JP2009067879A - Fiber-reinforced thermosetting resin molded body - Google Patents

Fiber-reinforced thermosetting resin molded body Download PDF

Info

Publication number
JP2009067879A
JP2009067879A JP2007237358A JP2007237358A JP2009067879A JP 2009067879 A JP2009067879 A JP 2009067879A JP 2007237358 A JP2007237358 A JP 2007237358A JP 2007237358 A JP2007237358 A JP 2007237358A JP 2009067879 A JP2009067879 A JP 2009067879A
Authority
JP
Japan
Prior art keywords
fiber
thermosetting resin
reinforced
resin molded
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007237358A
Other languages
Japanese (ja)
Inventor
Akira Kasuya
明 粕谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP2007237358A priority Critical patent/JP2009067879A/en
Publication of JP2009067879A publication Critical patent/JP2009067879A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide fiber-reinforced thermosetting resin molded bodies using spun yarns comprising plant natural fibers preferable from the view point of recycling and having high strength and uniform physical properties. <P>SOLUTION: The fiber-reinforced thermosetting resin molded bodies reinforced with natural fibers are provided, wherein the natural fibers are plant natural fibers such as spun yarns comprising cottons, hemps, bamboos, kapok or the like and the spun yarns are at least unidirectionally aligned and monolithically molded with a thermosetting resin. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、天然繊維と熱硬化性樹脂とを組合せてなる繊維強化熱硬化性樹脂成形体に関し、特に植物系天然繊維を紡績(繊維を一定量集めて撚りがけして糸にする)してなる連続糸を用いた繊維強化熱硬化性樹脂成形体に関する。   The present invention relates to a fiber-reinforced thermosetting resin molded body obtained by combining natural fibers and a thermosetting resin, and in particular, spinning plant-based natural fibers (collecting a certain amount of fibers and twisting them into yarns). It is related with the fiber reinforced thermosetting resin molding using the continuous yarn which becomes.

従来、繊維強化プラスチックとして、炭素繊維、ガラス繊維等の強化繊維に対し、熱硬化性樹脂または熱可塑性樹脂を含浸させたものが用いられている。しかし、ガラス繊維は不燃物であり、燃焼効率の低下を招くと共に、焼却炉を傷めるという問題が生じる。さらに、無機物及び有機物の混合品であるがゆえ、リサイクルの観点からも好ましくない。   Conventionally, as fiber-reinforced plastics, those obtained by impregnating reinforcing fibers such as carbon fibers and glass fibers with a thermosetting resin or a thermoplastic resin are used. However, glass fiber is an incombustible material, which causes a problem of causing a decrease in combustion efficiency and damaging the incinerator. Furthermore, since it is a mixture of an inorganic substance and an organic substance, it is not preferable from the viewpoint of recycling.

そこで、近年天然繊維による繊維強化樹脂成形体(FRP)は社会的に関心が高まっている。これは、リサイクル可能であり、その中でマテリアルリサイクルとして繰り返し使用可能であること、サーマルリサイクルとして燃焼時に有毒ガスがでないこと、エネルギー問題による移動体の軽量化が可能であり、軽量化することで燃費を向上できること、植物系天然繊維は光合成時に二酸化炭素をその内部に吸収し、燃焼させても排出される二酸化炭素は元と変わらないことから、環境問題を起こさないことが挙げられる。 Therefore, in recent years, there has been an increasing social interest in fiber reinforced resin molded products (FRP) made of natural fibers. This means that it can be recycled and can be used repeatedly as material recycling, that there is no toxic gas at the time of combustion as thermal recycling, and that it is possible to reduce the weight of the moving body due to energy problems. For example, plant-based natural fibers absorb carbon dioxide in the interior during photosynthesis, and the carbon dioxide that is emitted even when burned is the same as the original.

