JP2009067684A - Low-boiling compound-including hollow fine particles - Google Patents

Low-boiling compound-including hollow fine particles Download PDF

Info

Publication number
JP2009067684A
JP2009067684A JP2007234572A JP2007234572A JP2009067684A JP 2009067684 A JP2009067684 A JP 2009067684A JP 2007234572 A JP2007234572 A JP 2007234572A JP 2007234572 A JP2007234572 A JP 2007234572A JP 2009067684 A JP2009067684 A JP 2009067684A
Authority
JP
Japan
Prior art keywords
fine particles
low
hollow
hollow fine
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007234572A
Other languages
Japanese (ja)
Inventor
Masanori Abe
正紀 阿部
Takashi Nakagawa
貴 中川
Masaru Tada
大 多田
Hiroshi Handa
宏 半田
Shun Kanamaru
俊 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2007234572A priority Critical patent/JP2009067684A/en
Publication of JP2009067684A publication Critical patent/JP2009067684A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Medicinal Preparation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide hollow fine particles in which the release of a substance contained in hollow fine particles can be controlled by the operation from the outside. <P>SOLUTION: The hollow fine particles have an average particle diameter of ≥50 nm and ≤100 μm and have hollow shells having liquid-permeable fine through-holes and a water-insoluble low-boiling compound that is enclosed in the hollow shell and has a boiling point of ≥40°C and ≤100°C. The hollow fine particles are cooled in a solution to the boiling point of the low-boiling compound or below, the low-boiling compound is liquefied and the pressure in the hollow fine particles is reduced to take the solution in the hollow fine particles. The hollow fine particles are heated to the boiling point of the low-boiling compound or above, so that the low-boiling compound is vaporized and the pressure in the hollow fine particles is increased, to release an aqueous solution in the hollow fine particles to the outside of the hollow fine particles. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、低沸点化合物を内包した中空微粒子に関し、特に、中空の微粒子に液体を内包させ、昇温によってこの液体を放出させることのできる低沸点化合物内包中空微粒子に関する。   The present invention relates to hollow fine particles encapsulating a low-boiling compound, and particularly relates to low-boiling compound-containing hollow fine particles in which a liquid is encapsulated in hollow fine particles and the liquid can be released by raising the temperature.

中空の殻を形成し、この殻の内部にさまざまな機能を有する物質を内包させた粒子はマイクロカプセルやナノカプセルとして広く利用されている。例えば色素をマイクロカプセルにし、圧力や温度でカプセルを破壊して発色させ、感圧記録紙や感熱記録紙の記録材料として用いるものが特許文献1(特開2006−281143号公報)に記載されている。また、低誘電率の材料を内包したマイクロカプセルや軽量物質としてのマイクロカプセルがあり、また農薬を内包したマイクロカプセルや触媒を内包したマイクロカプセルがあり、さらに薬物をマイクロカプセルに内包することによってその放出を調整するようにしたマイクロカプセルもある。また、中空の殻をフェライトで構成した場合には、通常のマイクロカプセルとしての機能のほかに、磁気的な力を用いて誘導することや、交流磁場を用いて誘導加熱を行なうなど、中空の殻が持つ磁性.を利用した応用が可能となることから、さらに新しい用途が期待される。   Particles that form a hollow shell and encapsulate substances having various functions inside the shell are widely used as microcapsules and nanocapsules. For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2006-281143) discloses a microcapsule that is dyed to develop color by pressure and temperature and is used as a recording material for pressure-sensitive recording paper or thermal recording paper. Yes. There are also microcapsules encapsulating materials with low dielectric constants and microcapsules as lightweight substances, microcapsules encapsulating agricultural chemicals and microcapsules encapsulating catalysts, and by encapsulating drugs in microcapsules Some microcapsules are designed to regulate release. In addition, when the hollow shell is made of ferrite, in addition to the function as a normal microcapsule, it can be induced by using magnetic force or induction heating using an alternating magnetic field. Since applications using the magnetic properties of shells are possible, new applications are expected.

こうした固体や液体を内包したマイクロカプセルのほかに、気体を内包したマイクロカプセルの重要性が高まっている。液体などに比べ気体は超音波の散乱が大きいという性質を利用し、気体を内包させたマイクロカプセルが超音波画像装置の造影剤として用いられている。このほか、気体を内包させたマイクロカプセルは、MRIの造影剤としても有効であることが例えば特許文献2(特表平9−510204号公報)などに記載されている。   In addition to microcapsules encapsulating solids and liquids, the importance of microcapsules encapsulating gas is increasing. Utilizing the property that the scattering of ultrasonic waves is larger than that of liquid or the like, a microcapsule containing a gas is used as a contrast agent for an ultrasonic imaging apparatus. In addition, it is described in, for example, Patent Document 2 (Japanese Patent Publication No. 9-510204) that microcapsules enclosing gas are effective as a contrast agent for MRI.

マイクロカプセルの中空の殻を形成する材料には、重合体や脂質など、さまざまな物質が用いられている。また中空の殻にはシリカなどの無機物粒子を用いることが知られている。さらにマイクロカプセルの中空の殻に磁性を持つフェライトを用いることも試みられている。中空の殻をフェライトで形成することができれば、磁気力を利用した中空の殻の移動や、フェライトの交流電磁界に対する応答の利用などが可能になるという利点が得られる。このため中空のフェライト微粒子の作製方法についてさまざまな方法が報告されている。その一つは、非特許文献1(F. Caruso et al., Chem. Mater. 2001, 13, 109-116)に記載の方法である。この方法は、ポリマー微粒子をテンプレートとし、フェライトのナノ微粒子をコロイド状にしたものをその表面に吸着させて層を形成して乾燥し、これを500℃に加熱焼成することにより、テンプレートのポリマーを熱分解し、フェライト中空微粒子を得るというものである。また特許文献3(特開平6−23271号公報)に記載の方法は、テンプレートのポリマー微粒子をFeClの水溶液に浸漬してポリマー微粒子表面に鉄イオンを吸着させて層を形成し、これを800℃にて焼成しアルファ酸化鉄の中空微粒子とし、さらにこれを水素中350℃で熱処理してマグネタイトの中空微粒子を形成するものである。また、非特許文献2(Materials Chemistry and Physics 100 (2006) 10-14)に記載の方法は、ポリスチレンの中空微粒子を製作し、このポリスチレン微粒子の表面をフェライトで被覆した構造にすることにより、殻の強度をポリスチレンによって確保した中空のフェライト微粒子を得るものである。さらに非特許文献3(J. of Magn. and Magn. Mat. 311 (2007) 578-582)に記載の方法は、殻の強度をシリカによって確保して中空のフェライトとシリカの複合体微粒子を得るものである。
特開2006−281143号公報 特表平9−510204号公報 特開平6−23271号公報 F. Caruso et al., Chem. Mater. 2001, 13, 109-116 Materials Chemistry and Physics 100 (2006) 10-14 J. of Magn. and Magn. Mat. 311 (2007) 578-582
Various materials such as polymers and lipids are used as the material for forming the hollow shell of the microcapsule. It is known to use inorganic particles such as silica for the hollow shell. In addition, attempts have been made to use magnetic ferrite in the hollow shell of the microcapsule. If the hollow shell can be formed of ferrite, there can be obtained an advantage that the hollow shell can be moved using magnetic force and the response of the ferrite to the AC electromagnetic field can be used. For this reason, various methods for producing hollow ferrite fine particles have been reported. One of them is the method described in Non-Patent Document 1 (F. Caruso et al., Chem. Mater. 2001, 13, 109-116). In this method, a polymer fine particle is used as a template, a ferrite nanoparticle made into a colloidal shape is adsorbed on the surface thereof, a layer is formed and dried, and this is heated and fired at 500 ° C. It is thermally decomposed to obtain ferrite hollow fine particles. In the method described in Patent Document 3 (Japanese Patent Laid-Open No. 6-23271), the polymer fine particles of the template are dipped in an aqueous solution of FeCl 3 to adsorb iron ions on the surface of the polymer fine particles, and a layer is formed. It is calcined at ℃ to form alpha iron oxide hollow fine particles, which are further heat-treated at 350 ° C. in hydrogen to form magnetite hollow fine particles. In addition, the method described in Non-Patent Document 2 (Materials Chemistry and Physics 100 (2006) 10-14) is a method in which hollow polystyrene particles are manufactured and the surface of the polystyrene particles is covered with ferrite to form a shell. The hollow ferrite fine particles in which the strength is secured by polystyrene are obtained. Furthermore, according to the method described in Non-Patent Document 3 (J. of Magn. And Magn. Mat. 311 (2007) 578-582), the strength of the shell is ensured by silica to obtain hollow ferrite and silica composite fine particles. Is.
JP 2006-281143 A JP-T 9-510204 JP-A-6-23271 F. Caruso et al., Chem. Mater. 2001, 13, 109-116 Materials Chemistry and Physics 100 (2006) 10-14 J. of Magn. And Magn. Mat. 311 (2007) 578-582

