JP2009065059A - Solid electrolytic capacitor and connection structure for solid electrolytic capacitor to mounting substrate - Google Patents

Solid electrolytic capacitor and connection structure for solid electrolytic capacitor to mounting substrate Download PDF

Info

Publication number
JP2009065059A
JP2009065059A JP2007233356A JP2007233356A JP2009065059A JP 2009065059 A JP2009065059 A JP 2009065059A JP 2007233356 A JP2007233356 A JP 2007233356A JP 2007233356 A JP2007233356 A JP 2007233356A JP 2009065059 A JP2009065059 A JP 2009065059A
Authority
JP
Japan
Prior art keywords
anode terminal
capacitor element
cathode
capacitor
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007233356A
Other languages
Japanese (ja)
Inventor
Hironari Tamai
裕也 玉井
Toshiyuki Murakami
敏行 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2007233356A priority Critical patent/JP2009065059A/en
Publication of JP2009065059A publication Critical patent/JP2009065059A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor which has a low ESR and a low ESL and is superior in transient responsiveness. <P>SOLUTION: A first element A having a plurality of anode terminal parts and a second element B forming a transmission line are laminated to form a solid electrolytic capacitor. In the first element A, a cathode electrode layer comprising a dielectric oxide coating film 4, a solid electrolyte 5, and a conductive member 6 is provided on a connection surface of a valve action metal substrate 1 to a mounting substrate, and cathode parts b1 to bn are formed. A plurality of anode terminal parts a1 to an which are formed integrally with the valve action metal substrate 1 and have surfaces exposed to positions level with the cathode electrode layer are formed in part of a region forming cathode pats c1 and c2 in the valve action metal substrate 1. In the second element, a cathode electrode layer comprising a dielectric oxide coating film 14, a solid electrolyte 15, and a conductive member 16 is provided on both surfaces of a valve action metal substrate 1 to form a cathode part 20 for transmission line formation. The solid electrolytic capacitor is connected to the mounting substrate so that the second element is on the power source side and the first element is on the load side. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、過渡応答性に優れ、高周波領域までインピーダンスが低い固体電解コンデンサおよび固体電解コンデンサの実装基板への接続構造に関する。   The present invention relates to a solid electrolytic capacitor having excellent transient response and low impedance up to a high frequency region, and a connection structure of a solid electrolytic capacitor to a mounting substrate.

電子回路のデジタル化が進み、大電流・低電圧で動作するLSIなどの電源電圧安定化に対応するため、電荷供給が充分な速さでできる、過渡応答性の良いコンデンサが望まれている。   In order to cope with the stabilization of power supply voltage of LSIs and the like that operate with a large current and low voltage as electronic circuits become more digitized, a capacitor with a high transient response capable of supplying charges at a sufficiently high speed is desired.

一方で高周波化が進んだLSIからの高周波電流を電源系から遮断するための、高周波低インピーダンス素子が望まれているが、従来の2端子コンデンサでは、回路への接続に金属リード端子等を介在するために配線回路長が長くなるため、ESR・ESLが大きく、過渡応答性が悪く、また、2端子コンデンサを組み合わせてノイズフィルタ回路を構成しても高周波領域までの充分な低インピーダンス化が図れない。   On the other hand, a high-frequency low-impedance element is desired to cut off high-frequency current from LSIs with higher frequencies from the power supply system, but conventional 2-terminal capacitors interpose metal lead terminals and the like for connection to the circuit. For this reason, the wiring circuit length becomes longer, the ESR / ESL is large, the transient response is poor, and even if a noise filter circuit is configured by combining two-terminal capacitors, the impedance can be sufficiently lowered to the high frequency range. Absent.

このような問題点を解決するために、特許文献1または特許文献2に示すように、陰極端子部と陽極端子部を、同一面上に陰極と陽極を交互に配置することで、ESRが低くなると共に、ESLが打ち消しあって低減されることで、過渡応答性を低減した固体電解コンデンサが開示されている。しかし、この特許文献1または特許文献2の技術では、従来に比べて高周波領域までの低インピーダンス化が図られるが、一定周波数以上の高周波領域ではインピーダンスが上昇する問題があった。   In order to solve such a problem, as shown in Patent Document 1 or Patent Document 2, by disposing the cathode terminal portion and the anode terminal portion alternately on the same surface, the cathode and the anode are alternately arranged to reduce the ESR. In addition, there is disclosed a solid electrolytic capacitor in which transient response is reduced by canceling and reducing ESL. However, although the technique of Patent Document 1 or Patent Document 2 can lower the impedance up to the high frequency region as compared with the conventional technology, there is a problem that the impedance increases in the high frequency region above a certain frequency.

また、特許文献3に開示されている、分布定数型のノイズフィルタでは、伝送線路構造を用いることで、広帯域で高周波領域までの高周波電流の遮断を可能とすると共に、電極端子を実装面となる下面に配置し、陽陰極端子間を近づけることで、低ESR、低ESLを図って過渡応答性を向上している。   Further, in the distributed constant type noise filter disclosed in Patent Document 3, by using a transmission line structure, it is possible to block a high-frequency current in a wide band up to a high-frequency region, and an electrode terminal serves as a mounting surface. By arranging them on the lower surface and bringing the cathode and cathode terminals closer together, transient response is improved by achieving low ESR and low ESL.

この過渡応答性の向上に関しては、電子回路のさらなる大電流・低電圧化が年々進むことから、特許文献3のノイズフィルタに限らず、コンデンサに対しても更なる過渡応答性の改善が求められているが、従来では、このような要求を満足するコンデンサは提案されていなかった。   Regarding the improvement of the transient response, since further increase in current and voltage of electronic circuits is progressing year by year, further improvement of transient response is required not only for the noise filter of Patent Document 3, but also for capacitors. However, no capacitor has been proposed so far that satisfies such requirements.