近年植物系天然繊維を用いた繊維強化プラスチックが提案されている。例えば、樹脂材と相溶化剤で表面処理された天然繊維とを所定の比率で配合し、このような混合物を所定の条件下にて加熱・混練することによって形成される繊維強化樹脂組成物が見られる(特許文献1)。また、糸状のケナフ繊維を用いて、経糸と緯糸とが一本ずつ交互に上下に浮沈しながら交錯させることにより、平織り組織を有する織布とし、この織布を積層したものに液体の不飽和ポリエステル樹脂を含浸させたものも見られる(特許文献2)。
特開2004−114436号公報 特開2004−143401号公報
In recent years, fiber reinforced plastics using plant-based natural fibers have been proposed. For example, a fiber reinforced resin composition formed by blending a resin material and natural fibers surface-treated with a compatibilizing agent at a predetermined ratio, and heating and kneading such a mixture under predetermined conditions is provided. It can be seen (Patent Document 1). In addition, by using yarn-like kenaf fibers, warps and wefts are alternately slid up and down alternately to form a woven fabric having a plain weave structure, and liquid unsaturation is obtained by laminating this woven fabric. The thing impregnated with the polyester resin is also seen (patent document 2).
JP 2004-114436 A JP 2004-143401 A

しかし、前記特許文献に記載されるような天然繊維を4〜5mm程度に切断したものをそのまま使用した場合、繊維強化性能としての本来の目的である機械的物性の向上に対して好ましいものではない。また、麻繊維やケナフ繊維の短繊維を用いて不織布、織物、編み物に加工して繊維強化樹脂(FRP)にした場合、不織布では、FRPでの繊維の体積含有率(Vf)が上げられず、強度が出ず、成形品は厚さが大きくなり、重くなる問題があった。また、天然繊維特有の個体差や収穫された場所での差異などがあり、安定した物性を得ることができないといった問題があった。さらに、編み物は糸がループ構造をし、強度や弾性率には寄与せず、織物ではタテ・ヨコの糸が上下に交叉して平面を形成しており、FRPにしたときに、屈曲部で繊維の強度以下で破壊するといった問題があった。   However, when natural fibers as described in the above-mentioned patent document are cut into about 4 to 5 mm are used as they are, it is not preferable for improvement of mechanical properties which is the original purpose as fiber reinforcement performance. . In addition, when the fiber reinforced resin (FRP) is processed into a nonwoven fabric, a woven fabric, or a knitted fabric using short fibers such as hemp fiber or kenaf fiber, the fiber volume content (Vf) in the FRP cannot be increased in the nonwoven fabric. However, there was a problem that the strength was not obtained and the molded product was thick and heavy. In addition, there is a problem that stable physical properties cannot be obtained due to individual differences peculiar to natural fibers and differences in harvested places. Furthermore, in knitted fabrics, the yarn has a loop structure and does not contribute to the strength and elastic modulus. In woven fabrics, the warp and weft yarns cross each other up and down to form a flat surface. There was a problem of breaking below the strength of the fiber.

本発明は、上記事情に鑑みてなされたものであり、リサイクルの観点より好ましい植物系天然繊維を用いた紡績糸を用いたものであり、強度が高く、均一な物性の繊維強化熱硬化性樹脂成形体を提供する。   The present invention has been made in view of the above circumstances, and is a fiber-reinforced thermosetting resin having a high strength and uniform physical properties, using a spun yarn using a plant-based natural fiber that is preferable from the viewpoint of recycling. A molded body is provided.

