JP2009069005A - Magnetic field calibration method - Google Patents

Magnetic field calibration method Download PDF

Info

Publication number
JP2009069005A
JP2009069005A JP2007237996A JP2007237996A JP2009069005A JP 2009069005 A JP2009069005 A JP 2009069005A JP 2007237996 A JP2007237996 A JP 2007237996A JP 2007237996 A JP2007237996 A JP 2007237996A JP 2009069005 A JP2009069005 A JP 2009069005A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetoresistive element
characteristic
calibration
calibration method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007237996A
Other languages
Japanese (ja)
Inventor
Kazuhisa Itoi
和久 糸井
Katsufumi Nagasu
勝文 長洲
Takuya Aizawa
卓也 相沢
Satoru Nakao
知 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2007237996A priority Critical patent/JP2009069005A/en
Publication of JP2009069005A publication Critical patent/JP2009069005A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic field calibration method for accurately and stably implementing a magnetic field calibration in comparison with a calibration using a hall element and a probe. <P>SOLUTION: The magnetic field calibration method of the invention is sequentially provided with: a first process for measuring a magnetic field characteristic of a magnetoresistive element, and obtaining a first magnetic field characteristic; a second process for placing the magnetoresistive element on a stage of a magnetic field applying means; a third process for adjusting a height of the stage so as to match a surface height of the magnetoresistive element with a surface height of a to-be-measured wafer during a normal measurement; and a fourth process for causing the magnetic field applying means to apply a magnetic field to the magnetoresistive element in the in-plane direction, and obtaining a second magnetic field characteristic. In the fourth process, the magnetic field applied to the magnetoresistive element is adjusted so as to match substantially the first magnetic field characteristic with the second magnetic field characteristic. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ウェハ等の基材上に配置された各種磁気センサの特性を精度良く測定する磁界校正方法に関する。   The present invention relates to a magnetic field calibration method for accurately measuring the characteristics of various magnetic sensors arranged on a substrate such as a wafer.

強磁性磁気抵抗素子(MR素子)を利用したセンサは、磁場を検出するセンサとして知られており、ICと集積化された磁気スイッチ等の分野で幅広く使用されている。
この種の磁気センサの特性をウエハレベル状態で測定するため、磁界印加機構が装着された磁界プローバが使用されている(例えば、特許文献1)。測定の概要を図9に示す。
A sensor using a ferromagnetic magnetoresistive element (MR element) is known as a sensor for detecting a magnetic field, and is widely used in the field of a magnetic switch integrated with an IC.
In order to measure the characteristics of this type of magnetic sensor at the wafer level, a magnetic field prober equipped with a magnetic field application mechanism is used (for example, Patent Document 1). An outline of the measurement is shown in FIG.

磁界プローバは、磁界印加手段を除いて、外部磁界の影響を抑えるため非磁性材料で構成される。磁界印加機構の精度は、特性値を保証するために極めて重要であり、その校正は定期的に行う必要がある。なお、磁界印加機構は、通常電流源によって駆動され、校正は電流値と磁界の値の関係式を求めることである。   The magnetic field prober is made of a nonmagnetic material in order to suppress the influence of an external magnetic field except for the magnetic field applying means. The accuracy of the magnetic field application mechanism is extremely important for guaranteeing the characteristic value, and the calibration thereof needs to be performed periodically. The magnetic field application mechanism is normally driven by a current source, and calibration is to obtain a relational expression between the current value and the magnetic field value.

従来の磁界校正方法の概要を図10に示す。
(1)プローバのステージ100をガウスメータのプローブ101が設置できる程度まで下げる。
(2)ガウスメータのプローブ101を設置する
(3)磁界印加手段102から磁界を印加し、ガウスメータの値から印加磁界の値を読み取る。
An overview of a conventional magnetic field calibration method is shown in FIG.
(1) Lower the prober stage 100 to such an extent that the gauss meter probe 101 can be installed.
(2) Install the probe 101 of the gauss meter. (3) Apply a magnetic field from the magnetic field applying means 102 and read the value of the applied magnetic field from the value of the gauss meter.