中空微粒子に内包された薬剤などの液体物質を、目的とする個所にて適切なタイミングで放出できるようにすることが望まれる。例えば中空微粒子を温度上昇させることによって内包している液体物質が放出できるようにすることが望ましいと考えられる。   It is desired that a liquid substance such as a drug encapsulated in hollow fine particles can be released at an appropriate timing at a target location. For example, it may be desirable to allow the contained liquid substance to be released by raising the temperature of the hollow microparticles.

本発明者らは研究を重ねた結果、温度を上昇させることによって中空微粒子が内包している低沸点化合物を気化すれば、中空微粒子に内包された物質を放出できることがわかった。本発明は、中空微粒子を温度上昇させることにより、中空微粒子内に内包している物質を放出させることのできる中空微粒子を提供し、あわせて低沸点化合物と液体とを内包させた中空微粒子をプローブ粒子とし、温度上昇による前記プローブ粒子の超音波散乱強度の変化を検出することにより、温度上昇をチェックすることのできる温度センサを提供するものである。   As a result of repeated studies, the present inventors have found that the substance encapsulated in the hollow microparticles can be released by evaporating the low boiling point compound encapsulated in the hollow microparticles by increasing the temperature. The present invention provides a hollow fine particle capable of releasing a substance encapsulated in a hollow fine particle by raising the temperature of the hollow fine particle, and also probe the hollow fine particle containing a low boiling point compound and a liquid. The present invention provides a temperature sensor capable of checking the temperature rise by detecting changes in the ultrasonic scattering intensity of the probe particles due to the temperature rise.

本発明の低沸点化合物内包中空微粒子は、微小な貫通孔を有する殻により中空部を持つ中空微粒子を形成し、低沸点化合物とこの低沸点化合物よりも高い沸点を有する液体物質とをこの中空部に内包しており、この低沸点化合物はこの液体物質に対し不溶性であることを特徴とする。   The low-boiling compound-containing hollow fine particles of the present invention form hollow fine particles having a hollow portion by a shell having fine through holes, and the low-boiling compound and a liquid substance having a higher boiling point than the low-boiling compound are formed in the hollow portion. The low boiling point compound is insoluble in the liquid substance.

このような本発明の低沸点化合物内包中空微粒子を用いれば、この中空微粒子に低沸点化合物の液と所定の物質を含んだ液体とを内包させ、低沸点化合物の沸点より高い温度まで昇温して低沸点化合物の蒸気圧を高めることにより中空微粒子の内圧を高めることによって、所定の物質を含んだ液体をこの内圧で押出して中空微粒子の外部に放出させることができる。   By using such low-boiling compound-containing hollow fine particles of the present invention, the hollow fine particles contain a low-boiling compound liquid and a liquid containing a predetermined substance, and the temperature is raised to a temperature higher than the boiling point of the low-boiling compound. By increasing the internal pressure of the hollow fine particles by increasing the vapor pressure of the low boiling point compound, a liquid containing a predetermined substance can be extruded at this internal pressure and released to the outside of the hollow fine particles.

本発明の低沸点化合物内包中空微粒子においては、上記低沸点化合物は蒸気圧が1気圧になる温度が40℃以上100℃以下であることが特に好ましい。低沸点化合物の蒸気圧がこのような温度変化を有していれば、室温にて安定に保管することができ、これを加熱し室温以上に昇温することにより、上記の液体放出の動作をさせることができるので好都合である。   In the low-boiling compound-containing hollow fine particles of the present invention, it is particularly preferable that the low-boiling compound has a vapor pressure of 1 atm. If the vapor pressure of the low boiling point compound has such a temperature change, it can be stored stably at room temperature, and the above liquid discharge operation can be performed by heating this and raising the temperature to above room temperature. This is convenient.

本発明の低沸点化合物内包中空微粒子においては、中空微粒子の殻がフェライトで構成されたものが特に好ましい。中空微粒子の殻がフェライトで構成されていれば、フェライトの有する磁性を利用して磁気力で微粒子を誘導することや、交流磁界による誘導加熱により、外部からこの微粒子だけを選択的に加熱し昇温することができる。   In the low-boiling compound-containing hollow fine particles of the present invention, those in which the shell of the hollow fine particles is composed of ferrite are particularly preferable. If the shell of the hollow fine particles is made of ferrite, the fine particles are selectively heated from the outside by induction of fine particles with magnetic force using the magnetism of ferrite or induction heating with an alternating magnetic field. Can be warmed.

また、本発明の温度センサは、低沸点化合物と液体とを内包させた中空微粒子をプローブ粒子とし、温度上昇によるこのプローブ粒子の超音波散乱強度の変化を検出することにより、温度上昇をチェックすることを特徴とする。   In addition, the temperature sensor of the present invention checks the temperature rise by detecting changes in the ultrasonic scattering intensity of the probe particles due to temperature rise by using hollow fine particles containing a low boiling point compound and a liquid as probe particles. It is characterized by that.

上記の低沸点化合物と液体とが内包された中空微粒子は、温度が上昇し低沸点化合物の沸点を超えると、この低沸点化合物が気化し中空微粒子の中空部は内圧が上昇し、中空微粒子中に内包された液体が中空微粒子外に放出され中空部は気体で満たされるようになるので、この中空微粒子の超音波散乱強度がこの温度で著しく変化する。この性質を利用することによって、通常の温度センサが使用できない個所に対しても、高感度で精密な温度チェックができることがわかった。なお、この温度センサで用いる低沸点化合物は、チェックすべき温度に応じ、これに適した沸点を持つ低沸点化合物を選択して使用する。   When the hollow fine particles encapsulating the low boiling point compound and the liquid rise in temperature and exceed the boiling point of the low boiling point compound, the low boiling point compound is vaporized, and the hollow part of the hollow fine particles increases in internal pressure, and the hollow fine particles are contained in the hollow fine particles. Since the liquid encapsulated in is discharged to the outside of the hollow fine particles and the hollow portion is filled with gas, the ultrasonic scattering intensity of the hollow fine particles changes significantly at this temperature. By using this property, it was found that high-sensitivity and precise temperature checks can be performed even at locations where ordinary temperature sensors cannot be used. The low boiling point compound used in this temperature sensor is selected and used according to the temperature to be checked.