本発明によれば、以下の1〜4の発明が提供される。
1.天然繊維で強化された繊維強化熱硬化性樹脂成形体であって、前記天然繊維は植物系天然繊維からなる紡績糸であり、前記紡績糸は少なくとも一方向に引き揃えられ、熱硬化性樹脂と一体成形されていることを特徴とする繊維強化熱硬化性樹脂成形体。
2.前記紡績糸は麻繊維からなる前記1に記載の繊維強化熱硬化性樹脂成形体。
3.前記紡績糸はジュート繊維からなる前記1又は2のいずれかに記載の繊維強化熱硬化性樹脂成形体。
4.前記紡績糸は複数の方向に引き揃えられ、前記引き揃えられた複数本の配列糸はステッチング糸によって厚さ方向にステッチングされ、多軸挿入たて編物に成形されている前記1〜3のいずれかに記載の繊維強化熱可塑性樹脂成形体。
5.前記熱硬化性樹脂は、ビニルエステル樹脂、不飽和ポリエステル樹脂又はエポキシ樹脂、フェノール樹脂である前記1〜4いずれかに記載の繊維強化熱硬化性樹脂成形体。
According to the present invention, the following inventions 1 to 4 are provided.
1. A fiber reinforced thermosetting resin molding reinforced with natural fibers, wherein the natural fibers are spun yarns made of plant natural fibers, and the spun yarns are aligned in at least one direction, A fiber-reinforced thermosetting resin molded body, which is integrally molded.
2. 2. The fiber-reinforced thermosetting resin molded article according to 1 above, wherein the spun yarn is made of hemp fibers.
3. 3. The fiber-reinforced thermosetting resin molded article according to any one of 1 and 2, wherein the spun yarn is made of jute fiber.
4). The spun yarns are aligned in a plurality of directions, and the aligned plurality of aligned yarns are stitched in the thickness direction by stitching yarns and formed into a multi-axis inserted warp knitted fabric. A fiber-reinforced thermoplastic resin molded article according to any one of the above.
5). The fiber reinforced thermosetting resin molded article according to any one of 1 to 4, wherein the thermosetting resin is a vinyl ester resin, an unsaturated polyester resin, an epoxy resin, or a phenol resin.

本発明は、リサイクルの観点より好ましい植物系天然繊維に撚りをかけて紡績糸にすることで、連続繊維として扱うことが可能になり、体積含有率(Vf)を向上させることが可能である。例えば、体積含有率(Vf)50%程度のものであっても容易に得ることができる。また、天然繊維特有の個体差や収穫された場所での差異などがあっても、紡績前工程で混合されることにより安定した物性を得ることができ、環境問題もない。さらに、紡績糸は少なくとも一方向に引き揃えられ、熱硬化性樹脂と一体成形されていることにより、織物のように経糸と緯糸の交錯点で糸が屈曲されることはなく、強度の高い繊維強化熱硬化性樹脂成形体を得ることができる。
特に各角度で紡績糸を一方向に引き揃え、これを積層してタテ編みすることで1枚の基材とした多軸挿入タテ編み基材とした強化繊維基材を用いた繊維強化熱硬化性樹脂成形体が上げられる。
In the present invention, by twisting a plant-based natural fiber preferable from the viewpoint of recycling into a spun yarn, it can be handled as a continuous fiber, and the volume content (Vf) can be improved. For example, it can be easily obtained even when the volume content (Vf) is about 50%. Moreover, even if there are individual differences peculiar to natural fibers or differences in harvested places, stable physical properties can be obtained by mixing in the pre-spinning process, and there are no environmental problems. Furthermore, the spun yarn is aligned at least in one direction and is integrally formed with the thermosetting resin, so that the yarn does not bend at the intersection of the warp and weft as in the case of woven fabric, and has high strength. A reinforced thermosetting resin molding can be obtained.
Fiber reinforced thermosetting using a reinforced fiber base material that is a multi-axis insertion warp knitted base material that is a single base material by aligning spun yarns in one direction at each angle, and laminating them and warping them. The flexible resin molding is raised.

以下、本発明を詳細に説明する。
本発明では、植物系天然繊維を紡績することにより得られる紡績糸を用いる。ここで植物系天然繊維とは、綿類、麻類、竹類、カポック等であり、強化性能として好ましいのは麻類である。なお、麻類として具体的には、靱皮繊維である亜麻、ラミー、ケナフ、大麻、ジュート、葉脈繊維であるマニラ麻、サイザル麻などが挙げられる。特に好ましくは、亜麻糸(リネン)、ジュート、ラミーである。
Hereinafter, the present invention will be described in detail.
In the present invention, a spun yarn obtained by spinning a plant-based natural fiber is used. Here, plant-based natural fibers are cotton, hemp, bamboo, kapok, and the like, and hemp is preferable as reinforcing performance. Specific examples of hemp include flax, ramie, kenaf, cannabis, jute, manila hemp, and sisal hemp, which are vein fibers. Particularly preferred are linen yarn, jute and ramie.

