゲン化水素酸塩は融点が原体のファルネソールよりも高く、製剤化にあたっての取扱が容易になる利点がある。また、アルキルスルホン酸塩としてはメタンスルホン酸塩などが例示される。糖酸塩としてはグルコン酸塩、グルコヘプタン酸塩、ラクトビオン酸塩などが例示される。   The nitrogen substituent in the carboxylic acid residue having a nitrogen substituent may form a salt. For example, as the hydrohalide, hydrochloride, hydrobromide and the like are preferable. In the present invention, the hydrohalide salt has an advantage that the melting point is higher than that of the original farnesol, and it is easy to handle the preparation. Examples of the alkyl sulfonate include methane sulfonate. Examples of the saccharide salt include gluconate, glucoheptanoate, and lactobionate.

次に、本発明にかかるファルネソールカルボン酸エステル誘導体の製造方法としては、以下のような方法が例示される。
下記一般式(2)で表されるファルネソールと窒素置換基を有するカルボン酸、もしくはその反応性酸誘導体、またはこれらのハロゲン化水素酸塩とを、常法によりエステル化反応を行うことにより、本発明のファルネソールカルボン酸エステル(1)を得ることができる。一般式(2)におけるファルネシル基の立体異性は、前記一般式(1)における説明の通りである。
Next, examples of the method for producing the farnesol carboxylic acid ester derivative according to the present invention include the following methods.
By carrying out an esterification reaction by a conventional method with farnesol represented by the following general formula (2) and a carboxylic acid having a nitrogen substituent, or a reactive acid derivative thereof, or a hydrohalide thereof. The farnesol carboxylic acid ester (1) of the invention can be obtained. The stereoisomerism of the farnesyl group in the general formula (2) is as described in the general formula (1).

Figure 2009073831
Figure 2009073831

ファルネソールのエステル化反応は常法に従うが、1級又は2級アミノ基、あるいは側鎖に水酸基又はチオール基を有するアミノ酸を用いてエステル化を行う際は、tert-ブトキシカルボニル基(以下t-BOC基と略記)、ベンジルオキシカルボニル基(以下Z基と略記)などの適切な保護基でこれら1級又は2級アミノ基、水酸基、チオール基を保護して用いることが好ましい。   The esterification reaction of farnesol follows a conventional method. When esterification is performed using a primary or secondary amino group, or an amino acid having a hydroxyl group or a thiol group in the side chain, a tert-butoxycarbonyl group (hereinafter t-BOC) is used. These primary or secondary amino groups, hydroxyl groups, and thiol groups are preferably protected and used with an appropriate protective group such as a benzyloxycarbonyl group (hereinafter abbreviated as Z group).

また、N,N-ジアルキルアミノ酸はハロゲン化水素酸塩を用いて、ジシクロヘキシルカルボジイミド(以下DCCと略記)、N,N-ジサクシニミドオキザレート(以下DSOと略記)などの活性エステル化試薬の存在下に反応を行うことが好ましい。この際溶媒としては無水ピリジンが好ましい。
また、反応性酸誘導体を用いる方法では、酸ハロゲナイト、特に酸クロリドを用いる方法が好ましい。この際溶媒としては無水ベンゼン−無水ピリジン混合物が好ましい。
In addition, N, N-dialkylamino acids use hydrohalides, and are used for active esterification reagents such as dicyclohexylcarbodiimide (hereinafter abbreviated as DCC) and N, N-disuccinimide oxalate (hereinafter abbreviated as DSO). The reaction is preferably carried out in the presence. In this case, anhydrous pyridine is preferred as the solvent.
In the method using a reactive acid derivative, a method using acid halogenite, particularly acid chloride is preferable. In this case, an anhydrous benzene / anhydrous pyridine mixture is preferred as the solvent.

