JP2009071889A - Operation management method for distribution system, system, and program - Google Patents

Operation management method for distribution system, system, and program Download PDF

Info

Publication number
JP2009071889A
JP2009071889A JP2007194947A JP2007194947A JP2009071889A JP 2009071889 A JP2009071889 A JP 2009071889A JP 2007194947 A JP2007194947 A JP 2007194947A JP 2007194947 A JP2007194947 A JP 2007194947A JP 2009071889 A JP2009071889 A JP 2009071889A
Authority
JP
Japan
Prior art keywords
voltage
control
distribution system
control device
distributed power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007194947A
Other languages
Japanese (ja)
Other versions
JP5006728B2 (en
Inventor
Satoshi Kamimura
敏 上村
Hiroyuki Hatsuta
啓行 八太
Hirotake Kobayashi
広武 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2007194947A priority Critical patent/JP5006728B2/en
Publication of JP2009071889A publication Critical patent/JP2009071889A/en
Application granted granted Critical
Publication of JP5006728B2 publication Critical patent/JP5006728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

<P>PROBLEM TO BE SOLVED: To carry out cooperation control between voltage rationalization control with a voltage control apparatus set on the high voltage system side of a distribution system and voltage-rise suppression control with a distributed power supply linked to the low voltage system side of the distribution system. <P>SOLUTION: A centralized control target voltage, as the upper limit value of the voltage rationalization control with the voltage control apparatus such as a loop controller or the like, is so set as to be a value between the control start voltage of the distributed power supply and the control release voltage. Then, the voltage-rise suppression control with the distributed power supply is started, allowing the voltage control apparatus such as the loop controller or the like to continue voltage rationalization control, in a condition that the voltage-rise suppression control is not released. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、配電系統の運用管理方法、システム及びプログラムに関する。さらに詳述すると、低圧系統側に分散形電源が連系されかつ高圧系統側にループコントローラ等の電圧制御機器が設置された配電系統における電圧制御に好適な運用管理方法、システム及びプログラムに関する。   The present invention relates to a distribution system operation management method, system, and program. More specifically, the present invention relates to an operation management method, system, and program suitable for voltage control in a distribution system in which a distributed power source is connected to the low voltage system side and a voltage control device such as a loop controller is installed on the high voltage system side.

近年、分散形電源の系統への連系が進みつつある状況の中、配電系統への影響が懸念されている。これに対処するため、分散形電源を系統連系する場合には、「系統連系技術規程」に従って対策をとることとされている(非特許文献1)。「系統連系技術規程」による従来の配電系統の電圧上昇を抑制する対策は、分散電源自体がまず進相無効電力の制御を行い、それによっては十分な抑制効果が得られない場合は出力有効電力を低減させるものである。   In recent years, there is a concern about the influence on the distribution system in a situation where the connection to the system of the distributed power source is progressing. In order to cope with this, when a distributed power source is grid-connected, measures are taken in accordance with the “system grid technical regulations” (Non-patent Document 1). The countermeasure to suppress the voltage increase of the conventional distribution system according to the “system interconnection technical regulations” is that the distributed power source itself first controls the phase advance reactive power, and if this does not provide a sufficient suppression effect, the output is effective. The power is reduced.

更に、このような分散形電源を制御する方法として、適正電圧の上限値を設定しておいて、検出された電圧が当該上限値を超過した場合、運転力率を減少させて進相無効電力を発生させて電圧上昇を抑制し、また、当該上限値を大きく下回った場合には、発電出力及び運転力率を増加させて進相無効電力を回復させる太陽光発電システムが提案されている(非特許文献2)。   Furthermore, as a method of controlling such a distributed power source, an upper limit value of an appropriate voltage is set, and when the detected voltage exceeds the upper limit value, the driving power factor is decreased to advance the phase reactive power. Has been proposed to increase the power generation output and the operating power factor to recover the phase-advanced power when the voltage rise is suppressed by a large amount and the output voltage is greatly below the upper limit. Non-patent document 2).

一方、ループコントローラ(LPC)と呼ばれるパワーエレクトロニクス機器を既存の樹枝状配電系統の常開点に設置してループ・メッシュ運用を可能とした需要地系統の構成とすることにより、集中的に高圧系統側の電圧を制御することで制限されていた分散形電源の導入可能量を増大させるための研究がすすめられている。   On the other hand, a power electronics device called a loop controller (LPC) is installed at a normally open point of an existing dendritic power distribution system, and a configuration of a demand point system that enables loop mesh operation is used to concentrate the high voltage system. Research is being conducted to increase the amount of distributed power sources that could be limited by controlling the side voltage.

ループコントローラとは、図10に示すように直流リンクされた半導体電力変換技術応用の交直変換装置(BTB方式)であり、一方の三相交流を変圧器と交直変換器により一旦直流に変換し、再度、直交変換器と変圧器により交流に戻し他方から出力するものであり、交直変換器及び直交変換器の制御によりループコントローラを通じて流す潮流や各回線の有効電力、無効電力を任意に制御することを可能とするものである。このループコントローラによれば、同一配電用変電所変圧器の配電線同士だけでなく、位相や電圧が異なる異配電用変電所変圧器の配電線同士、異配電用変電所変圧器の配電線同士のループ化も可能とすることができる。また、ループ化された回線間の潮流制御と無効電力の制御による両端の電圧制御を同時に達成することができ、配電線事故時には、交直変換装置の特徴を生かし、事故電流の通過を防止することが可能とすることができるものである。   The loop controller is an AC / DC converter (BTB system) applied to a semiconductor power conversion technology that is DC-linked as shown in FIG. 10. One of the three-phase AC is once converted into DC by a transformer and an AC / DC converter, Again, it is returned to AC by the orthogonal transformer and transformer, and output from the other, and the current flowing through the loop controller and the active power and reactive power of each line are controlled arbitrarily by the control of the AC / DC converter and the orthogonal transformer. Is possible. According to this loop controller, not only between distribution lines of the same distribution substation transformer, but also between distribution lines of different distribution substation transformers with different phases and voltages, between distribution lines of different distribution substation transformers It is also possible to make a loop. In addition, power control between looped lines and voltage control at both ends by controlling reactive power can be achieved at the same time. In the event of a distribution line fault, the characteristics of the AC / DC converter can be used to prevent the passage of fault current. Is something that can be made possible.

このループコントローラを用いた需要地系統における運用管理としては、需要地系統内の運用管理システムに系統内の各情報を収集させ、ループコントローラの有効電力及び無効電力の最適制御量を演算により決定し、ループコントローラを含めた系統内の各機器を制御するシステムが提案されている(非特許文献3)。需要地系統では、センサー付き開閉器と運用プログラムにより、各地点の電圧・電流をモニタリングし、ループコントローラによる局所的な無効電力注入による電圧制御を可能とすることにより、細かな電圧管理を可能とするものである。この場合には、柱上変圧器タップによる電圧管理は行わず、変電所の変圧器タップの制御とループコントロールの制御により管理するため、高圧側の電圧をある許容幅をもって管理することで対応できる。   For operation management in the demand area system using this loop controller, the operation management system in the demand area system collects each information in the system, and the optimal control amount of the active power and reactive power of the loop controller is determined by calculation. A system for controlling each device in a system including a loop controller has been proposed (Non-Patent Document 3). In the demand system, detailed voltage management is possible by monitoring the voltage and current at each point with a switch with sensor and operation program, and enabling voltage control by local reactive power injection by the loop controller. To do. In this case, voltage management by pole transformer taps is not performed, but management is performed by control of transformer substation taps and loop control, so it is possible to manage by managing the voltage on the high voltage side with a certain tolerance. .

尚、本明細書において、「集中制御」という用語は、系統内の特定の機器に系統内の情報を集中的に収集させ、当該機器に系統内の他の機器の制御値を演算させて、系統全体の制御を行う制御手法を意味するものであり、また「制御開始電圧」とは分散形電源が電圧上昇抑制制御を開始する電圧値を、「電圧解除電圧」とは電圧上昇抑制制御を解除する電圧値を意味するものである。さらに、「ヒステリシス状の制御」とは、非特許文献2のように分散形電源により連系点の電圧が監視され、かつ電圧上昇抑制制御を開始する電圧値と解除する電圧値が異なる制御手法を意味するものである。   In this specification, the term “centralized control” means that a specific device in the system centrally collects information in the system, and causes the device to calculate control values of other devices in the system. This means a control method that controls the entire system. The “control start voltage” is the voltage value at which the distributed power supply starts the voltage rise suppression control, and the “voltage release voltage” is the voltage rise suppression control. It means the voltage value to be released. Furthermore, “hysteresis-like control” is a control method in which the voltage at the connection point is monitored by a distributed power source as in Non-Patent Document 2, and the voltage value at which voltage rise suppression control is started is different from the voltage value to be released. Means.

「系統連系規程」日本電気協会 系統連系専門部会(JEAC9701−2006),2006年"Rules for grid interconnection" NEC Association Grid interconnection specialist group (JEAC 9701-2006), 2006 石川崇、黒川浩助他「太陽光発電システム複数台連係時における運転特性評価」電気学会 新エネルギー・環境研究会予稿集(2001/02/21)Takashi Ishikawa, Kosuke Kurokawa et al. “Evaluation of operating characteristics when multiple photovoltaic power generation systems are linked” Proceedings of the IEEJ New Energy and Environment Study Group (2001/02/21) 上村敏、松田勝弘:「需要地系統の運用管理手法提案−最適制御量決定プログラムの開発−」,電力中央研究所,研究報告,T01059,2001Satoshi Uemura, Katsuhiro Matsuda: “Proposal of operation management method for demand system-Development of optimal control amount determination program”, Central Research Institute of Electric Power, Research report, T01059, 2001

しかしながら、分散形電源そのものに電圧上昇抑制機能を有しているとはいっても、系統全体の電圧の適正化を行うことができず、分散形電源が大量に連系された場合や、配電線に偏って連系された場合には、配電線の電圧管理が困難となり、連系量が制限される問題即ち分散形電源の導入量の制限を受けたり、あるいはそれらの逆潮流により連系点の電圧が上昇し、幾つかの分散形電源では発電出力を絞って運転する可能性があり、場合によっては低出力で運転を継続することも考えられる。   However, even though the distributed power supply itself has a voltage rise suppression function, it is not possible to optimize the voltage of the entire system, and when the distributed power supply is connected in large quantities or distribution lines If the power distribution system is biased, the voltage management of the distribution line becomes difficult, and there is a problem that the amount of connection is limited, that is, the amount of introduction of the distributed power source is limited, or the connection point is due to their reverse power flow. In some distributed power sources, there is a possibility that the power generation output is reduced, and in some cases, the operation may be continued at a low output.

他方、これらの問題は、高圧系統側にループコントローラ等の電圧制御機器を設置して樹枝状の配電線をループ状にした需要地系統とすることにより解消することができるものの、ループコントローラ等の電圧制御機器だけで電圧制御しようとすれば、ループコントローラ等の必要容量が多くなりコスト高となるという問題がある。しかも、現状において、分散形電源に具備されている電圧上昇抑制機能により電圧適正化が行われていることから、これを無視して高圧側での対策のみで系統全体の電圧変動の適正化を実施することは最善の対策とは言い難い。   On the other hand, although these problems can be solved by installing a voltage control device such as a loop controller on the high voltage system side to make a demand area system in which the dendritic distribution line is looped, the loop controller etc. If voltage control is to be performed using only the voltage control device, there is a problem that the required capacity of the loop controller and the like increases and the cost increases. In addition, at present, voltage optimization is performed by the voltage rise suppression function provided in the distributed power supply. Therefore, the voltage fluctuation of the entire system can be optimized only by taking measures on the high voltage side, ignoring this. Implementing is not the best measure.