本発明により、薬剤などの液体物質と低沸点化合物とを中空微粒子に内包させ、これを温度上昇させることにより、中空微粒子内に内包させた溶剤に含有させた薬剤などの液体物質を放出させることが可能になった。この特徴を利用したさまざまな用途に用いることができるようになった。また、本発明の低沸点化合物内包中空微粒子の性質を利用して、通常の温度センサが使用できない個所に対しても、高感度で精密な温度チェックできるようになった。   According to the present invention, a liquid substance such as a drug and a low boiling point compound are encapsulated in hollow fine particles, and the temperature is raised to release the liquid substance such as a drug contained in the solvent encapsulated in the hollow fine particles. Became possible. It can be used for various applications that utilize this feature. Further, by utilizing the properties of the low-boiling compound-containing hollow fine particles of the present invention, it has become possible to perform a highly sensitive and precise temperature check even at locations where a normal temperature sensor cannot be used.

以下、本発明の実施の形態について図面を参照しながら説明することにより、本発明についてのさらなる詳細を述べる。   Hereinafter, the embodiments of the present invention will be described with reference to the drawings, and further details of the present invention will be described.

1.中空微粒子への液体物質取り込みと中空微粒子からの液体物質放出
図1は中空微粒子への液体物質の取り込みと中空微粒子からの液体物質放出を模式的に示した図である。
図1において、まず、図1(a)に示すように、中空微粒子100の殻102で囲まれた中空部104には、低沸点化合物の沸点より高い温度にて気体状態の低沸点化合物106で満たし、液体物質108に浸漬する。
この気体の状態の低沸点化合物で満たされた中空微粒子を低沸点化合物の沸点より低い温度にまで冷却すると、気体状態の低沸点化合物106が液体状態の低沸点化合物107となる。このとき、その体積が急激に減少し、中空部の圧力が低下し、殻には貫通孔があるので、この貫通孔を経て中空微粒子の中空部には周囲から液体物質が取り込まれ内包される。
1. FIG. 1 is a diagram schematically showing uptake of a liquid substance into a hollow microparticle and release of a liquid substance from the hollow microparticle.
In FIG. 1, first, as shown in FIG. 1 (a), the hollow portion 104 surrounded by the shell 102 of the hollow fine particles 100 is filled with a low-boiling compound 106 in a gaseous state at a temperature higher than the boiling point of the low-boiling compound. Fill and immerse in liquid material 108.
When the hollow fine particles filled with the low boiling point compound in the gaseous state are cooled to a temperature lower than the boiling point of the low boiling point compound, the low boiling point compound 106 in the gaseous state becomes the low boiling point compound 107 in the liquid state. At this time, the volume rapidly decreases, the pressure of the hollow portion decreases, and the shell has a through-hole. Through this through-hole, the hollow portion of the hollow fine particles is taken in and encapsulated from the surroundings. .

次に図1(b)に示すように、液体物質108が内包されるとともに液体状態の低沸点化合物107が内包された中空微粒子100を、加熱し低沸点化合物の沸点より高い温度にまで温度上昇させると、液体状態の低沸点化合物107が気体状態の低沸点化合物106となってその体積を増すので、中空部の圧力が高まり、内包されていた液体物質が貫通孔を経て中空微粒子の外部へ放出される。このとき、気化した低沸点化合物の気体の放出は、中空微粒子100の殻102の貫通孔を満たす液体物質の表面張力によって阻まれる。   Next, as shown in FIG. 1B, the hollow fine particles 100 enclosing the liquid substance 108 and encapsulating the low-boiling compound 107 in the liquid state are heated to a temperature higher than the boiling point of the low-boiling compound. As a result, the low-boiling compound 107 in the liquid state becomes the low-boiling compound 106 in the gas state and increases its volume. Therefore, the pressure in the hollow portion increases, and the encapsulated liquid substance passes through the through-holes to the outside of the hollow fine particles. Released. At this time, the release of the vaporized low-boiling compound gas is hindered by the surface tension of the liquid substance filling the through-holes of the shells 102 of the hollow microparticles 100.

なお、中空微粒子100の殻102がフェライトで形成されている場合には、加熱して低沸点化合物の沸点以上の温度まで昇温させる手段として、交流磁界による誘導加熱を用いることができる。   In addition, when the shell 102 of the hollow fine particles 100 is formed of ferrite, induction heating using an alternating magnetic field can be used as a means for heating and raising the temperature to a temperature equal to or higher than the boiling point of the low boiling point compound.

図2は本発明の一実施形態における中空微粒子に低沸点化合物および液体物質を内包させるための装置の構成を示した図である。図2において、まず、中空微粒子202を水に懸濁した懸濁液を密閉容器204に入れ、真空ポンプ206を用いて密閉容器204内を真空にし、中空微粒子202を乾燥させるとともに中空微粒子202の中空部を真空状態にする。続いて真空ポンプ206への配管のコック208を閉じ、密閉容器204内に低沸点化合物の注入器210を用い、低沸点化合物を注入する。   FIG. 2 is a view showing a configuration of an apparatus for enclosing a low boiling point compound and a liquid substance in hollow fine particles according to an embodiment of the present invention. In FIG. 2, first, a suspension obtained by suspending hollow fine particles 202 in water is put into a sealed container 204, and the inside of the sealed container 204 is evacuated using a vacuum pump 206 to dry the hollow fine particles 202 and The hollow part is evacuated. Subsequently, the piping cock 208 to the vacuum pump 206 is closed, and the low boiling point compound is injected into the sealed container 204 using the low boiling point compound injector 210.

次に温度制御装置212を用いて、注入した低沸点化合物の沸点を超える温度になるまで、この密閉容器204とともにその内容物を昇温し、低沸点化合物を気化させる。こうすることにより、中空微粒子202の中空部も低沸点化合物の気体で充たされる。   Next, using the temperature control device 212, the temperature of the contents of the sealed container 204 is increased until the temperature exceeds the boiling point of the injected low-boiling compound, and the low-boiling compound is vaporized. By doing so, the hollow portion of the hollow fine particle 202 is also filled with the gas of the low boiling point compound.