ハロゲン化水素酸塩、アルキルスルホン酸塩、酸性糖塩は常法により遊離のアミノ酸エステルとハロゲン化水素酸、アルキルスルホン酸、酸性糖のラクトン体を反応させて製造する。また、N-アシルアミノ酸エステルを製造した後、常法によりハロゲン化水素酸で脱保護基化することによってハロゲン化水素酸塩を製造することができる。
本発明のファルネソールカルボン酸エステル(1)のハロゲン化水素酸塩は、高融点の結晶性の粉末であり、製剤技術上、取扱が容易かつ簡便であり、高い水溶性を有する。従って、静脈内投与可能な製剤、点眼剤、経口製剤、水性塗布剤、スプレー剤などに有用である。
Hydrohalides, alkylsulfonates, and acidic sugar salts are produced by reacting free amino acid esters with lactones of hydrohalic acid, alkylsulfonic acid, and acidic sugar by a conventional method. Further, after the N-acylamino acid ester is produced, a hydrohalide can be produced by deprotection with hydrohalic acid by a conventional method.
The hydrohalic acid salt of farnesol carboxylic acid ester (1) of the present invention is a crystalline powder having a high melting point, is easy and simple to handle in formulation technology, and has high water solubility. Therefore, it is useful for preparations that can be administered intravenously, eye drops, oral preparations, aqueous coating agents, sprays, and the like.

以下、本発明の好適な実施例について説明する。なお、本発明の範囲は下記の実施例に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described. The scope of the present invention is not limited to the following examples.

製造方法A
N,N-ジアルキルアミノ酸塩酸塩3.1mmol、DCC 3.1mmol、無水ピリジン30mlを加え30分間撹拌後、ファルネソール 3.1mmolを加え、室温で16時間撹拌する。溶媒を減圧下留去し、残渣を蒸留水に懸濁させ、酢酸エチルで可溶性画分を抽出する。抽出液を無水硫酸ナトリウムで脱水後減圧下溶媒を留去し、残渣をシリカゲルフラッシュクロマトグラフィー(溶離溶媒;n-ヘキサン:酢酸エチル)で分離精製し、N,N-ジアルキルアミノ酸ファルネソールエステルを得る。
Manufacturing method A
Add N, N-dialkylamino acid hydrochloride (3.1 mmol), DCC (3.1 mmol) and anhydrous pyridine (30 ml), stir for 30 minutes, add farnesol (3.1 mmol), and stir at room temperature for 16 hours. The solvent is distilled off under reduced pressure, the residue is suspended in distilled water, and the soluble fraction is extracted with ethyl acetate. The extract is dehydrated with anhydrous sodium sulfate, the solvent is distilled off under reduced pressure, and the residue is separated and purified by silica gel flash chromatography (eluent: n-hexane: ethyl acetate) to obtain N, N-dialkylamino acid farnesol ester.

製造方法B
N,N-ジアルキルアミノ酸ファルネソールエステルを少量のアセトンに溶解し、2倍モル量の塩酸-ジオキサンを加え溶媒を減圧下留去し、残渣をアセトンで再結晶してN,N-ジアルキルアミノ酸ファルネソールエステルの塩酸塩を得る。
Manufacturing method B
Dissolve N, N-dialkylamino acid farnesol ester in a small amount of acetone, add 2-fold molar amount of hydrochloric acid-dioxane, distill off the solvent under reduced pressure, recrystallize the residue with acetone, and N, N-dialkylamino acid farnesol ester To obtain the hydrochloride salt of

製造方法C
アミノ酸0.1 molを蒸留水-ジオキサン(1:1, v/v)100 mlに溶解し、トリエチルアミン30 mlを加え、ジ-tert-ブチルジカルボネートを徐々に加え30分間室温で撹拌する。減圧下ジオキサンを留去し、炭酸水素ナトリウム水溶液(0.5 M)50 mlを加え酢酸エチル100 mlで洗う。酢酸エチル層を50 mlの炭酸水素ナトリウム液で洗い、水層を合わせて氷冷下でクエン酸水溶液(0.5 M)を加えて酸性(pH 3)とし、塩化ナトリウムを飽和させた後、酢酸エチルで抽出する(100 ml x 3回)。抽出液を無水硫酸ナトリウムで脱水後減圧下溶媒を留去し、油状残渣にイソプロピルエーテルを加えるか、または冷却にて結晶化させてN-t-BOCアミノ酸を得る。
Manufacturing method C
Dissolve 0.1 mol of amino acid in 100 ml of distilled water-dioxane (1: 1, v / v), add 30 ml of triethylamine, gradually add di-tert-butyl dicarbonate and stir for 30 minutes at room temperature. Dioxane is distilled off under reduced pressure, 50 ml of aqueous sodium hydrogen carbonate solution (0.5 M) is added, and the mixture is washed with 100 ml of ethyl acetate. The ethyl acetate layer was washed with 50 ml of sodium bicarbonate solution, and the aqueous layers were combined and acidified (pH 3) with an aqueous citric acid solution (0.5 M) under ice-cooling. After saturating sodium chloride, ethyl acetate was added. Extract with (100 ml x 3 times). The extract is dehydrated with anhydrous sodium sulfate, and the solvent is distilled off under reduced pressure. Isopropyl ether is added to the oily residue or it is crystallized by cooling to obtain an Nt-BOC amino acid.