そこで、本発明は、上記2つの制御を協調して制御することでループコントローラ等の電圧制御機器の低容量化を図ることを可能とする配電系統の運用管理方法、システムおよびプログラムを提供することを目的とする。   Accordingly, the present invention provides an operation management method, system, and program for a distribution system that can reduce the capacity of a voltage control device such as a loop controller by controlling the above two controls in a coordinated manner. With the goal.

かかる目的を達成するため、請求項1記載の配電系統の運用管理方法は、低圧系統側に分散形電源が連系されかつ高圧系統側に電圧制御機器が設置された配電系統において、配電系統の集中制御を行う運用管理システムが、分散形電源が電圧上昇抑制制御を開始する電圧値である制御開始電圧と、制御開始電圧以下であって分散形電源が電圧上昇抑制制御を解除する電圧値である制御解除電圧との間の電圧値を、電圧制御機器による電圧適正化制御の上限値である集中制御目標電圧とし、集中制御目標電圧に配電系統内の電圧を抑制するよう電圧制御機器からの無効電力の出力量を制御するようにしている。   In order to achieve this object, the operation management method for the distribution system according to claim 1 is a distribution system in which a distributed power source is connected to the low voltage system side and a voltage control device is installed on the high voltage system side. The operation management system that performs centralized control has a control start voltage that is a voltage value at which the distributed power source starts voltage rise suppression control, and a voltage value that is equal to or lower than the control start voltage and at which the distributed power source cancels the voltage rise suppression control. The voltage value between a certain control release voltage is the centralized control target voltage that is the upper limit value of the voltage optimization control by the voltage control device, and the voltage control device outputs the centralized control target voltage to suppress the voltage in the distribution system. The amount of reactive power output is controlled.

したがって、分散形電源による電圧上昇抑制制御が開始され、かつ解除されない状態で、電圧制御機器による電圧適正化制御が持続される。   Therefore, the voltage optimization control by the voltage control device is continued in a state where the voltage rise suppression control by the distributed power source is started and not released.

請求項2に記載の配電系統の運用管理方法は、低圧系統側に分散形電源が連系されかつ高圧系統側に電圧制御機器が設置された配電系統において、配電系統の集中制御を行う運用管理システムが、需給インターフェイスから分散形電源の発電量及び全需要家の負荷量の実測値を需要家情報として受信し、電圧制御機器の電圧適正化制御の上限値である集中制御目標電圧を、需要家情報に基づいて潮流計算をおこなって、かつ分散形電源が電圧上昇抑制制御を開始する電圧値である制御開始電圧及び制御開始電圧以下であって分散形電源が電圧上昇抑制制御を解除する電圧値である制御解除電圧との間の値として算出し、集中制御目標電圧に配電系統内の電圧を抑制するように電圧制御機器からの無効電力の出力量を制御するようにしている。   The operation management method for the distribution system according to claim 2 is an operation management for centralized control of the distribution system in a distribution system in which a distributed power source is connected to the low voltage system side and a voltage control device is installed on the high voltage system side. The system receives the power generation amount of the distributed power source and the measured value of the load amount of all consumers as customer information from the supply and demand interface, and demands the centralized control target voltage, which is the upper limit value of voltage optimization control of voltage control equipment, as demand. The voltage at which the distributed power supply cancels the voltage rise suppression control when the power flow is calculated based on the house information and the voltage is below the control start voltage and the control start voltage, which is the voltage value at which the distributed power supply starts the voltage rise suppression control. It is calculated as a value between the control release voltage, which is a value, and the output amount of reactive power from the voltage control device is controlled so as to suppress the voltage in the distribution system to the central control target voltage.

また、請求項3に記載の発明は、請求項1に記載の配電系統の運用管理方法において、集中制御目標電圧を、制御解除電圧に近似させるようにしている。したがって、より制御解除電圧に近い、低い電圧値で電圧制御機器による電圧適正化制御が行われるようにしている。   According to a third aspect of the present invention, in the operation management method for the distribution system according to the first aspect, the central control target voltage is approximated to the control release voltage. Therefore, the voltage optimization control by the voltage control device is performed at a low voltage value that is closer to the control release voltage.

また、請求項4に記載の発明は、請求項1から3までのいずれかに記載の配電系統の運用管理方法において、電圧制御機器はループコントローラであって、集中制御目標電圧に配電系統内の電圧を抑制するようループコントローラからの有効電力と無効電力の出力量をループコントローラの制御用機器に対し送信するようにしている。   According to a fourth aspect of the present invention, in the operation management method for a power distribution system according to any one of the first to third aspects, the voltage control device is a loop controller, and the central control target voltage is included in the power distribution system. The output amounts of active power and reactive power from the loop controller are transmitted to the control device of the loop controller so as to suppress the voltage.

また、請求項5に記載の配電系統の運用管理システムは、低圧系統側に分散形電源が連系されかつ高圧系統側に電圧制御機器が設置され、かつ系統内の集中制御を行う運用管理システムおよび需給インターフェイスが通信ネットワークを通じて接続された配電系統において、運用管理システムが、需給インターフェイスから分散形電源の発電量及び全需要家の負荷量の実測値を需要家情報として受信する需要家情報受信手段と、電圧制御機器の電圧適正化制御の上限値である集中制御目標電圧を、需要家情報に基づいて潮流計算をおこなって、かつ予め記憶装置に記憶された分散形電源が電圧上昇抑制制御を開始する電圧値である制御開始電圧及び制御開始電圧以下であって分散形電源が電圧上昇抑制制御を解除する電圧値である制御解除電圧との間の値として算出し、集中制御目標電圧に配電系統内の電圧を抑制するための電圧制御機器からの無効電力の出力量を算出する制御量決定手段と、出力量を電圧制御機器または電圧制御機器の制御用機器に対し送信する制御量送信手段とを備えるものである。   The power distribution system operation management system according to claim 5 is an operation management system in which a distributed power source is connected to the low voltage system side, a voltage control device is installed on the high voltage system side, and centralized control in the system is performed. And a distribution system in which the supply and demand interface is connected via a communication network, the operation management system receives customer power information from the supply and demand interface and the measured values of the loads of all consumers as customer information. And the centralized control target voltage, which is the upper limit of voltage optimization control of the voltage control device, calculates the power flow based on the customer information, and the distributed power source previously stored in the storage device performs the voltage rise suppression control. Control start voltage that is a voltage value to be started and control release voltage that is equal to or less than the control start voltage and is a voltage value at which the distributed power source cancels the voltage rise suppression control. A control amount determining means for calculating an output amount of reactive power from the voltage control device for suppressing the voltage in the distribution system to a central control target voltage, and the output amount as a voltage control device or Control amount transmission means for transmitting to the control device of the voltage control device.

また、請求項6に記載の発明は、請求項5に記載の配電系統の運用管理システムにおいて、電圧制御機器はループコントローラであって、制御量決定手段は、集中制御目標電圧に配電系統内の電圧を抑制するようループコントローラからの有効電力と無効電力の出力量を算出するものである。   According to a sixth aspect of the present invention, in the power distribution system operation management system according to the fifth aspect of the present invention, the voltage control device is a loop controller, and the control amount determining means is connected to the central control target voltage within the distribution system. The output amounts of the active power and reactive power from the loop controller are calculated so as to suppress the voltage.

更に、請求項7に記載の配電系統の運用管理プログラムは、低圧系統側に分散形電源が連系されかつ高圧系統側に電圧制御機器が設置され、かつ系統内の集中制御を行う運用管理システムおよび需給インターフェイスが通信ネットワークを通じて接続された配電系統において、運用管理システムに、需給インターフェイスから分散形電源の発電量及び全需要家の負荷量の実測値を需要家情報として受信させる需要家情報受信処理、電圧制御機器の電圧適正化制御の上限値である集中制御目標電圧を、需要家情報に基づいて潮流計算を実行させ、かつ予め記憶装置に記憶された分散形電源が電圧上昇抑制制御を開始する電圧値である制御開始電圧及び制御解開始電圧以下であって分散形電源が電圧上昇抑制制御を解除する電圧値である制御解除電圧との間の値として算出させ、集中制御目標電圧に配電系統内の電圧を抑制するための電圧制御機器の無効電力の出力量を算出させる制御量決定処理及び出力量を電圧制御機器または電圧制御機器の制御用機器に対し送信させる制御量送信処理とを実行させるものである。   The power distribution system operation management program according to claim 7 is an operation management system in which a distributed power source is connected to the low voltage system side, a voltage control device is installed on the high voltage system side, and centralized control in the system is performed. In a distribution system in which the supply and demand interface is connected through a communication network, the operation management system receives the measured value of the power generation amount of the distributed power source and the load amount of all customers as the customer information from the supply and demand interface. The centralized control target voltage, which is the upper limit value of voltage optimization control for voltage control equipment, is calculated based on customer information, and the distributed power source stored in advance in the storage device starts voltage rise suppression control. Control release that is equal to or lower than the control start voltage and control solution start voltage that are voltage values that the distributed power supply releases voltage rise suppression control Control amount determination processing for calculating the amount of reactive power output of the voltage control device for causing the central control target voltage to suppress the voltage in the distribution system and the output amount to be the voltage control device or voltage Control amount transmission processing to be transmitted to the control device of the control device is executed.

したがって、電圧制御機器による電圧適正化制御の上限値である集中制御目標電圧を、需要家の発電状況等を考慮し、かつ分散形電源の制御開始電圧と制御解除電圧との間の値となるようにを設定することで、分散形電源による電圧上昇抑制制御が開始され、かつ解除されない状態で、電圧制御機器による電圧適正化制御が持続される。   Therefore, the centralized control target voltage, which is the upper limit value of the voltage optimization control by the voltage control device, is a value between the control start voltage and the control release voltage of the distributed power source in consideration of the power generation situation of the consumer. By setting so, voltage increase suppression control by the distributed power source is started, and voltage optimization control by the voltage control device is continued in a state where it is not released.

本発明にかかる配電系統の運用管理方法、システム及びプログラムによれば、分散形電源による電圧上昇抑制制御が開始され、かつ解除されない状態で、電圧制御機器による電圧適正化制御が持続されるので、分散形電源の電圧抑制機能の活用が可能となってループコントローラ等の電圧制御機器の必要容量を削減することができ、電力設備コストの低減を図ることが可能となる。しかも、高圧配電側における集中管理によって、分散形電源が大量に連系されたり、配電線に偏って連系される場合の配電線の電圧管理を容易にし連系量の制限を受けることがない。   According to the operation management method, system, and program of the power distribution system according to the present invention, since voltage rise suppression control by the distributed power source is started and not released, voltage optimization control by the voltage control device is continued. The voltage suppression function of the distributed power supply can be utilized, so that the required capacity of voltage control equipment such as a loop controller can be reduced, and the power equipment cost can be reduced. In addition, centralized management on the high-voltage distribution side facilitates voltage management of distribution lines when distributed power sources are connected in large quantities or are biased and connected to distribution lines, and does not limit the amount of connection. .

また、従来制限されていた分散形電源の発電量を増大できるので、エネルギーの有効活用を促進することができる。   Moreover, since the power generation amount of the distributed power source, which has been limited in the past, can be increased, the effective use of energy can be promoted.

また、請求項3に記載の配電系統の運用管理方法によれば、ループコントローラ等の電圧制御機器の必要容量を更に低減させることが可能となる。   In addition, according to the operation management method for the power distribution system according to the third aspect, it is possible to further reduce the required capacity of the voltage control device such as the loop controller.

以下、本発明の構成を図面に示す実施の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on embodiments shown in the drawings.