しかしながら、このとき、以下に示すような問題が生じる。
まず、ガウスメータは、通常、ホール素子を使用しているため、その感度が低く、特に低磁界領域では相対的に誤差が大きくなる(例えば、非特許文献1参照)。
However, the following problems occur at this time.
First, since a gauss meter usually uses a Hall element, its sensitivity is low, and the error is relatively large particularly in a low magnetic field region (see Non-Patent Document 1, for example).

また、ガウスメータで磁界を測定する際、通常プローブを使用するが、プローブと磁界の輸との位置合わせは難しく、また、プローブ内に設置されているホール素子の位置、傾きは、ある範囲をもって存在するため(例えば非特許文献2参照)、微小領域での正確な磁界を検知することが難しい。このため、プローブの位置合わせが困難であり、プローブ内磁界センサの位置、傾きが正確にわからない。また、ホールセンサのサイズが大きいため、測定磁界はその平均値となり、正確な値がわからない。   Also, when measuring a magnetic field with a gauss meter, a probe is usually used. However, it is difficult to align the probe and the magnetic field, and the position and inclination of the Hall element installed in the probe has a certain range. Therefore, it is difficult to detect an accurate magnetic field in a minute region (for example, see Non-Patent Document 2). For this reason, it is difficult to align the probe, and the position and inclination of the magnetic field sensor in the probe cannot be accurately determined. In addition, since the Hall sensor is large in size, the measurement magnetic field has an average value, and an accurate value is not known.

また、ガウスメータのプローブに設置されているホール素子は、Z方向に数mm程度の厚さがあるため、測定磁界はZ方向の平均値となる(例えば、非特許文献2参照)。このため磁気抵抗素子のような感磁方向がXY方向のデバイスを測定する際、Z方向のバラツキを含めた磁界の値は、正確な値を示さない。
特許第3054458号公報 http://wwwsoc.nii.ac.jp/jsndi/bulletin/J_02_sep.html http://www.toyo.co.jp/bell/probe/bell03.html
Further, since the Hall element installed in the Gauss meter probe has a thickness of about several millimeters in the Z direction, the measurement magnetic field has an average value in the Z direction (see, for example, Non-Patent Document 2). For this reason, when measuring a device whose magnetosensitive direction is the XY direction, such as a magnetoresistive element, the value of the magnetic field including the variation in the Z direction does not show an accurate value.
Japanese Patent No. 3054458 http://wwwsoc.nii.ac.jp/jsndi/bulletin/J_02_sep.html http://www.toyo.co.jp/bell/probe/bell03.html

本発明は、このような従来の実情に鑑みて考案されたものであり、ホール素子やプローブを用いた場合に比べて、より正確な磁界校正を安定して行うことができる磁界校正方法を提供することを目的とする。   The present invention has been devised in view of such a conventional situation, and provides a magnetic field calibration method capable of stably performing more accurate magnetic field calibration as compared with the case of using a Hall element or a probe. The purpose is to do.

本発明の請求項1に記載の磁界校正方法は、磁気抵抗素子の磁界特性を測定し、第一磁界特性を得る第一工程と、前記磁気抵抗素子を磁界印加手段のステージ上に載置する第二工程と、前記磁気抵抗素子の表面高さと、通常測定時の被測定ウエハの表面高さが略同一となるように、前記ステージの高さを調整する第三工程と、前記磁界印加手段により、前記磁気抵抗素子の面内方向に磁界を印加して第二磁界特性を得る第四工程と、を少なくとも順に備えた磁界校正方法であって、前記第四工程において、前記第一磁界特性と前記第二磁界特性が略同一となるように、前記磁気抵抗素子に印加する磁界を調整することを特徴とする。
本発明の請求項2に記載の磁界校正方法は、請求項1において、前記第一工程は、前記磁気抵抗素子をヘルムホルツコイル内に配置する工程と、前記ヘルムホルツコイルにより前記磁気抵抗素子の面内方向に磁界を印加する工程と、を少なくとも有することを特徴とする。
According to a first aspect of the present invention, there is provided a magnetic field calibration method for measuring a magnetic field characteristic of a magnetoresistive element to obtain a first magnetic field characteristic, and placing the magnetoresistive element on a stage of a magnetic field applying means. A second step, a third step of adjusting the height of the stage so that the surface height of the magnetoresistive element and the surface height of the wafer to be measured during normal measurement are substantially the same, and the magnetic field applying means A magnetic field calibration method comprising at least a fourth step of obtaining a second magnetic field characteristic by applying a magnetic field in an in-plane direction of the magnetoresistive element, wherein the first magnetic field characteristic in the fourth step The magnetic field applied to the magnetoresistive element is adjusted so that the second magnetic field characteristics are substantially the same.
The magnetic field calibration method according to a second aspect of the present invention is the magnetic field calibration method according to the first aspect, wherein the first step includes a step of arranging the magnetoresistive element in a Helmholtz coil, and an in-plane of the magnetoresistive element by the Helmholtz coil. And a step of applying a magnetic field in the direction.