ファルネソール5 mmol、N-t-BOCアミノ酸5 mmol、DCC 5 mmolを無水ピリジン30 mlに加え室温で20時間撹拌する。溶媒を減圧下留去し、残渣に酢酸エチルを加えて可溶性画分を抽出する(100 ml x 2回)。抽出液を減圧下濃縮し、残渣をシリカゲルカラムクロマトグラフィー(溶離溶媒;n-ヘキサン-酢酸エチル)で分離精製し、ファルネソールN-t-BOC-アミノ酸エステルを得る。   Farnesol 5 mmol, N-t-BOC amino acid 5 mmol, and DCC 5 mmol are added to 30 ml of anhydrous pyridine and stirred at room temperature for 20 hours. The solvent is distilled off under reduced pressure, and ethyl acetate is added to the residue to extract a soluble fraction (100 ml x 2 times). The extract is concentrated under reduced pressure, and the residue is separated and purified by silica gel column chromatography (eluent: n-hexane-ethyl acetate) to obtain farnesol Nt-BOC-amino acid ester.

ファルネソールN-t-BOC-アミノ酸エステルを少量のアセトンに溶解し、塩酸-ジオキサン(2.5〜4.0 N)を塩酸量がエステルの20倍モル量に相当する量加え1時間撹拌後、減圧下溶媒を留去する。残渣をアセトン-メタノール系または酢酸エチル-メタノール系で再結晶して、ファルネソールアミノ酸エステルの塩酸塩を得る。   Dissolve farnesol Nt-BOC-amino acid ester in a small amount of acetone, add hydrochloric acid-dioxane (2.5-4.0 N) in an amount equivalent to 20 times the molar amount of hydrochloric acid and stir for 1 hour, and then evaporate the solvent under reduced pressure. To do. The residue is recrystallized with acetone-methanol system or ethyl acetate-methanol system to obtain farnesol amino acid ester hydrochloride.

ファルネソールアミノ酸エステルの塩酸塩3 mmolを水150 mlに加え、炭酸水素ナトリウムを加えて溶液のpHを7〜8にした後に酢酸エチルで抽出する(100 ml x 3回)。抽出液を無水硫酸ナトリウムで脱水後減圧下溶媒を留去し、油状のファルネソールアミノ酸エステルを得る。   3 mmol of farnesol amino acid ester hydrochloride is added to 150 ml of water, sodium bicarbonate is added to bring the pH of the solution to 7-8, and then extracted with ethyl acetate (100 ml x 3 times). The extract is dehydrated with anhydrous sodium sulfate, and then the solvent is distilled off under reduced pressure to obtain oily farnesol amino acid ester.

Figure 2009073831
Figure 2009073831

Figure 2009073831
Figure 2009073831

Figure 2009073831
Figure 2009073831

虚血再潅流脳障害の抑制効果の検討
脳梗塞は、脳血流量の低下によって種々の傷害機序がドミノ式に生じ、脳損傷を虚血中心部から虚血周辺部に拡大していく進行性の疾患であり、特に発症後の酸化ストレスや炎症反応の関与が強く、重篤性やQOLを考慮すると発症後の亜急性期、慢性期の治療が極めて重要である。臨床的には、脳梗塞後、投与開始が遅くても虚血再還流障害に対して抑制可能な薬剤が望まれる。
Inhibition of ischemia-reperfusion cerebral injury Cerebral infarction is caused by various damage mechanisms caused by a decrease in cerebral blood flow in the domino manner, and the brain damage progresses from ischemic center to the ischemic periphery. In particular, it is strongly related to oxidative stress and inflammatory reaction after onset, and considering the seriousness and QOL, treatment in the subacute phase and chronic phase after onset is extremely important. Clinically, a drug capable of suppressing ischemia-reperfusion injury even after the start of administration after cerebral infarction is desired.