特開2002-237431号公報Japanese Patent Laid-Open No. 2002-237431 特開2005-142437号公報JP 2005-142437 A 特開2002-164760号公報JP 2002-164760 A

本発明は、以上のような従来の技術的課題を背景になされたものであり、その目的は、低ESR、低ESL化による過渡応答性の改善と、高周波領域までの低インピーダンス化による高周波電流の遮断を可能とした固体電解コンデンサおよび固体電解コンデンサの実装基板への接続構造を提供することにある。   The present invention has been made against the background of the conventional technical problems as described above. The purpose of the present invention is to improve the transient response by lowering the ESR and ESL, and to increase the high-frequency current by lowering the impedance up to the high-frequency region. It is an object of the present invention to provide a solid electrolytic capacitor and a connection structure of a solid electrolytic capacitor to a mounting substrate that can block the above.

前記の目的を達成するために、請求項1の発明は、平板状の弁作用金属基体における実装基板との接続面に、誘電体酸化被膜とこの誘電体酸化被膜上に固体電解質と導電性部材からなる陰極電極層を順次設けた陰極部が形成され、この陰極部の領域内には前記弁作用金属基体の接続された複数の陽極端子部が形成された第1のコンデンサ素子と、平板状の弁作用金属基体に一対の陽極端子部が形成され、前記弁作用金属基体の両面にそれぞれ誘電体酸化被膜と、この誘電体酸化被膜上に固体電解質と導電性部材からなる陰極電極層を順次設けた陰極部を形成してなる第2のコンデンサ素子とを備え、これら第1と第2のコンデンサ素子が、第1と第2のコンデンサの陽極端子部同士が互いに独立した状態で、平板状の弁作用金属基体の厚さ方向に積層されていることを特徴とする。   In order to achieve the above object, the invention of claim 1 is directed to a dielectric oxide film on a connecting surface of a flat valve-acting metal base with a mounting substrate, and a solid electrolyte and a conductive member on the dielectric oxide film. A first capacitor element in which a plurality of anode terminal portions connected to the valve action metal substrate are formed in a region of the cathode portion; and a flat plate shape. A pair of anode terminal portions is formed on the valve action metal substrate, and a dielectric oxide film is formed on both surfaces of the valve action metal substrate, and a cathode electrode layer made of a solid electrolyte and a conductive member is sequentially formed on the dielectric oxide film. A second capacitor element formed with a provided cathode portion, and the first and second capacitor elements are in the form of a plate with the anode terminal portions of the first and second capacitors being independent from each other. Valve action metal substrate thickness Characterized in that it is laminated to.

請求項2の発明は、前記請求項1の発明において、前記第2のコンデンサ素子は、該弁作用金属基体の表裏両面に形成された該陰極電極層が対向配置された部分を有し、この対向配置された陰極電極層と弁作用金属基体で挟まれた誘電体酸化被膜を含む領域において、伝送線路構造が形成されていることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the second capacitor element has a portion in which the cathode electrode layers formed on both the front and back surfaces of the valve action metal substrate are opposed to each other. A transmission line structure is formed in a region including a dielectric oxide film sandwiched between a cathode electrode layer and a valve metal substrate that are arranged to face each other.

請求項3の発明は、前記請求項1または請求項2に記載の固体電解コンデンサの実装基板に対する接続構造において、前記第2のコンデンサ素子の一方の陽極端子部が、電源に接続可能な実装基板の電源ライン導体層に電気的に接続され、前記第2のコンデンサ素子の他方の陽極端子部が、負荷回路に接続可能な実装基板の出力電源導体層に電気的に接続され、前記第2のコンデンサ素子の陰極電極層が、実装基板のグランド導体層に電気的に接続されるとともに、前記第1のコンデンサコンデンサ素子の陽極端子部が、負荷回路部品に接続可能な実装基板の出力電源導体層に電気的に接続され、前記第1のコンデンサ素子の陰極電極層が、実装基板のグランド導体層に電気的に接続されていることを特徴とする。   According to a third aspect of the present invention, there is provided a connection structure for mounting a solid electrolytic capacitor according to the first or second aspect, wherein one anode terminal portion of the second capacitor element is connectable to a power source. And the other anode terminal portion of the second capacitor element is electrically connected to the output power conductor layer of the mounting substrate connectable to a load circuit, and the second capacitor element An output power supply conductor layer of the mounting substrate in which the cathode electrode layer of the capacitor element is electrically connected to the ground conductor layer of the mounting substrate, and the anode terminal portion of the first capacitor capacitor element is connectable to a load circuit component The cathode electrode layer of the first capacitor element is electrically connected to the ground conductor layer of the mounting substrate.

本発明によれば、第1のコンデンサ素子の陰極部領域に陽極端子部を設けることで、配置回路長を短くすることが可能となりESRが低減すると共に、ESLが互いに打ち消しあって低減される。また、複数の陽極端子部を設けることで電荷供給経路が増えることから、過渡応答性が改善され、一方では、伝送線路構造の第2のコンデンサ素子が電源導体層パターンの一部となることで、広帯域で高周波領域までの高周波電流の遮断を可能としている。   According to the present invention, by providing the anode terminal portion in the cathode portion region of the first capacitor element, it is possible to shorten the arrangement circuit length, and the ESR is reduced and the ESL cancels each other and is reduced. In addition, the provision of a plurality of anode terminal portions increases the charge supply path, so that transient response is improved. On the other hand, the second capacitor element of the transmission line structure becomes a part of the power supply conductor layer pattern. It is possible to cut off the high frequency current up to the high frequency region in a wide band.