前記麻繊維は平衡水分率を有する状態で繊維強化熱硬化性樹脂成形体に成形されていることが好ましい。強度を高く維持できるからである。 The hemp fibers are preferably formed into a fiber-reinforced thermosetting resin molded body having an equilibrium moisture content. This is because the strength can be maintained high.

本発明では、上記植物系天然繊維を紡績することにより得られる紡績糸を用いる。紡績糸とは、繊維の長さが比較的短く、それ自体は糸の形態を成していない繊維から構成される糸をいうが、例えば大麻やラミーのような1.5m程度の紐状繊維を解きほぐし、あるいは切断して比較的短い繊維とし紡績糸としたものでも良い。このように糸状のものを用いることにより、機械的強度物性の向上という長所が発現されるのである。なお、紡績工程は従来の公知の工程に基づけばよい。一般的には、「繊維便覧」第2版(社団法人繊維学会編、丸善株式会社発行所、平成6年3月25日発行)、第283頁「2.2.2紡績糸」の項に記載される方法が用いられる。紡績糸を使うことにより、連続繊維として扱うことが可能となる。 In the present invention, a spun yarn obtained by spinning the plant-based natural fiber is used. A spun yarn is a yarn composed of fibers that are relatively short in length and are not themselves in the form of a yarn. For example, a string-like fiber of about 1.5 m such as cannabis or ramie. It is also possible to unwind or cut the fiber to make a relatively short fiber to be a spun yarn. By using a thread-like material in this way, the advantage of improved mechanical strength properties is manifested. The spinning process may be based on a conventionally known process. In general, “Fiber Handbook” 2nd edition (edited by Textile Society of Japan, published by Maruzen Co., Ltd., published on March 25, 1994), page 283 “2.2.2 Spinning yarn” The method described is used. By using a spun yarn, it can be handled as a continuous fiber.

本発明では、紡績糸群は、シート状としても塊状でも良いが、複数の方向に引き揃えられ、前記引き揃えられた複数本の配列糸はステッチング糸によって厚さ方向に結束され、多軸挿入たて編物に成形されていることが好ましい。これにより、角度依存性のない高強度の成形体が得られる。例えば、シート状に引き揃えられた複数本の配列糸を、シートごとに方向性を変化させながら2層以上積層し、ステッチング糸により結束し、多軸状の積層シートとすることで、いわゆる多方向に補強効果の優れた繊維強化プラスチックを得ることも可能となる。   In the present invention, the spun yarn group may be in the form of a sheet or a lump, but the yarns are aligned in a plurality of directions, and the aligned plurality of arranged yarns are bound in the thickness direction by stitching yarns, and multiaxial insertion is performed. It is preferable to be formed into a warp knitted fabric. Thereby, a high-strength molded body having no angle dependency can be obtained. For example, a plurality of arranged yarns arranged in a sheet form are laminated in two or more layers while changing the directionality for each sheet, and bundled by stitching yarns to form a multiaxial laminated sheet, so-called It is also possible to obtain a fiber reinforced plastic having an excellent reinforcing effect in multiple directions.

本発明で使用する熱硬化性樹脂は、特に限定されるものではないが、ビニルエステル樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ポリアミド樹脂又はフェノール樹脂等が例示される。特に、繊維含浸性に優れる不飽和ポリエステル樹脂、エポキシ樹脂が好ましく使用される。   The thermosetting resin used in the present invention is not particularly limited, and examples thereof include vinyl ester resins, unsaturated polyester resins, epoxy resins, polyamide resins, and phenol resins. In particular, unsaturated polyester resins and epoxy resins excellent in fiber impregnation properties are preferably used.

前記繊維強化熱可塑性樹脂成形体は、従来の公知の成形方法の使用が可能であり、ハンドレイアップ法、マッチドダイ法、プリプレグ法、フィラメントワインディング法等が挙げられる。 The fiber-reinforced thermoplastic resin molded body can use a conventional known molding method, and examples thereof include a hand lay-up method, a matched die method, a prepreg method, and a filament winding method.

以下、実施例を用いて本発明を具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. In addition, this invention is not limited to the following Example.