このあと、薬剤の水溶液などの液体物質をこの密閉容器内に入れる。続いて温度制御装置212により、密閉容器204の温度を低沸点化合物の沸点以下に下げる。こうすることにより、中空微粒子202内の低沸点化合物が液化し、中空微粒子202内の圧力は中空微粒子202の周囲に比べて低くなり、周囲の液体物質が中空微粒子202の中空部に引きこまれ内包される。また中空微粒子202の殻の貫通孔もこの液体物質で充たされる。ここで内包される液体物質は各種の薬物であってもよく、例えば各種の抗生物質、抗がん剤、抗リウマチ剤、免疫調整剤などを内包させることができる。   Thereafter, a liquid substance such as an aqueous solution of the drug is placed in the sealed container. Subsequently, the temperature of the sealed container 204 is lowered below the boiling point of the low boiling point compound by the temperature control device 212. By doing so, the low boiling point compound in the hollow fine particles 202 is liquefied, the pressure in the hollow fine particles 202 is lower than that around the hollow fine particles 202, and the surrounding liquid substance is drawn into the hollow portion of the hollow fine particles 202. Included. The through-holes of the hollow fine particle 202 shell are also filled with this liquid substance. The liquid substance contained here may be various drugs, and for example, various antibiotics, anticancer agents, antirheumatic agents, immunomodulators and the like can be included.

こうして低沸点化合物が中空微粒子および目的物質の水溶液が202内に内包される。   Thus, the low boiling point compound is encapsulated in the hollow fine particles and the aqueous solution of the target substance.

このようにすると、中空微粒子202には低沸点化合物の沸点以下の温度で液体状態の低沸点化合物と水または水溶液とが内包される。次にこの中空微粒子202を加熱して低沸点化合物の沸点以上の温度まで昇温させると、低沸点化合物が気化し、その蒸気圧で中空微粒子202内に内包されている水または水溶液が中空微粒子202の殻の貫通孔を経て中空微粒子202の外に放出される。このとき、気化した低沸点化合物の気体の放出は、中空微粒子202の殻の貫通孔を満たす水または水溶液の表面張力によって阻まれる。   In this way, the hollow microparticles 202 contain the low-boiling compound in a liquid state and water or an aqueous solution at a temperature lower than the boiling point of the low-boiling compound. Next, when the hollow fine particles 202 are heated to a temperature equal to or higher than the boiling point of the low boiling point compound, the low boiling point compounds are vaporized, and the water or the aqueous solution contained in the hollow fine particles 202 with the vapor pressure is hollow hollow fine particles. It is discharged out of the hollow fine particles 202 through the through-holes of the shell of 202. At this time, the release of the vaporized low-boiling compound gas is hindered by the surface tension of water or an aqueous solution filling the through-holes of the shells of the hollow fine particles 202.

中空微粒子202の殻がフェライトで形成されている場合には、中空微粒子202を加熱して低沸点化合物の沸点以上の温度まで昇温させる手段として、交流磁界による誘導加熱を用いることができる。   When the shell of the hollow fine particles 202 is formed of ferrite, induction heating using an alternating magnetic field can be used as means for heating the hollow fine particles 202 to a temperature higher than the boiling point of the low boiling point compound.

2.中空微粒子
本発明において、低沸点化合物を内包する中空微粒子は、液体が通過可能な微小貫通孔を持つ中空の殻で構成されたものであって、マイクロカプセルに用いられる種々の物質で構成される中空微粒子が利用できる。そのような物質として、例えば使用する液体に対して不溶性の有機物単量体や重合体、酸化チタン(チタニア)や酸化けい素(シリカ)、フェライト、グラファイトなどのカーボン、のほか、金属が使用できる。また、この中空微粒子大きさは、平均粒径が50nm以上100μm以下であることが、液中に分散しやすくしかも上記の液体放出の機能をよく発揮させる上から好ましい。このような理由から、低沸点化合物を内包する中空微粒子の平均粒子径は100nm以上であることがより好ましく、また200nm以上であることがさらに好ましい。また50μm以下であることがより好ましく、30μm以下であることがさらに好ましい。
2. Hollow fine particles In the present invention, the hollow fine particles encapsulating the low-boiling-point compound are composed of hollow shells having fine through-holes through which liquid can pass, and are composed of various substances used in microcapsules. Hollow fine particles can be used. Examples of such substances include organic monomers and polymers that are insoluble in the liquid used, carbon such as titanium oxide (titania) and silicon oxide (silica), ferrite, and graphite, and metals. . The hollow fine particles preferably have an average particle size of 50 nm or more and 100 μm or less from the viewpoint of being easily dispersed in the liquid and exhibiting the function of releasing the liquid. For these reasons, the average particle size of the hollow fine particles encapsulating the low boiling point compound is more preferably 100 nm or more, and further preferably 200 nm or more. Moreover, it is more preferable that it is 50 micrometers or less, and it is further more preferable that it is 30 micrometers or less.

これらの物質の中でフェライトで構成された中空微粒子は特に好ましいものの一つである。すでに述べたように、中空微粒子の殻にフェライトで構成したものを用いれば、フェライトの持つ磁性を利用することができ、粒子を磁気的に操作することや、交流磁界を用いた誘導加熱が可能である。このフェライト中空微粒子は、シリカ微粒子などをテンプレート粒子として用い、そのテンプレート粒子の表面にフェライトめっきを行なった後、テンプレートを溶解して除去して製作することができる。この方法でフェライト中空微粒子を製作することにより、粒子形状が良好で分散性がよく、しかも微細な貫通孔を有し必要な強度を有しているものが得られる。   Among these substances, hollow fine particles composed of ferrite are particularly preferable. As already mentioned, if the shell of hollow fine particles made of ferrite is used, the magnetism of ferrite can be used, and the particles can be manipulated magnetically and induction heating using an alternating magnetic field is possible. It is. The hollow ferrite fine particles can be produced by using silica fine particles or the like as template particles, performing ferrite plating on the surface of the template particles, and then dissolving and removing the template. By producing ferrite hollow fine particles by this method, particles having good particle shape and good dispersibility, and having fine through-holes and necessary strength can be obtained.

3.低沸点化合物
本発明で用いる低沸点化合物は、沸点が比較的低く、昇温によって沸点を超えると蒸気圧が急激に高まる化合物である。そのような化合物であって使用する液体に対し不溶性であれば、特に制限はない。そのような化合物の中で、例えば常温では液体であり、沸点が室温以上で昇温によって容易に到達する温度であって、沸点を超えて昇温させると気化して蒸気圧の高まる化合物が好ましい。特に、蒸気圧が1気圧になる温度が常温より高い適切な温度である化合物、例えば蒸気圧が1気圧になる温度が40℃以上100℃以下である化合物は、本発明で用いる低沸点化合物として好ましいものである。
3. Low-boiling point compound The low-boiling point compound used in the present invention is a compound having a relatively low boiling point, and the vapor pressure rapidly increases when the boiling point is exceeded by temperature rise. If it is such a compound and it is insoluble with respect to the liquid to be used, there will be no restriction | limiting in particular. Among such compounds, for example, a compound that is liquid at room temperature and easily reaches the boiling point when the temperature rises above the room temperature, and vaporizes when the temperature rises beyond the boiling point, and the vapor pressure increases is preferable. . In particular, a compound having a vapor pressure of 1 atm at an appropriate temperature higher than room temperature, for example, a compound having a vapor pressure of 1 atm or more of 40 ° C. or more and 100 ° C. or less is a low boiling point compound used in the present invention. It is preferable.