図1にループコントローラを用いた本発明の配電系統の運用管理方法及びシステムを適用した需要地系統の一実施形態を概略的に示す。尚、需要地系統の運用管理全体のシステム構成並びにその機能については、公知であるのでその詳細な説明については省略する(参考文献1:非特許文献3,参考文献2:上村敏,松田勝弘「需要地系統の運用管理手法の検討−需要地系統構成機器の制御効果−」電力中央研究所,研究報告 T02037)。   FIG. 1 schematically shows an embodiment of a demand point system to which an operation management method and system of a power distribution system of the present invention using a loop controller is applied. Since the system configuration and the function of the entire operation management of the demand point system are publicly known, detailed description thereof will be omitted (Reference 1: Non-Patent Document 3, Reference 2: Satoshi Uemura, Katsuhiro Matsuda “ Examination of operation management method of demand area system-control effect of demand area system component equipment "Central Research Institute of Electric Power, research report T02037).

本実施形態にかかる需要地系統は、低圧系統側に分散形電源が連系されかつ高圧系統側の樹枝状配電系統の常開点にループコントローラ2が設置されてループ・メッシュ運用を可能としたものであり、系統内の集中制御を行う運用管理システム1、ループコントローラ(以下、LPCともいう)2、運用管理サブシステム3および需給インターフェイス(以下、需給IFと呼ぶ。図1においては図示省略されているが、図11に符号4で示されている。)が通信ネットワーク12を通じて接続されている。また、制御対象機器としては、例えば、区分開閉器、変電所の変圧器5及び遮断器6等が存在する。また、各ループコントローラ2には、図10に示すように、ループコントローラ制御用機器としてループコントローラ端末(図1においては図示省略されているが、図10には符号11で示される。)が備えられており、該端末を介してループコントローラ2が制御される。勿論、ループコントローラ端末は、制御量決定手段21において算出された制御量をループコントローラ2に出力させる手段を備えていれば良く、例えば、運用管理システム1や運用管理サブシステム3に当該手段を備えるさせるようにしても、ループコントローラ2自体に当該手段を備えさせるようにしても良い。   In the demand area system according to the present embodiment, a distributed power source is connected to the low-voltage system side, and a loop controller 2 is installed at a normally open point of the dendritic distribution system on the high-voltage system side, enabling loop mesh operation. An operation management system 1 that performs centralized control in the system, a loop controller (hereinafter also referred to as LPC) 2, an operation management subsystem 3 and a supply and demand interface (hereinafter referred to as supply and demand IF. Not shown in FIG. 1) 11, which is indicated by reference numeral 4 in FIG. 11) through the communication network 12. Moreover, as control object apparatus, there exist a division switch, the transformer 5 of a substation, the circuit breaker 6, etc., for example. Further, as shown in FIG. 10, each loop controller 2 includes a loop controller terminal (not shown in FIG. 1 but indicated by reference numeral 11 in FIG. 10) as a loop controller control device. The loop controller 2 is controlled via the terminal. Of course, the loop controller terminal only needs to include a means for causing the loop controller 2 to output the control amount calculated by the control amount determination means 21, for example, the operation management system 1 or the operation management subsystem 3 includes the means. Alternatively, the means may be provided in the loop controller 2 itself.

ここで、運用管理システム1は、上位系統と需給IFの間との情報中継を行うとともに、他の需要地系統の運用管理システム間との託送状況情報等の情報交換を行いながら、運用計画や、需要地系統内の潮流や電圧の制御、事故時復旧制御を行うものである。本実施形態において運用管理システム1による電圧制御は、常時運用時に分散形電源の発電量と需要家の負荷量を入力値とする潮流計算をおこなって、各需給IFの設置点に必要な有効電力、無効電力(以下、系統情報という)を作成し、各LPC2に指示する集中制御目標電圧を設定し、この値を踏まえてLPC2の制御出力を決定し、各LPC端末へ送信することによって実現される。   Here, the operation management system 1 relays information between the host system and the supply and demand IF, while exchanging information such as consignment status information between operation management systems of other demand point systems, It controls the power flow and voltage in the demand area system, and performs recovery control in the event of an accident. In this embodiment, the voltage control by the operation management system 1 performs the power flow calculation using the power generation amount of the distributed power source and the load amount of the customer as input values during normal operation, and the effective power necessary for the installation point of each supply and demand IF This is realized by creating reactive power (hereinafter referred to as system information), setting a centralized control target voltage instructing each LPC 2, determining a control output of LPC 2 based on this value, and transmitting it to each LPC terminal. The

この運用管理システム1は、例えばコンピュータ30(計算機)に図6に例示する配電系統の運用管理プログラムを実行させることにより実現される。尚、運用管理プログラムには、運用開始前に、管理対象となる配電系統の構成、例えば線路のインピーダンス、接続状況、需要家の接続位置、LPCの設置位置などが入力され、配電系統の構成情報として記憶装置に記憶される。運用管理プログラムは、先ず、需要家情報取得処理(S1)を行う。本処理において運用管理システム1は、需給IFから需要家情報を収集間隔毎に受信し、これを記憶装置33に記憶させる。次に、制御量決定処理(S2)を行う。本処理では、予め補助記憶装置33に記憶された系統情報、制御開始電圧、制御解除電圧及び前処理において記憶した需要家情報を読み出して、潮流計算によりLPC2の集中制御目標電圧を決定しかつ各地点での電圧が集中制御目標電圧となるようにLPC2の制御量を決定し、記憶装置33に記憶させる。更に、制御量比較処理(S3)を行う。本処理では、制御量決定処理(S2)において算出した制御量及び予め補助記憶装置33に記憶されている「運用計画」における事前演算にて算出された予測制御量情報を読み出して比較し、一致していない場合(S3;No)には、制御量送信処理(S4)へ移り、算出した制御量をループコントローラ端末に送信させる。ループコントローラは送られてきた指令値に従い出力を一定に制御する。この動作を一定間隔で行い、常時電圧の適正化を実現する。一方、算出された制御量と予め記憶されていた予測制御量とが一致している場合(S3;Yes)には、予測制御量情報に基づき電圧適正化制御が成されればよいため、制御量送信処理(S4)を行わず、次回の需要家情報取得まで待機する。尚、ステップ3の制御量比較処理は場合によっては省かれ、その都度算出された制御量によってループコントローラが制御されるようにしても良い。   The operation management system 1 is realized, for example, by causing a computer 30 (computer) to execute an operation management program for the distribution system illustrated in FIG. The operation management program is input with the configuration of the distribution system to be managed, for example, the impedance of the line, the connection status, the connection position of the customer, the installation position of the LPC, etc. before starting the operation. Is stored in the storage device. The operation management program first performs customer information acquisition processing (S1). In this process, the operation management system 1 receives customer information from the supply and demand IF at every collection interval, and stores it in the storage device 33. Next, a control amount determination process (S2) is performed. In this process, the system information, the control start voltage, the control release voltage, and the customer information stored in the preprocess are stored in advance in the auxiliary storage device 33, the central control target voltage of the LPC 2 is determined by power flow calculation, and The control amount of the LPC 2 is determined so that the voltage at the point becomes the central control target voltage, and is stored in the storage device 33. Further, a control amount comparison process (S3) is performed. In this process, the control amount calculated in the control amount determination process (S2) and the predicted control amount information calculated in advance in the “operation plan” stored in advance in the auxiliary storage device 33 are read and compared. If not (S3; No), the process proceeds to a control amount transmission process (S4), and the calculated control amount is transmitted to the loop controller terminal. The loop controller controls the output to be constant according to the command value sent. This operation is performed at regular intervals, and the voltage is always optimized. On the other hand, when the calculated control amount matches the predicted control amount stored in advance (S3; Yes), the voltage optimization control only needs to be performed based on the predicted control amount information. It does not perform quantity transmission processing (S4) and waits until the next customer information acquisition. The control amount comparison process in step 3 may be omitted in some cases, and the loop controller may be controlled by the control amount calculated each time.

尚、一致したかどうかの判断には、予め閾値を設定し、閾値以上の変化がある場合には一致すると、そうでない場合は一致しないと判断すればよい。尚、当該閾値は系統管理者が系統制御の目的等に応じて適宜設定すればよい。   In order to determine whether or not they match, a threshold value is set in advance, and if there is a change greater than or equal to the threshold value, it may be determined that they match, and if not, it may be determined that they do not match. The threshold may be set as appropriate by the system administrator according to the purpose of system control.

以上の配電系統の運用管理プログラムを実行することにより、コンピュータ30(計算機)に例えば図2に示すように、需給IFから需要家情報を受信する需要家情報取得処理(S1)を実行する需要家情報取得手段20と、受信した需要家情報及び予め記憶されている分散形電源の制御開始電圧と制御解除電圧に基づいて、ループコントローラ2の集中制御目標電圧を決定し、かつ各地点での電圧が集中制御目標電圧となるようにループコントローラ2の制御量(有効電力・無効電力の出力量をいう)を決定する制御量決定処理(S2)を実行する制御量決定手段21と、制御量決定手段21において算出した制御量と予め記憶されている予測制御量情報との比較を行う制御量比較処理(S3)を実行する制御量比較手段22と、制御量決定手段21において算出した制御量をループコントローラ端末に対して送信する制御量送信処理(S4)を実行する制御量送信手段23とを少なくとも備える運用管理システム1が実現される。   As shown in FIG. 2, for example, the computer 30 (computer) executes the customer information acquisition process (S1) for receiving customer information from the supply and demand IF by executing the above distribution system operation management program. The central control target voltage of the loop controller 2 is determined based on the information acquisition means 20, the received customer information and the pre-stored control start voltage and control release voltage of the distributed power source, and the voltage at each point Control amount determination means 21 for executing a control amount determination process (S2) for determining a control amount (referred to as an output amount of active power / reactive power) of the loop controller 2 so that becomes a centralized control target voltage, and control amount determination A control amount comparison means 22 for executing a control amount comparison process (S3) for comparing the control amount calculated in the means 21 with the predicted control amount information stored in advance; Operation management system 1 the calculated control amount comprises at least a control amount transmitting means 23 for performing control amount of transmission processing for transmission to the loop controller terminal (S4) in means 21 is realized.

そして、運用管理システム1は、需給インターフェイスから分散形電源8の発電量及び全需要家の負荷量の実測値を需要家情報として受信し、ループコントローラ2の電圧適正化制御の上限値である集中制御目標電圧を、需要家情報に基づいて潮流計算をおこなって、分散形電源が電圧上昇抑制制御を開始する制御開始電圧及び制御開始電圧以下であって分散形電源が電圧上昇抑制制御を解除する制御解除電圧との間の値として算出し、集中制御目標電圧に配電系統内の電圧を抑制するためのループコントローラ2からの有効電力、無効電力の出力量を算出し、出力量をループコントローラ2などの制御用機器に対し送信する。尚、潮流計算においては、各地点の情報と配電系統構成情報から、ループコントローラ2が有効電力と無効電力をどのくらい出すと各地点の電圧が幾ら位になるかがわかるので、各地点の電圧が目標電圧となるように、ループコントローラ2の出力を決定できる。   Then, the operation management system 1 receives, as customer information, the power generation amount of the distributed power source 8 and the actual load values of all the consumers from the supply and demand interface, and the concentration that is the upper limit value of the voltage optimization control of the loop controller 2 The control target voltage is calculated based on the customer information and the power flow is calculated, and the distributed power source is below the control start voltage and the control start voltage at which the distributed power source starts the voltage rise suppression control, and the distributed power source releases the voltage rise suppression control. It calculates as a value between the control release voltage, calculates the output amount of active power and reactive power from the loop controller 2 for suppressing the voltage in the distribution system to the central control target voltage, and outputs the output amount to the loop controller 2 To the control device. In the tidal current calculation, it can be understood from the information of each point and the distribution system configuration information how much the loop controller 2 gives active power and reactive power, and how much the voltage at each point becomes. The output of the loop controller 2 can be determined so as to be the target voltage.