更に、本発明の固体電解コンデンサの実装基板への接続構造においては、電源ライン導体層と出力電源導体層は、前記固体電解コンデンサの伝送線路構造領域を通して接続されており、高周波ノイズ電流は電源系から遮断される。また、電荷供給経路数を多くした接続構造となるため、過渡応答性が良好である。   Further, in the connection structure of the solid electrolytic capacitor to the mounting substrate of the present invention, the power line conductor layer and the output power conductor layer are connected through the transmission line structure region of the solid electrolytic capacitor, and the high frequency noise current is generated in the power supply system. Is cut off from. In addition, since the connection structure has a larger number of charge supply paths, the transient response is good.

(1)第1実施形態
以下、本発明の第1実施形態を図面を参照して具体的に説明する。
本発明の固体電解コンデンサは、多数の陽極端子部を備えた第1のコンデンサ素子Aと、伝送線路を形成する第2のコンデンサ素子Bとを積層して成るものであって、図1は、本発明の固体電解コンデンサを構成する第1のコンデンサ素子Aの第1実施形態を示す断面図、図2はその実装基板への接続面側から見た平面図である。
(1) First Embodiment Hereinafter, a first embodiment of the present invention will be specifically described with reference to the drawings.
The solid electrolytic capacitor of the present invention is formed by laminating a first capacitor element A having a large number of anode terminal portions and a second capacitor element B forming a transmission line, and FIG. FIG. 2 is a cross-sectional view showing a first embodiment of the first capacitor element A constituting the solid electrolytic capacitor of the present invention, and FIG. 2 is a plan view seen from the connection surface side to the mounting substrate.

図中、符号1は、平板状の弁作用金属基体であって、この弁作用金属基体1の下面(実装基板への接続面)には、誘電体酸化被膜4を形成すると共に、この誘電体酸化被膜4の表面に固体電解質5および導電性部材6からなる陰極電極層を順次設けて、陰極部b1〜bn(図ではn=5)が形成されている。   In the figure, reference numeral 1 denotes a flat valve metal substrate, and a dielectric oxide film 4 is formed on the lower surface of the valve metal substrate 1 (connection surface to the mounting substrate). A cathode electrode layer composed of the solid electrolyte 5 and the conductive member 6 is sequentially provided on the surface of the oxide film 4 to form cathode portions b1 to bn (n = 5 in the figure).

前記弁作用金属基体1における陰極部b1〜bnをなす領域の一部には、弁作用金属基体1と一体に形成され、その表面が陰極電極層と面位置に露出した複数の陽極端子部a1〜an(図の例ではn=4)が形成されている。この場合、陽極端子部は、弁作用金属基体1本体と電気的に接続されていれば、弁作用金属基体1の一部を突出させて形成しても、別部材を接合して形成しても良い。また、陰極部b1〜bnの外周部(陽極端子部a1〜anとの境界面)には、絶縁部材8が設けられている。   A plurality of anode terminal portions a1 which are formed integrally with the valve action metal substrate 1 in a part of the region forming the cathode portions b1 to bn in the valve action metal substrate 1 and whose surfaces are exposed to the surface positions of the cathode electrode layer. ~ An (n = 4 in the example in the figure) are formed. In this case, if the anode terminal portion is electrically connected to the main body of the valve action metal substrate 1, the anode terminal portion may be formed by joining another member even if it is formed by protruding a part of the valve action metal substrate 1. Also good. Moreover, the insulating member 8 is provided in the outer peripheral part (boundary surface with anode terminal part a1-an) of cathode part b1-bn.

一方、前記弁作用金属基体1の上面(実装基板への接続面と反対側の面)には、誘電体酸化被膜14を形成すると共に、この誘電体酸化被膜14の表面に固体電解質15および導電性部材16からなる陰極電極層が設けられている。なお、図1においては、弁作用金属基体1の端部は、誘電体酸化被膜4,14によって被覆されているが、絶縁部材で被覆することもできる。   On the other hand, a dielectric oxide film 14 is formed on the upper surface (the surface opposite to the connection surface to the mounting substrate) of the valve action metal base 1, and the solid electrolyte 15 and the conductive material are formed on the surface of the dielectric oxide film 14. A cathode electrode layer made of the conductive member 16 is provided. In FIG. 1, the end portion of the valve metal base 1 is covered with the dielectric oxide films 4 and 14, but may be covered with an insulating member.

この図1および図2の実施形態は、陰極部b1〜bnおよび陽極端子部a1〜anを、矩形状をした弁作用金属基体1の長手方向に沿って交互に形成したが、これらの形状や数、配置箇所は、図1および図2に記載のものに限定されるものではない   In the embodiment of FIGS. 1 and 2, the cathode portions b1 to bn and the anode terminal portions a1 to an are alternately formed along the longitudinal direction of the rectangular valve action metal substrate 1, but these shapes and The number and arrangement location are not limited to those shown in FIGS.