脳梗塞発症後の治療剤は極めて少なく、特に発症後の亜急性期、慢性期の治療薬で実用化されているものはない。現時点では、脳血流低下による虚血中心部を改善する脳梗塞急性期の治療薬として、血栓溶解剤のtissue plasminogen activator(tPA)やハイドロオキシラジカル消去剤のエダラボンがあげられるが、これらは出血や腎不全などの重篤な副作用の問題がある。すなわち、脳梗塞発症後の治療開始までの時間に余裕がある優れた亜急性期・慢性期虚血性脳血管障害の治療薬の開発が望まれている。   There are very few therapeutic agents after the onset of cerebral infarction, and there are no therapeutic agents in particular in the subacute phase and chronic phase after the onset. At present, the thrombolytic agent tissue plasminogen activator (tPA) and the hydroxy radical scavenger edaravone are examples of treatments for acute cerebral infarction that improve the central part of ischemia caused by decreased cerebral blood flow. And serious side effects such as renal failure. That is, there is a demand for the development of an excellent therapeutic agent for subacute and chronic ischemic cerebrovascular disorders with sufficient time to start treatment after the onset of cerebral infarction.

このことから、MCA閉塞モデルにおいて再潅流後に薬物投与することで、再潅流による活性酸素種(ROIs)の直接的障害とROIsによる2次的な酸化ストレスや炎症反応に至る過程を反映した虚血再潅流脳障害の治療効果評価モデルを構築し、被験化合物の治療薬としての効果を検討した。
また、MCA閉塞モデルにおいて梗塞直前及び梗塞中に薬物投与し、予防薬としての効果も検討した。
From this, ischemia reflecting the process leading to the direct damage of reactive oxygen species (ROIs) due to reperfusion and secondary oxidative stress and inflammatory response due to ROIs by drug administration after reperfusion in the MCA occlusion model A therapeutic effect evaluation model for reperfusion brain injury was constructed, and the effect of the test compound as a therapeutic agent was examined.
In the MCA occlusion model, the drug was administered immediately before and during the infarction, and the effect as a prophylactic agent was also examined.

(1)虚血再潅流脳障害の予防効果評価法
ddY雄性マウス25-30 g(6-7週令)を用いKoizumi等の方法(脳卒中、第8巻、1−8頁、1986年)に従って中大脳動脈(MCA)閉塞モデルマウスを作成し、MCA閉塞を4時間とし、梗塞開始直前と梗塞3時間の2回試験薬物溶液を静脈内投与した。梗塞開始24時間後の脳切片標本を作製しトリフェニルテトラゾリウムクロリド染色(TTC steining)後、脳切片標本から画像処理によって脳梗塞巣体積を測定した。
(1) Evaluation method for prevention of ischemia-reperfusion brain injury
Middle cerebral artery (MCA) occlusion model mice were prepared using 25-30 g (6-7 weeks old) ddY male mice according to the method of Koizumi et al. (Stroke, Vol. 8, 1-8, 1986). The occlusion was 4 hours, and the test drug solution was intravenously administered twice, immediately before the start of infarction and 3 hours of infarction. A brain slice specimen 24 hours after the start of the infarction was prepared, and after triphenyltetrazolium chloride staining (TTC steining), the brain infarct volume was measured by image processing from the brain slice specimen.

(2)虚血再潅流脳障害の治療効果評価法
ddY雄性マウス25-30 g(6-7週令)を用いKoizumi等の方法(脳卒中、第8巻、1−8頁、1986年)に従って中大脳動脈(MCA)閉塞モデルマウスを作成し、MCA閉塞を4時間とし、虚血開始後6時間または10時間(再潅流後2時間または4時間)に薬物溶液を静脈内単回投与した。閉塞開始24時間後の脳切片標本を作製しトリフェニルテトラゾリウムクロリド染色(TTC steining)後、脳切片標本から画像処理によって脳梗塞巣体積を測定した。
(2) Evaluation method for therapeutic effect of ischemia-reperfusion brain injury
Middle cerebral artery (MCA) occlusion model mice were prepared using 25-30 g (6-7 weeks old) ddY male mice according to the method of Koizumi et al. (Stroke, Vol. 8, 1-8, 1986). The occlusion was 4 hours, and the drug solution was administered intravenously once 6 hours or 10 hours after initiation of ischemia (2 hours or 4 hours after reperfusion). A brain slice sample 24 hours after the start of occlusion was prepared, and after triphenyltetrazolium chloride staining (TTC steining), the brain infarct volume was measured from the brain slice sample by image processing.