本発明では、第一磁界特性と第二界特性が略同一となるように、磁気抵抗素子に印加する磁界を調整することで、校正サンプルとして磁気抵抗素子を利用した磁界校正を行うことができる。校正サンプルとして磁気抵抗素子を用いることで、ガウスメータに使われるホール素子を用いた場合と比較して、高分解能である。また、磁気抵抗素子は面内方向に感度を持つため、垂直方向の磁界の分布バラツキによる影響を受けにくい。これにより本発明では、ホール素子やプローブを用いた場合に比べて、より正確な磁界校正を安定して行うことができる磁界校正方法を提供することができる。   In the present invention, the magnetic field calibration using the magnetoresistive element as a calibration sample can be performed by adjusting the magnetic field applied to the magnetoresistive element so that the first magnetic field characteristic and the second field characteristic are substantially the same. . By using a magnetoresistive element as a calibration sample, the resolution is higher than when a Hall element used in a gauss meter is used. In addition, since the magnetoresistive element has sensitivity in the in-plane direction, it is not easily affected by variations in the distribution of the magnetic field in the vertical direction. Thus, the present invention can provide a magnetic field calibration method capable of performing more accurate magnetic field calibration stably as compared with the case of using a Hall element or a probe.

以下、本発明に係る磁界校正方法の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of a magnetic field calibration method according to the present invention will be described with reference to the drawings.

本発明の磁界校正方法は、磁気抵抗素子の磁界特性を測定し、第一磁界特性を得る第一工程と、前記磁気抵抗素子を磁界印加手段のステージ上に載置する第二工程と、前記磁気抵抗素子の表面高さと、通常測定時の被測定ウエハの表面高さが略同一となるように、前記ステージの高さを調整する第三工程と、前記磁界印加手段により、前記磁気抵抗素子の面内方向に磁界を印加して第二磁界特性を得る第四工程と、を少なくとも順に備えた磁界校正方法であって、前記第四工程において、前記第一磁界特性と前記第二磁界特性が略同一となるように、前記磁気抵抗素子に印加する磁界を調整することを特徴とする。   The magnetic field calibration method of the present invention includes a first step of measuring a magnetic field characteristic of a magnetoresistive element to obtain a first magnetic field characteristic, a second step of placing the magnetoresistive element on a stage of a magnetic field applying means, A third step of adjusting the height of the stage so that the surface height of the magnetoresistive element and the surface height of the wafer to be measured at the time of normal measurement are substantially the same, and the magnetoresistive element by the magnetic field applying means And a fourth step of obtaining a second magnetic field characteristic by applying a magnetic field in the in-plane direction, wherein the first magnetic field characteristic and the second magnetic field characteristic in the fourth step Are adjusted so that the magnetic field applied to the magnetoresistive element is substantially the same.