(実施例1)
まず、離型フィルムをひいた成形台の上に、硬化剤を添加した樹脂を流し、ローラで均一に伸ばす。ここへジュート糸(400tex)を用いて作製した多軸タテ編み基材A(図1)を樹脂の上に載せる。この基材の上へ樹脂を流し、ローラで均一に伸ばす。次に、図2に記載するとおり、当該多軸挿入タテ編み基材と対称になるように形成した多軸タテ編み基材Bを載せ樹脂を流す。更にローラで均一に樹脂を含浸させ、上部から離型フィルムを載せて、基材の両端に目標厚さのスペーサーを設置する。このスペーサーの上から金属平板を置き、約12時間以上室温で放置することで、硬化させる。次に100℃の乾燥機内で2時間アフターキュアを行い完全硬化させる。ことで目的の厚さの繊維強化プラスチック板を作製できる。
今回の実験で使用した基材は、ジュート糸(400tex)を用いて 90°/±30°の角度で、1層当たり150g/mで、目付が450g/mであった。ステッチ糸は、ポリエステル繊維(75デニール)を用いた。
熱硬化性樹脂は不飽和ポリエステル(昭和高分子(株)、リゴラック 150HRBQTNW)、硬化剤はメチルエチルケトンパーオキサイト(MEKPO)55%を樹脂100に対して1%混合して用いた。なお、繊維強化プラスチック板の厚さは、約1.5mmとし、得られた繊維強化プラスチック板の繊維体積含有率(Vf)は約30%であった。
Example 1
First, a resin to which a curing agent is added is poured on a molding table having a release film, and the resin is uniformly stretched with a roller. Here, the multi-axis warp knitting substrate A (FIG. 1) produced using jute yarn (400 tex) is placed on the resin. The resin is poured onto the base material and stretched uniformly with a roller. Next, as shown in FIG. 2, a multiaxial warp knitted base material B formed so as to be symmetric with the multiaxial insert warp knitted base material is placed and the resin is poured. Further, the resin is uniformly impregnated with a roller, a release film is placed from above, and spacers with a target thickness are installed on both ends of the substrate. A metal flat plate is placed on the spacer and allowed to stand at room temperature for about 12 hours or longer to be cured. Next, after curing in a dryer at 100 ° C. for 2 hours, it is completely cured. Thus, a fiber-reinforced plastic plate having a desired thickness can be produced.
The base material used in this experiment was 150 g / m 2 per layer at an angle of 90 ° / ± 30 ° using jute yarn (400 tex), and the basis weight was 450 g / m 2 . Polyester fiber (75 denier) was used for the stitch yarn.
Unsaturated polyester (Showa High Polymer Co., Ltd., Rigolac 150HRBQTNW) was used as the thermosetting resin, and 55% methyl ethyl ketone peroxide (MEKPO) was mixed with the resin 100 at 1%. The thickness of the fiber reinforced plastic plate was about 1.5 mm, and the fiber volume content (Vf) of the obtained fiber reinforced plastic plate was about 30%.

得られた繊維強化プラスチック板は、自重による変形などはなく充分に形状を形成するものであった。 The obtained fiber reinforced plastic plate was sufficiently deformed without deformation due to its own weight.