ファルネソール(FO)およびファルネソールN,N-ジメチルグリシンエステル塩酸塩(FODMG)の虚血再潅流脳障害の予防効果
上記虚血再潅流脳障害の予防評価法に従って,(2E,6E) ファルネソール(FO)と(2E,6E) ファルネソールN,N-ジメチルグリシネート塩酸塩(FODMG)および市販製剤であるエダラボン(edaravone)の血再潅流脳障害に対する効果を評価した。
図1にMCA閉塞マウスの閉塞24時間後脳切片標本を、図2にMCA閉塞マウスの閉塞24時間後脳切片標本から画像処理によって求めた閉塞開始24時間後の梗塞巣の体積を示した。FOはDMSOに溶解して静脈内投与し、FODMGは水に溶解して静脈内投与した。
Preventive effect of farnesol (FO) and farnesol N, N-dimethylglycine ester hydrochloride (FODMG) on ischemia-reperfusion brain injury According to the above-mentioned prevention evaluation method for ischemia-reperfusion brain injury (2E, 6E) And (2E, 6E) farnesol N, N-dimethylglycinate hydrochloride (FODMG) and the commercial preparation edaravone on blood reperfusion brain injury were evaluated.
FIG. 1 shows the brain section sample 24 hours after the occlusion of the MCA occlusion mouse, and FIG. 2 shows the volume of the infarct lesion 24 hours after the start of the occlusion obtained from the brain section sample 24 hours after the occlusion of the MCA occlusion mouse. FO was dissolved in DMSO and administered intravenously, and FODMG was dissolved in water and administered intravenously.

FOは2μmol/kg x 2投与では有意な梗塞巣体積の抑制は見られず、20μmol/kg x 2の投与量において梗塞巣体積を有意に抑制した。
FODMGは2μmol/kg x 2と20μmol/kg x 2のどちらの投与量においても梗塞巣体積を有意に抑制し、その効果は投与量に依存した。FODMGはFOに比較して優れた血再潅流脳障害の予防効果を示した。
一方、エダラボンは2μmol/kg x 2投与では有意に抑制したが、20μmol/kg x 2の投与量では有意な効果が見られず、投与量が高くなると有効な効果が見られず、有効投与量の範囲が狭いことが示された。
FODMGの効果は投与量に依存することからは有効投与量範囲が広く、エダラボンに比して優れていることが明らかである。
FO showed no significant suppression of infarct volume at 2 μmol / kg × 2 administration, but significantly suppressed infarct volume at a dose of 20 μmol / kg × 2.
FODMG significantly suppressed infarct volume at both doses of 2 μmol / kg × 2 and 20 μmol / kg × 2, and the effect was dependent on the dose. FODMG showed an excellent preventive effect on blood reperfusion brain injury compared with FO.
On the other hand, edaravone was significantly suppressed by administration of 2 μmol / kg x 2, but no significant effect was seen at the dose of 20 μmol / kg x 2, and no effective effect was seen at higher doses. The range of was shown to be narrow.
Since the effect of FODMG depends on the dose, it is clear that the effective dose range is wide and superior to edaravone.

ファルネソールN,N-ジメチルグリシンエステル塩酸塩(FODMG)の虚血再潅流脳障害の治療効果
上記虚血再潅流脳障害の治療効果評価法に従って、エダラボンでは効果が見られない投与量(20μmol/kg)におけるFODMGの虚血再潅流脳障害の治療効果を虚血開始6時間後または10時間後の単回投与で評価した。FOはDMSOに溶解して静脈内投与し、FODMGは水に溶解して静脈内投与した。
FODMGは虚血開始6時間後と10時間後の単回投与の何れにおいても梗塞巣体積を有意に抑制した(図3)。FODMGは静脈内投与が可能であり、脳梗塞発症後の治療開始時間を極めて長く延長できることが明らかである。
Therapeutic effect of farnesol N, N-dimethylglycine ester hydrochloride (FODMG) on ischemia-reperfusion brain injury According to the above-mentioned method for evaluating the therapeutic effect of ischemia-reperfusion brain injury, a dose (20 μmol / kg) that is not effective with edaravone The therapeutic effect of FODMG on ischemia-reperfusion brain injury was evaluated by single administration 6 hours or 10 hours after the onset of ischemia. FO was dissolved in DMSO and administered intravenously, and FODMG was dissolved in water and administered intravenously.
FODMG significantly suppressed the infarct volume in both single administration at 6 hours and 10 hours after the onset of ischemia (FIG. 3). It is clear that FODMG can be administered intravenously and can extend the treatment start time after the onset of cerebral infarction extremely long.