例えば、図3に示すように、複数個の円形をした陽極端子部a1〜an(図4の例ではn=4)と、これに対応して近接配置された複数の陰極部b1〜bn(図4の例ではn=4)を形成することもできる。また、図4に示すように、陽極端子部a1〜an(図の例ではn=4)の形状を四角形として、誘電体酸化被膜4と陰極電極層部分の一方の縁に、一定の間隔で複数個配置することもできる。   For example, as shown in FIG. 3, a plurality of circular anode terminal portions a1 to an (n = 4 in the example of FIG. 4) and a plurality of cathode portions b1 to bn (n = 4) disposed adjacent to the anode terminal portions a1 to an In the example of FIG. 4, n = 4) can be formed. Also, as shown in FIG. 4, the anode terminal portions a1 to an (n = 4 in the example in the figure) have a quadrangular shape, and at a certain interval on one edge of the dielectric oxide film 4 and the cathode electrode layer portion. A plurality can be arranged.

次に、前記のような構成を有する第1のコンデンサ素子Aに積層する第2のコンデンサ素子B(伝送線路形成用のコンデンサ素子B)を、図5を参照して説明する。   Next, a second capacitor element B (capacitor element B for forming a transmission line) stacked on the first capacitor element A having the above-described configuration will be described with reference to FIG.

この第2のコンデンサ素子Bは、中心部の弁作用金属基体21の両端部に外部に露出した陽極端子部c1,c2が設けられていると共に、この弁作用金属基体21の両面にそれぞれ誘電体酸化被膜24が形成され、この誘電体酸化被膜24の表面に固体電解質25および導電性部材26からなる陰極電極層が順次設けられている。また、この誘電体酸化被膜24や陰極電極層の周囲は、絶縁部材28によって絶縁されている。   The second capacitor element B is provided with anode terminal portions c1 and c2 exposed to the outside at both ends of the valve-acting metal base 21 at the center, and dielectrics on both surfaces of the valve-acting metal base 21, respectively. An oxide film 24 is formed, and a cathode electrode layer comprising a solid electrolyte 25 and a conductive member 26 is sequentially provided on the surface of the dielectric oxide film 24. The dielectric oxide film 24 and the periphery of the cathode electrode layer are insulated by an insulating member 28.

本実施形態の固体電解コンデンサは、図6に示すように、前記のような構成を有する第1のコンデンサ素子Aにおける実装基板への接続面と反対側の面の上に、第2のコンデンサ素子をBを積層したものである。この場合、第1と第2のコンデンサ素子A,Bの陰極部は、本実施形態では2つの素子の導電性部材16,26間が導電性の接着剤27などで接続されて共通にグランド導体層に接続されていてもよく、また両素子毎にグランドに接続されていてもよい。この第2のコンデンサ素子Bのグランド側(接地側)の端子部分を図中d1で示す。   As shown in FIG. 6, the solid electrolytic capacitor of the present embodiment includes a second capacitor element on a surface opposite to the connection surface to the mounting substrate in the first capacitor element A having the above-described configuration. Is a laminate of B. In this case, the cathode portions of the first and second capacitor elements A and B are connected to the ground conductor in common with the conductive members 16 and 26 of the two elements being connected by a conductive adhesive 27 or the like in this embodiment. It may be connected to a layer, or both elements may be connected to the ground. A terminal portion on the ground side (ground side) of the second capacitor element B is indicated by d1 in the drawing.

陽極端子部については、第1と第2のコンデンサ素子A,B端子は独立しており、第1のコンデンサ素子Aの陽極端子部a1〜anは全て別々に出力電源導体層に接続され、第2のコンデンサ素子の一方の陽極端子部c1は電源と接続され、他方の陽極端子部c2は出力電源導体層に接続されている。   As for the anode terminal portion, the first and second capacitor elements A and B terminals are independent, and the anode terminal portions a1 to an of the first capacitor element A are all separately connected to the output power supply conductor layer. One anode terminal portion c1 of the capacitor element 2 is connected to the power source, and the other anode terminal portion c2 is connected to the output power source conductor layer.

次に、前記のような構成を有する第1実施形態の固体電解コンデンサを実装基板に接続する構成について、図7を参照して説明する。すなわち、図7において、符号51は実装基板であって、その片面に第1実施形態の固体電解コンデンサ52が実装され、反対側の面にICなどの負荷回路部品53が実装されている。   Next, a configuration for connecting the solid electrolytic capacitor according to the first embodiment having the above-described configuration to a mounting substrate will be described with reference to FIG. That is, in FIG. 7, reference numeral 51 denotes a mounting substrate, on which the solid electrolytic capacitor 52 of the first embodiment is mounted, and a load circuit component 53 such as an IC is mounted on the opposite surface.

実装基板51には、電源54に接続された電源ライン導体層54a、この電源ライン導体層54aに接続された出力電源導体層54b、およびこれら電源ライン導体層54aと出力電源導体層54bに形成されたコンデンサ陽極端子接続部54cと負荷回路部品接続部54dが設けられている。   On the mounting board 51, a power line conductor layer 54a connected to the power source 54, an output power conductor layer 54b connected to the power line conductor layer 54a, and the power line conductor layer 54a and the output power conductor layer 54b are formed. A capacitor anode terminal connecting portion 54c and a load circuit component connecting portion 54d are provided.

このコンデンサ陽極端子接続部54cは、第1のコンデンサ素子Aの実装基板接続面に露出している陽極端子部a1〜anと、第2のコンデンサ素子Bの陽極端子部c1,c2の位置に合わせて設けられた複数の端子を備えている。また、負荷回路部品接続部54dは、負荷回路部品53に設けられた複数の陽極接続端子の位置に合わせて設けられた複数の端子を備えている。   The capacitor anode terminal connection portion 54c is aligned with the positions of the anode terminal portions a1 to an exposed on the mounting substrate connection surface of the first capacitor element A and the anode terminal portions c1 and c2 of the second capacitor element B. A plurality of terminals provided. The load circuit component connecting portion 54d includes a plurality of terminals provided in accordance with the positions of the plurality of anode connection terminals provided in the load circuit component 53.