本発明では、第一磁界特性と第二界特性が略同一となるように、磁気抵抗素子に印加する磁界を調整することで、校正サンプルとして磁気抵抗素子を利用した磁界校正を行うことができる。校正サンプルとして磁気抵抗素子を用いることで、ガウスメータに使われるホール素子を用いた場合と比較して、高分解能である。また、磁気抵抗素子は面内方向に感度を持つため、垂直方向の磁界の分布バラツキによる影響を受けにくい。これにより本発明では、ホール素子やプローブを用いた場合に比べて、より正確な磁界校正を安定して行うことができる。
以下、各工程について詳しく説明する。なお、以下の説明において挙げる数値はあくまでも一例であり、これに限定されないことは言うまでもない。
In the present invention, the magnetic field calibration using the magnetoresistive element as a calibration sample can be performed by adjusting the magnetic field applied to the magnetoresistive element so that the first magnetic field characteristic and the second field characteristic are substantially the same. . By using a magnetoresistive element as a calibration sample, the resolution is higher than when a Hall element used in a gauss meter is used. In addition, since the magnetoresistive element has sensitivity in the in-plane direction, it is not easily affected by variations in the distribution of the magnetic field in the vertical direction. Thereby, in this invention, compared with the case where a Hall element and a probe are used, more accurate magnetic field calibration can be performed stably.
Hereinafter, each step will be described in detail. In addition, the numerical value quoted in the following description is an example to the last, and it cannot be overemphasized that it is not limited to this.

(1)まず、磁気抵抗素子を用い、4組の抵抗からなるブリッジ構造を形成する(以下、「校正サンプル」と呼ぶ。)。
図1は、磁気抵抗素子を用いて構成された校正サンプルの一例を示す図であり、(a)は平面図、(b)は断面図である。
この校正サンプル10は、シリコン等からなる基板11上に磁気抵抗素子12が形成されてなる。校正サンプル10の磁気抵抗素子12は、4組の抵抗からなるブリッジ構造を形成していることが好ましい。磁気抵抗素子からなる校正サンプルを用いることで、ガウスメータに使われるホール素子と比較して、高分解能である。また、磁気抵抗素子は平面方向に感度を持つため、Z方向の磁界の分布バラツキによる影響を受けにくい。
この校正サンプル10の入力抵抗は、例えば10kΩであり、飽和磁界は例えば約8mTである。
(1) First, a bridge structure including four sets of resistors is formed using a magnetoresistive element (hereinafter referred to as “calibration sample”).
1A and 1B are diagrams illustrating an example of a calibration sample configured using a magnetoresistive element, where FIG. 1A is a plan view and FIG. 1B is a cross-sectional view.
The calibration sample 10 has a magnetoresistive element 12 formed on a substrate 11 made of silicon or the like. The magnetoresistive element 12 of the calibration sample 10 preferably forms a bridge structure consisting of four sets of resistors. By using a calibration sample made of a magnetoresistive element, the resolution is higher than that of a Hall element used in a gauss meter. In addition, since the magnetoresistive element has sensitivity in the plane direction, it is not easily affected by variations in the magnetic field distribution in the Z direction.
The input resistance of the calibration sample 10 is, for example, 10 kΩ, and the saturation magnetic field is, for example, about 8 mT.

(2)そして、磁気抵抗素子12の磁界特性を測定し、第一磁界特性を得る[第一工程]。
ここで第一工程は、前記磁気抵抗素子12(校正サンプル10)をヘルムホルツコイル20内に配置する工程と、前記ヘルムホルツコイル20により前記磁気抵抗素子12の面内方向に磁界を印加する工程と、を少なくとも有する(図2参照)。
ヘルムホルツコイル20は電流に比例して、正確な磁界を印加することが可能な装置として知られている。ヘルムホルツコイル20を用いることにより、磁気抵抗素子に正確な磁界を印加することができ、正確な第一磁界特性を得ることができる。
磁気抵抗素子12(校正サンプル10)の電流−磁界特性及び電流−電圧特性から求められた第一磁界特性の一例を図3に示す。
(2) Then, the magnetic field characteristic of the magnetoresistive element 12 is measured to obtain the first magnetic field characteristic [first step].
The first step is a step of placing the magnetoresistive element 12 (calibration sample 10) in the Helmholtz coil 20, a step of applying a magnetic field in the in-plane direction of the magnetoresistive element 12 by the Helmholtz coil 20, (See FIG. 2).
The Helmholtz coil 20 is known as a device capable of applying an accurate magnetic field in proportion to an electric current. By using the Helmholtz coil 20, an accurate magnetic field can be applied to the magnetoresistive element, and an accurate first magnetic field characteristic can be obtained.
An example of the first magnetic field characteristic obtained from the current-magnetic field characteristic and the current-voltage characteristic of the magnetoresistive element 12 (calibration sample 10) is shown in FIG.