(実施例2)
まず、離型フィルムをひいた成形台の上に、硬化剤を添加した樹脂を流し、ローラで均一に伸ばす。ここへジュート糸(170tex)を用いて作製した1軸タテ編み基材(90°)を樹脂の上に載せる。この基材の上へ樹脂を流し、ローラで均一に伸ばす。次にはじめと同様の1軸挿入タテ編み基材をさらに載せ樹脂を流す。更にローラで均一に樹脂を含浸させ、上部から離型フィルムを載せて、基材の両端に目標厚さのスペーサーを設置する。このスペーサーの上から金属平板を置きプレスして約12時間以上室温で放置することで、硬化させる。次に100℃の乾燥機内で2時間アフターキュアを行い完全硬化させる。ことで目的の厚さの繊維強化プラスチック板を作製できる。
今回の実験で使用した基材は、ジュート糸(170tex)を用いて 90°の角度で、目付が150g/mであり、これを6枚同一方向に積層した。ステッチ糸は、ポリエステル繊維(75デニール)を用いた。
樹脂は不飽和ポリエステル(昭和高分子(株)、リゴラック 150HRBQTNW)、硬化剤はメチルエチルケトンパーオキサイト(MEKPO)55%を樹脂100に対して1%混合して用いた。なお、繊維強化プラスチック板の厚さは、約1.2mmを目標とし、得られた繊維強化プラスチック板の繊維体積含有率(Vf)は約50%であった。
(Example 2)
First, a resin to which a curing agent is added is poured on a molding table with a release film, and the resin is uniformly stretched with a roller. A uniaxial warp knitted substrate (90 °) produced using jute yarn (170 tex) is placed on the resin. The resin is poured onto the base material and stretched uniformly with a roller. Next, the same uniaxial insertion warp knitting substrate as that at the beginning is further placed and the resin is poured. Further, the resin is uniformly impregnated with a roller, a release film is placed from above, and spacers with a target thickness are installed on both ends of the substrate. A metal flat plate is placed on the spacer, pressed, and allowed to stand at room temperature for about 12 hours or longer to be cured. Next, after curing in a dryer at 100 ° C. for 2 hours, it is completely cured. Thus, a fiber-reinforced plastic plate having a desired thickness can be produced.
The base material used in this experiment was a 90 ° angle using a jute yarn (170 tex) and a basis weight of 150 g / m 2 , and six of them were laminated in the same direction. Polyester fiber (75 denier) was used for the stitch yarn.
The resin was unsaturated polyester (Showa High Polymer Co., Ltd., Rigolac 150HRBQTNW), and the curing agent was 55% methyl ethyl ketone peroxide (MEKPO) mixed with 1% resin 100. The target thickness of the fiber reinforced plastic plate was about 1.2 mm, and the fiber volume content (Vf) of the obtained fiber reinforced plastic plate was about 50%.

得られた繊維強化プラスチック板は、自重による変形などはなく充分に形状を形成するものであった。 The obtained fiber reinforced plastic plate was sufficiently deformed without deformation due to its own weight.

(比較例)
現在よく使用されているガラス繊維強化プラスチックの強化繊維の形態として、チョップドストランドマットがある。これはガラスロービングを約2インチの長さに切断し、ランダムの方向に集合させて、エマルジョン樹脂でシート状にしたものである。
ここでは、チョップドストランドマットとして、目付450g/mのものを用いて、ハンドレイアップ法で2層積層してFRP板を作製した。
樹脂は不飽和ポリエステル(昭和高分子(株)、リゴラック 150HRBQTNW)、硬化剤はメチルエチルケトンパーオキサイト(MEKPO)55%を樹脂100に対して1%混合して用いた。なお、なお、繊維強化プラスチック板の厚さは、1.0mmとし、 得られた繊維強化プラスチック板の繊維体積含有率(Vf)は約30%であった。
(Comparative example)
There is a chopped strand mat as a form of reinforcing fiber of glass fiber reinforced plastic that is often used at present. This is a glass roving cut into a length of about 2 inches, assembled in a random direction, and formed into a sheet with an emulsion resin.
Here, two layers of a chopped strand mat having a basis weight of 450 g / m 2 were laminated by a hand lay-up method to prepare an FRP plate.
The resin was unsaturated polyester (Showa High Polymer Co., Ltd., Rigolac 150HRBQTNW), and the curing agent was 55% methyl ethyl ketone peroxide (MEKPO) mixed with 1% resin 100. Note that the thickness of the fiber reinforced plastic plate was 1.0 mm, and the fiber volume content (Vf) of the obtained fiber reinforced plastic plate was about 30%.

得られた繊維強化プラスチック板は、自重による変形などはなく充分に形状を形成するものであった。 The obtained fiber reinforced plastic plate was sufficiently deformed without deformation due to its own weight.

なお、以上実施例及び比較例で得られた繊維強化プラスチック板から90°方向の繊維に沿って、長さ250mm、幅25mmの短冊状板を切り出した。両端から50mmの位置に厚さ1mmのアルミタブを接着し、これを引張試験片とした。引張試験ではひずみ量を測定するために、ひずみゲージを用いた。 A strip-shaped plate having a length of 250 mm and a width of 25 mm was cut out from the fiber-reinforced plastic plates obtained in the above Examples and Comparative Examples along the fibers in the 90 ° direction. An aluminum tab having a thickness of 1 mm was bonded to a position 50 mm from both ends, and this was used as a tensile test piece. In the tensile test, a strain gauge was used to measure the amount of strain.