同様に、実装基板51には、グランド(接地側)導体層55aが設けられ、このグランド導体層55aにもコンデンサ陰極部接続部55cと負荷回路部品接続部55dが設けられている。   Similarly, the mounting substrate 51 is provided with a ground (ground side) conductor layer 55a. The ground conductor layer 55a is also provided with a capacitor cathode portion connecting portion 55c and a load circuit component connecting portion 55d.

このコンデンサ陰極端子接続部55cは、第1のコンデンサ素子Aの実装基板接続面に露出している複数の陰極部b1〜bnの位置に合わせて設けられた複数の端子を備えている。また、負荷回路部品接続部55dは、第1のコンデンサ素子A用及び第2のコンデンサ素子B用の2つの陰極接続端子の位置に合わせて設けられた2つの端子を備え、この2つの端子が同じく負荷回路部品53に設けられた2つの陰極接続端子に接続されている。   The capacitor cathode terminal connection portion 55c includes a plurality of terminals provided in accordance with the positions of the plurality of cathode portions b1 to bn exposed on the mounting substrate connection surface of the first capacitor element A. The load circuit component connecting portion 55d includes two terminals provided in accordance with the positions of the two cathode connection terminals for the first capacitor element A and the second capacitor element B. Similarly, it is connected to two cathode connection terminals provided on the load circuit component 53.

次に、前記のような構成を有する第1実施形態の作用を、前記図1及び図5〜図9を参照して説明する。   Next, the operation of the first embodiment having the above configuration will be described with reference to FIG. 1 and FIGS.

前記図1の断面図に示すように、実装基板51上に配置される第1のコンデンサ素子Aは、その中心部に配置された平板状弁作用金属基体1の両側にそれぞれ誘電体酸化被膜4,14と陰極電極層とが形成され、しかも、実装基板への接続面側には、複数個の陽極端子部a1〜anとこれに対応する陰極部b1〜bnが形成されている。   As shown in the cross-sectional view of FIG. 1, the first capacitor element A disposed on the mounting substrate 51 has a dielectric oxide film 4 on both sides of the flat valve-acting metal substrate 1 disposed at the center thereof. , 14 and the cathode electrode layer, and a plurality of anode terminal portions a1 to an and corresponding cathode portions b1 to bn are formed on the connection surface side to the mounting substrate.

従って、図7に示すように、各陽極端子部a1〜anを電源ライン導体層54aから伸びるコンデンサ陽極端子接続部54cに接続し、各陰極部b1〜bnをグランド導体層55aにおけるコンデンサ陰極部接続部55cに接続すると、図8の電気回路図に示すように、第1のコンデンサ素子Aと負荷回路部品53との間に、複数個のコンデンサが並列に接続された状態となる。   Therefore, as shown in FIG. 7, each anode terminal part a1 to an is connected to a capacitor anode terminal connection part 54c extending from the power line conductor layer 54a, and each cathode part b1 to bn is connected to a capacitor cathode part in the ground conductor layer 55a. When connected to the portion 55c, a plurality of capacitors are connected in parallel between the first capacitor element A and the load circuit component 53, as shown in the electric circuit diagram of FIG.

一方、図7に示すように、前記第1のコンデンサ素子Aの電源側において、第2のコンデンサ素子Bを、その陽極端子c1,c2を電源ライン導体層54aから伸びるコンデンサ陽極端子接続部54cに接続し、陰極部d1をグランド導体層55aにおけるコンデンサ陰極部接続部55cに接続すると、図8の電気回路図に示すように、前記第1のコンデンサ素子aによって形成された複数個のコンデンサの並列接続構造の電源側に、伝送線路が形成される。   On the other hand, as shown in FIG. 7, on the power source side of the first capacitor element A, the second capacitor element B is connected to the capacitor anode terminal connection portion 54c extending from the power line conductor layer 54a with the anode terminals c1 and c2 thereof. When the cathode part d1 is connected to the capacitor cathode part connection part 55c in the ground conductor layer 55a, a plurality of capacitors formed by the first capacitor element a are arranged in parallel as shown in the electric circuit diagram of FIG. A transmission line is formed on the power supply side of the connection structure.

この伝送線路は、第2のコンデンサ素子Bを示す図5において、丸で囲んだ部分に相当するものである。この部分は陽極端子部が形成されていない領域であり、弁作用金属基体21の両面(2つの主面とも呼ばれる)に対して、両面ともに誘電体酸化被膜14と陰極電極層が形成された構成となっている。この構成を伝送線路と呼び、ここを高周波電流が通るときのインピーダンスは特性インピーダンスと呼ばれる、周波数が変化しても一定値を取る特性を示す。   This transmission line corresponds to a circled portion in FIG. 5 showing the second capacitor element B. This portion is a region where the anode terminal portion is not formed, and a configuration in which the dielectric oxide film 14 and the cathode electrode layer are formed on both surfaces of the valve action metal base 21 (also referred to as two main surfaces). It has become. This configuration is called a transmission line, and the impedance when a high-frequency current passes through this structure is called characteristic impedance, and shows a characteristic that takes a constant value even when the frequency changes.

伝送線路は、図9に示す等価回路で示され、そのインピーダンスは、低周波数領域では集中定数回路となるのに対して、これが高周波領域では、分布定数回路(伝送線路)となり、Z=(L/C)1/2と一定値を示す(図10参照)。このため、高周波領域でのインピーダンス上昇も無く、非常に良い高周波電流遮断特性を示す。 The transmission line is shown by the equivalent circuit shown in FIG. 9, and its impedance is a lumped constant circuit in the low frequency region, whereas this is a distributed constant circuit (transmission line) in the high frequency region, and Z = (L / C) A constant value of 1/2 (see FIG. 10). For this reason, there is no increase in impedance in the high frequency region, and very good high frequency current cutoff characteristics are exhibited.