本発明で用いる低沸点化合物は、中空微粒子に内包された液体に対し、不溶性であることが必要である。中空微粒子に内包された低沸点化合物が、中空微粒子に内包された液体に溶解してしまうと、昇温しても中空微粒子から液体を放出させるのに十分な蒸気圧を得ることができない。生理食塩水などの水性液体に対し不溶性の低沸点化合物として、例えばCFC-113 (CAS 76-13-1,沸点 47.6℃)、 HCFC-225cb (CAS 507-55-1,沸点 55.1℃) 、HFC-43-10mee (CAS 138495-42-8,沸点 55.6℃) 、HFC365mfc, CSF-14 (CAS 406-58-6,沸点 40.2℃)などのフルオロカーボンを用いることができる。また、n-へキサン(沸点 68.7℃)、n-ブタン(沸点 98.4℃)、i-へキサン(沸点 60.3℃)、2-2-ジメチルブタン(沸点 49.7℃)、2-3-ジメチルブタン(沸点 58.0℃)、3-メチルペンタン(沸点 63.3℃)などの脂肪族の飽和炭化水素を用いることもできる。   The low boiling point compound used in the present invention must be insoluble in the liquid encapsulated in the hollow fine particles. If the low boiling point compound encapsulated in the hollow microparticles is dissolved in the liquid encapsulated in the hollow microparticles, a vapor pressure sufficient to release the liquid from the hollow microparticles cannot be obtained even when the temperature is raised. Examples of low boiling point compounds insoluble in aqueous liquids such as physiological saline include CFC-113 (CAS 76-13-1, boiling point 47.6 ° C), HCFC-225cb (CAS 507-55-1, boiling point 55.1 ° C), HFC Fluorocarbons such as -43-10mee (CAS 138495-42-8, boiling point 55.6 ° C) and HFC365mfc, CSF-14 (CAS 406-58-6, boiling point 40.2 ° C) can be used. Also, n-hexane (boiling point 68.7 ° C), n-butane (boiling point 98.4 ° C), i-hexane (boiling point 60.3 ° C), 2-2-dimethylbutane (boiling point 49.7 ° C), 2-3 dimethylbutane ( Aliphatic saturated hydrocarbons such as boiling point 58.0 ° C. and 3-methylpentane (boiling point 63.3 ° C.) can also be used.

本発明における低沸点化合物の液体に対する不溶性は、25℃1気圧において液体に対する溶解度が0.5mM/l以下であることが好ましく、より好ましくは50μmM/l以下、さらに好ましくは5μmM/l以下である。   The insolubility of the low boiling point compound in the liquid of the present invention is preferably 0.5 mM / l or less, more preferably 50 μmM / l or less, more preferably 5 μmM / l or less at 25 ° C. and 1 atm. .

4.中空微粒子の表面修飾
本発明の低沸点化合物内包中空微粒子は、用途に応じ、その表面を修飾することができる。例えばこの微粒子の水溶液中での分散性を高めるために、表面に界面活性剤を吸着させることができる。また、例えばこの微粒子を生体中で使用し、生体の特定の部位に滞留する時間を長く保つためには、ステルス性を有する物質を表面に設けることができる。また、この微粒子をガン細胞に吸着させ、そこでガン細胞を攻撃する薬物を放出させるには、ガン細胞に対し、特異的に吸着する物質で表面を修飾することができる。同様にして、抗生物質の投与や抗リウマチ薬の投与などの場合にも、それぞれの目的に適した微粒子の表面修飾を行うことができる。
4). Surface Modification of Hollow Fine Particles The surface of the low boiling point compound-encapsulating hollow fine particles of the present invention can be modified according to the application. For example, in order to increase the dispersibility of the fine particles in an aqueous solution, a surfactant can be adsorbed on the surface. In addition, for example, in order to use the fine particles in a living body and keep the residence time in a specific part of the living body long, a substance having stealth property can be provided on the surface. In order to adsorb these fine particles to cancer cells and release a drug that attacks the cancer cells there, the surface can be modified with a substance that specifically adsorbs to the cancer cells. Similarly, in the case of administration of antibiotics or anti-rheumatic drugs, surface modification of fine particles suitable for each purpose can be performed.

5.局所温度センサとしての応用
本発明の低沸点化合物内包中空微粒子は、超音波画像装置と組合せることにより、通常の方法では温度測定の困難な局所の温度をチェックすることのできる温度センサとして用いることができる。低沸点化合物と液体とを内包した中空微粒子がある液中に存在し、液の温度が低沸点化合物の沸点を超えると、低沸点化合物の蒸気圧が急激に高まり、微粒子は内包している液体を放出する。その結果、微粒子内は気体で満たされる。超音波画像装置でこれを観察すると、微粒子を保有する液の温度が低沸点化合物の沸点より低い場合には、微粒子の像は弱いものに過ぎないが、微粒子を保有する液の温度が低沸点化合物の沸点を超えて気化すると、微粒子からの超音波の散乱が強くなり、微粒子の像は急激に鮮明になる。従って、チェックしようとする温度を沸点とする低沸点化合物を用いることにより、温度のチェックを行うことができる。
5). Application as a local temperature sensor The low-boiling compound-containing hollow fine particles of the present invention can be used as a temperature sensor that can check a local temperature, which is difficult to measure by ordinary methods, by combining with an ultrasonic imaging device. Can do. If there are hollow microparticles that contain a low-boiling compound and a liquid in the liquid, and the liquid temperature exceeds the boiling point of the low-boiling compound, the vapor pressure of the low-boiling compound increases rapidly, and the microparticles are contained in the liquid. Release. As a result, the inside of the fine particles is filled with gas. When this is observed with an ultrasonic imaging device, if the temperature of the liquid holding the fine particles is lower than the boiling point of the low boiling point compound, the image of the fine particles is only weak, but the temperature of the liquid holding the fine particles is low. When the vaporization exceeds the boiling point of the compound, the scattering of ultrasonic waves from the fine particles becomes strong, and the image of the fine particles becomes sharply sharp. Therefore, the temperature can be checked by using a low boiling point compound whose boiling point is the temperature to be checked.

ハイパーサーミアにおいは、生体内の温度管理が非常に重要であり、温度を正しく管理することが要求される。本発明の低沸点化合物内包中空微粒子は、このような用途に適したものである。   In hyperthermia, temperature management in a living body is very important, and it is required to manage temperature correctly. The low-boiling compound-containing hollow fine particles of the present invention are suitable for such applications.

(実施例1)デカフルオロペンタン内包シリカ中空微粒子
1.低沸点化合物の内包
まず、平均粒径が2μmで中空球の形状を有し単分散可能なシリカ中空微粒子の懸濁液を四つ口の300mlセパラブルフラスコに入れた。四つ口にのセパラブルカバーの口のうち一つをゴムキャップで、二つをコック付のガラス栓で、一つを圧力計をつけたゴム栓で閉じた。
Example 1 Hollow silica fine particles encapsulating decafluoropentane Encapsulation of low-boiling compounds First, a suspension of hollow silica fine particles having an average particle diameter of 2 μm and having a hollow sphere shape and monodispersed was placed in a four-necked 300 ml separable flask. One of the four mouths of the separable cover was closed with a rubber cap, two with a glass stopper with a cock, and one with a rubber stopper with a pressure gauge.