本発明にかかるファルネソール誘導体による虚血性脳障害の予防効果の説明図である。It is explanatory drawing of the preventive effect of ischemic brain injury by the farnesol derivative concerning this invention. 本発明にかかるファルネソール誘導体による虚血性脳障害の予防効果の説明図である。It is explanatory drawing of the preventive effect of ischemic brain injury by the farnesol derivative concerning this invention. 本発明にかかるファルネソール誘導体による虚血性脳障害の治療効果の説明図である。It is explanatory drawing of the therapeutic effect of ischemic brain injury by the farnesol derivative concerning this invention.

Claims (4)

下記一般式(1):
Figure 2009073831
(式中、Rは窒素置換基を有するカルボン酸残基を意味する。)で表されるファルネソールカルボン酸エステル誘導体。
The following general formula (1):
Figure 2009073831
(Wherein R 1 represents a carboxylic acid residue having a nitrogen substituent).
請求項1記載の誘導体において、窒素置換基を有するカルボン酸残基が、アミノ酸、N-アシルアミノ酸、N-アルキルアミノ酸、N,N-ジアルキルアミノ酸、ピリジンカルボン酸及びそれらの生理学的に許容されるハロゲン化水素酸塩、アルキルスルホン酸塩、酸性糖塩の残基からなる群より選択されることを特徴とするファルネソールカルボン酸エステル誘導体。   The derivative according to claim 1, wherein the carboxylic acid residue having a nitrogen substituent is an amino acid, an N-acylamino acid, an N-alkylamino acid, an N, N-dialkylamino acid, a pyridinecarboxylic acid, or a physiologically acceptable product thereof. A farnesol carboxylate derivative characterized by being selected from the group consisting of residues of hydrohalides, alkylsulfonates, and acidic sugar salts. 1級または2級アミノ基、あるいは側鎖に水酸基またはチオール基を有するアミノ酸の前記アミノ基、水酸基及びチオール基を保護基で保護し、該保護基結合アミノ酸とファルネソールとをエステル化反応させることを特徴とする前記請求項1又は2記載のファルネソールカルボン酸エステル誘導体の製造方法。   Protecting the amino group, hydroxyl group and thiol group of a primary or secondary amino group or an amino acid having a hydroxyl group or a thiol group in a side chain with a protecting group, and esterifying the protecting group-bound amino acid with farnesol. The method for producing a farnesol carboxylic acid ester derivative according to claim 1 or 2, wherein N,N-ジアルキルアミノ酸のハロゲン化水素酸塩を用いて活性エステル化試薬の存在下にファルネソールとエステル化反応させることを特徴とする前記請求項1又は2記載のファルネソールカルボン酸エステル誘導体の製造方法。   3. The method for producing a farnesol carboxylic acid ester derivative according to claim 1 or 2, wherein an esterification reaction is performed with farnesol in the presence of an active esterification reagent using a hydrohalide salt of an N, N-dialkylamino acid. .
JP2008223466A 2007-08-31 2008-09-01 Farnesol derivative and production method thereof Pending JP2009073831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008223466A JP2009073831A (en) 2007-08-31 2008-09-01 Farnesol derivative and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007224990 2007-08-31
JP2008223466A JP2009073831A (en) 2007-08-31 2008-09-01 Farnesol derivative and production method thereof

Publications (1)

Publication Number Publication Date
JP2009073831A true JP2009073831A (en) 2009-04-09

Family

ID=40609166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008223466A Pending JP2009073831A (en) 2007-08-31 2008-09-01 Farnesol derivative and production method thereof

Country Status (1)