測定試験は以下のとおりである。
[引張試験]
引張試験は、JIS K 7054:1995に準じ、オートグラフ(島津製作所製:AG−5000B)を用いて、試験速度1mm/分で引張試験を実施した。
上記試験結果を表1に示す。
The measurement test is as follows.
[Tensile test]
The tensile test was conducted according to JIS K 7054: 1995 using an autograph (manufactured by Shimadzu Corporation: AG-5000B) at a test speed of 1 mm / min.
The test results are shown in Table 1.

Figure 2009067879
Figure 2009067879

上記の実施例の試験結果について、熱硬化性樹脂は粘度が比較的低いので、紡績糸内部に含浸しており、紡績糸を用いることで各物性値は安定した値であった。また、天然繊維を紡績糸として用いることで、繊維強化プラスチック板の繊維含有率を向上させることが可能になり、一般的に使用されているガラスチョップドストランドマットFRPと同等以上の性能を発現させることが可能となった。 Regarding the test results of the above examples, since the thermosetting resin has a relatively low viscosity, it was impregnated into the spun yarn, and each physical property value was stable by using the spun yarn. In addition, by using natural fibers as spun yarn, it is possible to improve the fiber content of the fiber reinforced plastic plate, and to exhibit performance equivalent to or better than the commonly used glass chopped strand mat FRP. Became possible.

本発明の植物系天然繊維を紡績してなる連続糸を用いた繊維強化熱硬化性樹脂成形体は、自動車や飛行機、車両などの内装用繊維強化プラスチック等種々の分野に有用である。   The fiber-reinforced thermosetting resin molded article using continuous yarn formed by spinning the plant-based natural fiber of the present invention is useful in various fields such as interior fiber-reinforced plastics for automobiles, airplanes, vehicles and the like.

ジュート多軸挿入タテ編み基材の概略構成図Schematic configuration diagram of jute multi-axis insertion warp knitting base material ジュート多軸挿入タテ編み基材の積層状態を示す概略図Schematic showing the laminated state of the jute multi-axis insertion warp knitting substrate

符号の説明Explanation of symbols

A,B:多軸挿入タテ編み基材

A, B: Multi-axis insertion warp knitting base material

Claims (5)

天然繊維で強化された繊維強化熱硬化性樹脂成形体であって、
前記天然繊維は植物系天然繊維からなる紡績糸であり、
前記紡績糸は少なくとも一方向に引き揃えられ、熱硬化性樹脂と一体成形されていることを特徴とする繊維強化熱硬化性樹脂成形体。
A fiber-reinforced thermosetting resin molded body reinforced with natural fibers,
The natural fiber is a spun yarn made of plant-based natural fiber,
The fiber-reinforced thermosetting resin molded article, wherein the spun yarn is aligned in at least one direction and is integrally formed with a thermosetting resin.
前記紡績糸は麻繊維からなる請求項1に記載の繊維強化熱硬化性樹脂成形体。 The fiber-reinforced thermosetting resin molded article according to claim 1, wherein the spun yarn is made of hemp fibers. 前記紡績糸はジュート繊維からなる請求項1又は2のいずれかに記載の繊維強化熱硬化性樹脂成形体。 The fiber-reinforced thermosetting resin molded article according to claim 1, wherein the spun yarn is made of jute fiber. 前記紡績糸は複数の方向に引き揃えられ、前記引き揃えられた複数本の配列糸はステッチング糸によって厚さ方向にステッチングされ、多軸挿入たて編物に成形されている請求項1〜3のいずれかに記載の繊維強化熱可塑性樹脂成形体。   The spun yarn is aligned in a plurality of directions, and the aligned plurality of aligned yarns are stitched in the thickness direction by stitching yarns, and are formed into a multi-axis inserted warp knitted fabric. 4. The fiber-reinforced thermoplastic resin molded article according to any one of 3 above. 前記熱硬化性樹脂は、ビニルエステル樹脂、不飽和ポリエステル樹脂、エポキシ樹脂又はフェノール樹脂である請求項1〜4のいずれかに記載の繊維強化熱硬化性樹脂成形体。

The fiber reinforced thermosetting resin molded article according to any one of claims 1 to 4, wherein the thermosetting resin is a vinyl ester resin, an unsaturated polyester resin, an epoxy resin, or a phenol resin.