次にカバーを取りつけた。続いてポンプによりフラスコ内を真空にし、粒子を乾燥させ、中空微粒子内も真空状態にした後、コックを閉じてポンプを遮断した。この後、低沸点化合物として、沸点が53.6℃の2H,3H−デカフルオロペンタンを、シリンジを用いてゴムキャップの口から針を刺して加えた。   Next, the cover was attached. Subsequently, the inside of the flask was evacuated by a pump, the particles were dried, and the inside of the hollow fine particles was also evacuated, and then the cock was closed to shut off the pump. Thereafter, 2H, 3H-decafluoropentane having a boiling point of 53.6 ° C. was added as a low boiling point compound with a needle inserted through the mouth of the rubber cap using a syringe.

次にウオータバスによりセパラブルフラスコを55℃に加熱し、低沸点化合物を気化させて、シリカ中空微粒子内に気体状の低沸点化合物を内包した。この後、シリンジを用いてグルコース水溶液をセパラブルフラスコ内に加えた。続いてコックを開き、さらにセパラブルカバーを外して、気化した低沸点化合物と空気を入れ換えた。このとき、ウオーターバスで温度を55℃に保った。   Next, the separable flask was heated to 55 ° C. with a water bath to vaporize the low boiling point compound, and the gaseous low boiling point compound was encapsulated in the hollow silica fine particles. Thereafter, an aqueous glucose solution was added into the separable flask using a syringe. Subsequently, the cock was opened, the separable cover was removed, and the vaporized low boiling point compound and air were replaced. At this time, the temperature was maintained at 55 ° C. with a water bath.

2.グルコース水溶液の内包
この後、セパラブルフラスコを冷水で冷やし、粒子内の低沸点化合物を液化することにより、粒子内を陰圧にし、周囲のグルコース水溶液を引き込んで、低沸点化合物である2H,3H−デカフルオロペンタン液滴とグルコース水溶液を内包したシリカ中空微粒子を得た。
2. Encapsulation of glucose aqueous solution Thereafter, the separable flask is cooled with cold water to liquefy the low boiling point compound in the particles, thereby bringing the inside of the particles to a negative pressure and drawing the surrounding glucose aqueous solution into 2H and 3H which are low boiling point compounds. -Silica hollow fine particles enclosing a decafluoropentane droplet and an aqueous glucose solution were obtained.

3.内包グルコース水溶液の放出
こうして得た2H,3H−デカフルオロペンタン液滴とグルコース水溶液を内包させたシリカ中空微粒子を純水に懸濁した懸濁液を、ウオータバスで55℃に加熱することにより、2H,3H−デカフルオロペンタンを気化し、この気化に伴う2H,3H−デカフルオロペンタンの蒸気圧により、グルコース水溶液をフェライト中空微粒子内から中空微粒子外の懸濁液中に放出させた。
3. Release of Encapsulated Glucose Aqueous Solution A suspension of 2H, 3H-decafluoropentane droplets obtained in this manner and silica hollow microparticles encapsulating a glucose aqueous solution suspended in pure water is heated to 55 ° C. in a water bath to produce 2H , 3H-decafluoropentane was vaporized, and the aqueous glucose solution was released from the ferrite hollow fine particles into the suspension outside the hollow fine particles by the vapor pressure of 2H, 3H-decafluoropentane accompanying the vaporization.

中空微粒子外の懸濁液中にグルコース水溶液がこうして放出されたことをべネジクト溶液の色の変化によって確認した。   It was confirmed by the change in the color of the liquid solution that the aqueous glucose solution was thus released into the suspension outside the hollow microparticles.

(実施例2)デカフルオロペンタン内包フェライト中空微粒子
次に実施例1で用いたシリカ中空微粒子をフェライト中空微粒子に代えて同様の内包と放出を行った。すなわち、フェライト中空微粒子の懸濁液を、四つ口の300mlセパラブルフラスコに入れた。四つ口にのセパラブルカバーの口のうち一つをゴムキャップで、二つをコック付のガラス栓で、一つを圧力計をつけたゴム栓で閉じ、カバーを取りつけた。続いてポンプによりフラスコ内を真空にし、粒子を乾燥させ、中空微粒子内も真空状態にした後、コックを閉じてポンプを遮断した。この後、低沸点化合物として、沸点が53.6℃の2H,3H−デカフルオロペンタンを、シリンジを用いてゴムキャップの口から針を刺して加えるた。次にウオータバスによりセパラブルフラスコを55℃に加熱し、低沸点化合物を気化させて、フェライト中空微粒子内に気体状の低沸点化合物を内包した。この後、シリンジを用いてグルコース水溶液をセパラブルフラスコ内に加えた。続いてコックを開き、さらにセパラブルカバーを外して、気化した低沸点化合物と空気を入れ換えた。このとき、ウオーターバスで温度を55℃に保った。この後、セパラブルフラスコを冷水で冷やし、粒子内の低沸点化合物を液化することにより、粒子内を陰圧にし、周囲のグルコース水溶液を引き込んで、フェライト中空微粒子に低沸点化合物である2H,3H−デカフルオロペンタンとグルコース水溶液を内包させた。
(Example 2) Decafluoropentane-encapsulated ferrite hollow fine particles Next, silica encapsulated fine particles used in Example 1 were replaced with ferrite hollow fine particles, and the same inclusion and release were performed. That is, the suspension of ferrite hollow fine particles was placed in a four-necked 300 ml separable flask. One of the four mouths of the separable cover was closed with a rubber cap, two with a glass stopper with a cock, and one with a rubber stopper with a pressure gauge, and the cover was attached. Subsequently, the inside of the flask was evacuated with a pump, the particles were dried, and the inside of the hollow fine particles was also evacuated, and then the cock was closed to shut off the pump. Thereafter, 2H, 3H-decafluoropentane having a boiling point of 53.6 ° C. was added as a low boiling point compound with a needle inserted from the mouth of the rubber cap using a syringe. Next, the separable flask was heated to 55 ° C. with a water bath to vaporize the low boiling point compound, and the gaseous low boiling point compound was encapsulated in the ferrite hollow fine particles. Thereafter, an aqueous glucose solution was added into the separable flask using a syringe. Subsequently, the cock was opened, the separable cover was removed, and the vaporized low boiling point compound and air were replaced. At this time, the temperature was maintained at 55 ° C. with a water bath. Thereafter, the separable flask is cooled with cold water to liquefy the low boiling point compound in the particles, thereby bringing the inside of the particles to a negative pressure and drawing the surrounding aqueous glucose solution into the ferrite hollow fine particles. -Decafluoropentane and an aqueous glucose solution were included.

こうして得た2H,3H−デカフルオロペンタン液滴とグルコース水溶液を内包したフェライト中空微粒子を純水に懸濁した懸濁液を、ウオータバスで55℃に加熱することにより、2H,3H−デカフルオロペンタンを気化し、この気化に伴う2H,3H−デカフルオロペンタンの蒸気圧により、グルコース水溶液をフェライト中空微粒子内から中空微粒子外の懸濁液中に放出させた。グルコース水溶液がこうして中空微粒子外の懸濁液中に放出とされたことをべネジクト溶液の色の変化によって確認した。   The suspension of ferrite fine particles containing 2H, 3H-decafluoropentane droplets and an aqueous glucose solution thus obtained suspended in pure water was heated to 55 ° C. in a water bath to obtain 2H, 3H-decafluoropentane. And the aqueous glucose solution was released from the ferrite hollow fine particles into the suspension outside the hollow fine particles by the vapor pressure of 2H, 3H-decafluoropentane accompanying the vaporization. It was confirmed by the change in the color of the liquid solution that the aqueous glucose solution was thus released into the suspension outside the hollow microparticles.