図2に示すヘルムホルツコイル20は、例えば2.918mTAの電流−磁界依存性を持つ。このヘルムホルツコイル20を用いて、印加磁界を8mT→0mTに掃引し、前記校正サンプル10を測定したところ、その出力は約37m変化した(図4参照)。 The Helmholtz coil 20 shown in FIG. 2 has a current-magnetic field dependency of 2.918 mT / A, for example. Using this Helmholtz coil 20, sweeping the applied magnetic field to 8 mT → 0 mT, it was measured the calibration sample 10, and its output was changed by about 37m V (see FIG. 4).

(3)次に、前記磁気抵抗素子12を磁界印加手段30のステージ31上に載置する[第二工程]。また、前記磁気抵抗素子12の表面高さと、通常測定時の被測定ウエハ32の表面高さが略同一となるように、前記ステージ31の高さを調整する[第三工程]。
図5に示すように、校正サンプル10をプローバ(磁界印加手段30)のステージ31に載置し、校正サンプル10の表面高さ(すなわち、磁気抵抗素子12の表面高さ)を、通常測定時において、被測定ウエハ32を測定する高さと同一に調整する。ステージ31上に校正サンプル10を載置し、ステージ高さを調整することで、サンプル位置(X,Y,Z)を正確に規定することが可能となる。
(3) Next, the magnetoresistive element 12 is placed on the stage 31 of the magnetic field applying means 30 [second step]. Further, the height of the stage 31 is adjusted so that the surface height of the magnetoresistive element 12 and the surface height of the wafer 32 to be measured during normal measurement are substantially the same [third step].
As shown in FIG. 5, the calibration sample 10 is placed on a stage 31 of a prober (magnetic field applying means 30), and the surface height of the calibration sample 10 (that is, the surface height of the magnetoresistive element 12) is measured during normal measurement. In step (3), the height of the wafer to be measured 32 is adjusted to be the same as the measurement height. By placing the calibration sample 10 on the stage 31 and adjusting the stage height, the sample position (X, Y, Z) can be accurately defined.

図5において、被測定ウエハ32の膜厚は625μm、校正サンプル10の厚みは1600μmであった。従って、ステージ31を通常より975μm下げれば、校正サンプル10の表面と被測定ウエハ32の表面の高さが同一となる。   In FIG. 5, the film thickness of the wafer 32 to be measured was 625 μm, and the thickness of the calibration sample 10 was 1600 μm. Therefore, if the stage 31 is lowered by 975 μm from the normal level, the height of the surface of the calibration sample 10 and the surface of the wafer 32 to be measured are the same.

(4)次に、前記磁界印加手段30により、前記磁気抵抗素子12の面内方向に磁界を印加して第二磁界特性を得る[第四工程]。
図6に示すように、磁界印加手段30により、前記磁気抵抗素子12の面内方向に磁界を印加し、そのときのブリッジ電圧を測定する。このときに得られた値を第二磁界特性とし、この第二磁界特性を、前記第一磁界特性値と比較することにより、磁界の値の校正が可能となる。
(4) Next, the magnetic field applying means 30 applies a magnetic field in the in-plane direction of the magnetoresistive element 12 to obtain a second magnetic field characteristic [fourth step].
As shown in FIG. 6, the magnetic field applying means 30 applies a magnetic field in the in-plane direction of the magnetoresistive element 12, and measures the bridge voltage at that time. The value obtained at this time is used as the second magnetic field characteristic, and the second magnetic field characteristic is compared with the first magnetic field characteristic value, whereby the magnetic field value can be calibrated.