なお、図9の等価回路は、個々の伝送線路ごとの等価回路を示すものであり、回路を多数組み併設しているのは、a)低周波で流れる場合を、1組の等価回路とみて、b)高周波になったときには、波長が短くなるので相対的に線路が長く見え、多数組の等価回路をいくつも連ねたように見える分布定数回路(特性インピーダンス一定)となるためである。   Note that the equivalent circuit in FIG. 9 shows an equivalent circuit for each transmission line. The reason why a large number of circuits are arranged together is that a) a case of flowing at a low frequency is regarded as one set of equivalent circuits. B) When the frequency becomes high, the wavelength is shortened so that the line looks relatively long, and a distributed constant circuit (constant characteristic impedance) that seems to have a number of sets of equivalent circuits connected together is obtained.

一方、電荷供給を充分な速さで行うための、過渡応答性の改善には、等価直列インダクタンス(ESL)の低減が重要である。ESL低減のポイントは次のようなことである。
(1) 電流経路(配線長)を短くすること。
(2) 電流経路を流れる電流により形成される磁場を、別の電流経路を流れる電流により形成される磁場で相殺すること。
(3) 電流経路をn個に分割して、実質的にESLを1/nとする。
On the other hand, reduction of equivalent series inductance (ESL) is important for improving transient response in order to supply charges at a sufficient speed. The points of ESL reduction are as follows.
(1) Shorten the current path (wiring length).
(2) To cancel the magnetic field formed by the current flowing through the current path with the magnetic field formed by the current flowing through another current path.
(3) The current path is divided into n and the ESL is substantially 1 / n.

これに対して、第1実施形態においては、次のような理由から、過渡応答性としては非常に良好な特性が得られる。
(a) 陽極端子部と陰極部が同一面から取り出され(下面:実装基板への接続面)ており、配線経路は短くなし得る。
(b) 陽極と陰極が近傍に交互配置されており、ESLが相殺される構造である。
(c) 電流経路が、任意に増やせる構成であり、ESL低減ができる。
On the other hand, in the first embodiment, very good characteristics can be obtained as transient response for the following reason.
(a) The anode terminal portion and the cathode portion are taken out from the same surface (lower surface: connection surface to the mounting substrate), and the wiring path can be shortened.
(b) The anode and the cathode are alternately arranged in the vicinity so that the ESL is offset.
(c) The current path can be arbitrarily increased, and ESL can be reduced.

以上の通り、本実施形態によれば、第1のコンデンサ素子Aは、その陽極端子一つ一つに対応して電荷供給コンデンサとしての役割を担っている。すなわち、伝送線路を構成する第2のコンデンサ素子Bを電源側に接続し、電源とは接続されず、負荷回路との間で電荷の出し入れを行う過渡応答改善のための第1のコンデンサ素子Aを組み合わせた結果、低ESR、低ESL化による過渡応答性の改善と、高周波領域までの低インピーダンス化による高周波電流の遮断が可能となる。   As described above, according to the present embodiment, the first capacitor element A plays a role as a charge supply capacitor corresponding to each anode terminal. That is, the first capacitor element A for improving the transient response in which the second capacitor element B constituting the transmission line is connected to the power supply side, is not connected to the power supply, and is taken in and out of the load circuit. As a result, the transient response can be improved by reducing the ESR and ESL, and the high frequency current can be cut off by reducing the impedance up to the high frequency region.

(2)他の実施形態
本発明は前記のような実施形態に限定されるものではなく、次のような他の実施形態を包含するものである。
(2) Other Embodiments The present invention is not limited to the embodiment as described above, but includes the following other embodiments.

(1) 第1のコンデンサ素子Aは、複数個の電荷供給コンデンサを形成する役割を担っているため、実装基板側に設けられた陰極部と陽極端子部があれば機能する。そのため、図1のように、弁作用金属基体1の反対面に陰極部を設ける必要はない。ただし、第2のコンデンサとの接続実施可能性の点や、容量の点からは、弁作用金属基体の反対側にも陰極部があったほうが有利である。 (1) Since the first capacitor element A plays a role of forming a plurality of charge supply capacitors, it functions if there is a cathode portion and an anode terminal portion provided on the mounting substrate side. Therefore, it is not necessary to provide a cathode part on the opposite surface of the valve action metal base | substrate 1 like FIG. However, in view of the possibility of connection with the second capacitor and the capacity, it is advantageous to have a cathode portion on the opposite side of the valve metal base.

(2) 陽極端子部を備えた第1のコンデンサ素子Aに対して、伝送線路を構成する第2のコンデンサ素子Bを複数後積層し、実装基板への装着時において第1のコンデンサ素子Aの電源側に複数個接続することも可能である。 (2) A plurality of second capacitor elements B constituting the transmission line are stacked after the first capacitor element A having the anode terminal portion, and the first capacitor element A is mounted on the mounting board. A plurality of power supplies can be connected.