(実施例3)交流磁界印加による内包グルコース水溶液放出
図3は交流磁界を用い、フェライト中空微粒子を誘導加熱する状況を示した図である。この図において、フェライト中空微粒子の懸濁液302として、その濃度を25mg/mlに調整したものを、断熱材として用いた発泡スチロール304で覆い、磁界発生用コイル306の中心部においた。この配置にて交流磁界を発生させ、誘導加熱により、フェライト中空微粒子を加熱した。懸濁液の温度は光ファイバ温度計308を用いてモニターした。
Example 3 Release of Encapsulated Glucose Aqueous Solution by Application of AC Magnetic Field FIG. 3 is a diagram showing a state in which ferrite hollow microparticles are induction heated using an AC magnetic field. In this figure, a suspension 302 of ferrite hollow fine particles whose concentration was adjusted to 25 mg / ml was covered with expanded polystyrene 304 used as a heat insulating material and placed in the center of a magnetic field generating coil 306. An alternating magnetic field was generated in this arrangement, and ferrite hollow fine particles were heated by induction heating. The temperature of the suspension was monitored using an optical fiber thermometer 308.

図4はその結果を示した図である。その条件は、フェライト中空微粒子の表面修飾をせず、その懸濁液302は、その濃度を上記の25mg/mlに調整したほか、交流磁界の磁界強度を4.2kA/mとした。   FIG. 4 is a diagram showing the results. The condition was that the ferrite hollow fine particles were not surface-modified, and the suspension 302 was adjusted to have the concentration of 25 mg / ml and the magnetic field strength of the alternating magnetic field was 4.2 kA / m.

図4から、100kHzから900kHzの周波数範囲では、交流磁界の周波数が高いほど、よく加熱されることが示された。また図3に示した構成の場合には、交流磁界の印加時間が20分を超えたあたりから飽和の傾向がみられ、発熱と放熱とが平衡に向かうことがわかった。   FIG. 4 shows that in the frequency range from 100 kHz to 900 kHz, the higher the frequency of the alternating magnetic field, the better the heating. In the case of the configuration shown in FIG. 3, it was found that a saturation tendency was observed when the application time of the AC magnetic field exceeded 20 minutes, and that the heat generation and heat dissipation were balanced.

実施例2で得た2H,3H−デカフルオロペンタン液滴とグルコース水溶液を内包したフェライト中空微粒子を純水に懸濁した懸濁液を25mg/mlに調整し、この懸濁液を図3に示したように発泡スチロールで覆って磁界発生用コイルの中心部に置き、周波数が800kHzで磁界強度が4.2kA/mの交流磁界を20分間印加して加熱し、フェライト中空微粒子が内包したグルコース水溶液を中空微粒子外の懸濁液中に放出させた。こうしてグルコース水溶液が中空微粒子外の懸濁液中に放出されたことをべネジクト溶液の色の変化によって確認した。   A suspension obtained by suspending ferrite hollow fine particles enclosing 2H, 3H-decafluoropentane droplets and an aqueous glucose solution obtained in Example 2 in pure water was adjusted to 25 mg / ml, and this suspension is shown in FIG. As shown in the figure, it is covered with polystyrene foam and placed in the center of the magnetic field generating coil. An alternating magnetic field having a frequency of 800 kHz and a magnetic field strength of 4.2 kA / m is applied for 20 minutes to heat, and an aqueous glucose solution encapsulating hollow ferrite fine particles Was released into the suspension outside the hollow microparticles. Thus, it was confirmed by the change in the color of the liquid solution that the aqueous glucose solution was released into the suspension outside the hollow microparticles.

(実施例4)温度センサ
実施例1で行なったのと同じ方法で、平均粒径2μmのシリカ中空微粒子に低沸点化合物として2H,3H−デカフルオロペンタンの気体を55℃にて内包させ、これを純水に浸漬し、室温に冷却して2H,3H−デカフルオロペンタンを液化させるとともに純水をシリカ中空微粒子の中空部に取りこみ充満させた。次に寸法が13cm×11cm×8cmの直方体形状の寒天ブロックの13cm×11cmの面に穴を設け、この穴にシリカ中空微粒子を純水に分散させた液をこの穴に注いで穴を満たした。
(Example 4) Temperature sensor In the same manner as in Example 1, silica hollow fine particles having an average particle diameter of 2 µm were encapsulated with a gas of 2H, 3H-decafluoropentane as a low boiling point compound at 55 ° C. Was immersed in pure water, cooled to room temperature to liquefy 2H, 3H-decafluoropentane, and pure water was taken up into the hollow portions of the silica hollow fine particles to be filled. Next, a hole was provided in a 13 cm × 11 cm surface of a rectangular parallelepiped agar block having dimensions of 13 cm × 11 cm × 8 cm, and a liquid in which silica hollow fine particles were dispersed in pure water was poured into the hole to fill the hole. .

寒天の11cm×8cmの側面に超音波プローブを接触させ、この寒天を加熱して
温度上昇に伴う寒天ブロックの穴の部分における超音波散乱の変化を調べた。その結果、温度が2H,3H−デカフルオロペンタンの沸点である53.6℃を超えると急激に超音波散乱が大きくなることがわかった。また温度を53.6℃より低い温度まで冷却すると再び超音波散乱は小さくなり、温度変化による超音波散乱の変化は可逆的であることがわかった。
An ultrasonic probe was brought into contact with the 11 cm × 8 cm side surface of the agar, and the agar was heated to examine the change in the ultrasonic scattering in the hole portion of the agar block as the temperature rose. As a result, it was found that when the temperature exceeds 53.6 ° C., which is the boiling point of 2H, 3H-decafluoropentane, ultrasonic scattering rapidly increases. It was also found that when the temperature was cooled to a temperature lower than 53.6 ° C., the ultrasonic scattering again became smaller, and the change in ultrasonic scattering due to the temperature change was reversible.

本発明により、液体物質と低沸点酸化物とを内包させた中空微粒子を昇温することによって、中空微粒子内に内包させた低沸点化合物を気化させ内包の液体物質を放出させることや、粒子の超音波散乱強度を変化させることが可能になった。この性質を利用し、液体物質を所要の部位へ供給することや、通常の温度センサの配置が困難な個所の温度をセンシングする温度センサとして用いることができるようになった。従って本発明の産業上の利用可能性は大きいと考えられる。   According to the present invention, by raising the temperature of the hollow fine particles encapsulating the liquid substance and the low boiling point oxide, the low boiling point compound encapsulated in the hollow fine particles is vaporized to release the encapsulated liquid substance, It became possible to change the ultrasonic scattering intensity. Utilizing this property, it can be used as a temperature sensor for supplying a liquid substance to a required site or sensing a temperature at a place where a normal temperature sensor is difficult to arrange. Therefore, it is considered that the industrial applicability of the present invention is great.