具体的には、前記第一磁界特性と前記第二磁界特性が略同一となるように、前記磁気抵抗素子12に印加する磁界を調整する。
図7に、磁気抵抗素子12の電流−磁界特性及び電流−電圧特性から求められた第二磁界特性の一例、及び第一磁界特性と第二磁界特性との比較を示す。
このように、第一磁界特性と第二界特性が略同一となるように、磁気抵抗素子12に印加する磁界を調整することで、校正サンプルとして磁気抵抗素子を利用した磁界校正を行うことができる。
プローバの磁界印加手段30により、校正サンプル10を再測定して得られた値(第二磁界特性)を、ヘルムホルツコイルにより得られた値(第一磁界特性)と比較することで、磁界印加手段の出力磁界を正確に測定可能である。
Specifically, the magnetic field applied to the magnetoresistive element 12 is adjusted so that the first magnetic field characteristic and the second magnetic field characteristic are substantially the same.
FIG. 7 shows an example of the second magnetic field characteristic obtained from the current-magnetic field characteristic and the current-voltage characteristic of the magnetoresistive element 12, and a comparison between the first magnetic field characteristic and the second magnetic field characteristic.
Thus, by adjusting the magnetic field applied to the magnetoresistive element 12 so that the first magnetic field characteristic and the second field characteristic are substantially the same, magnetic field calibration using the magnetoresistive element as a calibration sample can be performed. it can.
By comparing the value (second magnetic field characteristic) obtained by re-measurement of the calibration sample 10 by the magnetic field applying means 30 of the prober with the value (first magnetic field characteristic) obtained by the Helmholtz coil, the magnetic field applying means It is possible to accurately measure the output magnetic field.

図6に示す状態で、磁界印加手段30の出力磁界を8mT→0mTに掃引し、校正サンプル10を測定した。その出力の比較を図8に示す。図8から明らかなように、ヘルムホルツコイル内で測定した結果とほぼ同一の結果が得られた。   In the state shown in FIG. 6, the output magnetic field of the magnetic field applying means 30 was swept from 8 mT to 0 mT, and the calibration sample 10 was measured. A comparison of the outputs is shown in FIG. As is apparent from FIG. 8, a result almost identical to the result measured in the Helmholtz coil was obtained.

以上説明したように、本発明では、校正サンプルとして磁気抵抗素子を用いることで、ガウスメータに使われるホール素子を用いた場合と比較して、高分解能である。また、磁気抵抗素子は面内方向に感度を持つため、垂直方向の磁界の分布バラツキによる影響を受けにくい。これにより本発明では、ホール素子やプローブを用いた場合に比べて、より正確な磁界校正を安定して行うことができる。   As described above, in the present invention, a magnetoresistive element is used as a calibration sample, so that the resolution is higher than when a Hall element used in a gauss meter is used. In addition, since the magnetoresistive element has sensitivity in the in-plane direction, it is not easily affected by variations in the distribution of the magnetic field in the vertical direction. Thereby, in this invention, compared with the case where a Hall element and a probe are used, more accurate magnetic field calibration can be performed stably.

以上、本発明の磁界校正方法について説明してきたが、本発明はこれに限定されるものではなく、発明の趣旨を逸脱しない範囲で、適宜変更が可能である。   The magnetic field calibration method of the present invention has been described above, but the present invention is not limited to this, and can be appropriately changed without departing from the spirit of the invention.

本発明は、ウェハ等の基材上に多数個配置された磁気センサ等の特性を個別に測定する際に、精度よく、かつ安定して測定できる磁界校正方法として適用可能である。   The present invention can be applied as a magnetic field calibration method that can accurately and stably measure the characteristics of a plurality of magnetic sensors or the like arranged on a substrate such as a wafer.