本発明における第1のコンデンサ素子Aの一例を示す断面図。Sectional drawing which shows an example of the 1st capacitor | condenser element A in this invention. 図1の第1のコンデンサ素子Aの実装基板接続面側の平面図。FIG. 2 is a plan view of the first capacitor element A of FIG. 本発明の第1のコンデンサ素子Aの変形例における実装基板接続面側の平面図。The top view by the side of the mounting board connection surface in the modification of the 1st capacitor | condenser element A of this invention. 本発明の第1のコンデンサ素子Aの他の変形例における実装基板接続面側の平面図。The top view by the side of the mounting board connection surface in the other modification of the 1st capacitor | condenser element A of this invention. 本発明における第2のコンデンサ素子Bの断面図。Sectional drawing of the 2nd capacitor | condenser element B in this invention. 本発明の第1実施形態の固体電解コンデンサの断面図。Sectional drawing of the solid electrolytic capacitor of 1st Embodiment of this invention. 図6の固体コンデンサを実装基板へ接続した構造を示す断面図。Sectional drawing which shows the structure which connected the solid capacitor of FIG. 6 to the mounting board | substrate. 図7の実装基板への接続構造における電気回路図。The electric circuit diagram in the connection structure to the mounting substrate of FIG. 本発明における伝送線路の等価回路を示す回路図。The circuit diagram which shows the equivalent circuit of the transmission line in this invention. 伝送線路のインピーダンス特性を示すグラフ。The graph which shows the impedance characteristic of a transmission line.

符号の説明Explanation of symbols

A…第1のコンデンサ素子
B…第2のコンデンサ素子
a1〜an…第2のコンデンサ素子の陽極端子部
b1〜bn…陰極部
c1,c2…第1のコンデンサ素子の陽極端子部
1…弁作用金属基体
4,14…誘電体酸化被膜
5,15…固体電解質
6,16…導電性部材
8,18…絶縁部材
20…陰極部
51…実装基板
52…固体電解コンデンサ
53…負荷回路部品
54…電源
54a電源ライン導体層
54b…出力電源層
54c…コンデンサ陽極端子接続部
54d…負荷回路部品接続部
55a…グランド(接地側)導体層
55c…コンデンサ陰極端子接続部
55d…負荷回路部品接続部
A ... 1st capacitor element B ... 2nd capacitor element a1-an ... Anode terminal part b1-bn of 2nd capacitor element ... Cathode part c1, c2 ... Anode terminal part 1 of 1st capacitor element ... Valve action Metal substrates 4 and 14 Dielectric oxide films 5 and 15 Solid electrolytes 6 and 16 Conductive members 8 and 18 Insulating member 20 Cathode portion 51 Mounting substrate 52 Solid electrolytic capacitor 53 Load circuit component 54 Power source 54a power line conductor layer 54b ... output power supply layer 54c ... capacitor anode terminal connection 54d ... load circuit component connection 55a ... ground (ground side) conductor layer 55c ... capacitor cathode terminal connection 55d ... load circuit component connection

Claims (3)

平板状の弁作用金属基体における実装基板との接続面に、誘電体酸化被膜とこの誘電体酸化被膜上に固体電解質と導電性部材からなる陰極電極層を順次設けた陰極部が形成され、この陰極部の領域内には前記弁作用金属基体の接続された複数の陽極端子部が形成された第1のコンデンサ素子と、
平板状の弁作用金属基体に一対の陽極端子部が形成され、前記弁作用金属基体の両面にそれぞれ誘電体酸化被膜と、この誘電体酸化被膜上に固体電解質と導電性部材からなる陰極電極層を順次設けた陰極部を形成してなる第2のコンデンサ素子とを備え、
これら第1と第2のコンデンサ素子が、第1と第2のコンデンサの陽極端子部同士が互いに独立した状態で、平板状の弁作用金属基体の厚さ方向に積層されていることを特徴とする固体電解コンデンサ。
On the connection surface of the flat valve action metal substrate to the mounting substrate, a cathode portion is formed by sequentially providing a dielectric oxide film and a cathode electrode layer made of a solid electrolyte and a conductive member on the dielectric oxide film. A first capacitor element in which a plurality of anode terminal portions connected to the valve metal substrate are formed in a region of the cathode portion;
A pair of anode terminal portions are formed on a flat valve-acting metal base, a dielectric oxide film is formed on both surfaces of the valve-acting metal base, and a cathode electrode layer comprising a solid electrolyte and a conductive member on the dielectric oxide film. And a second capacitor element formed by forming a cathode part provided sequentially,
The first and second capacitor elements are laminated in the thickness direction of the flat valve metal substrate with the anode terminal portions of the first and second capacitors being independent from each other. Solid electrolytic capacitor.
前記第2のコンデンサ素子は、該弁作用金属基体の表裏両面に形成された該陰極電極層が対向配置された部分を有し、この対向配置された陰極電極層と弁作用金属基体で挟まれた誘電体酸化被膜を含む領域において、伝送線路構造が形成されていることを特徴とする請求項1に記載の固体電解コンデンサ。   The second capacitor element has a portion in which the cathode electrode layers formed on the front and back surfaces of the valve action metal substrate are arranged opposite to each other, and is sandwiched between the cathode electrode layer arranged opposite to the valve action metal substrate. 2. The solid electrolytic capacitor according to claim 1, wherein a transmission line structure is formed in a region including the dielectric oxide film. 前記請求項1または請求項2に記載の固体電解コンデンサの実装基板に対する接続構造において、
前記第2のコンデンサ素子の一方の陽極端子部が、電源に接続可能な実装基板の電源ライン導体層に電気的に接続され、
前記第2のコンデンサ素子の他方の陽極端子部が、負荷回路に接続可能な実装基板の出力電源導体層に電気的に接続され、
前記第2のコンデンサ素子の陰極電極層が、実装基板のグランド導体層に電気的に接続されるとともに、
前記第1のコンデンサコンデンサ素子の陽極端子部が、負荷回路部品に接続可能な実装基板の出力電源導体層に電気的に接続され、
前記第1のコンデンサ素子の陰極電極層が、実装基板のグランド導体層に電気的に接続されていることを特徴とする固体電解コンデンサの実装基板への接続構造。
In the connection structure to the mounting substrate of the solid electrolytic capacitor according to claim 1 or 2,
One anode terminal portion of the second capacitor element is electrically connected to a power line conductor layer of a mounting substrate connectable to a power source;
The other anode terminal portion of the second capacitor element is electrically connected to the output power supply conductor layer of the mounting substrate connectable to the load circuit;
The cathode electrode layer of the second capacitor element is electrically connected to the ground conductor layer of the mounting substrate;
An anode terminal portion of the first capacitor capacitor element is electrically connected to an output power supply conductor layer of a mounting substrate connectable to a load circuit component;
A structure for connecting a solid electrolytic capacitor to a mounting board, wherein the cathode electrode layer of the first capacitor element is electrically connected to a ground conductor layer of the mounting board.
JP2007233356A 2007-09-07 2007-09-07 Solid electrolytic capacitor and connection structure for solid electrolytic capacitor to mounting substrate Pending JP2009065059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007233356A JP2009065059A (en) 2007-09-07 2007-09-07 Solid electrolytic capacitor and connection structure for solid electrolytic capacitor to mounting substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007233356A JP2009065059A (en) 2007-09-07 2007-09-07 Solid electrolytic capacitor and connection structure for solid electrolytic capacitor to mounting substrate