本発明における中空微粒子への液体物質の取り込みと中空微粒子からの液体物質放出とを模式的に示した図である。It is the figure which showed typically the uptake | capture of the liquid substance to the hollow microparticles in this invention, and the liquid substance discharge | release from a hollow microparticle. 本発明の一実施形態の中空微粒子に低沸点化合物を内包させるための装置の構成を示した図である。It is the figure which showed the structure of the apparatus for enclosing a low boiling-point compound in the hollow microparticles of one Embodiment of this invention. 本発明の一実施形態における交流磁界を用いてフェライト中空微粒子を誘導加熱する状況を示した図である。It is the figure which showed the condition which carries out the induction heating of the ferrite hollow microparticles using the alternating current magnetic field in one Embodiment of this invention. 図3に示した配置の本発明の一実施形態において交流磁界を印加して誘導加熱することによってフェライト中空微粒子を加熱した場合の交流磁界印加時間と温度上昇との関係を示した図である。FIG. 4 is a diagram showing the relationship between the AC magnetic field application time and the temperature rise when the ferrite hollow fine particles are heated by applying an AC magnetic field and induction heating in the embodiment of the present invention having the arrangement shown in FIG. 3.

符号の説明Explanation of symbols

100‥‥中空微粒子、102‥‥殻、104‥‥中空部、106‥‥気体状態の低沸点化合物、107‥‥液体状態の低沸点化合物、108‥‥液体物質、202‥‥中空微粒子、204‥‥密閉容器、206‥‥真空ポンプ、208‥‥コック、210‥‥注入器、212‥‥温度制御装置、214‥‥圧力計、302‥‥フェライト中空微粒子の懸濁液、304‥‥発泡スチロール、306‥‥磁界発生用コイル、308‥‥光ファイバ温度計。   DESCRIPTION OF SYMBOLS 100 ... Hollow fine particle, 102 ... Shell, 104 ... Hollow part, 106 ... Low boiling point compound in a gaseous state, 107 ... Low boiling point compound in a liquid state, 108 ... Liquid substance, 202 ... Hollow fine particle, 204 ························································································································································· 208 ················································· , 306 ... Magnetic field generating coil, 308 ... Optical fiber thermometer.

Claims (5)

微小な貫通孔を有する殻にて中空部を持つ中空微粒子を形成し、低沸点化合物とこの低沸点化合物よりも高い沸点を有する液体物質とを前記中空部に内包しており、
前記低沸点化合物は前記液体物質に対し不溶性であることを特徴とする低沸点化合物内包中空微粒子。
A hollow fine particle having a hollow portion is formed in a shell having a minute through hole, and a low boiling point compound and a liquid substance having a higher boiling point than the low boiling point compound are included in the hollow portion,
Low-boiling compound-containing hollow fine particles, wherein the low-boiling compound is insoluble in the liquid substance.
前記低沸点化合物は、蒸気圧が1気圧になる温度が40℃以上100℃以下であることを特徴とする請求項1記載の低沸点化合物内包中空微粒子。   The low-boiling compound-containing hollow fine particles according to claim 1, wherein the low-boiling compound has a vapor pressure of 1 atm. 前記殻がシリカで構成されていることを特徴とする請求項1または2記載の低沸点化合物内包中空微粒子。   3. The low-boiling compound-containing hollow fine particles according to claim 1, wherein the shell is made of silica. 前記殻がフェライトで構成されていることを特徴とする請求項1または2記載の低沸点化合物内包中空微粒子。   The low-boiling compound-containing hollow fine particles according to claim 1 or 2, wherein the shell is made of ferrite. 低沸点化合物と液体とを内包させた中空微粒子をプローブ粒子とし、温度上昇による前記プローブ粒子の超音波散乱強度の変化を検出することにより、温度上昇をチェックすることを特徴とする温度センサ。   A temperature sensor characterized in that a hollow fine particle containing a low-boiling-point compound and a liquid is used as a probe particle, and a change in ultrasonic scattering intensity of the probe particle due to a temperature rise is detected to check a temperature rise.
JP2007234572A 2007-09-10 2007-09-10 Low-boiling compound-including hollow fine particles Withdrawn JP2009067684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007234572A JP2009067684A (en) 2007-09-10 2007-09-10 Low-boiling compound-including hollow fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007234572A JP2009067684A (en) 2007-09-10 2007-09-10 Low-boiling compound-including hollow fine particles

Publications (1)

Publication Number Publication Date
JP2009067684A true JP2009067684A (en) 2009-04-02

Family

ID=40604336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007234572A Withdrawn JP2009067684A (en) 2007-09-10 2007-09-10 Low-boiling compound-including hollow fine particles

Country Status (1)

Country Link
JP (1) JP2009067684A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2474425A (en) * 2009-10-13 2011-04-20 Univ Montfort Method and apparatus for measuring temperature

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2474425A (en) * 2009-10-13 2011-04-20 Univ Montfort Method and apparatus for measuring temperature
GB2474425B (en) * 2009-10-13 2012-02-29 Univ Montfort Method and apparatus for measuring temperature

Similar Documents

Publication Publication Date Title
Fang et al. Yolk‐like micro/nanoparticles with superparamagnetic iron oxide cores and hierarchical nickel silicate shells
Lu et al. Iron oxide-loaded hollow mesoporous silica nanocapsules for controlled drug release and hyperthermia
Barrera et al. Magnetic properties of nanocomposites
Rivas et al. Magnetic nanoparticles for application in cancer therapy
Moran et al. Size-dependent joule heating of gold nanoparticles using capacitively coupled radiofrequency fields
Deng et al. Magnetically responsive ordered mesoporous materials: A burgeoning family of functional composite nanomaterials
Svetlichnyi et al. Characterization and magnetic properties study for magnetite nanoparticles obtained by pulsed laser ablation in water
Hsu et al. Iron-oxide embedded solid lipid nanoparticles for magnetically controlled heating and drug delivery
Rizvi et al. Magnetic alignment for plasmonic control of gold nanorods coated with iron oxide nanoparticles
Babić-Stojić et al. Magnetic and structural studies of CoFe2O4 nanoparticles suspended in an organic liquid
Bolden et al. Synthesis and evaluation of magnetic nanoparticles for biomedical applications
Muñoz-Menendez et al. Disentangling local heat contributions in interacting magnetic nanoparticles
Bielas et al. The potential of magnetic heating for fabricating Pickering-emulsion-based capsules
Kim Controlled magnetic properties of iron oxide-based nanoparticles for smart therapy
Lu et al. Multifunctional triple-porous Fe 3 O 4@ SiO 2 superparamagnetic microspheres for potential hyperthermia and controlled drug release
Zhu et al. Synthesis and propulsion of magnetic dimers under orthogonally applied electric and magnetic fields
JP2009067684A (en) Low-boiling compound-including hollow fine particles
JP2022141735A (en) Triggering payload release from miniaturized devices
Hu et al. Preparation of magnetic poly (lactic‐co‐glycolic acid) microspheres with a controllable particle size based on a composite emulsion and their release properties for curcumin loading
Hu et al. Microwave‐assisted synthesis of a superparamagnetic surface‐functionalized porous Fe3O4/C nanocomposite
Okada et al. Magnetic Rattle-Type Core–Shell Particles Containing Iron Compounds with Acid Tolerance by Dense Silica
Šoltys et al. Radiofrequency controlled release from mesoporous silica nano-carriers
Allia et al. Anisotropic magnetic polymer nanocomposite with self-assembled chains of titania-coated magnetite nanoparticles
Ge et al. Metal–Organic Framework as a New Type of Magnetothermally‐Triggered On‐Demand Release Carrier
Bielas et al. Tunable particle shells of thermo-responsive liquid marbles under alternating magnetic field

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101207