JP2007237358A 2007-09-13 2007-09-13 Fiber-reinforced thermosetting resin molded body Pending JP2009067879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007237358A JP2009067879A (en) 2007-09-13 2007-09-13 Fiber-reinforced thermosetting resin molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007237358A JP2009067879A (en) 2007-09-13 2007-09-13 Fiber-reinforced thermosetting resin molded body

Publications (1)

Publication Number Publication Date
JP2009067879A true JP2009067879A (en) 2009-04-02

Family

ID=40604480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007237358A Pending JP2009067879A (en) 2007-09-13 2007-09-13 Fiber-reinforced thermosetting resin molded body

Country Status (1)

Country Link
JP (1) JP2009067879A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062007A1 (en) * 2009-11-17 2011-05-26 倉敷紡績株式会社 Spun yarn and intermediate for fiber-reinforced resin, and molded article of fiber-reinforced resin using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062007A1 (en) * 2009-11-17 2011-05-26 倉敷紡績株式会社 Spun yarn and intermediate for fiber-reinforced resin, and molded article of fiber-reinforced resin using same
CN102713036A (en) * 2009-11-17 2012-10-03 仓敷纺绩株式会社 Spun yarn and intermediate for fiber-reinforced resin, and molded article of fiber-reinforced resin using same
JP5780968B2 (en) * 2009-11-17 2015-09-16 倉敷紡績株式会社 Spun yarn and intermediate for fiber reinforced resin, and fiber reinforced resin molded product using the same

Similar Documents

Publication Publication Date Title
JP5780968B2 (en) Spun yarn and intermediate for fiber reinforced resin, and fiber reinforced resin molded product using the same
KR101861875B1 (en) Carbon-fiber-reinforced plastic molded article
JP4748717B2 (en) Fiber reinforced thermoplastic resin molding
JP7121663B2 (en) Hybrid fabrics for reinforcing composites
Ratim et al. The effect of woven and non-woven fiber structure on mechanical properties polyester composite reinforced kenaf
JP5847033B2 (en) Carbon fiber stitch substrate and wet prepreg using the same
Mirdehghan Fibrous polymeric composites
JPWO2013133437A1 (en) High-weight carbon fiber sheet for RTM method and RTM method
JP2010121250A (en) Fiber-reinforced composite material and composite molded product thereof
JP2007518608A (en) Stabilizable preform precursor and stabilized preform for composite materials, and method for stabilizing and reducing bulk of a preform
Latifi Engineered Polymeric Fibrous Materials
Gowayed Types of fiber and fiber arrangement in fiber-reinforced polymer (FRP) composites
CN114008256B (en) Roving and fabric for fiber reinforced composites
JP2009067879A (en) Fiber-reinforced thermosetting resin molded body
JP2012241183A (en) Fiber composite material and sandwich material using the same
JP4863630B2 (en) Carbon fiber reinforced resin
Yuhazri et al. The effect of lamina intraply hybrid composites on the tensile properties of various weave designs
JP6897705B2 (en) Reinforcing fiber woven fabric and its manufacturing method
JP2019044285A (en) Heat-resistant multiaxial stitch base material
JP5205309B2 (en) Three-dimensional reinforcing fiber substrate and three-dimensional fiber reinforced resin composite
JP2012193482A (en) Fiber reinforced composite material and molded product thereof
US20200291557A1 (en) Unidirectional laid nonwoven and use thereof
JP6364798B2 (en) Reinforcing fiber fabric and method for producing the same
JP2015117442A (en) Reinforcing fiber woven fabric and method for producing the same
JP2012251249A (en) Heat-shrinkable improved fabric and composite material