Publications (1)

Publication Number Publication Date
JP2009065059A true JP2009065059A (en) 2009-03-26

Family

ID=40559355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007233356A Pending JP2009065059A (en) 2007-09-07 2007-09-07 Solid electrolytic capacitor and connection structure for solid electrolytic capacitor to mounting substrate

Country Status (1)

Country Link
JP (1) JP2009065059A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070972A (en) * 2007-09-12 2009-04-02 Nippon Chemicon Corp Structure for connecting capacitor to mounting board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164760A (en) * 2000-08-30 2002-06-07 Nec Corp Distributed constant noise filter
JP2002237431A (en) * 2001-02-08 2002-08-23 Matsushita Electric Ind Co Ltd Solid-state electrolytic capacitor and method of manufacturing the same
JP2002353073A (en) * 2001-05-28 2002-12-06 Matsushita Electric Ind Co Ltd Circuit module
WO2004023597A1 (en) * 2002-09-04 2004-03-18 Nec Corporation Strip line device, member to be mounted on printed wiring board, circuit board, semiconductor package, and its fabricating method
JP2005142437A (en) * 2003-11-07 2005-06-02 Tdk Corp Solid-state electrolytic capacitor and solid-state electrolytic capacitor device
WO2008126181A1 (en) * 2007-03-15 2008-10-23 Fujitsu Limited Solid electrolytic capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164760A (en) * 2000-08-30 2002-06-07 Nec Corp Distributed constant noise filter
JP2002237431A (en) * 2001-02-08 2002-08-23 Matsushita Electric Ind Co Ltd Solid-state electrolytic capacitor and method of manufacturing the same
JP2002353073A (en) * 2001-05-28 2002-12-06 Matsushita Electric Ind Co Ltd Circuit module
WO2004023597A1 (en) * 2002-09-04 2004-03-18 Nec Corporation Strip line device, member to be mounted on printed wiring board, circuit board, semiconductor package, and its fabricating method
JP2005142437A (en) * 2003-11-07 2005-06-02 Tdk Corp Solid-state electrolytic capacitor and solid-state electrolytic capacitor device
WO2008126181A1 (en) * 2007-03-15 2008-10-23 Fujitsu Limited Solid electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070972A (en) * 2007-09-12 2009-04-02 Nippon Chemicon Corp Structure for connecting capacitor to mounting board

Similar Documents

Publication Publication Date Title
US8149565B2 (en) Circuit board device and integrated circuit device
JP4354475B2 (en) Multilayer capacitor
US7450366B2 (en) Solid electrolytic capacitor
US20070279836A1 (en) Monolithic capacitor and mounting structure thereof
WO2007084658A1 (en) Low inductance capacitor
US7616427B2 (en) Monolithic ceramic capacitor
US8050015B2 (en) Composite electric element
JP2008091520A (en) Stacked capacitor
JP2009054973A (en) Multilayer capacitor and capacitor mounting substrate
WO2010134335A1 (en) Surface mounting device and capacitor element
JP2007035877A (en) Multilayer capacitor
JP2009004734A (en) Laminated ceramic capacitor
US20080225463A1 (en) Layered capacitor and mounting structure
KR20180058021A (en) Multi-layered capacitor and board having the same mounted thereon
JP2001185446A (en) Laminated ceramic capacitor
JP4475338B2 (en) Multilayer capacitor
JP4924698B2 (en) Electronic component mounting structure
US8310806B2 (en) Multilayer capacitor having high ESR
JP2004015706A (en) Transmission line type noise filter
WO2008050739A1 (en) Printed board and filter using the same
JP2008021771A (en) Chip-type solid electrolytic capacitor
JP4952456B2 (en) Connection structure of solid electrolytic capacitor to mounting board
JP2009065059A (en) Solid electrolytic capacitor and connection structure for solid electrolytic capacitor to mounting substrate
JP5384395B2 (en) Distributed noise filter
JP2009070972A (en) Structure for connecting capacitor to mounting board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Effective date: 20111129

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120327

Free format text: JAPANESE INTERMEDIATE CODE: A02