磁気抵抗素子を用いて構成された校正サンプルの一例を示す図。The figure which shows an example of the calibration sample comprised using the magnetoresistive element. ヘルムホルムコイルを用いて磁気抵抗素子の第一磁界特性を測定する様子を模式的に示す図。The figure which shows typically a mode that the 1st magnetic field characteristic of a magnetoresistive element is measured using a Helmholm coil. 磁気抵抗素子の電流−磁界特性及び電流−電圧特性から求められた第一磁界特性の一例を示す図。The figure which shows an example of the 1st magnetic field characteristic calculated | required from the current-magnetic field characteristic and current-voltage characteristic of a magnetoresistive element. 磁気抵抗素子の第一磁界特性の一例を示す図。The figure which shows an example of the 1st magnetic field characteristic of a magnetoresistive element. 校正サンプルの表面高さと、被測定ウエハの表面高さが略同一となるように、ステージの高さを調整する様子を模式的に示す図。The figure which shows a mode that the height of a stage is adjusted so that the surface height of a calibration sample and the surface height of a to-be-measured wafer may become substantially the same. 磁界印加手段を用いた、磁気抵抗素子の磁界特性を測定する様子を模式的に示す図。The figure which shows typically a mode that the magnetic field characteristic of a magnetoresistive element is measured using a magnetic field application means. 磁気抵抗素子の電流−磁界特性及び電流−電圧特性から求められた第二磁界特性の一例、及び第一磁界特性と第二磁界特性との比較を示す図。The figure which shows an example of the 2nd magnetic field characteristic calculated | required from the electric current-magnetic field characteristic and electric current-voltage characteristic of a magnetoresistive element, and a comparison with a 1st magnetic field characteristic and a 2nd magnetic field characteristic. ブリッジ電圧の磁界依存性の比較を、プロ−バとヘルムホルツコイルを用いた場合について示す図。The figure which shows the comparison of the magnetic field dependence of a bridge voltage about the case where a prober and a Helmholtz coil are used. プローバを用いた、磁気センサの特性を測定する様子を模式的に示す図。The figure which shows a mode that the characteristic of a magnetic sensor using a prober is measured. 従来の磁界校正方法の概要を模式的に示す図。The figure which shows the outline | summary of the conventional magnetic field calibration method typically.

符号の説明Explanation of symbols

10 校正サンプル、11 基板、12 磁気抵抗素子、20 ヘルムホルツコイル、30 磁界印加手段、31 ステージ、 32 被測定ウエハ。   10 calibration sample, 11 substrate, 12 magnetoresistive element, 20 Helmholtz coil, 30 magnetic field applying means, 31 stage, 32 wafer to be measured

Claims (2)

磁気抵抗素子の磁界特性を測定し、第一磁界特性を得る第一工程と、
前記磁気抵抗素子を磁界印加手段のステージ上に載置する第二工程と、
前記磁気抵抗素子の表面高さと、通常測定時の被測定ウエハの表面高さが略同一となるように、前記ステージの高さを調整する第三工程と、
前記磁界印加手段により、前記磁気抵抗素子の面内方向に磁界を印加して第二磁界特性を得る第四工程と、を少なくとも順に備えた磁界校正方法であって、
前記第四工程において、前記第一磁界特性と前記第二磁界特性が略同一となるように、前記磁気抵抗素子に印加する磁界を調整することを特徴とする磁界校正方法。
A first step of measuring the magnetic field characteristics of the magnetoresistive element to obtain the first magnetic field characteristics;
A second step of placing the magnetoresistive element on the stage of the magnetic field applying means;
A third step of adjusting the height of the stage so that the surface height of the magnetoresistive element is substantially the same as the surface height of the wafer to be measured during normal measurement;
A magnetic field calibration method comprising at least a sequence of a fourth step of obtaining a second magnetic field characteristic by applying a magnetic field in an in-plane direction of the magnetoresistive element by the magnetic field applying means,
In the fourth step, a magnetic field calibration method characterized by adjusting a magnetic field applied to the magnetoresistive element so that the first magnetic field characteristic and the second magnetic field characteristic are substantially the same.
前記第一工程は、
前記磁気抵抗素子をヘルムホルツコイル内に配置する工程と、
前記ヘルムホルツコイルにより前記磁気抵抗素子の面内方向に磁界を印加する工程と、を少なくとも有することを特徴とする請求項1に記載の磁界校正方法。
The first step includes
Placing the magnetoresistive element in a Helmholtz coil;
The magnetic field calibration method according to claim 1, further comprising: applying a magnetic field in the in-plane direction of the magnetoresistive element by the Helmholtz coil.
JP2007237996A 2007-09-13 2007-09-13 Magnetic field calibration method Pending JP2009069005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007237996A JP2009069005A (en) 2007-09-13 2007-09-13 Magnetic field calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007237996A JP2009069005A (en) 2007-09-13 2007-09-13 Magnetic field calibration method