Country Link
JP (1) JP2009073831A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229051A (en) * 2009-03-26 2010-10-14 Natl Inst Of Radiological Sciences Agent for preventing or treating living body damage by radiation exposure and administration kit thereof
WO2014101051A1 (en) * 2012-12-27 2014-07-03 Kimberly-Clark Worldwide, Inc. Water soluble farnesol analogs and their use
GB2524207B (en) * 2012-12-27 2020-07-29 Kimberly Clark Co Water soluble essential oils and their use
GB2583036A (en) * 2012-12-27 2020-10-14 Kimberly Clark Co Water Soluble essential oils and their use

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229051A (en) * 2009-03-26 2010-10-14 Natl Inst Of Radiological Sciences Agent for preventing or treating living body damage by radiation exposure and administration kit thereof
WO2014101051A1 (en) * 2012-12-27 2014-07-03 Kimberly-Clark Worldwide, Inc. Water soluble farnesol analogs and their use
GB2525520A (en) * 2012-12-27 2015-10-28 Kimberly Clark Co Water soluble farnesol analogs and their use
GB2525520B (en) * 2012-12-27 2019-07-10 Kimberly Clark Co Water soluble farnesol analogs and their use
GB2524207B (en) * 2012-12-27 2020-07-29 Kimberly Clark Co Water soluble essential oils and their use
GB2583036A (en) * 2012-12-27 2020-10-14 Kimberly Clark Co Water Soluble essential oils and their use
GB2583036B (en) * 2012-12-27 2020-12-30 Kimberly Clark Co Water Soluble essential oils and their use

Similar Documents

Publication Publication Date Title
EP0799219B1 (en) Esters and amides of non-steroidal anti-inflammatory carboxylic acids which may be used as anti-oxidants, 5-lipoxygenase inhibitors and non-steroidal anti-inflammatory products
JPH07506373A (en) Soluble analogs of probucol
EP0434365A2 (en) HIV protease inhibitors useful for the treatment of aids
EP0274453A2 (en) Collagenase inhibitor derivatives, their preparation and pharmaceutical compositions containing them
WO2006047466A2 (en) Ophthamological drugs
JP2804177B2 (en) Brain-retaining compound and its use
JP2009073831A (en) Farnesol derivative and production method thereof
WO2007101925A1 (en) Use of 3,5-seco-4-norcholestane derivatives for obtaining a cytoprotective medicament
CH655936A5 (en) DERIVATIVES OF 3-AMINO PREGN-5-ENE, THEIR SALTS, THEIR PREPARATION, MEDICAMENTS AND COMPOSITIONS CONTAINING THEM.
JP5515078B2 (en) Ischemic injury inhibitor
RU2703725C1 (en) Phenylcarbamate derivatives as formyl peptide receptor modulators
EP0087378B1 (en) Oxime-ethers of alkylamino alcohols as medicaments, compounds and process for their preparation
WO2014205380A1 (en) Compounds and compounds for use in methods for treating diseases or conditions mediated by protein disulfide isomerase
US5612371A (en) Amino acid, derivatives, processes for their preparation and their therapeutic application
WO2006035142A1 (en) Preparation of phenol-amide compounds with antioxidant properties
EP0262053A2 (en) Amino-acid derivatives, their preparation and pharmaceutical compositions containing them
FR2521992A1 (en) NOVEL PYRIDINE COMPOUNDS USEFUL AS MEDICAMENTS
FR2510583A1 (en) NOVEL DERIVATIVES OF URSODESOXYCHOLIC ACID, PROCESS FOR THEIR PREPARATION AND THERAPEUTIC USE THEREOF
RU2111959C1 (en) N-[(4,5-dihydroxy- and 4,5,8-trihydroxy-9,10-dihydro-9,10-di- -oxo-2-anthracenyl)carbonyl]-amino acids, method of their synthesis and pharmaceutical composition based on thereof
JPS6159638B2 (en)
JP2006347942A (en) beta-AMYLOID FORMATION INHIBITOR
JPH0551355A (en) Polyene acid derivative
CH387058A (en) Process for the preparation of threo-1-p-nitrophenyl-2-dichloroacetamidopropane-1,3-diols and amino acids esters
CA1060020A (en) Process for the preparation of new dibenzo/b,c/ thiepine derivatives and salts thereof
CH642961A5 (en) BETA-LACTONES DERIVED FROM 2-HYDROXY CYCLOPENTANE CARBOXYLIC ACID, THEIR PREPARATION METHODS AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM.