JP2009068556A - Base isolation device - Google Patents

Base isolation device Download PDF

Info

Publication number
JP2009068556A
JP2009068556A JP2007235707A JP2007235707A JP2009068556A JP 2009068556 A JP2009068556 A JP 2009068556A JP 2007235707 A JP2007235707 A JP 2007235707A JP 2007235707 A JP2007235707 A JP 2007235707A JP 2009068556 A JP2009068556 A JP 2009068556A
Authority
JP
Japan
Prior art keywords
friction
vibration
force
vibration isolator
disc spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007235707A
Other languages
Japanese (ja)
Other versions
JP5012346B2 (en
Inventor
Takeshi Nakamura
嶽 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2007235707A priority Critical patent/JP5012346B2/en
Publication of JP2009068556A publication Critical patent/JP2009068556A/en
Application granted granted Critical
Publication of JP5012346B2 publication Critical patent/JP5012346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate setting of the frictional force of friction members 61, 62 and a base isolation cycle determined by an elastic member 51 at desired target values, or the like. <P>SOLUTION: In the base isolation device 10, a support section 20 which supports the weight of an object to be base-isolated 1 while allowing horizontal movement of the object to be base-isolated 1, and a friction damper section 30 for suppressing the horizontal movement of the object to be base-isolated 1 are arranged in parallel with each other in a vertical gap G between the object to be base-isolated 1 and a lower structure 3 below. The friction damper section 30 includes the pair of vertically-disposed friction members 61, 62 which slide horizontally in response to relative horizontal displacement of the object to be base-isolated 1 and the lower structure 3, the elastic member 51 having upper and lower ends which relatively displace horizontally according to horizontal force, a disk spring 42 arranged in series with the pair of friction members 61, 62 so as to apply vertically pressing force to the friction members 61, 62, and a control mechanism 44 for controlling the pressing force by adjusting the amount of deflection of the disk spring 42. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、建物などの免振対象物を地震等から保護する免振装置に関する。   The present invention relates to an isolation device that protects an isolation object such as a building from an earthquake or the like.

地震等から建物を保護する免振装置が普及している。この免振装置は、一般に、建物と、その基礎との間に介装される。
この免振装置の一例として、特許文献1には、上下一対の摩擦板の下に、積層ゴムを直列配置した構成が開示されている。そして、この構成によれば、中規模以上の地震に対しては、前記一対の摩擦板同士が水平方向に摺動して免振し、その摺動時の摩擦力を建物の振動の減衰力として用いる一方、前記摩擦板同士が摺動しないような小規模の地震に対しては、積層ゴムが水平方向に変形することによって、建物の振動を所期の免振周期に長周期化して免振しつつ、その振動エネルギーを吸収して振動を減衰する(特許文献1を参照)。
特開平9−310408号
Isolation devices that protect buildings from earthquakes and the like are widespread. This vibration isolator is generally interposed between a building and its foundation.
As an example of the vibration isolator, Patent Document 1 discloses a configuration in which laminated rubber is arranged in series under a pair of upper and lower friction plates. According to this configuration, for an earthquake of a medium scale or larger, the pair of friction plates slide in the horizontal direction to dampen the vibration, and the frictional force at the time of sliding is reduced by the vibration damping force of the building. On the other hand, for small-scale earthquakes where the friction plates do not slide with each other, the laminated rubber is deformed in the horizontal direction, so that the vibration of the building is extended to the desired vibration-isolating period and is immunized. While shaking, the vibration energy is absorbed to attenuate the vibration (see Patent Document 1).
JP-A-9-310408

ここで、この特許文献1の摩擦板の摩擦力の大きさは、その摺動面の垂直抗力と摩擦係数との積として計算されることからもわかるように、免振装置の支持荷重に応じて変化する。また、積層ゴムによる免振周期も、当該積層ゴムの水平剛性が支持荷重に依存して変化し得ることから、同様に支持荷重に応じて変化する。   Here, as can be seen from the fact that the magnitude of the friction force of the friction plate of Patent Document 1 is calculated as the product of the normal force of the sliding surface and the friction coefficient, it depends on the support load of the vibration isolator. Change. Further, the vibration isolation period due to the laminated rubber also changes according to the supporting load in the same manner because the horizontal rigidity of the laminated rubber can change depending on the supporting load.

ところが、一般に免振装置の支持荷重の算定は難しい。これは、通常、建物に対しては複数の免振装置が並列配置され、各免振装置に分担される支持荷重の大きさは、建物内の平面位置に応じて異なるからである。よって、免振装置毎に支持荷重を把握するのは非常に難しく、その結果として、各免振装置の摩擦力や免振周期を所期の目標値に設定するのは非常に困難であった。   However, it is generally difficult to calculate the support load of the vibration isolator. This is because a plurality of vibration isolation devices are usually arranged in parallel with respect to a building, and the magnitude of the support load assigned to each vibration isolation device varies depending on the planar position in the building. Therefore, it is very difficult to grasp the supporting load for each vibration isolator, and as a result, it is very difficult to set the frictional force and vibration isolation cycle of each vibration isolator to the desired target value. .

更には、仮に、支持荷重の大きさを把握して各免振装置の摩擦力や免振周期を目標値に設定できたとしても、地震等により建物にロッキング振動(建物が揺りかごの如く上下に揺動すること)が生じた場合には、当該ロッキング振動によって各免振装置の支持荷重が変動してしまい、もって、上記の摩擦力や免振周期を目標値に維持するのも困難であった。   Furthermore, even if the magnitude of the support load is grasped and the frictional force and the vibration isolation period of each vibration isolator can be set to the target values, the building will be subjected to rocking vibration (the building will move up and down like a cradle). If the rocking vibration occurs, the supporting load of each vibration isolator varies due to the rocking vibration, and it is difficult to maintain the frictional force and the vibration isolation cycle at the target values. It was.

本発明はかかる従来の課題に鑑みて成されたもので、上下一対の摩擦部材と、該一対の摩擦部材に直列に配置されて、水平力に応じて上端と下端とが水平方向に相対変位する弾性体とを備えた免振装置に関し、前記摩擦部材の摩擦力、及び、前記弾性体による免振周期を、所期の目標値に設定し易く且つ維持し易い免振装置を提供することを目的とする。   The present invention has been made in view of such a conventional problem. A pair of upper and lower friction members and a pair of friction members are arranged in series, and the upper end and the lower end are relatively displaced in the horizontal direction in response to a horizontal force. The present invention provides a vibration isolator having an elastic body that easily sets and maintains the frictional force of the friction member and the vibration isolation period of the elastic body at a desired target value. With the goal.

かかる目的を達成するために請求項1に示す免振装置は、
免振対象物の水平移動を許容しつつ該免振対象物の重量を支持する支承部と、前記免振対象物の水平移動を抑制する摩擦ダンパー部とが、前記免振対象物とその下方の下部構造体との間の上下方向隙間に並列に介装されてなる免振装置であって、
前記摩擦ダンパー部は、
前記免振対象物と前記下部構造体との水平方向の相対変位に応じて水平方向に摺動する上下一対の摩擦部材と、
該一対の摩擦部材に対して直列に配置されて、水平力に応じて上端と下端とが水平方向に相対変位する弾性体と、
前記一対の摩擦部材に対して直列に配置されて、前記一対の摩擦部材に鉛直方向の圧接力を付与する皿ばねと、
該皿ばねのたわみ量を調節することにより前記圧接力の大きさを調節する調節機構と、を備えたことを特徴とする。
In order to achieve this object, the vibration isolator shown in claim 1 is:
A support portion that supports the weight of the vibration isolation object while allowing horizontal movement of the vibration isolation object, and a friction damper that suppresses horizontal movement of the vibration isolation object include the vibration isolation object and its lower part. A vibration isolator which is interposed in parallel with the vertical gap between the lower structure and
The friction damper part is
A pair of upper and lower friction members that slide in the horizontal direction according to the relative displacement in the horizontal direction between the object to be isolated and the lower structure;
An elastic body that is arranged in series with the pair of friction members and has an upper end and a lower end that are relatively displaced in the horizontal direction in response to a horizontal force;
A disc spring disposed in series with respect to the pair of friction members and imparting a vertical pressure contact force to the pair of friction members;
And an adjusting mechanism for adjusting the magnitude of the pressing force by adjusting the amount of deflection of the disc spring.

上記請求項1に示す発明によれば、先ず、免振対象物の重量を、概ね前記支承部の方で支持し、前記摩擦ダンパー部の方では支持しないので、前記一対の摩擦部材の摩擦力は、これら摩擦部材同士の間の摩擦係数と、前記皿ばねの圧接力とに基づいて定まる。そして、摩擦部材の摩擦係数は既知であるし、皿ばねの圧接力は前記調節機構によって調節できるので、摩擦ダンパー部の摩擦力を、所期の目標値に容易に設定可能となる。   According to the first aspect of the present invention, first, the weight of the object to be isolated is supported by the support part and not by the friction damper part. Is determined based on the coefficient of friction between the friction members and the pressure contact force of the disc spring. The friction coefficient of the friction member is known, and the pressure contact force of the disc spring can be adjusted by the adjusting mechanism, so that the friction force of the friction damper portion can be easily set to an intended target value.

また、前記弾性体に前記圧接力が伝達される場合には、当該圧接力の大きさを前記皿ばねにより調節できるので、前記弾性体の水平剛性を所定値に設定可能であり、もって、前記摩擦ダンパー部による免振周期を、所期の目標値に容易に設定可能となる。   Further, when the pressure contact force is transmitted to the elastic body, the magnitude of the pressure contact force can be adjusted by the disc spring, so that the horizontal rigidity of the elastic body can be set to a predetermined value, and It is possible to easily set the vibration isolation period by the friction damper portion to a desired target value.

更には、地震時に免振対象物にロッキング振動が生じても、免振対象物の重量は概ね前記支承部が支持していることから、摩擦ダンパー部の方には、ロッキング振動による荷重変動の影響は殆ど顕れず、つまり前記圧接力の変動は小さいので、前記摩擦ダンパー部の前記摩擦力及び免振周期も概ね目標値に維持される。   Furthermore, even if rocking vibration occurs in the vibration isolation object during an earthquake, the weight of the vibration isolation object is generally supported by the support part, so that the friction damper part has a load fluctuation due to rocking vibration. The influence hardly appears, that is, since the fluctuation of the pressure contact force is small, the friction force and the vibration isolation period of the friction damper part are also maintained at the target values.

請求項2に示す発明は、請求項1に記載の免振装置であって、
前記弾性体に並列して補助摩擦ダンパーが設けられており、
該補助摩擦ダンパーが水平方向に摺動する際の摩擦力の大きさは、前記一対の摩擦部材が水平方向に摺動する際の摩擦力の大きさよりも小さく、
前記補助摩擦ダンパーが摺動しない時には、該補助摩擦ダンパーは、前記弾性体の上端と下端との水平方向の相対変位を不能に拘束することを特徴とする。
Invention of Claim 2 is the vibration isolator of Claim 1, Comprising:
An auxiliary friction damper is provided in parallel with the elastic body,
The magnitude of the frictional force when the auxiliary friction damper slides in the horizontal direction is smaller than the magnitude of the frictional force when the pair of friction members slide in the horizontal direction,
When the auxiliary friction damper does not slide, the auxiliary friction damper restrains the relative displacement in the horizontal direction between the upper end and the lower end of the elastic body to be impossible.

上記請求項2に示す発明によれば、風荷重などの小さな水平力が作用しただけで免振対象物が水平方向に振動してしまうことを、有効に防ぐことができる。詳しくは次のとおりである。   According to the second aspect of the present invention, it is possible to effectively prevent the object to be isolated from vibrating in the horizontal direction only by applying a small horizontal force such as a wind load. Details are as follows.

前記一対の摩擦部材の摩擦力よりも大きな水平力が作用しないと、前記一対の摩擦部材に基づいては、免振対象物は水平方向に相対移動しないが、他方、前記弾性体の弾性変形に基づいては、前記摩擦力よりも小さな水平力でも前記免振対象物は容易に水平方向に相対移動してしまう虞がある。つまり、単に前記一対の摩擦部材と前記弾性体とを直列配置しただけでは、風荷重などの小さな水平力でも免振対象物が水平方向に振動してしまう虞がある。   If a horizontal force larger than the frictional force of the pair of friction members does not act, the vibration isolating object does not move in the horizontal direction based on the pair of friction members, but on the other hand, the elastic body is not elastically deformed. Based on this, there is a possibility that the vibration isolating object easily moves in the horizontal direction even with a horizontal force smaller than the frictional force. That is, if the pair of friction members and the elastic body are simply arranged in series, there is a possibility that the object to be isolated will vibrate in the horizontal direction even with a small horizontal force such as a wind load.

但し、ここで、上述の免振装置は補助摩擦ダンパーを備えており、この補助摩擦ダンパーは、自身が摺動を開始するまでは、前記弾性体の上端と下端との水平方向の相対変位を不能に拘束する。そして、摺動する際の摩擦力の大きさは、前記一対の摩擦部材が摺動する際の摩擦力の大きさよりも小さく設定されている。よって、風荷重などの小さな水平力が作用しただけで建物が水平方向に振動してしまうことを、有効に防ぐことができる。   However, here, the above-described vibration isolator is provided with an auxiliary friction damper, and this auxiliary friction damper causes a relative displacement in the horizontal direction between the upper end and the lower end of the elastic body until the auxiliary friction damper starts to slide. Restrained impossible. And the magnitude | size of the frictional force at the time of sliding is set smaller than the magnitude | size of the frictional force at the time of a pair of said friction member sliding. Therefore, it is possible to effectively prevent the building from vibrating in the horizontal direction only by applying a small horizontal force such as a wind load.

請求項3に示す発明は、請求項2に記載の免振装置であって、
前記一対の摩擦部材と前記弾性体とは上下に連接されており、
前記補助摩擦ダンパーは、前記一対の摩擦部材のうちの一方の摩擦部材に水平方向の摺動可能に設けられた補助摩擦部材と、該補助摩擦部材に直列に配置されて前記補助摩擦部材に鉛直方向の圧接力を付与するばね部材と、を備えていることを特徴とする。
上記請求項3に示す発明によれば、前記一対の摩擦部材のうちの一方の摩擦部材を、前記補助摩擦ダンパーの構成部品として兼用するので、前記補助摩擦ダンパーの補助摩擦部材を一つ削減できて、結果、コスト削減を図れる。
Invention of Claim 3 is the vibration isolator of Claim 2, Comprising:
The pair of friction members and the elastic body are connected vertically.
The auxiliary friction damper includes an auxiliary friction member provided in one of the pair of friction members so as to be slidable in a horizontal direction, and is arranged in series with the auxiliary friction member so as to be perpendicular to the auxiliary friction member. And a spring member for applying a pressure contact force in the direction.
According to the third aspect of the present invention, since one friction member of the pair of friction members is also used as a component of the auxiliary friction damper, one auxiliary friction member of the auxiliary friction damper can be reduced. As a result, cost can be reduced.

請求項4に示す発明は、請求項1乃至3のいずれかに記載の免振装置であって、
前記弾性体は、粘弾性体であることを特徴とする。
上記請求項4に示す発明によれば、粘弾性体の上端と下端とが水平方向に相対変位する際の粘弾性体自身の剪断変形に伴うエネルギー吸収作用によって、免振対象物の振動エネルギーを吸収する。よって、免振対象物の振動の減衰性を更に高めることができる。
Invention of Claim 4 is the vibration isolator in any one of Claim 1 thru | or 3, Comprising:
The elastic body is a viscoelastic body.
According to the fourth aspect of the present invention, the vibration energy of the object to be isolated is reduced by the energy absorbing action accompanying the shear deformation of the viscoelastic body itself when the upper end and the lower end of the viscoelastic body are relatively displaced in the horizontal direction. Absorb. Therefore, the damping property of the vibration of the vibration isolation target can be further increased.

請求項5に示す発明は、請求項1乃至4のいずれかに記載の免振装置であって、
前記圧接力を受ける支持部材は、前記弾性体に並列して配置されず、
前記皿ばねのたわみ量の変化に対する弾発力の変化の割合は、第1範囲のたわみ量よりも第2範囲のたわみ量の方が小さく、
前記調節機構によって、前記皿ばねのたわみ量は前記第2範囲に収まるように調節されていることを特徴とする。
上記請求項5に示す発明によれば、前記弾発力の変化の割合の小さい前記第2範囲に、前記皿ばねのたわみ量が収まるように調節されている。よって、ロッキング振動等により前記免振装置が介装されている前記上下方向隙間の大きさが変化し、これに起因して皿ばねのたわみ量が変動したとしても、前記第2範囲における皿ばねの弾発力の変化は小さいので、当該皿ばねの圧接力の変動は抑えられ、もって、前記摩擦ダンパー部の摩擦力及び免振周期を前記目標値に概ね維持することができる。
The invention shown in claim 5 is the vibration isolator according to any one of claims 1 to 4,
The support member that receives the pressure contact force is not arranged in parallel with the elastic body,
The ratio of the change in the elastic force to the change in the deflection amount of the disc spring is smaller in the deflection amount in the second range than in the first range,
The amount of deflection of the disc spring is adjusted by the adjusting mechanism so as to be within the second range.
According to the fifth aspect of the present invention, the amount of deflection of the disc spring is adjusted to fall within the second range where the rate of change in the elastic force is small. Therefore, even if the size of the vertical gap in which the vibration isolator is interposed changes due to rocking vibration or the like, and the amount of deflection of the disc spring fluctuates due to this, the disc spring in the second range Since the change in the elastic force is small, fluctuations in the pressure contact force of the disc spring can be suppressed, so that the frictional force and the vibration isolation period of the friction damper can be substantially maintained at the target value.

請求項6に示す発明は、請求項1乃至4のいずれかに記載の免振装置であって、
前記弾性体の上端と下端との水平方向の相対変位を許容しつつ、前記弾性体の上端と下端との間の間隔を、前記弾性体の自然長の大きさに保持する保持部材が、前記弾性体に並列して設けられていることを特徴とする。
上記請求項6に示す発明によれば、前記保持部材によって、前記弾性体は前記皿ばねからの圧接力が作用しない自然長の状態に保持されている。よって、当該弾性体の水平剛性の大きさは概ね一定値に維持されるため、前記摩擦ダンパー部による免振周期を、所期の目標値に容易に設定できるとともに、免振対象物にロッキング振動が生じても前記目標値に維持可能である。
The invention shown in claim 6 is the vibration isolator according to any one of claims 1 to 4,
A holding member that holds the distance between the upper end and the lower end of the elastic body at the natural length of the elastic body while allowing horizontal relative displacement between the upper end and the lower end of the elastic body. It is provided in parallel with the elastic body.
According to the sixth aspect of the present invention, the elastic body is held by the holding member in a natural length state in which the pressure contact force from the disc spring does not act. Therefore, since the horizontal rigidity of the elastic body is maintained at a substantially constant value, the vibration isolation period by the friction damper can be easily set to a desired target value, and rocking vibration can be applied to the vibration isolation object. Even if this occurs, the target value can be maintained.

本発明に係る免振装置によれば、前記摩擦部材の摩擦力、及び、前記弾性体による免振周期を、所期の目標値に設定し易く且つ維持し易くなる。   According to the vibration isolator according to the present invention, the frictional force of the friction member and the vibration isolation cycle by the elastic body can be easily set and maintained at a desired target value.

以下、本発明に係る免振装置の実施形態について、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of a vibration isolator according to the present invention will be described in detail with reference to the drawings.

<<<第1実施形態の免振装置10>>>
図1に、第1実施形態の免振装置10が適用された建物1の概念図を示す。免振装置10は、免振対象物としての建物1と、その下方の下部構造体としての基礎3との間の上下方向隙間Gに介装される。そして、この上下方向隙間Gには、上記の免振装置10が複数並列配置されており、もって、これら複数の免振装置10は、建物1の平面内の各支持位置において建物1の重量を分担支持している。
<<< Vibration Isolator 10 of First Embodiment >>>
In FIG. 1, the conceptual diagram of the building 1 to which the vibration isolator 10 of 1st Embodiment was applied is shown. The vibration isolator 10 is interposed in the vertical gap G between the building 1 as a vibration isolation object and the foundation 3 as a lower structure below the object 1. In the vertical gap G, a plurality of the above-described vibration isolation devices 10 are arranged in parallel, so that the plurality of vibration isolation devices 10 can reduce the weight of the building 1 at each support position in the plane of the building 1. Supports sharing.

図2は、免振装置10の側断面図である。なお、上記の複数の免振装置10は何れも同構造である。また、以下で参照する全ての側断面図については、図の錯綜を防ぐべく一部の断面線を省略して示している。   FIG. 2 is a side sectional view of the vibration isolator 10. The plurality of vibration isolator 10 has the same structure. Further, all of the side cross-sectional views referred to below are shown with some cross-sectional lines omitted to avoid complication of the drawings.

免振装置10は、建物1の水平移動を許容しつつこの建物1の重量を支持する支承部20と、この支承部20に並列に配置されて、建物1の水平移動を抑制する摩擦ダンパー部30とを備えている。   The vibration isolator 10 supports the weight of the building 1 while allowing the horizontal movement of the building 1, and the friction damper part arranged in parallel to the bearing part 20 to suppress the horizontal movement of the building 1. 30.

支承部20は、例えば転がり支承である。すなわち、建物1の下面1aに受け座21aを介して固定される平滑な転がり板23と、基礎3の上面3aに受け座21bを介して固定される平滑な転がり板24と、これら転がり板23,24の水平な転がり面同士の間に介在する複数の鋼球25とを備えている。そして、これら鋼球25が前記転がり板23,24を介して建物1の支持荷重を鉛直方向に受けながら転動することにより、建物1は、小さな水平力(水平方向の外力)でも水平移動可能に支持されている。   The bearing unit 20 is, for example, a rolling bearing. That is, the smooth rolling plate 23 fixed to the lower surface 1a of the building 1 through the receiving seat 21a, the smooth rolling plate 24 fixed to the upper surface 3a of the foundation 3 through the receiving seat 21b, and these rolling plates 23. , 24 and a plurality of steel balls 25 interposed between the horizontal rolling surfaces. The steel balls 25 roll while receiving the supporting load of the building 1 in the vertical direction via the rolling plates 23 and 24, so that the building 1 can be moved horizontally even with a small horizontal force (horizontal external force). It is supported by.

ちなみに、この転がり支承20によれば、建物1の下面1aと基礎3の上面3aとの隙間たる前記上下方向隙間Gは、ほぼ一定間隔に維持される。また、各免振装置10に分担された建物1の支持荷重の大半は、当該支承部20の方で受けるため、摩擦ダンパー部30の方では、後述の皿ばね部40に基づく圧接力分の荷重しか支持しない。   Incidentally, according to this rolling support 20, the vertical gap G, which is a gap between the lower surface 1a of the building 1 and the upper surface 3a of the foundation 3, is maintained at a substantially constant interval. In addition, since most of the support load of the building 1 shared by each vibration isolator 10 is received by the support portion 20, the friction damper portion 30 has a pressure contact force based on a disc spring portion 40 described later. Only supports loads.

一方、摩擦ダンパー部30は、皿ばね部40と、弾性ゴム部50と、摩擦減衰部60とが、この順番で鉛直方向の上から下へと直列に重ねて配置されるとともに、これら3つの構成部40,50,60において上下に隣り合う構成部同士が互いにボルト止め等にて連結固定されてなる。   On the other hand, the friction damper portion 30 includes a disc spring portion 40, an elastic rubber portion 50, and a friction damping portion 60, which are arranged in series in this order from top to bottom in the vertical direction. In the constituent parts 40, 50, 60, the constituent parts adjacent in the vertical direction are connected and fixed to each other by bolting or the like.

摩擦減衰部60は、建物1の水平振動の減衰を水平方向の摩擦力によって行うものであり、互いに当接する摩擦面において水平方向に摺動する上下一対の摩擦板61,62を本体とする。そして、下摩擦板62は、建物1の基礎3の上面3aに固定される一方、上摩擦板61は、前記弾性ゴム部50の下面たる下フランジ板53に重ね合わせられてボルト止めされている。よって、これら上下の摩擦板61,62の水平方向の相対移動に伴って、摺動する摩擦面に摩擦力が生じ、これにより建物1の水平振動が減衰される。ここでは、下摩擦板62にはステンレス板を用い、上摩擦板61には超高分子量ポリエチレンを用いているが、これらの使用素材は、必要な摩擦力の大きさのオーダー等に基づいて適宜選定される。また、この摩擦力は、上下摩擦板61,62の前記摩擦面(以下、摺動面とも言う)に作用する垂直抗力たる圧接力に応じて変化するが、この圧接力は、後述の皿ばね部40の弾発力によって付与されるため、当該弾発力の調節により摩擦力の大きさを調整可能である。   The friction damping part 60 performs damping of horizontal vibration of the building 1 by the frictional force in the horizontal direction, and includes a pair of upper and lower friction plates 61 and 62 that slide in the horizontal direction on the friction surfaces that are in contact with each other. The lower friction plate 62 is fixed to the upper surface 3a of the foundation 3 of the building 1, while the upper friction plate 61 is superposed on the lower flange plate 53, which is the lower surface of the elastic rubber portion 50, and is bolted. . Therefore, with the relative movement of the upper and lower friction plates 61 and 62 in the horizontal direction, a frictional force is generated on the sliding friction surface, and thereby the horizontal vibration of the building 1 is attenuated. Here, a stainless steel plate is used for the lower friction plate 62, and ultrahigh molecular weight polyethylene is used for the upper friction plate 61. However, these materials are appropriately used based on the order of the magnitude of the required frictional force. Selected. Further, this frictional force changes according to a pressure contact force which is a vertical drag acting on the friction surfaces (hereinafter also referred to as sliding surfaces) of the upper and lower friction plates 61 and 62. This pressure contact force is a disc spring which will be described later. Since it is given by the elastic force of the part 40, the magnitude of the frictional force can be adjusted by adjusting the elastic force.

弾性ゴム部50は、上記の摩擦減衰部60に係る上下一対の摩擦板61,62同士が摺動しないような小さな水平力の作用下において、建物1の振動を所期の免振周期に長周期化しつつ、その振動を減衰するものであり、その構成は、所謂積層ゴム51(例えば、円形の鋼板51aとゴム層51bとを上下に交互に積層してなる円柱状の弾性体)を、上下一対のフランジ板52,53で挟んで固定したものである。そして、下フランジ板53は、前述したように摩擦ダンパー部60の上面たる上摩擦板61に重ね合わされてボルト止めされる一方、上フランジ板52は、皿ばね部40の下面たる下加圧板46に重ね合わされてボルト止めされている。よって、作用する水平力に応じて積層ゴム51が水平方向に剪断変形して、上端の上フランジ板52と下端の下フランジ板53とが水平方向に相対変位することにより、建物1の水平振動を長周期化する。   The elastic rubber part 50 extends the vibration of the building 1 to an intended vibration isolation period under the action of a small horizontal force that does not allow the pair of upper and lower friction plates 61 and 62 related to the friction damping part 60 to slide. The vibration is damped while being periodic, and the structure thereof is a so-called laminated rubber 51 (for example, a cylindrical elastic body formed by alternately laminating circular steel plates 51a and rubber layers 51b). It is sandwiched and fixed between a pair of upper and lower flange plates 52 and 53. The lower flange plate 53 is overlapped with the upper friction plate 61 that is the upper surface of the friction damper 60 and bolted as described above, while the upper flange plate 52 is the lower pressure plate 46 that is the lower surface of the disc spring portion 40. It is piled up and bolted. Accordingly, the laminated rubber 51 is sheared and deformed in the horizontal direction according to the applied horizontal force, and the upper flange plate 52 at the upper end and the lower flange plate 53 at the lower end are relatively displaced in the horizontal direction. To make the period longer.

なお、図3に示すように、この積層ゴム51の水平剛性Kh(P)は、当該積層ゴム51に作用する鉛直荷重Pに応じて変化するため、この積層ゴム51による長周期化後の振動周期(以下、免振周期とも言う)も、同荷重Pに応じて変化することになるが、この点につき、この第1実施形態では、この積層ゴム51に並列して、上記の皿ばね部40からの圧接力を受けるための支持部材が全く配置されていないことから、皿ばね部40からの圧接力は、そのまま上述の鉛直荷重Pとして積層ゴム51に作用する。よって、この積層ゴム51による免振周期も、上述の摩擦減衰部60の摩擦力と同様に、皿ばね部40の弾発力の調節により調整可能である。   As shown in FIG. 3, the horizontal rigidity Kh (P) of the laminated rubber 51 changes according to the vertical load P acting on the laminated rubber 51, so that the vibration after the long period by the laminated rubber 51 is increased. The period (hereinafter also referred to as the vibration isolation period) also changes according to the load P. In this regard, in the first embodiment, the above-described disc spring portion is arranged in parallel with the laminated rubber 51. Since the support member for receiving the pressure contact force from 40 is not arranged at all, the pressure contact force from the disc spring part 40 acts on the laminated rubber 51 as the above-described vertical load P as it is. Therefore, the vibration isolation period by the laminated rubber 51 can also be adjusted by adjusting the resilience of the disc spring part 40 in the same manner as the frictional force of the friction damping part 60 described above.

皿ばね部40は、上述のように、摩擦減衰部60及び弾性ゴム部50に対して鉛直方向の圧接力を所定の大きさに調整して付与するものであり、図2に示すように、皿ばね積層体41と、皿ばね積層体41の弾発力を調整する圧接力調節機構44と、を有する。   As described above, the Belleville spring portion 40 adjusts and applies a vertical pressure contact force to the friction damping portion 60 and the elastic rubber portion 50 to a predetermined size, as shown in FIG. The disc spring laminated body 41 and a pressure contact force adjusting mechanism 44 that adjusts the elastic force of the disc spring laminated body 41 are provided.

皿ばね積層体41は、複数枚の皿ばね42の向きを揃えて重ねてなる皿ばねユニット42Uを、複数組有する。そして、これらユニットの組数や、ユニットの上下方向の向き、並びに、ユニット内の皿ばね42の枚数等を適宜設定することにより、皿ばね積層体41のたわみ量と弾発力との関係が一義的に決定される(図6を参照)。この図3の例では、4枚の皿ばね42からなる皿ばねユニット42Uが2組使用され、これら皿ばねユニット42U,42U同士は互いに向きを逆にして直列配置されている。そして、上述のたわみ量と弾発力との関係下において、皿ばね積層体41に加えるたわみ量を、圧接力調節機構44で調節することにより、弾発力たる前記圧接力を任意値に調整可能である。   The disc spring laminated body 41 has a plurality of disc spring units 42 </ b> U formed by aligning the orientations of a plurality of disc springs 42. Then, by appropriately setting the number of these units, the vertical direction of the units, the number of the disc springs 42 in the unit, and the like, the relationship between the deflection amount and the elasticity of the disc spring laminated body 41 can be obtained. It is uniquely determined (see FIG. 6). In the example of FIG. 3, two sets of disc spring units 42U including four disc springs 42 are used, and these disc spring units 42U and 42U are arranged in series with their directions reversed. Then, under the relationship between the amount of deflection and the elastic force, the amount of deflection applied to the disc spring laminated body 41 is adjusted by the pressure-contact force adjusting mechanism 44, thereby adjusting the pressure-contact force as the elastic force to an arbitrary value. Is possible.

圧接力調節機構44は、皿ばね積層体41を上下に挟んで配置される上下一対の円盤状の加圧板45,46と、上加圧板45を下方へ押し下げて下加圧板46との間隔を縮めることにより皿ばね積層体41にたわみを付与する加圧部47と、を有する。   The pressure contact force adjustment mechanism 44 pushes down the upper pressure plate 45 and the lower pressure plate 46 by pressing the upper pressure plate 45 downward and a pair of upper and lower disk-shaped pressure plates 45, 46 arranged with the disc spring laminated body 41 interposed therebetween. And a pressurizing portion 47 that imparts deflection to the disc spring laminate 41 by contraction.

詳しくは、下加圧板46の中央には、上方へ突出する円柱シャフト46aが固定されているとともに、この円柱シャフト46aは、皿ばね42の中央の貫通孔42aに挿通され、更には、上加圧板45の中央の貫通孔45aにも挿抜自在に挿通されており、これにより、皿ばね積層体41は、上下の加圧板45,46に挟まれた状態において側方へ脱落しないように保持されている。また、上加圧板45の前記貫通孔45aの全周に沿って、上方へ突出する円筒部45bが一体に突出形成されており、この円筒部45bは、建物1の下面1aにボルト止めされる前記加圧部47に形成された鉛直な挿入孔47aに螺合されている。すなわち、この挿入孔47aの内周面には雌めじ47cが形成されているとともに、前記上加圧板45の円筒部45bの外周面には、前記雌ねじ47cに螺合する雄ねじ45cが形成されており、上加圧板45を前記加圧部47に対して相対的に螺合回転させると、その螺合回転によって所謂送りねじ機構の如く上加圧板45は上下方向に送られる。   Specifically, a cylindrical shaft 46a protruding upward is fixed at the center of the lower pressurizing plate 46, and this cylindrical shaft 46a is inserted into the central through hole 42a of the disc spring 42, and further, The disc spring stack 41 is also inserted into the through hole 45a in the center of the pressure plate 45 so as to be freely inserted and withdrawn, so that the disc spring laminated body 41 is held so as not to be dropped sideways when sandwiched between the upper and lower pressure plates 45 and 46. ing. A cylindrical portion 45b that protrudes upward is integrally formed along the entire circumference of the through hole 45a of the upper pressure plate 45, and this cylindrical portion 45b is bolted to the lower surface 1a of the building 1. It is screwed into a vertical insertion hole 47 a formed in the pressure part 47. That is, a female thread 47c is formed on the inner peripheral surface of the insertion hole 47a, and a male screw 45c is formed on the outer peripheral surface of the cylindrical portion 45b of the upper pressure plate 45 so as to be engaged with the female screw 47c. When the upper pressurizing plate 45 is screwed and rotated relative to the pressurizing portion 47, the upper pressurizing plate 45 is fed in the vertical direction by the screwing rotation like a so-called feed screw mechanism.

よって、上加圧板45を螺合回転させて、その螺合回転量に応じた分だけ上加圧板45を下方に押し下げれば、皿ばね積層体41には上下方向のたわみが付与されて、皿ばね積層体41に弾発力が発生する。そして、この弾発力は、前記上加圧板45及び加圧部47を通じて建物1から反力を得ることにより、前記圧接力として摩擦減衰部60及び弾性ゴム部50に作用し、その結果、摩擦減衰部60の摩擦力及び弾性ゴム部50による免振周期が設定される。ちなみに、たわみ量と弾発力との関係は、上述したように予めわかっているので(図6を参照)、無負荷状態からのたわみ量の変化を計測すれば、圧接力の大きさを知ることができる。   Therefore, if the upper pressurizing plate 45 is screwed and rotated, and the upper pressurizing plate 45 is pushed downward by an amount corresponding to the screwing rotation amount, the disc spring laminated body 41 is given a vertical deflection, An elastic force is generated in the disc spring laminated body 41. The elastic force is applied to the friction damping portion 60 and the elastic rubber portion 50 as the pressure contact force by obtaining a reaction force from the building 1 through the upper pressure plate 45 and the pressure portion 47, and as a result, friction. The frictional force of the damping part 60 and the vibration isolation period by the elastic rubber part 50 are set. Incidentally, since the relationship between the deflection amount and the elastic force is known in advance as described above (see FIG. 6), the magnitude of the pressure contact force can be known by measuring the change in the deflection amount from the no-load state. be able to.

図4は、この免振装置10の振動エネルギー吸収履歴特性のグラフである。すなわち、免振装置10の上下端を強制的に所定振幅(例えば±15cm)で水平加振して得られるグラフであり、横軸には、免振装置10の上端と下端との間の水平方向の相対変位を示し、縦軸には、免振装置10が水平振動に対抗して発生する水平方向の力を示している。ちなみに、横軸の相対変位は、建物1と基礎3との水平方向の相対変位と同義である。   FIG. 4 is a graph of vibration energy absorption history characteristics of the vibration isolator 10. That is, the graph is obtained by forcibly vibrating the upper and lower ends of the vibration isolator 10 horizontally with a predetermined amplitude (for example, ± 15 cm). The relative displacement in the direction is shown, and the vertical axis shows the horizontal force generated by the vibration isolator 10 against the horizontal vibration. Incidentally, the horizontal relative displacement is synonymous with the horizontal relative displacement between the building 1 and the foundation 3.

この例では、皿ばね部40による圧接力の調整により、摩擦減衰部60の摩擦力が、10TONを目標値として設定されている。よって、加振の外力の絶対値が10TON以下の場合には、摩擦減衰部60は摺動せずに機能せず、専ら弾性ゴム部50の方が機能する。すなわち、弾性ゴム部50の積層ゴム51が、その水平剛性Khに基づいて、図4の線分AB、線分CD、及び線分EFに示すように水平方向に変形して、建物1の水平振動を長周期化しつつ減衰する。そして、加振の外力の絶対値が10TONを超える場合には、摩擦減衰部60が機能し、すなわち、一対の摩擦板61,62同士が摺動して図4の線分DE及び線分FCに示すように10TONの摩擦力を発生し、これにより建物1の水平振動を減衰する。   In this example, the frictional force of the friction damping portion 60 is set to 10 TON as a target value by adjusting the pressure contact force by the disc spring portion 40. Therefore, when the absolute value of the external force of vibration is 10 TON or less, the friction damping portion 60 does not function without sliding, and the elastic rubber portion 50 functions exclusively. That is, the laminated rubber 51 of the elastic rubber portion 50 is deformed in the horizontal direction as shown by line segment AB, line segment CD, and line segment EF in FIG. Damping while increasing the period of vibration. When the absolute value of the external force of vibration exceeds 10 TON, the friction damping unit 60 functions, that is, the pair of friction plates 61 and 62 slide to each other, and the line segment DE and the line segment FC in FIG. As shown in FIG. 5, a frictional force of 10 TON is generated, and thereby the horizontal vibration of the building 1 is attenuated.

よって、この免振装置10によれば、水平方向の地震荷重が10TON以下の小地震に対しては、弾性ゴム部50により建物1は免振されつつ振動減衰される一方、地震荷重が10TONを超えるような大地震に対しては摩擦減衰部60により建物1は免振されつつ振動減衰され、もって、地震荷重の大小によらず、建物1は確実に免振されつつ振動減衰される。   Therefore, according to the vibration isolator 10, for a small earthquake with a horizontal seismic load of 10 TON or less, the elastic rubber portion 50 dampens the building 1 while being isolated, while the seismic load is reduced to 10 TON. The building 1 is vibrationally attenuated by the frictional damping unit 60 against a large earthquake that exceeds, and the building 1 is reliably vibration-isolated while being isolated, regardless of the magnitude of the earthquake load.

また、この第1実施形態の免振装置10では、皿ばね部40によって圧接力を調整できるので、この調整による前記摩擦板61,62の摩擦力及び前記積層ゴム51の水平剛性Khの大きさの変更を通じて、上記の振動エネルギー吸収履歴特性を自在に設定変更可能である。   Further, in the vibration isolator 10 of the first embodiment, the pressure contact force can be adjusted by the disc spring portion 40. Therefore, the friction force of the friction plates 61 and 62 and the horizontal rigidity Kh of the laminated rubber 51 by this adjustment are adjusted. Through this change, the above vibration energy absorption history characteristics can be freely set and changed.

例えば、図5中実線で示す上記の基本例(摩擦力の目標値10TONの場合)よりも圧接力を高くすれば、同基本例よりも大きい12.5TONの摩擦力に設定されるとともに、同基本例よりも小さな水平剛性Khの値に設定され、結果、図5に点線で示すような振動エネルギー吸収履歴特性に設定変更される。また、逆に、前記基本例よりも圧接力を低くすれば、同基本例よりも小さい7.5TONの摩擦力に設定されるとともに、同基本例よりも大きな水平剛性Khの値に設定され、結果、図5に一点鎖線で示すような振動エネルギー吸収履歴特性に設定変更される。   For example, if the pressure contact force is made higher than the above basic example (in the case of the frictional force target value 10 TON) indicated by the solid line in FIG. 5, the frictional force is set to 12.5 TON larger than the basic example, The horizontal stiffness Kh is set to a value smaller than that of the basic example, and as a result, the setting is changed to the vibration energy absorption history characteristic as shown by the dotted line in FIG. On the contrary, if the pressure contact force is made lower than that in the basic example, the frictional force is set to 7.5 TON smaller than that in the basic example, and the horizontal rigidity Kh is set to be larger than that in the basic example. As a result, the setting is changed to the vibration energy absorption history characteristic as shown by the one-dot chain line in FIG.

ところで、上述の第1実施形態では、免振装置10の支承部20として転がり支承を用いていたが、これに代えて、滑り支承(滑り面にて小さな摺動抵抗で摺動する上下一対の滑り板を備えた構成)や積層ゴムを用いても良い。ここで、前者の滑り支承の場合には、上述の第1実施形態の転がり支承と同じく、建物1と基礎3との間の上下方向隙間Gは概ね一定間隔に維持されるが、後者の積層ゴムの場合には、積層ゴム自身が鉛直方向に伸縮変形可能なために、建物1のロッキング振動等に伴って前記上下方向隙間Gの間隔は変動してしまい、その結果として、皿ばね部40の皿ばね積層体41のたわみ量も変動してしまう。そして、最終的には、皿ばね積層体41の弾発力の変動を通して、摩擦減衰部60の摩擦力及び弾性ゴム部50の水平剛性Khが変動し、結果、摩擦力及び免振周期を目標値に維持できなくなる虞がある。   Incidentally, in the first embodiment described above, a rolling bearing is used as the bearing portion 20 of the vibration isolator 10, but instead of this, a sliding bearing (a pair of upper and lower slides that slide on the sliding surface with a small sliding resistance) is used. A structure provided with a sliding plate) or laminated rubber may be used. Here, in the case of the former sliding bearing, the vertical gap G between the building 1 and the foundation 3 is maintained at a substantially constant interval as in the case of the rolling bearing of the first embodiment described above. In the case of rubber, since the laminated rubber itself can be expanded and contracted in the vertical direction, the interval of the vertical gap G varies with the rocking vibration of the building 1, and as a result, the disc spring portion 40. The deflection amount of the disc spring laminated body 41 also varies. Finally, the frictional force of the friction damping part 60 and the horizontal rigidity Kh of the elastic rubber part 50 change through the fluctuation of the elastic force of the disc spring laminated body 41. As a result, the frictional force and the vibration isolation period are targeted. There is a risk that the value cannot be maintained.

このような場合には、皿ばねの荷重とたわみ量の関係の非線形性を利用して前記圧接力を設定すると良い。図6は、皿ばねのばね特性を示す荷重−たわみ曲線であるが、このばね特性は、たわみ量の変化にほぼ比例して弾発力が変化する線形領域(第1範囲に相当)と、この線形領域の弾発力の変化の割合よりも小さい非線形領域(第2範囲に相当)とを有している。そして、特に後者の非線形領域は、たわみ量の変化に対して弾発力が殆ど変化しない不感帯域になっている。よって、例えば、この不感帯域の中央値のたわみ量に皿ばね積層体41の皿ばね42のたわみ量を設定すれば、仮にたわみ量が多少変動したとしても、弾発力をほぼ一定値に維持することができて、その結果、ロッキング振動下においても摩擦減衰部60の摩擦力及び弾性ゴム部50による免振周期を概ね一定に維持することができる。   In such a case, it is preferable to set the pressure contact force by utilizing the nonlinearity of the relationship between the load of the disc spring and the amount of deflection. FIG. 6 is a load-deflection curve showing the spring characteristics of the disc spring. This spring characteristic is a linear region (corresponding to the first range) in which the elastic force changes almost in proportion to the change of the deflection amount. It has a non-linear region (corresponding to the second range) smaller than the rate of change in the elastic force of this linear region. In particular, the latter non-linear region is a dead zone in which the elastic force hardly changes with the change in the deflection amount. Therefore, for example, if the deflection amount of the disc spring 42 of the disc spring laminated body 41 is set to the median deflection amount of the dead band, even if the deflection amount slightly fluctuates, the elastic force is maintained at a substantially constant value. As a result, the frictional force of the frictional damping part 60 and the vibration isolation period by the elastic rubber part 50 can be maintained substantially constant even under rocking vibration.

ちなみに、支承部20として前者の滑り支承や第1実施形態の転がり支承を用いた場合には、建物1と基礎3との間の上下方向隙間Gはほぼ一定に維持されるため、皿ばね部40の皿ばね積層体41のたわみ量も一定値に維持される。よって、この場合には特に上述の不感帯域を利用する必要はなく、つまり、図6の線形領域内のたわみ量に設定しても良い。   By the way, when the former sliding bearing or the rolling bearing of the first embodiment is used as the bearing section 20, the vertical gap G between the building 1 and the foundation 3 is maintained substantially constant, so that the disc spring section The deflection amount of 40 disc spring laminated bodies 41 is also maintained at a constant value. Therefore, in this case, it is not particularly necessary to use the above-described dead band, that is, the deflection amount in the linear region of FIG. 6 may be set.

図7は、上記第1実施形態の免振装置10の変形例の側断面図である。この変形例では、図2の弾性ゴム部50の積層ゴム51に代えて、図7に示すように、摩擦ダンパー部30aの弾性ゴム部50aに対し円柱形状の粘弾性ゴム55(粘弾性体に相当)が使用されている点で相違し、これ以外の構成は同じである。   FIG. 7 is a side sectional view of a modified example of the vibration isolator 10 of the first embodiment. In this modification, instead of the laminated rubber 51 of the elastic rubber portion 50 of FIG. 2, as shown in FIG. 7, a cylindrical viscoelastic rubber 55 (viscoelastic body) is formed with respect to the elastic rubber portion 50a of the friction damper portion 30a. Equivalent) is used, and other configurations are the same.

そして、この変形例の免振装置10aによれば、粘弾性ゴム55自身の水平方向の剪断変形に伴う大きなエネルギー吸収作用によって、建物1の振動エネルギーを効果的に吸収し、もって、振動の減衰性を更に高めることができる。   And according to the vibration isolator 10a of this modification, the vibration energy of the building 1 is effectively absorbed by the large energy absorption action accompanying the shear deformation in the horizontal direction of the viscoelastic rubber 55 itself. The sex can be further enhanced.

すなわち、図8に、この免振装置10aの振動エネルギー吸収履歴特性のグラフを示すが、粘弾性ゴム55を用いることにより、粘弾性ゴム55が水平方向に剪断変形する線分AB、線分CD、線分EFにおいては、水平方向の力に対して変位が線形に変化せずに紡錘型を描くように当該変位が残留するようになっており、その分だけ、領域CDEFの面積が、上述の第1実施形態の場合よりも大きくなっている。ここで、この領域CDEFの面積の大きさは、エネルギー吸収量を示しており、このことから、この変形例の免振装置10aの方がエネルギー吸収能力の点で優れていることがわかる。なお、この粘弾性ゴムとしては、例えば、「VEMダンパー(アクリル高分子材):住友3M(株)」や、「シリコン系ゴム粘弾性ダンパー、ジエン系ゴム粘弾性ダンパー:昭和電線デバイステクノロジー(株)」等を適用できる。   That is, FIG. 8 shows a graph of vibration energy absorption history characteristics of the vibration isolator 10a. By using the viscoelastic rubber 55, the line segment AB and line segment CD in which the viscoelastic rubber 55 is shear-deformed in the horizontal direction are shown. In the line segment EF, the displacement does not change linearly with respect to the force in the horizontal direction, and the displacement remains so as to draw a spindle shape, and the area of the region CDEF is increased by that amount. It is larger than the case of the first embodiment. Here, the size of the area of the region CDEF indicates the amount of energy absorption. From this, it can be seen that the vibration isolator 10a of this modification is superior in terms of energy absorption capability. Examples of the viscoelastic rubber include “VEM damper (acrylic polymer material): Sumitomo 3M Co., Ltd.” and “silicon rubber viscoelastic damper, diene rubber viscoelastic damper: Showa Electric Device Technology Co., Ltd. ) "Etc. can be applied.

<<<第2実施形態の免振装置10b>>>
図9は第2実施形態の免振装置10bの側断面図である。第1実施形態の免振装置10では、小さい地震荷重に対しては、弾性ゴム部50が水平方向に剪断変形して免振するようになっていた。但し、その構成では、小さい地震荷重だけでなく、それよりも更に小さい風荷重によっても、弾性ゴム部50が剪断変形してしまい、その結果、風により建物1が揺れ易くなり居住性が悪くなる虞がある。
<<< Vibration Isolation Device 10b of Second Embodiment >>>
FIG. 9 is a side sectional view of the vibration isolator 10b of the second embodiment. In the vibration isolator 10 of the first embodiment, the elastic rubber portion 50 is subjected to vibration isolation by shearing in the horizontal direction against a small earthquake load. However, in the configuration, the elastic rubber portion 50 is sheared and deformed not only by a small earthquake load but also by a wind load smaller than that, and as a result, the building 1 is easily shaken by the wind and the comfortability is deteriorated. There is a fear.

そこで、この第2実施形態では、摩擦ダンパー部30bの弾性ゴム部50に並列して補助摩擦ダンパー70を配置しており、前記地震荷重よりも小さい風荷重に対しては、この補助摩擦ダンパー70が弾性ゴム部50の水平方向の剪断変形を不能に拘束するようにしている。なお、第1実施形態との相違点は、補助摩擦ダンパー70を追設している点にあり、それ以外の構成は概ね同じである。   Therefore, in the second embodiment, the auxiliary friction damper 70 is disposed in parallel with the elastic rubber portion 50 of the friction damper portion 30b, and this auxiliary friction damper 70 is applied to wind loads smaller than the earthquake load. Is configured to restrain the horizontal shear deformation of the elastic rubber portion 50 from being impossible. The difference from the first embodiment is that an auxiliary friction damper 70 is additionally provided, and other configurations are generally the same.

図9に示すように、皿ばね部40の下加圧板46に補助摩擦ダンパー70は取り付けられており、これにより、補助摩擦ダンパー70は、弾性ゴム部50の積層ゴム51を上下方向に跨ぎつつ積層ゴム51に並列配置されている。すなわち、補助摩擦ダンパー70の取り付け用ロッド71の上端部71aは前記下加圧板46に螺合固定されているとともに、取り付け用ロッド71の下端部71bは、円筒状の補助摩擦部材72の貫通孔72aに鉛直方向に挿抜自在に挿入されており、当該補助摩擦部材72の下面は、鉛直方向に所定の圧接力で、前記摩擦減衰部60の下摩擦板62の上面に当接している。よって、水平方向の外力としての水平力が、補助摩擦部材72と下摩擦板62の間の摩擦力の大きさを超えるまでは、弾性ゴム部50の積層ゴム51は水平方向の剪断変形不能に拘束される一方、超えたら補助摩擦部材72と下摩擦板62との摺動に伴って積層ゴム51は水平方向に剪断変形する。   As shown in FIG. 9, the auxiliary friction damper 70 is attached to the lower pressure plate 46 of the disc spring part 40, so that the auxiliary friction damper 70 straddles the laminated rubber 51 of the elastic rubber part 50 in the vertical direction. The laminated rubber 51 is arranged in parallel. That is, the upper end 71 a of the mounting rod 71 of the auxiliary friction damper 70 is screwed and fixed to the lower pressure plate 46, and the lower end 71 b of the mounting rod 71 is a through-hole of the cylindrical auxiliary friction member 72. The lower surface of the auxiliary friction member 72 is in contact with the upper surface of the lower friction plate 62 of the friction damping portion 60 with a predetermined pressure contact force in the vertical direction. Therefore, until the horizontal force as the horizontal external force exceeds the magnitude of the friction force between the auxiliary friction member 72 and the lower friction plate 62, the laminated rubber 51 of the elastic rubber portion 50 cannot be sheared in the horizontal direction. On the other hand, if it exceeds, the laminated rubber 51 shears and deforms in the horizontal direction as the auxiliary friction member 72 and the lower friction plate 62 slide.

ここで、補助摩擦部材72は例えば前記上摩擦板61と同素材の超高分子量ポリエチレンであり、また、当該補助摩擦部材72と下摩擦板62の間の摩擦力の大きさは、上記の圧接力の調節により調整される。すなわち、取り付け用ロッド71における補助摩擦部材72よりも上方の部分には、加圧板73付きのナット部材74が螺合されており、このナット部材74と補助摩擦部材72との間には、ばね部材として皿ばね75が配置されている。よって、ナット部材74を螺合回転させて、ナット部材74を補助摩擦部材72の方へ移動させることにより加圧板73と補助摩擦部材72とによって皿ばね75を挟んでたわませることができ、このたわみ量に応じた弾発力を圧接力として、補助摩擦部材72は、前記摩擦減衰部60の下摩擦板62に押し付けられる。よって、皿ばね75のたわみ量の調節により、補助摩擦ダンパー70の摩擦力の大きさを調整可能である。   Here, the auxiliary friction member 72 is, for example, an ultra-high molecular weight polyethylene made of the same material as the upper friction plate 61, and the magnitude of the frictional force between the auxiliary friction member 72 and the lower friction plate 62 is the above-described pressure contact. It is adjusted by adjusting the force. That is, a nut member 74 with a pressure plate 73 is screwed to a portion of the mounting rod 71 above the auxiliary friction member 72, and a spring is interposed between the nut member 74 and the auxiliary friction member 72. A disc spring 75 is disposed as a member. Therefore, by rotating the nut member 74 in a threaded manner and moving the nut member 74 toward the auxiliary friction member 72, the disc spring 75 can be bent between the pressure plate 73 and the auxiliary friction member 72. The auxiliary friction member 72 is pressed against the lower friction plate 62 of the friction damping portion 60 by using the elastic force according to the amount of deflection as a pressing force. Therefore, the magnitude of the frictional force of the auxiliary friction damper 70 can be adjusted by adjusting the amount of deflection of the disc spring 75.

なお、この補助摩擦ダンパー70の摩擦力の目標値は、前記摩擦減衰部60の摩擦力よりも小さい値に設定される。より詳しくは、例えば、風荷重の平均値と、前記摩擦減衰部60の摩擦力との間の値に設定される。そして、例えば、摩擦力の目標値を5TONに設定すれば、図10の振動エネルギー吸収履歴特性のグラフ中に示すように、相対変位不能に拘束される状態が、線分AA2、線分CC2、線分EE2の如く5TONの幅で生じており、これによって、5TON以下の水平力の作用下における弾性ゴム部50の剪断変形は拘束され、その結果、風による建物1の水平振動を有効に抑制可能となる。   The target value of the frictional force of the auxiliary friction damper 70 is set to a value smaller than the frictional force of the friction damping unit 60. More specifically, for example, it is set to a value between the average value of the wind load and the frictional force of the friction damping portion 60. And, for example, if the target value of the frictional force is set to 5 TON, as shown in the graph of vibration energy absorption history characteristics of FIG. This occurs with a width of 5 TON like the line segment EE2, and this restrains the shear deformation of the elastic rubber part 50 under the action of a horizontal force of 5 TON or less. As a result, the horizontal vibration of the building 1 due to wind is effectively suppressed. It becomes possible.

ちなみに、これら線分AA2、線分CC2、線分EE2の幅は、上述から明らかなように、ナット部材74による上記摩擦力の調節によって変更可能である。よって、例えば、上記の5TONの摩擦力を7.5TONまで大きくすれば、振動エネルギー吸収履歴特性の線分AA2、線分CC2、線分EE2の部分は、図10の点線のように変更される。   Incidentally, the widths of the line segment AA2, the line segment CC2, and the line segment EE2 can be changed by adjusting the frictional force by the nut member 74, as is apparent from the above. Therefore, for example, if the frictional force of 5 TON is increased to 7.5 TON, the line segment AA2, the line segment CC2, and the line segment EE2 of the vibration energy absorption history characteristic are changed as shown by the dotted line in FIG. .

<<<第3実施形態の免振装置10c>>>
図11は第3実施形態の免振装置10cの側断面図である。第1実施形態の免振装置10では、皿ばね部40の圧接力が弾性ゴム部50の積層ゴム51にも作用していたが、この第3実施形態では、弾性ゴム部50cの積層ゴム51cに対しては転がり支承部材81が並列に配置されており、この転がり支承部材81の方が前記積層ゴム51cの代わりに前記圧接力を受けるようになっている。よって、前記積層ゴム51cには前記圧接力が作用せず、つまり、積層ゴム51cの高さは、鉛直荷重の作用しない自然長にほぼ保持されるので、その水平剛性Khは所定値(積層ゴム51cの固有値)のまま変動せず、もって、弾性ゴム部50cによる免振周期を所期の目標値に確実に維持可能となる。
<<< Vibration Isolation Device 10c of Third Embodiment >>>
FIG. 11 is a side sectional view of the vibration isolator 10c of the third embodiment. In the vibration isolator 10 of the first embodiment, the pressure contact force of the disc spring portion 40 also acts on the laminated rubber 51 of the elastic rubber portion 50. In this third embodiment, the laminated rubber 51c of the elastic rubber portion 50c is used. In contrast, a rolling support member 81 is arranged in parallel, and the rolling support member 81 receives the pressure contact force instead of the laminated rubber 51c. Therefore, the pressure contact force does not act on the laminated rubber 51c, that is, the height of the laminated rubber 51c is substantially maintained at a natural length where no vertical load acts, so that the horizontal rigidity Kh is a predetermined value (laminated rubber). Therefore, the vibration isolation period of the elastic rubber portion 50c can be reliably maintained at a desired target value.

図11に示すように、弾性ゴム部50cは、積層ゴム51cと、積層ゴム51cを上下に挟んで固定された上下一対のフランジ板52,53と、上下一対のフランジ板52,53の間の上下方向隙間Gcに介装されつつ、積層ゴム51cの周囲を囲んで配置された転がり支承部材81とから主になる。   As shown in FIG. 11, the elastic rubber portion 50c includes a laminated rubber 51c, a pair of upper and lower flange plates 52 and 53 fixed with the laminated rubber 51c sandwiched therebetween, and a pair of upper and lower flange plates 52 and 53. It is mainly composed of a rolling support member 81 disposed so as to surround the periphery of the laminated rubber 51c while being interposed in the vertical gap Gc.

積層ゴム51cは、その平面中心を前記フランジ板52の平面中心に揃えて配置されており、その立体サイズは、その外径の寸法について上述の第1実施形態の積層ゴム51よりも大幅に小さくなっている。この小さくできた理由としては、この第3実施形態の積層ゴム51cは皿ばね部40からの圧接力を受けないことから、圧接力に座屈しないだけの高剛性を要しないためである。よって、この第3実施形態では、特に積層ゴム51cの平面サイズの縮小化に伴って積層ゴム51cの水平剛性Khが小さくなることから、弾性ゴム部50cによる免振周期が格段に長周期化される。   The laminated rubber 51c is arranged with its plane center aligned with the plane center of the flange plate 52, and its three-dimensional size is significantly smaller than the laminated rubber 51 of the first embodiment described above in terms of the outer diameter. It has become. The reason for this reduction is that the laminated rubber 51c of the third embodiment does not receive the pressure contact force from the disc spring portion 40, and therefore does not require a high rigidity that does not buckle the pressure contact force. Therefore, in the third embodiment, the horizontal rigidity Kh of the laminated rubber 51c is reduced especially with the reduction of the planar size of the laminated rubber 51c, so that the vibration isolation period by the elastic rubber portion 50c is remarkably increased. The

一方、転がり支承部材81は、複数の鋼球82と、これら複数の鋼球82を上下に挟みつつ、鋼球82が転動する上下一対の転がり板83,84と、前記複数の鋼球82の転動ルートからの脱落を防ぐための内外一対の円環状ガイド部材85,86とを有している。そして、この転がり支承部材81の高さは、積層ゴム51cの自然長の高さとほぼ同値に設定されているので、上述したように皿ばね部40からの圧接力は専ら転がり支承部材81の方で受けられ、もって、積層ゴム51cの高さは自然長に保持されつつ、水平力に応じて積層ゴム51cは水平方向に剪断変形自在になっている。   On the other hand, the rolling support member 81 includes a plurality of steel balls 82, a pair of upper and lower rolling plates 83 and 84 on which the steel balls 82 roll while sandwiching the plurality of steel balls 82 up and down, and the plurality of steel balls 82. And a pair of inner and outer annular guide members 85 and 86 for preventing falling off from the rolling route. Since the height of the rolling support member 81 is set to be substantially the same as the height of the natural length of the laminated rubber 51c, as described above, the pressure contact force from the disc spring portion 40 is exclusively applied to the rolling support member 81. Therefore, the laminated rubber 51c can be sheared and deformed in the horizontal direction according to the horizontal force while the height of the laminated rubber 51c is maintained at a natural length.

ちなみに、内側の円環状ガイド部材85については、その内周側の上端縁及び下端縁がテーパー状に面取りされて上下一対の面取り部85a,85bが形成されている。これは、積層ゴム51cが水平方向に剪断変形して、その外形形状が縦断面平行四辺形状になった際に、前記内側の円環状ガイド部材85との干渉を回避して、積層ゴム51cの自由な剪断変形を確保するためである。   Incidentally, as for the inner annular guide member 85, the upper and lower edges on the inner peripheral side thereof are chamfered in a tapered shape to form a pair of upper and lower chamfered portions 85a and 85b. This is because when the laminated rubber 51c is sheared and deformed in the horizontal direction and its outer shape becomes a parallelogram in the longitudinal section, interference with the inner annular guide member 85 is avoided, and the laminated rubber 51c This is to ensure free shear deformation.

なお、この免振装置10cの振動エネルギー吸収履歴特性は、定性的には、概ね上述の図4と同じであるので、その説明は省略する。   Since the vibration energy absorption history characteristic of the vibration isolator 10c is qualitatively substantially the same as that in FIG. 4 described above, the description thereof is omitted.

図12Aは、上記第3実施形態の免振装置10cの第1変形例の側断面図であり、図12Bは図12A中のB−B断面図である。なお、何れの図も、免振装置10dの摩擦ダンパー部30dのみを示している。   12A is a side sectional view of a first modification of the vibration isolator 10c of the third embodiment, and FIG. 12B is a sectional view taken along line BB in FIG. 12A. In each figure, only the friction damper portion 30d of the vibration isolator 10d is shown.

この第1変形例は、第3実施形態の弾性ゴム部50cの積層ゴム51cに並列して更に粘弾性ゴム91を追設したものであり、これにより、水平振動の減衰性が高められている。   In the first modification, a viscoelastic rubber 91 is additionally provided in parallel with the laminated rubber 51c of the elastic rubber portion 50c of the third embodiment, thereby improving the attenuation of horizontal vibration. .

粘弾性ゴム91は、積層ゴム51cと同高の円柱体である。そして、複数の粘弾性ゴム91が、前記上下フランジ板52,53の間の上下方向隙間Gcに介装されつつ、積層ゴム51cの周囲を囲んで配置されている。但し、この積層ゴム51cの周囲を囲む位置には、上下フランジ板52,53の間の前記上下方向隙間Gcを保持する転がり支承部材92を配置しなければならないので、この第1変形例では、積層ゴム51cの外周に沿って、転がり支承部材92と粘弾性ゴム91とが互いに間隔を隔てつつ交互に配置されている。各転がり支承部材92は、鋼球95と、これら複数の鋼球95を上下に挟みつつ、鋼球95が転動する上下一対の転がり板93,94とを備えている。   The viscoelastic rubber 91 is a cylindrical body having the same height as the laminated rubber 51c. A plurality of viscoelastic rubbers 91 are disposed so as to surround the laminated rubber 51 c while being interposed in the vertical gap Gc between the upper and lower flange plates 52 and 53. However, since the rolling bearing member 92 that holds the vertical gap Gc between the upper and lower flange plates 52 and 53 must be disposed at a position surrounding the periphery of the laminated rubber 51c, in the first modification example, Rolling support members 92 and viscoelastic rubbers 91 are alternately arranged along the outer periphery of the laminated rubber 51c while being spaced apart from each other. Each rolling support member 92 includes a steel ball 95 and a pair of upper and lower rolling plates 93 and 94 on which the steel ball 95 rolls while sandwiching the plurality of steel balls 95 up and down.

そして、各転がり板93,94には、その外周縁に沿って鉛直壁部93a,94aが立設されており、これら壁部93a,94aによって鋼球95の側方への脱落が規制される。よって、鋼球95は、上下の一対の転がり板93,94の間で転動しながら皿ばね部40の圧接力を支持し、これにより、当該圧接力の作用から積層ゴム51c及び粘弾性ゴム91を解放している。   Each of the rolling plates 93, 94 is provided with vertical wall portions 93a, 94a along the outer peripheral edge thereof, and the falling off of the steel balls 95 to the side is restricted by the wall portions 93a, 94a. . Therefore, the steel ball 95 supports the pressure contact force of the disc spring portion 40 while rolling between the pair of upper and lower rolling plates 93 and 94, and thereby the laminated rubber 51c and the viscoelastic rubber are caused by the action of the pressure contact force. 91 is released.

なお、この免振装置10dの振動エネルギー吸収履歴特性は、定性的には、概ね上述の図8と同じであるので、その説明は省略する。   The vibration energy absorption history characteristic of the vibration isolator 10d is qualitatively substantially the same as that in FIG. 8 described above, and a description thereof will be omitted.

図13は、上記第3実施形態の免振装置10cの第2変形例の側断面図であり、前述の図12Aと同様に、免振装置10eの摩擦ダンパー部30eのみを示している。   FIG. 13 is a side sectional view of a second modification of the vibration isolator 10c of the third embodiment, and shows only the friction damper portion 30e of the vibration isolator 10e as in FIG. 12A described above.

この第2変形例は、第3実施形態の弾性ゴム部50cに対して、水平方向の剪断変形の変形限度を機械的に規定するメカストッパー101が追設されたものである。つまり、この第2変形例では、弾性ゴム部50eの上端と下端との水平相対変位が所定値に達すると、メカストッパー101が作用して、それ以上の剪断変形を不能に規制するようになっている。   In the second modification, a mechanical stopper 101 that mechanically defines a deformation limit of shear deformation in the horizontal direction is added to the elastic rubber portion 50c of the third embodiment. That is, in the second modification, when the horizontal relative displacement between the upper end and the lower end of the elastic rubber portion 50e reaches a predetermined value, the mechanical stopper 101 acts to restrict further shear deformation to be impossible. ing.

メカストッパー101は、弾性ゴム部50eの上フランジ板52の外周部から下方に延出した円筒体102を本体とする。そして、この円筒体102の下端部の内周面には、全周に亘ってリング状の緩衝材103が取り付けられており、この緩衝材103の内周面は、所定隙間Sを隔てて、下フランジ板53の外周面に対向している。   The mechanical stopper 101 includes a cylindrical body 102 extending downward from the outer peripheral portion of the upper flange plate 52 of the elastic rubber portion 50e as a main body. And the ring-shaped shock absorbing material 103 is attached to the inner peripheral surface of the lower end part of this cylindrical body 102 over the whole circumference, and the inner peripheral surface of this shock absorbing material 103 is separated by a predetermined gap S, It faces the outer peripheral surface of the lower flange plate 53.

よって、この所定隙間Sの大きさ分だけ、弾性ゴム部50cの上端たる上フランジ板52と下端たる下フランジ板53との水平相対変位が許容され、つまり、当該所定隙間Sの大きさ分だけ積層ゴム51cの水平方向の剪断変形が許容される。そして、下フランジ板53の外周面に前記緩衝材103の内周面が当接すると、それ以上の積層ゴム51cの剪断変形は不能に拘束される。   Accordingly, the horizontal relative displacement between the upper flange plate 52 as the upper end and the lower flange plate 53 as the lower end of the elastic rubber portion 50c is allowed by the size of the predetermined gap S, that is, by the size of the predetermined gap S. The shearing deformation in the horizontal direction of the laminated rubber 51c is allowed. When the inner peripheral surface of the cushioning material 103 comes into contact with the outer peripheral surface of the lower flange plate 53, further shear deformation of the laminated rubber 51c is restricted.

ここで、この当接時に作用している水平方向の外力の大きさが、前記摩擦減衰部60の摩擦力よりも大きい場合には、摩擦減衰部60の上下摩擦板61,62が摺動を開始して、これにより、免振装置10e全体としては水平方向に相対変位することになる。しかし、前記摩擦減衰部60の摩擦力以下の場合には、摩擦減衰部60は摺動せずに、免振装置10e全体としても相対変位は維持されることになる。   Here, when the magnitude of the horizontal external force acting at the time of contact is larger than the friction force of the friction damping portion 60, the upper and lower friction plates 61, 62 of the friction damping portion 60 slide. As a result, the vibration isolator 10e as a whole is relatively displaced in the horizontal direction. However, when the frictional force is less than the frictional damping portion 60, the frictional damping portion 60 does not slide, and the relative displacement is maintained even in the vibration isolator 10e as a whole.

図14は、この第2変形例の免振装置10eの振動エネルギー吸収履歴特性のグラフである。図4との比較でわかるように、メカストッパー101の追設によって、水平相対変位不能に拘束される状態が、線分A3B3、線分C3D3、線分E3F3のように新たに生じている。   FIG. 14 is a graph of vibration energy absorption history characteristics of the vibration isolator 10e according to the second modification. As can be seen from a comparison with FIG. 4, a state in which horizontal displacement is not possible due to the additional installation of the mechanical stopper 101 is newly generated such as a line segment A3B3, a line segment C3D3, and a line segment E3F3.

ちなみに、当該第2変形例の弾性ゴム部50eの積層ゴム51cを粘弾性ゴムに交換すれば、振動エネルギー吸収特性は図15に示すように線分CC3及び線分EE3が変化して振動エネルギーの吸収能力は更に高くなる。   Incidentally, if the laminated rubber 51c of the elastic rubber portion 50e of the second modification is replaced with a viscoelastic rubber, the vibration energy absorption characteristic changes as shown in FIG. 15 by changing the line segment CC3 and the line segment EE3. Absorption capacity is further increased.

===その他の実施の形態===
以上、本発明の実施形態について説明したが、本発明は、かかる実施形態に限定されるものではなく、その要旨を逸脱しない範囲で以下に示すような変形が可能である。
=== Other Embodiments ===
As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, The deformation | transformation as shown below is possible in the range which does not deviate from the summary.

上述の第1実施形態では、免振装置10の摩擦ダンパー部30の一例として、当該摩擦ダンパー部30が具備する三つの構成要素たる、皿ばね部40、弾性ゴム部50、及び、摩擦減衰部60が、この順番で上から下へと直列に並んでいる構成を示したが(図16Aの側面図を参照)、この並び順を入れ替えても良く、例えば、図16A以外に、図16B乃至図18Bの側面図に示すような5つの態様が可能である。   In the first embodiment described above, as an example of the friction damper portion 30 of the vibration isolator 10, the disc spring portion 40, the elastic rubber portion 50, and the friction damping portion, which are three components included in the friction damper portion 30, are provided. 60 shows a configuration arranged in series from top to bottom in this order (see the side view of FIG. 16A), but this order of arrangement may be changed. For example, in addition to FIG. 16A, FIG. Five aspects are possible as shown in the side view of FIG. 18B.

すなわち、図16Aに示す第1実施形態の並び順を天地逆転して、図16Bに示すように、上から下へと摩擦減衰部60、弾性ゴム部50、皿ばね部40の並び順にしても良い。また、図17Aに示すように、上から下への並び順を、弾性ゴム部50、皿ばね部40、摩擦減衰部60にしても良いし、この図17Aの並び順を天地逆転して、図17Bに示すように摩擦減衰部60、皿ばね部40、弾性ゴム部50の並び順にしても良い。更には、図18Aに示すように、皿ばね部40、摩擦減衰部60、弾性ゴム部50の並び順にしても良いし、この図18Aの並び順を天地逆転して、図18Bに示すように弾性ゴム部50、摩擦減衰部60、皿ばね部40の並び順にしても良い。   That is, the arrangement order of the first embodiment shown in FIG. 16A is reversed to the top and bottom, and as shown in FIG. 16B, the friction damping part 60, the elastic rubber part 50, and the disc spring part 40 are arranged in order from top to bottom. Also good. Further, as shown in FIG. 17A, the order of arrangement from top to bottom may be the elastic rubber part 50, the disc spring part 40, and the friction damping part 60, or the arrangement order of FIG. As shown in FIG. 17B, the friction damping portion 60, the disc spring portion 40, and the elastic rubber portion 50 may be arranged in order. Further, as shown in FIG. 18A, the order of the disc spring portion 40, the friction damping portion 60, and the elastic rubber portion 50 may be arranged, or the arrangement order of FIG. Alternatively, the elastic rubber portion 50, the friction damping portion 60, and the disc spring portion 40 may be arranged in order.

また、上述の実施形態では、皿ばね42は、図6の荷重−たわみ曲線のように、線形領域と非線形領域とを有するばね特性を示すもので説明したが、本発明は、かかる実施形態に限定されるものではない。すなわち、支承部20として、滑り支承や転がり支承を用いた場合には、建物1と基礎3との上下方向隙間Gはほぼ一定に維持されるため、皿ばねは、非線形領域の割合が小さく、ほとんどの領域が線形領域のばね特性を示すものを用いてもよい。   In the above-described embodiment, the disc spring 42 has been described as having a spring characteristic having a linear region and a non-linear region like the load-deflection curve in FIG. 6, but the present invention is directed to such an embodiment. It is not limited. That is, when a sliding bearing or a rolling bearing is used as the bearing portion 20, the vertical gap G between the building 1 and the foundation 3 is maintained almost constant, so the disc spring has a small proportion of the nonlinear region, It is possible to use a material in which most of the region shows a spring characteristic in a linear region.

第1実施形態の免振装置10が適用された建物1の概念図である。It is a conceptual diagram of the building 1 to which the vibration isolator 10 of 1st Embodiment was applied. 第1実施形態の免振装置10の側断面図である。It is a sectional side view of the vibration isolator 10 of 1st Embodiment. 積層ゴム51の水平剛性Khの鉛直荷重P依存性を示すグラフである。It is a graph which shows the vertical load P dependence of the horizontal rigidity Kh of the laminated rubber 51. 第1実施形態の免振装置10の振動エネルギー吸収履歴特性のグラフである。It is a graph of the vibration energy absorption history characteristic of the vibration isolator 10 of 1st Embodiment. 第1実施形態の免振装置10の振動エネルギー吸収履歴特性のグラフである。It is a graph of the vibration energy absorption history characteristic of the vibration isolator 10 of 1st Embodiment. 皿ばねのばね特性を示す荷重−たわみ曲線である。It is a load-deflection curve which shows the spring characteristic of a disc spring. 第1実施形態の免振装置10の変形例の側断面図である。It is a sectional side view of the modification of the vibration isolator 10 of 1st Embodiment. 変形例の免振装置10aの振動エネルギー吸収履歴特性のグラフである。It is a graph of the vibration energy absorption history characteristic of the vibration isolator 10a of a modification. 第2実施形態の免振装置10bの側断面図である。It is a sectional side view of the vibration isolator 10b of 2nd Embodiment. 第2実施形態の免振装置10bの振動エネルギー吸収履歴特性のグラフである。It is a graph of the vibration energy absorption history characteristic of the vibration isolator 10b of 2nd Embodiment. 第3実施形態の免振装置10cの側断面図である。It is a sectional side view of the vibration isolator 10c of 3rd Embodiment. 図12Aは、第3実施形態の免振装置10cの第1変形例の側断面図であり、図12Bは図12A中のB−B断面図である。FIG. 12A is a side sectional view of a first modification of the vibration isolator 10c of the third embodiment, and FIG. 12B is a sectional view taken along line BB in FIG. 12A. 第3実施形態の免振装置10cの第2変形例の側断面図である。It is a sectional side view of the 2nd modification of the vibration isolator 10c of 3rd Embodiment. 第3実施形態の免振装置10cの第2変形例の振動エネルギー吸収履歴特性のグラフである。It is a graph of the vibration energy absorption history characteristic of the 2nd modification of the vibration isolator 10c of 3rd Embodiment. 上記第2変形例の積層ゴム51eを粘弾性ゴムに交換した場合に得られる振動エネルギー吸収履歴特性のグラフである。It is a graph of the vibration energy absorption history characteristic obtained when the laminated rubber 51e of the said 2nd modification is replaced | exchanged for viscoelastic rubber. 図16A及び図16Bは、第1実施形態の免振装置10が具備する皿ばね部40、弾性ゴム部50、及び、摩擦減衰部60の並び順のバリエーションの説明図である。16A and 16B are explanatory diagrams of variations in the arrangement order of the disc spring part 40, the elastic rubber part 50, and the friction damping part 60 included in the vibration isolation device 10 of the first embodiment. 図17A及び図17Bは、同じく並び順のバリエーションの説明図である。FIG. 17A and FIG. 17B are explanatory diagrams of variations of the arrangement order. 図18A及び図18Bは、同じく並び順のバリエーションの説明図である。18A and 18B are explanatory diagrams of variations of the arrangement order.

符号の説明Explanation of symbols

1 建物(免振対象物)、1a 下面、
3 下部構造体(基礎)、3a 上面、
10 免振装置、10a 免振装置、10b 免振装置、
10c 免振装置、10d 免振装置、10e 免振装置、
20 支承部、21a 受け座、21b 受け座、
23 転がり板、24 転がり板、25 鋼球、
30 摩擦ダンパー部、30a 摩擦ダンパー部、30b 摩擦ダンパー部、
30c 摩擦ダンパー部、30d 摩擦ダンパー部、30e 摩擦ダンパー部、
40 皿ばね部、41 皿ばね積層体、
42 皿ばね、42U 皿ばねユニット、42a 貫通孔、
44 圧接力調節機構(調節機構)、
45 上加圧板、45a 貫通孔、45b 円筒部、
46 下加圧板、46a シャフト、
47 加圧部、47a 挿入孔、50 弾性ゴム部、
50a 弾性ゴム部、50c 弾性ゴム部、50e 弾性ゴム部、
51 積層ゴム(弾性体)、51a 鋼板、51b ゴム層、
51c 積層ゴム(弾性体)、52 上フランジ板、53 下フランジ板、
55 粘弾性ゴム(弾性体)、60 摩擦減衰部、
61 上摩擦板(摩擦部材)、62 下摩擦板(摩擦部材)、
70 補助摩擦ダンパー、71 取り付け用ロッド、
71a 上端部、71b 下端部、72 補助摩擦部材、72a 貫通孔、
73 加圧板、74 ナット部材、75 皿ばね(ばね部材)、
81 転がり支承部材(保持部材)、82 鋼球、
83 転がり板、84 転がり板、
85 円環状ガイド部材、85a 面取り部、
86 円環状ガイド部材、86a 面取り部、
91 粘弾性ゴム(弾性体)、92 転がり支承部材(保持部材)、
93 転がり板、 93a 鉛直壁部、
94 転がり板、94a 鉛直壁部、95 鋼球、
101 メカストッパー、102 円筒体、103 緩衝材、
G 上下方向隙間、Gc 上下方向隙間、S 所定隙間
1 building (object to be isolated), 1a underside,
3 Substructure (basic), 3a Top surface,
10 vibration isolator, 10a vibration isolator, 10b vibration isolator,
10c vibration isolator, 10d vibration isolator, 10e vibration isolator,
20 bearing part, 21a receiving seat, 21b receiving seat,
23 rolling plates, 24 rolling plates, 25 steel balls,
30 Friction damper part, 30a Friction damper part, 30b Friction damper part,
30c Friction damper part, 30d Friction damper part, 30e Friction damper part,
40 disc springs, 41 disc spring laminates,
42 disc spring, 42U disc spring unit, 42a through hole,
44 Pressure contact force adjustment mechanism (adjustment mechanism),
45 upper pressure plate, 45a through hole, 45b cylindrical part,
46 lower pressure plate, 46a shaft,
47 pressure part, 47a insertion hole, 50 elastic rubber part,
50a elastic rubber part, 50c elastic rubber part, 50e elastic rubber part,
51 Laminated rubber (elastic body), 51a Steel plate, 51b Rubber layer,
51c Laminated rubber (elastic body), 52 Upper flange plate, 53 Lower flange plate,
55 viscoelastic rubber (elastic body), 60 friction damping part,
61 upper friction plate (friction member), 62 lower friction plate (friction member),
70 Auxiliary friction damper, 71 Mounting rod,
71a upper end, 71b lower end, 72 auxiliary friction member, 72a through hole,
73 pressure plate, 74 nut member, 75 disc spring (spring member),
81 rolling support members (holding members), 82 steel balls,
83 Rolling plate, 84 Rolling plate,
85 circular guide member, 85a chamfered portion,
86 annular guide member, 86a chamfered portion,
91 viscoelastic rubber (elastic body), 92 rolling support member (holding member),
93 rolling plate, 93a vertical wall,
94 rolling plate, 94a vertical wall, 95 steel balls,
101 mechanical stopper, 102 cylindrical body, 103 cushioning material,
G Vertical gap, Gc Vertical gap, S Predetermined gap

Claims (6)

免振対象物の水平移動を許容しつつ該免振対象物の重量を支持する支承部と、前記免振対象物の水平移動を抑制する摩擦ダンパー部とが、前記免振対象物とその下方の下部構造体との間の上下方向隙間に並列に介装されてなる免振装置であって、
前記摩擦ダンパー部は、
前記免振対象物と前記下部構造体との水平方向の相対変位に応じて水平方向に摺動する上下一対の摩擦部材と、
該一対の摩擦部材に対して直列に配置されて、水平力に応じて上端と下端とが水平方向に相対変位する弾性体と、
前記一対の摩擦部材に対して直列に配置されて、前記一対の摩擦部材に鉛直方向の圧接力を付与する皿ばねと、
該皿ばねのたわみ量を調節することにより前記圧接力の大きさを調節する調節機構と、を備えたことを特徴とする免振装置。
A support portion that supports the weight of the vibration isolation object while allowing horizontal movement of the vibration isolation object, and a friction damper that suppresses horizontal movement of the vibration isolation object include the vibration isolation object and its lower part. A vibration isolator which is interposed in parallel with the vertical gap between the lower structure and
The friction damper part is
A pair of upper and lower friction members that slide in the horizontal direction according to the relative displacement in the horizontal direction between the object to be isolated and the lower structure;
An elastic body that is arranged in series with the pair of friction members and has an upper end and a lower end that are relatively displaced in the horizontal direction in response to a horizontal force;
A disc spring disposed in series with respect to the pair of friction members and imparting a vertical pressure contact force to the pair of friction members;
And an adjusting mechanism for adjusting the magnitude of the pressure contact force by adjusting a deflection amount of the disc spring.
請求項1に記載の免振装置であって、
前記弾性体に並列して補助摩擦ダンパーが設けられており、
該補助摩擦ダンパーが水平方向に摺動する際の摩擦力の大きさは、前記一対の摩擦部材が水平方向に摺動する際の摩擦力の大きさよりも小さく、
前記補助摩擦ダンパーが摺動しない時には、該補助摩擦ダンパーは、前記弾性体の上端と下端との水平方向の相対変位を不能に拘束することを特徴とする免振装置。
The vibration isolator according to claim 1,
An auxiliary friction damper is provided in parallel with the elastic body,
The magnitude of the frictional force when the auxiliary friction damper slides in the horizontal direction is smaller than the magnitude of the frictional force when the pair of friction members slide in the horizontal direction,
When the auxiliary friction damper does not slide, the auxiliary friction damper restrains the relative displacement in the horizontal direction between the upper end and the lower end of the elastic body to be impossible.
請求項2に記載の免振装置であって、
前記一対の摩擦部材と前記弾性体とは上下に連接されており、
前記補助摩擦ダンパーは、前記一対の摩擦部材のうちの一方の摩擦部材に水平方向の摺動可能に設けられた補助摩擦部材と、該補助摩擦部材に直列に配置されて前記補助摩擦部材に鉛直方向の圧接力を付与するばね部材と、を備えていることを特徴とする免振装置。
A vibration isolator according to claim 2,
The pair of friction members and the elastic body are connected vertically.
The auxiliary friction damper includes an auxiliary friction member provided in one of the pair of friction members so as to be slidable in a horizontal direction, and is arranged in series with the auxiliary friction member so as to be perpendicular to the auxiliary friction member. And a spring member for applying a pressure contact force in the direction.
請求項1乃至3のいずれかに記載の免振装置であって、
前記弾性体は、粘弾性体であることを特徴とする免振装置。
A vibration isolator according to any one of claims 1 to 3,
The vibration isolator is a viscoelastic body.
請求項1乃至4のいずれかに記載の免振装置であって、
前記圧接力を受ける支持部材は、前記弾性体に並列して配置されず、
前記皿ばねのたわみ量の変化に対する弾発力の変化の割合は、第1範囲のたわみ量よりも第2範囲のたわみ量の方が小さく、
前記調節機構によって、前記皿ばねのたわみ量は前記第2範囲に収まるように調節されていることを特徴とする免振装置。
A vibration isolator according to any one of claims 1 to 4,
The support member that receives the pressure contact force is not arranged in parallel with the elastic body,
The ratio of the change in the elastic force to the change in the deflection amount of the disc spring is smaller in the deflection amount in the second range than in the first range,
The vibration isolation device, wherein the amount of deflection of the disc spring is adjusted by the adjustment mechanism so as to be within the second range.
請求項1乃至4のいずれかに記載の免振装置であって、
前記弾性体の上端と下端との水平方向の相対変位を許容しつつ、前記弾性体の上端と下端との間の間隔を、前記弾性体の自然長の大きさに保持する保持部材が、前記弾性体に並列して設けられていることを特徴とする免振装置。
A vibration isolator according to any one of claims 1 to 4,
A holding member that holds the distance between the upper end and the lower end of the elastic body at the natural length of the elastic body while allowing horizontal relative displacement between the upper end and the lower end of the elastic body. A vibration isolator provided in parallel with an elastic body.
JP2007235707A 2007-09-11 2007-09-11 Isolation device Active JP5012346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007235707A JP5012346B2 (en) 2007-09-11 2007-09-11 Isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007235707A JP5012346B2 (en) 2007-09-11 2007-09-11 Isolation device

Related Child Applications (4)

Application Number Title Priority Date Filing Date
JP2011219188A Division JP5240338B2 (en) 2011-10-03 2011-10-03 Isolation device
JP2011219189A Division JP5240339B2 (en) 2011-10-03 2011-10-03 Isolation device
JP2011219191A Division JP5240341B2 (en) 2011-10-03 2011-10-03 Isolation device
JP2011219190A Division JP5240340B2 (en) 2011-10-03 2011-10-03 Isolation device

Publications (2)

Publication Number Publication Date
JP2009068556A true JP2009068556A (en) 2009-04-02
JP5012346B2 JP5012346B2 (en) 2012-08-29

Family

ID=40605048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007235707A Active JP5012346B2 (en) 2007-09-11 2007-09-11 Isolation device

Country Status (1)

Country Link
JP (1) JP5012346B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062929A (en) * 2010-09-14 2012-03-29 Ohbayashi Corp Base isolation device and its installation method
JP2012062927A (en) * 2010-09-14 2012-03-29 Ohbayashi Corp Base isolation device and its installation method
JP2012062928A (en) * 2010-09-14 2012-03-29 Ohbayashi Corp Base isolation device and its installation method
JP6031632B1 (en) * 2016-06-27 2016-11-24 黒沢建設株式会社 Displacement limiting device used for seismic isolation structure and method of introducing pre-compression
JP2017036612A (en) * 2015-08-11 2017-02-16 黒沢建設株式会社 Displacement control device to be used for base isolated structure and precompression introducing method
KR101836164B1 (en) * 2017-11-22 2018-04-19 (주)파워엔텍 Three-Dimensional Seismic Isolator equipped with Reduction Performance of Vertical Vibration
DE102017126668A1 (en) * 2017-11-13 2019-05-16 Schwingungstechnik-Broneske GmbH vibration
CN112302188A (en) * 2020-11-13 2021-02-02 河海大学 Multistage shock-insulation rubber-sliding system support and shock insulation effect calculation method thereof
CN113463790A (en) * 2021-09-03 2021-10-01 江苏金之杰钢结构有限公司 Anti-seismic steel structure
JP2021167661A (en) * 2021-01-28 2021-10-21 日鉄エンジニアリング株式会社 Seismically isolated structure

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833304U (en) * 1981-08-31 1983-03-04 日産自動車株式会社 Spring support structure for vehicles
JPS60192059A (en) * 1984-03-14 1985-09-30 株式会社東芝 Earthquake-dampening apparatus
JPS61237771A (en) * 1985-04-15 1986-10-23 株式会社東芝 Earthquake damping apparatus
JPH01198940A (en) * 1987-10-05 1989-08-10 Ohbayashi Corp Vibrationproof device
JPH0868234A (en) * 1994-08-30 1996-03-12 Bridgestone Corp Seismic isolator
JPH0989028A (en) * 1995-09-22 1997-03-31 Tokico Ltd Sliding mechanism, earthquake isolation device and dumping device
JPH09310408A (en) * 1996-05-22 1997-12-02 Oiles Ind Co Ltd Base isolation supporting device
JPH10238164A (en) * 1996-12-26 1998-09-08 Ohbayashi Corp Base isolation device
JPH11141182A (en) * 1997-11-06 1999-05-25 Bando Chem Ind Ltd Vibration isolation device
JP2000055117A (en) * 1998-08-05 2000-02-22 Ohbayashi Corp Base isolation device
JP2000193028A (en) * 1998-12-24 2000-07-14 Ohbayashi Corp Slide base insolation device
JP2000266118A (en) * 1999-03-19 2000-09-26 Nok Megulastik Co Ltd Mount
JP2002155952A (en) * 2000-11-20 2002-05-31 Nsk Ltd Cylindrical roller bearing
JP2003307045A (en) * 2002-04-17 2003-10-31 Dynamic Design:Kk Base isolation structure system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833304U (en) * 1981-08-31 1983-03-04 日産自動車株式会社 Spring support structure for vehicles
JPS60192059A (en) * 1984-03-14 1985-09-30 株式会社東芝 Earthquake-dampening apparatus
JPS61237771A (en) * 1985-04-15 1986-10-23 株式会社東芝 Earthquake damping apparatus
JPH01198940A (en) * 1987-10-05 1989-08-10 Ohbayashi Corp Vibrationproof device
JPH0868234A (en) * 1994-08-30 1996-03-12 Bridgestone Corp Seismic isolator
JPH0989028A (en) * 1995-09-22 1997-03-31 Tokico Ltd Sliding mechanism, earthquake isolation device and dumping device
JPH09310408A (en) * 1996-05-22 1997-12-02 Oiles Ind Co Ltd Base isolation supporting device
JPH10238164A (en) * 1996-12-26 1998-09-08 Ohbayashi Corp Base isolation device
JPH11141182A (en) * 1997-11-06 1999-05-25 Bando Chem Ind Ltd Vibration isolation device
JP2000055117A (en) * 1998-08-05 2000-02-22 Ohbayashi Corp Base isolation device
JP2000193028A (en) * 1998-12-24 2000-07-14 Ohbayashi Corp Slide base insolation device
JP2000266118A (en) * 1999-03-19 2000-09-26 Nok Megulastik Co Ltd Mount
JP2002155952A (en) * 2000-11-20 2002-05-31 Nsk Ltd Cylindrical roller bearing
JP2003307045A (en) * 2002-04-17 2003-10-31 Dynamic Design:Kk Base isolation structure system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062929A (en) * 2010-09-14 2012-03-29 Ohbayashi Corp Base isolation device and its installation method
JP2012062927A (en) * 2010-09-14 2012-03-29 Ohbayashi Corp Base isolation device and its installation method
JP2012062928A (en) * 2010-09-14 2012-03-29 Ohbayashi Corp Base isolation device and its installation method
JP2017036612A (en) * 2015-08-11 2017-02-16 黒沢建設株式会社 Displacement control device to be used for base isolated structure and precompression introducing method
JP6031632B1 (en) * 2016-06-27 2016-11-24 黒沢建設株式会社 Displacement limiting device used for seismic isolation structure and method of introducing pre-compression
JP2017036651A (en) * 2016-06-27 2017-02-16 黒沢建設株式会社 Displacement control device to be used for base-isolated structure and precompression introducing method
DE102017126668A1 (en) * 2017-11-13 2019-05-16 Schwingungstechnik-Broneske GmbH vibration
KR101836164B1 (en) * 2017-11-22 2018-04-19 (주)파워엔텍 Three-Dimensional Seismic Isolator equipped with Reduction Performance of Vertical Vibration
CN112302188A (en) * 2020-11-13 2021-02-02 河海大学 Multistage shock-insulation rubber-sliding system support and shock insulation effect calculation method thereof
JP2021167661A (en) * 2021-01-28 2021-10-21 日鉄エンジニアリング株式会社 Seismically isolated structure
JP2022115788A (en) * 2021-01-28 2022-08-09 日鉄エンジニアリング株式会社 Seismically isolated structure
CN113463790A (en) * 2021-09-03 2021-10-01 江苏金之杰钢结构有限公司 Anti-seismic steel structure

Also Published As

Publication number Publication date
JP5012346B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5012346B2 (en) Isolation device
JP5275230B2 (en) Damper device
JP5181269B2 (en) Vertical seismic isolation mechanism
KR20140050642A (en) Passive damper
JP6902191B2 (en) Damping device and seismic isolation structure
JP6964465B2 (en) Sliding bearing device
US4805359A (en) Method of applying floor vibration-damping work and vibration-damping floor device
JP5240341B2 (en) Isolation device
EP0583868B1 (en) Vibration damping device
JP2012122228A (en) Vibration control device fitted with inertia mass damper
JP2018509356A (en) Seismic support for warehouses and load bearing structures with such support
CN111936714A (en) Seismic isolator and damping device
JP2010190409A (en) Seismic isolation device and building
JP2006153210A (en) Seismic isolator
JP6482373B2 (en) Seismic isolation structure
JP5240340B2 (en) Isolation device
JP5240338B2 (en) Isolation device
US20170342734A1 (en) Base isolation supporting device
JP5240339B2 (en) Isolation device
JP6651933B2 (en) Vibration isolation device and method for adjusting deformation of laminated rubber bearing
JP7003514B2 (en) Seismic isolation structure
JP5601644B2 (en) Seismic isolation device with damping device and seismic isolation structure with damping device
JP7129780B2 (en) Floor seismic isolation system
JP6150489B2 (en) Vibration control device
JP2014222095A (en) Friction damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5012346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150