他方、運用管理サブシステム3は、配電線を幾つかに区切った区間内を監視する機器であり、開閉器の情報監視、制御や事故時の復旧処理等を行うものである。また、需給IFは各需要家または幾つかの需要家をまとめた需要家群を監視、制御する機器である。また、符号7は線路開閉器、符号8は太陽光発電等のインバータを使った分散形電源、符号9は需要家内で電力を消費する負荷、符号10はコジェネレーション、風力等の回転機型分散形電源をそれぞれ示している。   On the other hand, the operation management subsystem 3 is a device that monitors the section in which the distribution lines are divided into several parts, and performs information monitoring and control of the switch, recovery processing in the event of an accident, and the like. The supply and demand IF is a device that monitors and controls each customer or a group of customers that are a group of several customers. Reference numeral 7 is a line switch, reference numeral 8 is a distributed power source using an inverter such as photovoltaic power generation, reference numeral 9 is a load that consumes electric power in a consumer, reference numeral 10 is a rotating machine type dispersion such as cogeneration, wind power, etc. Each power source is shown.

上述の運用管理システム1を実現するコンピュータ30は、例えば図3に示すように、中央処理演算装置(CPU)31、RAMなどの主記憶装置(メモリ)32、ハードディスクなどの補助記憶装置33、キーボードやマウスなどの入力装置34、ディスプレイやプリンタ等の出力装置35、FDやCD、DVDなどの媒体に記録されたデータを読み取るディスクドライブ等のデータ読取装置36や、外部との通信を行う通信インターフェイス37等のハードウェア資源がバス38により接続されて構成されている。尚、主記憶装置32及び補助記憶装置33を併せて単に記憶装置ともいう。   As shown in FIG. 3, for example, the computer 30 for realizing the operation management system 1 includes a central processing unit (CPU) 31, a main storage device (memory) 32 such as a RAM, an auxiliary storage device 33 such as a hard disk, and a keyboard. An input device 34 such as a mouse, an output device 35 such as a display or a printer, a data reader 36 such as a disk drive for reading data recorded on a medium such as an FD, CD, or DVD, or a communication interface for communicating with the outside Hardware resources such as 37 are connected by a bus 38. The main storage device 32 and the auxiliary storage device 33 are also simply referred to as a storage device.

また、補助記憶装置33には、本発明の配電系統の運用管理プログラム39が記録されており、このコンピュータ30上で当該プログラムが実行されることにより、コンピュータが上記配電系統の運用管理システム1の各手段として機能するものである。   The auxiliary storage device 33 stores a distribution system operation management program 39 according to the present invention. When the program is executed on the computer 30, the computer executes the distribution system operation management system 1. It functions as each means.

更に、補助記憶装置33には、分散形電源の制御開始電圧、制御解除電圧及び事前演算にて算出された予測制御量情報、系統情報等の各種データ40が予め記憶されている。尚、予測制御量情報は、「運用計画」処理の実行により算出され、日々更新されるものである。   Furthermore, the auxiliary storage device 33 stores in advance various data 40 such as control start voltage, control release voltage, predicted control amount information calculated by pre-calculation, system information, and the like. Note that the predicted control amount information is calculated by executing the “operation plan” process and updated daily.

また、運用管理サブシステム3、ループコントローラ端末等の各機器も運用管理システム1と同様、対応する運用プログラム並びに制御プログラムを実行させる既存のまたは新規のコンピュータにより実現される。   Each device such as the operation management subsystem 3 and the loop controller terminal is also realized by an existing or new computer that executes the corresponding operation program and control program, as in the operation management system 1.

また、分散形電源とは、太陽光発電、風力発電、小水力発電、廃棄物発電、バイオマス発電、マイクロガスタービン、燃料電池などを指す。以下、本実施形態では、太陽光発電インバータの制御を例に説明するが、本発明が適用可能な分散形電源の種類はヒステリシス状の制御を行うものであれば、特に限られるものではない。   The distributed power source refers to solar power generation, wind power generation, small hydropower generation, waste power generation, biomass power generation, micro gas turbine, fuel cell, and the like. Hereinafter, in the present embodiment, the control of the photovoltaic inverter will be described as an example. However, the type of the distributed power source to which the present invention can be applied is not particularly limited as long as it performs hysteresis-like control.

これらの機器は、例えば光ファイバ等の通信ネットワーク12を通じて相互に接続されており、平常時であれば、主に運用管理システム1がLPC2や需給IFに各種指令やデータ提供を行い、電圧適正化を実現するものである。また、状況によっては、需給IFが自律分散的に分散形電源を制御し、ローカルエリアにおける高調波抑制、無効電力調整等のサービスを行うものである。   These devices are connected to each other through a communication network 12 such as an optical fiber. In normal operation, the operation management system 1 mainly provides various commands and data to the LPC 2 and the supply and demand IF to optimize the voltage. Is realized. Also, depending on the situation, the supply and demand IF controls the distributed power source autonomously and performs services such as harmonic suppression and reactive power adjustment in the local area.

以上のように構成された、運用管理システム1並びに需要地系統によると、各需給IFより、定期的に収集された分散形電源の発電量および需要家の負荷量の実測値(以下、需要家情報という)に基づいてループコントローラ2の電圧適正化に関する最適制御量が決定される。尚、需要家情報の収集間隔は需要地系統の規模に依存するものであり、需要地系統の規模に応じて最適な収集間隔(例えば、30分間)とすればよい。例えば、規模が大きい場合は、収集するデータ量が多くなり、制御量を決定するための演算時間も長くなるので、収集間隔は長くすることが好ましい。   According to the operation management system 1 and the demand point system configured as described above, the power generation amount of the distributed power source and the actual load value of the customer (hereinafter referred to as the customer) collected from each supply and demand IF. The optimum control amount for voltage optimization of the loop controller 2 is determined based on the information). The collection interval of customer information depends on the scale of the demand place system, and may be an optimum collection interval (for example, 30 minutes) according to the scale of the demand place system. For example, when the scale is large, the amount of data to be collected increases, and the calculation time for determining the control amount also increases. Therefore, it is preferable to increase the collection interval.

ここで、ループコントローラ2の電圧適正化(電圧変動幅の抑制)の指標としては、全ての区間の境(ノード)の電圧の中から、最大の値と最小の値を抽出し、その差をとったものを電圧適正化の評価指標とすることができる。   Here, as an index for voltage optimization (suppression of the voltage fluctuation range) of the loop controller 2, the maximum value and the minimum value are extracted from the voltages of the boundaries (nodes) of all the sections, and the difference between them is extracted. The obtained value can be used as an evaluation index for voltage optimization.

より具体的には、図11に示す需要地系統説明図に基づいて説明すると、以下のように制御される。
(1)まず、運用開始前に、管理対象となる配電系統の構成、例えば線路のインピーダンス、接続状況、需要家の接続位置、LPCの設置位置などを運用管理プログラムに入力して、配電系統の構成情報として記憶装置に記憶しておく。
(2)次に、需給インターフェイス4が分散形電源を備えていない需要家を含めた全需要家の消費電力(有効電力)と無効電力を計測し、運用管理システム1に送信する。
(3)全地点から送られてきた消費電力と無効電力を、運用管理プログラムに入力する。
(4)次に、運用プログラムが、全てのループコントローラ(上図ではLPC1〜5)2の出力(有効電力と無効電力二つ)を一定の刻みで変化させ、全ての組み合せを導き出す。
例えば、以下に示す0〜50までの範囲で10刻みで組み合せを導き出した例のように行う。
LPC1 LPC2 LPC3 LPC4 LPC5
有効無効1無効2 有効無効1無効2 有効無効1無効2 有効無効1無効2 有効無効1無効2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0 0 0 0 0 0 0 0
10 10 0 0 0 0 0 0 0 0 0 0 0 0 0
20 10 0 0 0 0 0 0 0 0 0 0 0 0 0
30 10 0 0 0 0 0 0 0 0 0 0 0 0 0
40 10 0 0 0 0 0 0 0 0 0 0 0 0 0
50 10 0 0 0 0 0 0 0 0 0 0 0 0 0
0 20 0 0 0 0 0 0 0 0 0 0 0 0 0
10 20 0 0 0 0 0 0 0 0 0 0 0 0 0
20 20 0 0 0 0 0 0 0 0 0 0 0 0 0
30 20 0 0 0 0 0 0 0 0 0 0 0 0 0
40 20 0 0 0 0 0 0 0 0 0 0 0 0 0
50 20 0 0 0 0 0 0 0 0 0 0 0 0 0
0 30 0 0 0 0 0 0 0 0 0 0 0 0 0
10 30 0 0 0 0 0 0 0 0 0 0 0 0 0
20 30 0 0 0 0 0 0 0 0 0 0 0 0 0
30 30 0 0 0 0 0 0 0 0 0 0 0 0 0
40 30 0 0 0 0 0 0 0 0 0 0 0 0 0
50 30 0 0 0 0 0 0 0 0 0 0 0 0 0
0 40 0 0 0 0 0 0 0 0 0 0 0 0 0
10 40 0 0 0 0 0 0 0 0 0 0 0 0 0
20 40 0 0 0 0 0 0 0 0 0 0 0 0 0
30 40 0 0 0 0 0 0 0 0 0 0 0 0 0
40 40 0 0 0 0 0 0 0 0 0 0 0 0 0
50 40 0 0 0 0 0 0 0 0 0 0 0 0 0
0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
10 50 0 0 0 0 0 0 0 0 0 0 0 0 0
20 50 0 0 0 0 0 0 0 0 0 0 0 0 0
30 50 0 0 0 0 0 0 0 0 0 0 0 0 0
40 50 0 0 0 0 0 0 0 0 0 0 0 0 0
50 50 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 10 0 0 0 0 0 0 0 0 0 0 0 0
10 0 10 0 0 0 0 0 0 0 0 0 0 0 0
20 0 10 0 0 0 0 0 0 0 0 0 0 0 0
30 0 10 0 0 0 0 0 0 0 0 0 0 0 0
40 0 10 0 0 0 0 0 0 0 0 0 0 0 0
50 0 10 0 0 0 0 0 0 0 0 0 0 0 0
0 0 20 0 0 0 0 0 0 0 0 0 0 0 0
10 0 20 0 0 0 0 0 0 0 0 0 0 0 0
20 0 20 0 0 0 0 0 0 0 0 0 0 0 0
30 0 20 0 0 0 0 0 0 0 0 0 0 0 0
40 0 20 0 0 0 0 0 0 0 0 0 0 0 0
50 0 20 0 0 0 0 0 0 0 0 0 0 0 0



50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

(5)そして、上記の1ケース毎に、運用プログラムに含まれる潮流計算を実施し、図11の全箇所即ち需要家の接続点、分散形電源の接続点、LPCの接続点の電圧(V1〜VN)を算出する。
(6)さらに、1ケース毎に(5)の計算結果を評価項目である数式1でVallを求め、全地点の電圧の中から、最大の値と最小の値をさがして、差をとることを全ケース実施する。
(7)全ケースの中で数式2となるケース(最適ケース)を探し出す。
このとき、全ての地点において集中制御目標電圧(上限値)が制御開始電圧と制御解除電圧の間にある、
の関係とする。
(8)上記(7)で求めた最適ケースの時の全LPCの制御出力(有効電力、無効電力二つ)を運用管理システムから全LPCに向かって送る。例えば、以下のような数値となる。
LPC1 LPC2 LPC3 LPC4 LPC5
有効無効1無効2 有効無効1無効2 有効無効1無効2 有効無効1無効2 有効無効1無効2
10 20 30 30 20 10 50 40 30 20 10 20 30 40 50
(9)(2)〜(8)を一定時間間隔で実施することで、配電系統の電圧適正化を実現する(需要地系統解析プログラム、LPCおよびLDC制御量決定プログラム,非特許文献3参照)。尚、潮流計算には、例えばニュートンラプソン法による潮流計算を用いることができるが、潮流計算の手法は特に限られるものではない。
More specifically, based on the demand place system explanatory diagram shown in FIG.
(1) First, before starting operation, the configuration of the distribution system to be managed, for example, the impedance of the line, the connection status, the connection position of the customer, the installation position of the LPC, etc. are input to the operation management program, It is stored in the storage device as configuration information.
(2) Next, the power supply / demand interface 4 measures the power consumption (active power) and reactive power of all the consumers including those who do not have a distributed power source, and transmits them to the operation management system 1.
(3) The power consumption and reactive power sent from all points are input to the operation management program.
(4) Next, the operation program changes the outputs (active power and two reactive powers) 2 of all the loop controllers (LPC1 to 5 in the above figure) 2 at a constant interval to derive all combinations.
For example, it is performed as shown in an example in which combinations are derived in increments of 10 in the range of 0 to 50 shown below.
LPC1 LPC2 LPC3 LPC4 LPC5
Valid invalid 1 Invalid 2 Valid invalid 1 Invalid 2 Valid invalid 1 Invalid 2 Valid invalid 1 Invalid 2 Valid invalid 1 Invalid 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0 0 0 0 0 0 0 0
10 10 0 0 0 0 0 0 0 0 0 0 0 0 0
20 10 0 0 0 0 0 0 0 0 0 0 0 0 0
30 10 0 0 0 0 0 0 0 0 0 0 0 0 0
40 10 0 0 0 0 0 0 0 0 0 0 0 0 0
50 10 0 0 0 0 0 0 0 0 0 0 0 0 0
0 20 0 0 0 0 0 0 0 0 0 0 0 0 0
10 20 0 0 0 0 0 0 0 0 0 0 0 0 0
20 20 0 0 0 0 0 0 0 0 0 0 0 0 0
30 20 0 0 0 0 0 0 0 0 0 0 0 0 0
40 20 0 0 0 0 0 0 0 0 0 0 0 0 0
50 20 0 0 0 0 0 0 0 0 0 0 0 0 0
0 30 0 0 0 0 0 0 0 0 0 0 0 0 0
10 30 0 0 0 0 0 0 0 0 0 0 0 0 0
20 30 0 0 0 0 0 0 0 0 0 0 0 0 0
30 30 0 0 0 0 0 0 0 0 0 0 0 0 0
40 30 0 0 0 0 0 0 0 0 0 0 0 0 0
50 30 0 0 0 0 0 0 0 0 0 0 0 0 0
0 40 0 0 0 0 0 0 0 0 0 0 0 0 0
10 40 0 0 0 0 0 0 0 0 0 0 0 0 0
20 40 0 0 0 0 0 0 0 0 0 0 0 0 0
30 40 0 0 0 0 0 0 0 0 0 0 0 0 0
40 40 0 0 0 0 0 0 0 0 0 0 0 0 0
50 40 0 0 0 0 0 0 0 0 0 0 0 0 0
0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
10 50 0 0 0 0 0 0 0 0 0 0 0 0 0
20 50 0 0 0 0 0 0 0 0 0 0 0 0 0
30 50 0 0 0 0 0 0 0 0 0 0 0 0 0
40 50 0 0 0 0 0 0 0 0 0 0 0 0 0
50 50 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 10 0 0 0 0 0 0 0 0 0 0 0 0
10 0 10 0 0 0 0 0 0 0 0 0 0 0 0
20 0 10 0 0 0 0 0 0 0 0 0 0 0 0
30 0 10 0 0 0 0 0 0 0 0 0 0 0 0
40 0 10 0 0 0 0 0 0 0 0 0 0 0 0
50 0 10 0 0 0 0 0 0 0 0 0 0 0 0
0 0 20 0 0 0 0 0 0 0 0 0 0 0 0
10 0 20 0 0 0 0 0 0 0 0 0 0 0 0
20 0 20 0 0 0 0 0 0 0 0 0 0 0 0
30 0 20 0 0 0 0 0 0 0 0 0 0 0 0
40 0 20 0 0 0 0 0 0 0 0 0 0 0 0
50 0 20 0 0 0 0 0 0 0 0 0 0 0 0



50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

(5) Then, for each case described above, the tidal current calculation included in the operation program is performed, and the voltages (V1) at all points in FIG. 11, that is, the connection points of customers, the connection points of distributed power sources, and the connection points of LPCs. ~ VN).
(6) Further, for each case, V all is calculated from the calculation result of (5) using Formula 1 as an evaluation item, and the maximum value and the minimum value are searched from among the voltages at all points to obtain a difference. Implement all cases.
(7) The case (optimum case) which becomes Formula 2 among all cases is searched.
At this time, the central control target voltage (upper limit value) is between the control start voltage and the control release voltage at all points.
The relationship.
(8) The control output (active power and reactive power) of all LPCs in the optimal case obtained in (7) above is sent from the operation management system to all LPCs. For example, it becomes the following numerical values.
LPC1 LPC2 LPC3 LPC4 LPC5
Valid Invalid 1 Invalid 2 Valid Invalid 1 Invalid 2 Valid Invalid 1 Invalid 2 Valid Invalid 1 Invalid 2 Valid Invalid 1 Invalid 2
10 20 30 30 20 10 50 40 30 20 10 20 30 40 50
(9) By implementing (2) to (8) at regular time intervals, voltage optimization of the distribution system is realized (refer to demand area system analysis program, LPC and LDC control amount determination program, non-patent document 3). . For the tidal current calculation, for example, a tidal current calculation based on the Newton-Raphson method can be used, but the tidal current calculation method is not particularly limited.

尚、求めた最適制御量と事前演算にて算出された予測制御量情報とを比較し、一致する場合は、LPC2、変電所の変圧器5及び需給IF4へは情報の送信は行わず、異なる場合にのみ各機器に求めた制御量および潮流・電圧情報を送信するようにしても良い。   Note that the optimal control amount obtained is compared with the predicted control amount information calculated in advance, and if they match, the information is not transmitted to the LPC 2, the transformer 5 of the substation, and the supply and demand IF 4, but they are different. Only in this case, the control amount and power flow / voltage information obtained for each device may be transmitted.

以上のように、ループコントローラ2を介してループ・メッシュ運用を行う需要地系統の電圧制御に関する運用は、配電系統の集中制御を行う運用管理システムにおいて、分散形電源が電圧上昇抑制制御を開始する電圧値である制御開始電圧と、制御開始電圧以下であって分散形電源が電圧上昇抑制制御を解除する電圧値である制御解除電圧との間の電圧値を、ループコントローラによる電圧適正化制御の上限値である集中制御目標電圧とし、集中制御目標電圧に配電系統内の電圧を抑制するようループコントローラからの有効電力、無効電力の出力量を制御するようにしている。   As described above, the operation related to the voltage control of the demand place system that performs the loop mesh operation via the loop controller 2 is the operation management system that performs the centralized control of the distribution system, and the distributed power source starts the voltage rise suppression control. The voltage value between the control start voltage, which is a voltage value, and the control release voltage, which is equal to or lower than the control start voltage and is the voltage value at which the distributed power supply cancels the voltage rise suppression control, is determined by the loop controller. The central control target voltage that is the upper limit value is set, and the output amounts of the active power and reactive power from the loop controller are controlled so as to suppress the voltage in the distribution system to the central control target voltage.

先ず、ループコントローラ2のみにより系統内の電圧適正化制御を行う場合について説明する。上述のようにLPC2による電圧適正化は、運用管理システム1が、予め補助記憶装置33に記憶された系統情報及び需給IF4から受信した需要家情報に基づいて高圧系統の各地点に対して上限値(集中制御目標電圧)を設定し、この値を超えた場合に集中制御目標電圧に抑制するようLPC2から注入する有効電力と無効電力の出力量の制御を行い、かつ集中制御目標電圧のまま維持できるよう注入量を制御することによるものである。つまり、LPC2による電圧適正化は、低圧系統の上昇分を系統全体一律に考慮し、高圧系統の各地点に対して上限値を設定し、この上限値を超えた場合に上限値以下に抑制する制御を行うものである。尚、ループコントローラ2の制御タイミングは離散的であり、その制御間隔は特に限られるものではなく系統運用者が適宜決定することができる値であるが、例えば、10秒〜3分程度の間隔で行うことが好ましい。   First, a case where voltage optimization control in the system is performed only by the loop controller 2 will be described. As described above, the voltage optimization by the LPC 2 is an upper limit value for each point of the high-voltage system based on the system information stored in the auxiliary storage device 33 in advance by the operation management system 1 and the customer information received from the supply-demand IF 4. (Centralized control target voltage) is set, and when this value is exceeded, the output amount of active power and reactive power injected from the LPC2 is controlled so that the centralized control target voltage is suppressed, and the centralized control target voltage is maintained. This is because the injection amount is controlled so as to be possible. That is, voltage optimization by LPC2 considers the increase in the low-voltage system uniformly, sets an upper limit value for each point of the high-voltage system, and suppresses the upper limit value or less when this upper limit value is exceeded. Control is performed. The control timing of the loop controller 2 is discrete, and the control interval is not particularly limited and can be determined as appropriate by the system operator. For example, at an interval of about 10 seconds to 3 minutes. Preferably it is done.

ループコントローラ2による電圧適正化は、図4(a)に示すように、発電により電圧が上昇し、高圧系統の各地点(潮流計算の系統データ上の各ノード)における電圧がLPC2の集中制御目標電圧を超えた場合(矢印aで示す、以下同様)に、次のLPC2の制御タイミングになると(矢印b)、電圧適正化制御が開始され、電圧を集中制御目標電圧まで低下させ(矢印c)、その値で維持される(矢印d)ものである。   As shown in FIG. 4A, the voltage optimization by the loop controller 2 increases the voltage due to power generation, and the voltage at each point of the high voltage system (each node on the power flow calculation system data) is the central control target of the LPC2. When the voltage is exceeded (indicated by arrow a, the same applies hereinafter), when the next LPC 2 control timing is reached (arrow b), voltage optimization control is started and the voltage is lowered to the central control target voltage (arrow c). , That value is maintained (arrow d).

次に、無効電力制御のみにより太陽光発電用インバータの電圧上昇抑制制御を行う場合について説明する。電圧上昇抑制制御は、低圧系統の連系点の電圧に対して上限値(制御開始電圧)を設定し、それを超えた場合に無効電力を注入(出力)して上限値以下に制御し、そこで無効電力出力を一定に維持する。その状態からさらに電圧が低下し、上昇抑制機能の下限値(制御解除電圧)以下になると、制御解除電圧値以上になるまで無効電力出力を減少させるものである。尚、太陽光発電用インバータの電圧上昇抑制には、無効電力制御のみによらず、例えば、有効電力制御を行う方法、力率等を判断基準とした制御方法が考えられるが、ヒステリシス状の制御を行うのであれば、その電圧制御方法は、特に限られるものではない。高圧系統側がLPC2により上限値以下に制限された場合の低圧系統の電圧値が、電圧上昇抑制機能の上限値と解除電圧値の間になるように、各々の設定値を決める必要がある。このとき、LPC2の制御出力即ちLPC容量が削減できる。   Next, the case where the voltage rise suppression control of the photovoltaic power generation inverter is performed only by the reactive power control will be described. Voltage rise suppression control sets an upper limit value (control start voltage) for the voltage at the connection point of the low-voltage system, and when it exceeds that, injects (outputs) reactive power and controls it below the upper limit value. Therefore, the reactive power output is kept constant. When the voltage further decreases from that state and becomes equal to or lower than the lower limit value (control release voltage) of the increase suppression function, the reactive power output is decreased until the voltage becomes equal to or higher than the control release voltage value. In addition, for suppressing the voltage increase of the inverter for photovoltaic power generation, for example, a method of performing active power control and a control method using a power factor as a determination criterion are conceivable. As long as this is performed, the voltage control method is not particularly limited. It is necessary to determine each set value so that the voltage value of the low voltage system when the high voltage system side is limited to the upper limit value or less by the LPC 2 is between the upper limit value and the release voltage value of the voltage rise suppression function. At this time, the control output of the LPC 2, that is, the LPC capacity can be reduced.

尚、制御開始電圧及び制御解除電圧は、需要家が任意に設定することが可能であり、需要家ごとに設定値が異なるものである。しかしながら、分散形電源の制御開始電圧の上限は定められており(107Vまで)、また制御解除電圧の値を低く設定することは需要家にとって発電効率を下げ不利益となるので、その値の範囲は限られるものであり、一般的な値として取り扱えるものである。   The control start voltage and the control release voltage can be arbitrarily set by the consumer, and the set values differ for each consumer. However, the upper limit of the control start voltage of the distributed power supply is determined (up to 107V), and setting the control release voltage low will reduce the power generation efficiency and disadvantage for the consumer, so the range of that value Is limited and can be treated as a general value.

また、太陽光発電用インバータは、ループコントローラ2による制御が離散的であるのに対し、連続的に制御が行われる。したがって、双方の制御を同一系統内で行うこととした場合は、常に太陽光発電出力が先行して低圧側の電圧を制御し、その後LPC2が高圧側の制御を行うこととなる。   Moreover, the inverter for photovoltaic power generation is controlled continuously while the control by the loop controller 2 is discrete. Therefore, when both controls are performed within the same system, the photovoltaic power generation output always precedes and controls the low-voltage side voltage, and then the LPC 2 performs the high-voltage side control.

以上のループコントローラ2による電圧適正化と太陽光発電用インバータによる電圧上昇抑制制御の特性を踏まえ、本願発明者等が種々検討を行ったところ、以下に述べるようにループコントローラ2の集中制御目標電圧を設定することで、協調制御が可能となることを新たに知見した。以下、図5を用いてこの2つの制御を協調させるためのループコントローラ2の集中制御目標電圧と太陽光発電用インバータの制御開始電圧及び制御解除電圧との設定値について説明する。   Based on the above characteristics of voltage optimization by the loop controller 2 and voltage rise suppression control by the inverter for photovoltaic power generation, the inventors of the present application have made various studies. As described below, the centralized control target voltage of the loop controller 2 is as follows. It was newly found that cooperative control is possible by setting. Hereinafter, the set values of the centralized control target voltage of the loop controller 2 and the control start voltage and control release voltage of the photovoltaic power generation inverter for coordinating these two controls will be described with reference to FIG.

先ず、図5(a)に示すように集中制御目標電圧を制御開始電圧よりも高く設定してしまうと、ループコントローラ2の電圧適正化制御が働かないこととなる。即ち、発電により電圧が上昇し、集中制御目標電圧以上となると(矢印a)、太陽光発電用インバータによる電圧上昇制御及びLPC2による電圧制御が働く(矢印b)。尚、LPC2の制御は離散的であるので、実際には太陽光発電用インバータの制御のみが働くことがほとんどである。しかしながら、集中制御目標電圧以下まで電圧が降下すると、LPC2による制御は解除されるため太陽光発電用インバータによる電圧上昇抑制制御のみとなってしまい(矢印c)、両制御は協調することはない。   First, as shown in FIG. 5A, if the centralized control target voltage is set higher than the control start voltage, the voltage optimization control of the loop controller 2 will not work. That is, when the voltage rises due to power generation and becomes equal to or higher than the central control target voltage (arrow a), voltage rise control by the photovoltaic power generation inverter and voltage control by LPC2 work (arrow b). Since the control of the LPC 2 is discrete, in practice, only the control of the inverter for photovoltaic power generation actually works. However, when the voltage drops below the central control target voltage, the control by the LPC 2 is canceled, so only the voltage increase suppression control by the inverter for photovoltaic power generation is performed (arrow c), and both controls are not coordinated.

一方、図5(b)に示すように、集中制御目標電圧を制御解除電圧よりも低く設定してしまうと、太陽光発電用インバータの電圧上昇抑制制御は働かないこととなる。即ち、発電により電圧が上昇し、集中制御目標電圧以上となると(矢印a)、太陽光発電用インバータによる電圧上昇抑制制御及びLPC2による電圧適正化制御が働く(矢印b)。したがって制御解除電圧までは協調制御が働いた状態となるが、制御解除電圧以下となると電圧上昇抑制制御が解除されてしまうため、LPC2のみによる制御となる(矢印c)。結果として、LPC2により集中制御目標電圧まで電圧が抑制され、維持される(矢印d)。即ち、協調制御がなされるのは一時であり、LPC2の電圧適正化制御のみが働くこととなる。このように、LPC2による電圧適正化制御のみが働いた状態となってしまうとLPC2の必要容量が大きくなり、コスト高となる。   On the other hand, as shown in FIG. 5B, if the centralized control target voltage is set lower than the control release voltage, the voltage increase suppression control of the inverter for photovoltaic power generation does not work. That is, when the voltage rises due to power generation and becomes equal to or higher than the centralized control target voltage (arrow a), voltage rise suppression control by the photovoltaic power generation inverter and voltage optimization control by LPC2 work (arrow b). Accordingly, the cooperative control is in a state up to the control release voltage. However, since the voltage increase suppression control is released when the control release voltage is lower than the control release voltage, the control is performed only by the LPC 2 (arrow c). As a result, the voltage is suppressed and maintained up to the central control target voltage by the LPC 2 (arrow d). That is, the cooperative control is performed temporarily, and only the voltage optimization control of the LPC 2 works. As described above, when only the voltage optimization control by the LPC 2 is activated, the required capacity of the LPC 2 is increased and the cost is increased.

しかしながら、高圧系統側がLPC2により上限値以下に制御された場合の低圧系統の電圧値が電圧上昇抑制機能の上限値と解除電圧値の間になるように、換言すれば、集中制御目標電圧を制御開始電圧と制御解除電圧との間に設定することで、太陽光発電用インバータによる制御とLPC2による制御を協調させることが可能となる。   However, when the high-voltage system side is controlled below the upper limit value by the LPC2, the voltage value of the low-voltage system is between the upper limit value and the release voltage value of the voltage rise suppression function, in other words, the central control target voltage is controlled. By setting between the start voltage and the control release voltage, the control by the inverter for photovoltaic power generation and the control by the LPC 2 can be coordinated.

即ち、LPC2の電圧適正化制御において、集中制御目標電圧を分散形電源の制御開始電圧及び制御解除電圧の範囲に設定するように、各LPC2の有効電力、無効電力の制御量を決定すればよい。電圧適正化の動作では、各需要家あるいは需要家群毎に設置されている需給インターフェイスから収集された各需要家の負荷量、発電量情報を基に運用管理システムが対象系統の構成を設定済みの系統での潮流計算を行い、上記条件に適合する各ループコントローラの有効電力・無効電力指令値を決定し、送信する。ループコントローラは送られてきた指令値に従い出力を一定に制御する動作を一定間隔で行う。   That is, in the voltage optimization control of the LPC2, the control amounts of the active power and reactive power of each LPC2 may be determined so that the centralized control target voltage is set in the range of the control start voltage and control release voltage of the distributed power source. . In the operation of voltage optimization, the operation management system has already configured the configuration of the target system based on the load and power generation information of each customer collected from the supply and demand interface installed for each customer or customer group. The active power / reactive power command value of each loop controller that meets the above conditions is determined and transmitted. The loop controller performs an operation of controlling the output at a constant interval according to the command value sent.

この場合、図5(c)に示すように、発電により電圧が上昇し、集中制御目標電圧以上となると(矢印a)、太陽光発電用インバータによる電圧上昇抑制制御及びLPC2による電圧適正化制御が働き(矢印b)、LPC2により集中制御目標電圧まで電圧が抑制された状態で維持される(矢印c)。この場合、電圧上昇抑制制御も解除されないので、2つの制御が協調した状態となるものである。   In this case, as shown in FIG. 5 (c), when the voltage rises due to power generation and becomes equal to or higher than the central control target voltage (arrow a), voltage rise suppression control by the inverter for photovoltaic power generation and voltage optimization control by LPC2 are performed. In operation (arrow b), the voltage is maintained to the central control target voltage by the LPC 2 (arrow c). In this case, since the voltage rise suppression control is not released, the two controls are in a coordinated state.

ここで制御開始電圧と制御解除電圧との間とは一定の幅があるが、集中制御目標電圧をその間のどの値にするかは、系統情報、需要家情報に加えて、系統制御の目的等に応じて系統管理者が任意に決定することが好ましい。   Here, there is a certain range between the control start voltage and the control release voltage, but the value for the central control target voltage between them is the purpose of system control in addition to system information and customer information. It is preferable that the system administrator decides arbitrarily according to.

例えば、系統全体の電圧を低く抑えることができる点においては、集中制御目標電圧は、極力制御解除電圧に近い値であることが望ましい。しかしながら、LPC2の電圧を低く抑えることは、LPC2の運用コストの増大に繋がるため、集中制御目標電圧の決定には、コスト面も考慮に入れた運用が必要となる。   For example, it is desirable that the central control target voltage is as close to the control release voltage as possible in that the voltage of the entire system can be kept low. However, keeping the voltage of the LPC 2 low leads to an increase in the operation cost of the LPC 2, so that the operation in consideration of the cost is required to determine the central control target voltage.

以上説明した本実施形態の配電系統の運用方法によれば、太陽光発電用インバータとLPC2の協調制御を可能とし、LPC2の制御出力を削減することができる。また、分散形電源に対しては直接指令を送る必要がなく、LPC2に対してのみ直接指令を送るだけの制御であるので、全ての分散形電源に直接指令を送信する構成に比べ、通信量の大幅な軽減を図ることができ、通信の負荷を軽減させることが可能である。   According to the operation method of the power distribution system of the present embodiment described above, cooperative control of the photovoltaic power generation inverter and the LPC 2 is enabled, and the control output of the LPC 2 can be reduced. In addition, since it is not necessary to send a direct command to the distributed power supply, and the control is to send a direct command only to the LPC 2, the amount of communication compared to a configuration in which the command is directly sent to all the distributed power sources. Can be greatly reduced, and the communication load can be reduced.

尚、上述の実施形態は本発明の好適な実施の例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、本実施形態では、低圧系統側に分散形電源が連系されかつ高圧系統側に電圧制御機器が設置された配電系統として需要地系統を例に挙げて説明したが、このような構成の配電系統に限られず、少なくともヒステリシス状の制御を行う分散形電源及び集中制御の対象となる電圧制御機器が設置された配電系統であれば適用可能である。また、集中制御の対象とする電圧制御機器としては、ループコントローラを主に例に挙げて説明したが、これには限られず、静止型無効電力補償装置(Static Var Compensator)等の高圧系統側で電圧適正化制御が可能な電圧制御機器を用いるようにしても良い。また、集中制御目標電圧を固定値として設定して運用することも可能である。この場合、需要家の負荷量、発電量に応じた電圧適正化がなされないため、結果として、需要家情報を受信する毎に制御量を算出し、反映させる場合に比べ、LPC2の必要容量は多くなるが制御システムは簡略化できる。   The above-described embodiment is a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, in the present embodiment, the power distribution system has been described as an example of a distribution system in which a distributed power source is connected to the low-voltage system side and a voltage control device is installed on the high-voltage system side. The present invention is not limited to a distribution system, and can be applied to any distribution system in which a distributed power source that performs at least hysteresis-like control and a voltage control device that is a target of centralized control are installed. In addition, although the loop controller has been mainly described as an example of the voltage control device that is the target of centralized control, it is not limited to this, and the voltage control device is not limited to this. You may make it use the voltage control apparatus in which voltage optimization control is possible. Further, the centralized control target voltage can be set as a fixed value for operation. In this case, since voltage optimization according to the load amount and power generation amount of the consumer is not made, as a result, the required capacity of the LPC 2 is smaller than when the control amount is calculated and reflected every time the customer information is received. The control system can be simplified though it increases.

また、上述の実施形態では、ループコントローラ2の制御を行うループコントローラ制御用端末11に対し、運用管理システム1から出力量を送信するようにしているが、静止型無効電力補償装置等の電圧制御機器が受信した無効電力の出力量に基づいて自律的に制御を行う場合は、運用管理システム1は、当該出力量を電圧制御機器に直接送信するようにしても良いし、当該電圧制御機器の制御用機器に出力量を送信しても良い。また、集中制御の対象とする電圧制御機器が無効電力の出力のみにより電圧適正化制御を行う場合は無効電力の出力量を、有効電力及び無効電力の出力により電圧適正化制御を行う場合は、有効電力及び無効電力の出力量を制御量とすれば良い。   In the above-described embodiment, the output amount is transmitted from the operation management system 1 to the loop controller control terminal 11 that controls the loop controller 2. However, voltage control of a static reactive power compensator or the like is performed. When autonomously controlling based on the output amount of reactive power received by the device, the operation management system 1 may transmit the output amount directly to the voltage control device, The output amount may be transmitted to the control device. In addition, when the voltage control device targeted for centralized control performs voltage optimization control only by reactive power output, the amount of reactive power output is controlled, and when voltage optimization control is performed by active power and reactive power output, The output amounts of active power and reactive power may be used as control amounts.

(実施例1)
図7に示す配電系統モデルを用いて、本発明の配電系統の運用管理システムの有効性を確認する実験を行った。
Example 1
Using the distribution system model shown in FIG. 7, an experiment was conducted to confirm the effectiveness of the distribution system operation management system of the present invention.

太陽光発電を模擬した分散形電源10(50kW)を連系させ、系統電圧を上昇させ、この上昇に対して、需要地系統を運用するLPC2と分散形電源10の両方の制御を動作させ、本発明の配電系統の運用管理システムの有効性を確認すると共に、それぞれ片方のみの制御とした場合と比較した。   A distributed power source 10 (50 kW) simulating solar power generation is connected, the system voltage is increased, and the control of both the LPC 2 and the distributed power source 10 that operate the demand point system is operated in response to this increase. While confirming the effectiveness of the operation management system of the power distribution system of the present invention, it was compared with the case where only one of them was controlled.

インバータ型電源8a〜8cの制御量とLPC2の制御量を図8に示し、連系点の電圧を図9に示す。図9に示すように、インバータ8cの連系点の電圧を見ると、両方の制御の場合とLPC2の制御のみの場合でほとんど変わらないことがわかる。一方、図8に示すように双方の制御量については、インバータ電源8a,8b,8cは変わらないが、本発明の配電系統の運用管理システムにより協調制御を行った場合は、ループコントローラ2の制御出力を約10kVA低減させることが確認できた。   The control amount of the inverter type power supplies 8a to 8c and the control amount of the LPC 2 are shown in FIG. 8, and the voltage at the interconnection point is shown in FIG. As shown in FIG. 9, when the voltage at the interconnection point of the inverter 8c is seen, it can be seen that there is almost no difference between the case of both controls and the case of only the control of the LPC2. On the other hand, as shown in FIG. 8, the inverter power supplies 8a, 8b, and 8c do not change for both control amounts, but when the cooperative control is performed by the operation management system of the distribution system of the present invention, the control of the loop controller 2 It was confirmed that the output was reduced by about 10 kVA.

以上より、制御効果を維持したまま、両制御が協調していることが分かる。本実験によれば、本発明の有効性を確認することができる。尚、本実施例では、太陽光発電インバータの電圧上昇抑制制御を無効電力の制御のみにより制御を行ったが、その他の制御方法の場合も同様に有効性を確認した。   From the above, it can be seen that both controls are coordinated while maintaining the control effect. According to this experiment, the effectiveness of the present invention can be confirmed. In this embodiment, the voltage rise suppression control of the photovoltaic inverter is controlled only by the reactive power control. However, the effectiveness of other control methods was confirmed in the same manner.

配電系統の運用管理システムの構成の一例を示す図である。It is a figure which shows an example of a structure of the operation management system of a power distribution system. 本実施形態の配電系統の運用管理システムの機能ブロック図の一例である。It is an example of the functional block diagram of the operation management system of the power distribution system of this embodiment. 本実施形態の配電系統の運用管理システムのハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the operation management system of the power distribution system of this embodiment. (a)ループコントローラのみにより系統の電圧適正化を行った場合を説明するための図である。 (b)分散形電源の電圧上昇抑制制御を行った場合を説明するための図である。 尚、横軸は時間、縦軸は電圧を表す。(A) It is a figure for demonstrating the case where the voltage optimization of a system | strain is performed only by the loop controller. (B) It is a figure for demonstrating the case where the voltage rise suppression control of a distributed power supply is performed. The horizontal axis represents time, and the vertical axis represents voltage. (a)集中制御目標電圧を制御開始電圧よりも高く設定した場合を説明するための図である。 (b)集中制御目標電圧を制御解除電圧よりも低く設定した場合を説明するための図である。 (c)ループコントローラによる電圧適正化制御と分散形電源による電圧上昇抑制制御が協調する場合を説明するための図である。 尚、横軸は時間、縦軸は電圧を表す。(A) It is a figure for demonstrating the case where centralized control target voltage is set higher than control start voltage. (B) It is a figure for demonstrating the case where centralized control target voltage is set lower than control cancellation | release voltage. (C) It is a figure for demonstrating the case where the voltage optimization control by a loop controller and the voltage rise suppression control by a distributed power supply cooperate. The horizontal axis represents time, and the vertical axis represents voltage. 本発明の配電系統の運用管理プログラムが実行する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process which the operation management program of the power distribution system of this invention performs. 実施例1における配電系統のモデル図である。1 is a model diagram of a power distribution system in Example 1. FIG. 実施例1におけるインバータ型電源の制御量とループの制御量の結果の一例を示すグラフである。6 is a graph illustrating an example of a result of a control amount of an inverter type power source and a control amount of a loop in Example 1. 実施例1における連系点における電圧を示したグラフである。3 is a graph showing a voltage at a connection point in Example 1. ループコントローラの一例を示す図である。It is a figure which shows an example of a loop controller. より具体的な需要地系統の実施形態を示す説明図である。It is explanatory drawing which shows embodiment of a more specific demand place system.

符号の説明Explanation of symbols

1 運用管理システム
2 ループコントローラ(LPC)
3 運用管理サブシステム
4 需給インターフェイス
11 ループコントローラ端末
20 需要家情報取得手段
21 制御量決定手段
22 制御量判断手段
23 制御量送信手段
1 Operation management system 2 Loop controller (LPC)
3 Operation Management Subsystem 4 Supply / Demand Interface 11 Loop Controller Terminal 20 Customer Information Acquisition Unit 21 Control Amount Determination Unit 22 Control Amount Determination Unit 23 Control Amount Transmission Unit

Claims (7)

低圧系統側に分散形電源が連系されかつ高圧系統側に電圧制御機器が設置された配電系統において、前記配電系統の集中制御を行う運用管理システムが、前記分散形電源が電圧上昇抑制制御を開始する電圧値である制御開始電圧と、前記制御開始電圧以下であって前記分散形電源が電圧上昇抑制制御を解除する電圧値である制御解除電圧との間の電圧値を、前記電圧制御機器による電圧適正化制御の上限値である集中制御目標電圧とし、前記集中制御目標電圧に前記配電系統内の電圧を抑制するよう前記電圧制御機器からの無効電力の出力量を制御することを特徴とする配電系統の運用管理方法。   In a distribution system in which a distributed power source is connected to the low-voltage system side and a voltage control device is installed on the high-voltage system side, an operation management system that performs centralized control of the distribution system, the distributed power source performs voltage rise suppression control. A voltage value between a control start voltage that is a voltage value to be started and a control release voltage that is equal to or less than the control start voltage and that is a voltage value at which the distributed power source cancels the voltage rise suppression control; A centralized control target voltage that is an upper limit value of the voltage optimization control by the control, and the amount of reactive power output from the voltage control device is controlled to suppress the voltage in the distribution system to the centralized control target voltage, Operation management method for the distribution system. 低圧系統側に分散形電源が連系されかつ高圧系統側に電圧制御機器が設置された配電系統において、前記配電系統の集中制御を行う運用管理システムが、需給インターフェイスから前記分散形電源の発電量及び全需要家の負荷量の実測値を需要家情報として受信し、前記電圧制御機器の電圧適正化制御の上限値である集中制御目標電圧を、前記需要家情報に基づいて潮流計算をおこなって、かつ前記分散形電源が電圧上昇抑制制御を開始する電圧値である制御開始電圧及び前記制御開始電圧以下であって前記分散形電源が電圧上昇抑制制御を解除する電圧値である制御解除電圧との間の値として算出し、前記集中制御目標電圧に前記配電系統内の電圧を抑制するように前記電圧制御機器からの無効電力の出力量を制御することを特徴とする配電系統の運用管理方法。   In a distribution system in which a distributed power source is connected to the low-voltage system side and a voltage control device is installed on the high-voltage system side, an operation management system that performs centralized control of the distribution system is configured to generate power from the distributed power source through a supply-demand interface. And the actual load values of all consumers are received as customer information, and the central control target voltage, which is the upper limit value of voltage optimization control of the voltage control device, is calculated based on the customer information. And a control start voltage that is a voltage value at which the distributed power source starts voltage rise suppression control, and a control release voltage that is equal to or lower than the control start voltage and that is a voltage value at which the distributed power source releases voltage rise suppression control. And the amount of reactive power output from the voltage control device is controlled so as to suppress the voltage in the distribution system to the central control target voltage. Operations management method of the system. 前記集中制御目標電圧を、前記制御解除電圧に接近させることを特徴とする請求項1に記載の配電系統の運用管理方法。   The power distribution system operation management method according to claim 1, wherein the centralized control target voltage is made to approach the control release voltage. 前記電圧制御機器はループコントローラであって、前記集中制御目標電圧に前記配電系統内の電圧を抑制するよう前記ループコントローラからの有効電力と無効電力の出力量をループコントローラの制御用機器に対し送信することを特徴とする請求項1から3までのいずれかに記載の配電系統の運用管理方法。   The voltage control device is a loop controller, and transmits the output amounts of active power and reactive power from the loop controller to the control device of the loop controller so as to suppress the voltage in the distribution system to the central control target voltage. The power distribution system operation management method according to any one of claims 1 to 3, wherein: 低圧系統側に分散形電源が連系されかつ高圧系統側に電圧制御機器が設置され、かつ系統内の集中制御を行う運用管理システムおよび需給インターフェイスが通信ネットワークを通じて接続された配電系統において、前記運用管理システムが、前記需給インターフェイスから前記分散形電源の発電量及び全需要家の負荷量の実測値を需要家情報として受信する需要家情報受信手段と、前記電圧制御機器の電圧適正化制御の上限値である集中制御目標電圧を、前記需要家情報に基づいて潮流計算をおこなって、かつ予め記憶装置に記憶された前記分散形電源が電圧上昇抑制制御を開始する電圧値である制御開始電圧及び前記制御開始電圧以下であって前記分散形電源が電圧上昇抑制制御を解除する電圧値である制御解除電圧との間の値として算出し、前記集中制御目標電圧に前記配電系統内の電圧を抑制するための前記電圧制御機器からの無効電力の出力量を算出する制御量決定手段と、前記出力量を前記電圧制御機器または前記電圧制御機器の制御用機器に対し送信する制御量送信手段とを備えることを特徴とする配電系統の運用管理システム。   In a distribution system in which a distributed power source is connected to the low-voltage system side, a voltage control device is installed on the high-voltage system side, and an operation management system that performs centralized control in the system and a supply-demand interface are connected through a communication network The management system receives from the supply and demand interface the power generation amount of the distributed power source and the measured value of the load amount of all consumers as customer information, and an upper limit of voltage optimization control of the voltage control device A control start voltage that is a voltage value at which the distributed power source that has been stored in the storage device and starts the voltage rise suppression control is calculated based on the customer information, and the centralized control target voltage that is a value is calculated. Calculated as a value between the control start voltage and a control release voltage that is a voltage value at which the distributed power source releases the voltage rise suppression control. Control amount determination means for calculating an output amount of reactive power from the voltage control device for suppressing the voltage in the distribution system to the centralized control target voltage, and the output amount to the voltage control device or the voltage An operation management system for a distribution system, comprising: a control amount transmission unit that transmits the control device to a control device. 前記電圧制御機器はループコントローラであって、前記制御量決定手段は、前記集中制御目標電圧に前記配電系統内の電圧を抑制するよう前記ループコントローラからの有効電力と無効電力の出力量を算出することを特徴とする請求項5に記載の配電系統の運用管理システム。   The voltage control device is a loop controller, and the control amount determination means calculates the output amounts of active power and reactive power from the loop controller so as to suppress the voltage in the distribution system to the central control target voltage. The power distribution system operation management system according to claim 5. 低圧系統側に分散形電源が連系されかつ高圧系統側に電圧制御機器が設置され、かつ系統内の集中制御を行う運用管理システムおよび需給インターフェイスが通信ネットワークを通じて接続された配電系統において、前記運用管理システムに、前記需給インターフェイスから前記分散形電源の発電量及び全需要家の負荷量の実測値を需要家情報として受信させる需要家情報受信処理、前記電圧制御機器の電圧適正化制御の上限値である集中制御目標電圧を、前記需要家情報に基づいて潮流計算を実行させ、かつ予め記憶装置に記憶された前記分散形電源が電圧上昇抑制制御を開始する電圧値である制御開始電圧及び前記制御解開始電圧以下であって前記分散形電源が電圧上昇抑制制御を解除する電圧値である制御解除電圧との間の値として算出させ、前記集中制御目標電圧に前記配電系統内の電圧を抑制するための前記電圧制御機器の無効電力の出力量を算出させる制御量決定処理及び前記出力量を前記電圧制御機器または前記電圧制御機器の制御用機器に対し送信させる制御量送信処理とを実行させることを特徴とする配電系統の運用管理プログラム。   In a distribution system in which a distributed power source is connected to the low-voltage system side, a voltage control device is installed on the high-voltage system side, and an operation management system that performs centralized control in the system and a supply-demand interface are connected through a communication network A consumer information reception process for causing the management system to receive the actual power generation amount of the distributed power source and the measured value of the load amount of all consumers as customer information from the supply and demand interface, the upper limit value of voltage optimization control of the voltage control device A control start voltage that is a voltage value at which the distributed power source, which is stored in a storage device in advance, starts a voltage increase suppression control, and the centralized control target voltage is a power flow calculation based on the customer information Calculated as a value between a control solution start voltage and a control release voltage that is a voltage value at which the distributed power supply releases the voltage rise suppression control. Control amount determination processing for calculating the output amount of the reactive power of the voltage control device for suppressing the voltage in the distribution system to the centralized control target voltage and the output amount to the voltage control device or the voltage control device An operation management program for a power distribution system that executes control amount transmission processing to be transmitted to the control device.
JP2007194947A 2007-07-26 2007-07-26 Distribution system operation management method, system and program Active JP5006728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007194947A JP5006728B2 (en) 2007-07-26 2007-07-26 Distribution system operation management method, system and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007194947A JP5006728B2 (en) 2007-07-26 2007-07-26 Distribution system operation management method, system and program

Publications (2)

Publication Number Publication Date
JP2009071889A true JP2009071889A (en) 2009-04-02
JP5006728B2 JP5006728B2 (en) 2012-08-22

Family

ID=40607591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007194947A Active JP5006728B2 (en) 2007-07-26 2007-07-26 Distribution system operation management method, system and program

Country Status (1)

Country Link
JP (1) JP5006728B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011062062A (en) * 2009-09-14 2011-03-24 Tokyo Gas Co Ltd Distributed power supply system and distributed power supply device
JP2011205742A (en) * 2010-03-24 2011-10-13 Central Res Inst Of Electric Power Ind Islanding operation avoiding device, method and program
CN103151776A (en) * 2013-03-12 2013-06-12 国电南瑞科技股份有限公司 AGC (Automatic Generation Control) performance assessment method applicable to power control of extra-high voltage interconnection wire
CN103259274A (en) * 2013-04-18 2013-08-21 华中科技大学 Multi-area interconnected power network ultra-high voltage tie line power control method and controller
WO2014099274A1 (en) * 2012-12-21 2014-06-26 General Electric Company Voltage regulation system and method
JP2014212611A (en) * 2013-04-18 2014-11-13 株式会社日立製作所 Power interchange system, power interchange device, and power interchange method
CN104466960A (en) * 2015-01-06 2015-03-25 武汉大学 Ultra-high voltage grid interactive tide control method based on RPFC
CN105826920A (en) * 2016-05-05 2016-08-03 国网安徽省电力公司芜湖供电公司 Method for managing power supply line nodes
JP2016195509A (en) * 2015-04-01 2016-11-17 富士電機株式会社 Loop controller and distribution circuit control system
US9843195B2 (en) 2013-06-26 2017-12-12 Mitsubishi Electric Corporation Voltage monitoring control system, voltage monitoring control device, measurement device, and voltage monitoring control method
US10345842B2 (en) 2011-10-31 2019-07-09 Mitsubishi Electric Corporation Power-distribution-system voltage control system, power-distribution-system voltage control method, and centralized voltage control apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106972552B (en) * 2017-05-12 2019-03-01 山东理工大学 A kind of active power reduction calculation method inhibiting photovoltaic access point voltage out-of-limit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156320A (en) * 1984-12-28 1986-07-16 Toshiba Corp Static reactive power compensator
JP2001051734A (en) * 1999-08-10 2001-02-23 Hitachi Ltd Reactive power compensation system
JP2001095156A (en) * 1999-09-17 2001-04-06 Kansai Electric Power Co Inc:The Power distribution system
JP2001251765A (en) * 2000-03-06 2001-09-14 Central Res Inst Of Electric Power Ind Loop power distribution system and power distribution line loop controller used in the same system
JP2002125318A (en) * 2000-10-12 2002-04-26 Chubu Electric Power Co Inc Tidal current controlling method for distribution system
JP2002152976A (en) * 2000-11-13 2002-05-24 Sharp Corp Power supply system for distributed source
JP2004064960A (en) * 2002-07-31 2004-02-26 Hitachi Ltd Power supply system
JP2004135454A (en) * 2002-10-11 2004-04-30 Sharp Corp Output control method for a plurality of distributed power supplies and distributed power supply management system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156320A (en) * 1984-12-28 1986-07-16 Toshiba Corp Static reactive power compensator
JP2001051734A (en) * 1999-08-10 2001-02-23 Hitachi Ltd Reactive power compensation system
JP2001095156A (en) * 1999-09-17 2001-04-06 Kansai Electric Power Co Inc:The Power distribution system
JP2001251765A (en) * 2000-03-06 2001-09-14 Central Res Inst Of Electric Power Ind Loop power distribution system and power distribution line loop controller used in the same system
JP2002125318A (en) * 2000-10-12 2002-04-26 Chubu Electric Power Co Inc Tidal current controlling method for distribution system
JP2002152976A (en) * 2000-11-13 2002-05-24 Sharp Corp Power supply system for distributed source
JP2004064960A (en) * 2002-07-31 2004-02-26 Hitachi Ltd Power supply system
JP2004135454A (en) * 2002-10-11 2004-04-30 Sharp Corp Output control method for a plurality of distributed power supplies and distributed power supply management system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011062062A (en) * 2009-09-14 2011-03-24 Tokyo Gas Co Ltd Distributed power supply system and distributed power supply device
JP2011205742A (en) * 2010-03-24 2011-10-13 Central Res Inst Of Electric Power Ind Islanding operation avoiding device, method and program
US10345842B2 (en) 2011-10-31 2019-07-09 Mitsubishi Electric Corporation Power-distribution-system voltage control system, power-distribution-system voltage control method, and centralized voltage control apparatus
WO2014099274A1 (en) * 2012-12-21 2014-06-26 General Electric Company Voltage regulation system and method
US9081407B2 (en) 2012-12-21 2015-07-14 General Electric Company Voltage regulation system and method
CN103151776A (en) * 2013-03-12 2013-06-12 国电南瑞科技股份有限公司 AGC (Automatic Generation Control) performance assessment method applicable to power control of extra-high voltage interconnection wire
CN103259274A (en) * 2013-04-18 2013-08-21 华中科技大学 Multi-area interconnected power network ultra-high voltage tie line power control method and controller
JP2014212611A (en) * 2013-04-18 2014-11-13 株式会社日立製作所 Power interchange system, power interchange device, and power interchange method
US9843195B2 (en) 2013-06-26 2017-12-12 Mitsubishi Electric Corporation Voltage monitoring control system, voltage monitoring control device, measurement device, and voltage monitoring control method
CN104466960A (en) * 2015-01-06 2015-03-25 武汉大学 Ultra-high voltage grid interactive tide control method based on RPFC
JP2016195509A (en) * 2015-04-01 2016-11-17 富士電機株式会社 Loop controller and distribution circuit control system
CN105826920B (en) * 2016-05-05 2019-03-15 国网安徽省电力公司芜湖供电公司 The management method of power supply line's node
CN105826920A (en) * 2016-05-05 2016-08-03 国网安徽省电力公司芜湖供电公司 Method for managing power supply line nodes

Also Published As

Publication number Publication date
JP5006728B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5006728B2 (en) Distribution system operation management method, system and program
US10333346B2 (en) Resiliency controller for voltage regulation in microgrids
Pamshetti et al. Combined impact of network reconfiguration and volt-VAR control devices on energy savings in the presence of distributed generation
Capitanescu et al. Cautious operation planning under uncertainties
Arief et al. Under voltage load shedding in power systems with wind turbine-driven doubly fed induction generators
Cai et al. A hierarchical multi-agent control scheme for a black start-capable microgrid
JP4306760B2 (en) Distributed power supply
Pavković et al. Oil drilling rig diesel power-plant fuel efficiency improvement potentials through rule-based generator scheduling and utilization of battery energy storage system
Zia et al. Energy management system for a hybrid PV-Wind-Tidal-Battery-based islanded DC microgrid: Modeling and experimental validation
Babaiahgari et al. Coordinated control and dynamic optimization in DC microgrid systems
Said et al. Coordinated fuzzy logic‐based virtual inertia controller and frequency relay scheme for reliable operation of low‐inertia power system
Yu et al. Fast computation of the maximum wind penetration based on frequency response in small isolated power systems
KR101545136B1 (en) Method and System for controlling generator output of islanded microgrids
Katsanevakis et al. Energy storage system utilisation to increase photovoltaic penetration in low voltage distribution feeders
Pippi et al. A unified control strategy for voltage regulation and congestion management in active distribution networks
Sun Maximising renewable hosting capacity in electricity networks
JP5556289B2 (en) Distributed power supply and distributed power supply control method
JP7448268B1 (en) Energy storage systems and how they work
Shchetinin et al. Decomposed algorithm for risk-constrained AC OPF with corrective control by series FACTS devices
Shrivastava et al. Static security assessment and contingency analysis for smart grid
JP2024042683A (en) Energy storage systems and how they work
Tapia‐Tinoco et al. Hardware structures, control strategies, and applications of electric springs: a state‐of‐the‐art review
Viana et al. An optimal power flow function to aid restoration studies of long transmission segments
Wang et al. Minimum load-shedding calculation approach considering loads difference
Dalali et al. Modified Thevenin‐based voltage instability indicator and load shedding approach for MCF connected network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5006728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250