Publications (1)

Publication Number Publication Date
JP2009069005A true JP2009069005A (en) 2009-04-02

Family

ID=40605417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007237996A Pending JP2009069005A (en) 2007-09-13 2007-09-13 Magnetic field calibration method

Country Status (1)

Country Link
JP (1) JP2009069005A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865547A (en) * 2015-05-10 2015-08-26 中国人民解放军理工大学 Signal injection calibration method of integral pulse magnetic field measurement system
CN113748350A (en) * 2020-02-10 2021-12-03 株式会社爱德万测试 Testing device
JP7447883B2 (en) 2021-11-12 2024-03-12 Tdk株式会社 Inspection equipment and magnetic sensor inspection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0950601A (en) * 1995-08-03 1997-02-18 Nec Corp Device for testing magnetic sensitive characteristic of magneto-resistance sensor and method therefor
JPH09128836A (en) * 1995-10-31 1997-05-16 Sony Corp Magnetic field correction disk
JP2001337146A (en) * 2000-05-26 2001-12-07 Seiko Instruments Inc Sensitivity calibration device for magnetic sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0950601A (en) * 1995-08-03 1997-02-18 Nec Corp Device for testing magnetic sensitive characteristic of magneto-resistance sensor and method therefor
JPH09128836A (en) * 1995-10-31 1997-05-16 Sony Corp Magnetic field correction disk
JP2001337146A (en) * 2000-05-26 2001-12-07 Seiko Instruments Inc Sensitivity calibration device for magnetic sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865547A (en) * 2015-05-10 2015-08-26 中国人民解放军理工大学 Signal injection calibration method of integral pulse magnetic field measurement system
CN113748350A (en) * 2020-02-10 2021-12-03 株式会社爱德万测试 Testing device
JP7447883B2 (en) 2021-11-12 2024-03-12 Tdk株式会社 Inspection equipment and magnetic sensor inspection method

Similar Documents

Publication Publication Date Title
US7323870B2 (en) Magnetoresistive sensor element and method of assembling magnetic field sensor elements with on-wafer functional test
JP4105142B2 (en) Current sensor
US8076927B2 (en) Magnetic-field sensor and method of calibrating a magnetic-field sensor
US7923987B2 (en) Magnetic sensor integrated circuit with test conductor
US7471082B2 (en) Systems for measuring magnetostriction in magnetoresistive elements
EP2847564B1 (en) Method and device for sensing isotropic stress and providing a compensation for the piezo-hall effect
JP5735233B2 (en) Aging correction method for magnetoresistive sensor
US11047883B2 (en) Current sensor
US8519703B2 (en) Magnetic sensor device and method of determining resistance values
US20110025320A1 (en) Magnetic sensor
US7492178B2 (en) Method and apparatus for testing a hall magnetic field sensor on a wafer
JP2008516225A (en) Nonlinear magnetic field sensor and current sensor
CN107300683B (en) Magnetic sensing device and its automatic calibrating method, current sensor
JP2009525481A (en) Magnetic sensor device with reference unit
JP5173472B2 (en) Magnetic field calibration method
JP2009069005A (en) Magnetic field calibration method
CN103076578B (en) Magnetic field intensity detection device for anisotropic magneto resistance structure
Husstedt et al. Precise alignment of a magnetic sensor in a coordinate measuring machine
Ripka Improving the accuracy of magnetic sensors
KR20230079974A (en) Driving method for thin film magneto resistance sensor
Li et al. In-situ Instrumental Setup for Influence Study of Hard-axis Bias Magnetic Field on MR transfer curves of sing MTJ sensor and MTJs array sensor
JP2008269681A (en) Device and method for measuring magnetic head characteristics
Paul et al. New generation TMR sensors
JP2008190953A (en) Magnetic field detecting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002