JP2009064707A - Active material for nonaqueous electrolyte secondary battery, and battery using the same - Google Patents

Active material for nonaqueous electrolyte secondary battery, and battery using the same Download PDF

Info

Publication number
JP2009064707A
JP2009064707A JP2007232663A JP2007232663A JP2009064707A JP 2009064707 A JP2009064707 A JP 2009064707A JP 2007232663 A JP2007232663 A JP 2007232663A JP 2007232663 A JP2007232663 A JP 2007232663A JP 2009064707 A JP2009064707 A JP 2009064707A
Authority
JP
Japan
Prior art keywords
active material
battery
positive electrode
electrolyte secondary
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007232663A
Other languages
Japanese (ja)
Inventor
Kazuhiro Okamura
一広 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007232663A priority Critical patent/JP2009064707A/en
Publication of JP2009064707A publication Critical patent/JP2009064707A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an active material for a nonaqueous electrolyte secondary battery with heat generation restrained accompanying oxidation reaction of a negative electrode active material and an nonaqueous solvent, even in case battery temperature rises at overcharging. <P>SOLUTION: For the active material for a nonaqueous electrolyte secondary battery, lithium transition metal oxyfluoride represented by general formula (1): Li<SB>x</SB>Fe<SB>1-y</SB>M<SB>y</SB>OF (provided, M is at least a kind selected from a group consisting of Mn, Co and Ni, and x and y satisfy 0≤x≤1 and 0≤y≤0.5, respectively), having a crystal structure belonging to a space group P42/mnm is used. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、非水電解液二次電池に関し、特にそれに用いられる活物質に関する。本発明に係る活物質は、電池温度が大幅に上昇した場合でも非水電解液二次電池の安全性を向上させるものである。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an active material used therefor. The active material according to the present invention improves the safety of the non-aqueous electrolyte secondary battery even when the battery temperature is significantly increased.

従来から、エネルギー密度の高いリチウムイオン二次電池をはじめとする非水電解液二次電池は、パソコン、携帯電話、デジタルカメラ、カムコーダなどの携帯機器分野に用いる電源として広く用いられている。また、環境問題および資源問題の解決に貢献すると期待される電気自動車の駆動電源用としても、非水電液二次電池の開発が盛んに進められている。   Conventionally, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries with high energy density have been widely used as power sources used in the field of portable devices such as personal computers, mobile phones, digital cameras, and camcorders. In addition, non-aqueous liquid secondary batteries have been actively developed for use as power sources for electric vehicles that are expected to contribute to solving environmental and resource problems.

非水電解液二次電池には、一般に、可燃性の非水溶媒を含む非水電解液が用いられている。また、正極活物質にはコバルト酸リチウムなどのリチウム遷移金属オキサイドが、負極活物質には黒鉛などの炭素材料が用いられている。
非水電解液二次電池では、過充電時に電池温度が上昇すると、正極活物質が分解されて酸素が発生しやすくなる。そして、その酸素により負極活物質や非水溶媒が酸化され、その酸化反応(発熱反応)により電池温度が大幅に上昇する可能性がある。
In general, a nonaqueous electrolyte solution containing a flammable nonaqueous solvent is used for a nonaqueous electrolyte secondary battery. Further, a lithium transition metal oxide such as lithium cobaltate is used for the positive electrode active material, and a carbon material such as graphite is used for the negative electrode active material.
In a non-aqueous electrolyte secondary battery, when the battery temperature rises during overcharge, the positive electrode active material is decomposed and oxygen is easily generated. And the negative electrode active material and the non-aqueous solvent are oxidized by the oxygen, and the battery temperature may be significantly increased by the oxidation reaction (exothermic reaction).

上記の過充電時の発熱を抑制するために、非水電解液二次電池では、種々の過充電防止機構が検討されており、近年では電子回路による過充電防止機構が主に採用されている。しかしながら、この電子回路だけに頼る方法では、電子回路の故障に対する不安を完全に払拭することは難しい。
また、安全性の向上を目的として、可燃物である非水電解液を不燃性の無機固体電解質に置き換えることが検討されているが、市場で要求される電池特性が十分に得られないため、依然として実用化されていない。
In order to suppress the above heat generation during overcharge, various overcharge prevention mechanisms have been studied for non-aqueous electrolyte secondary batteries, and in recent years, overcharge prevention mechanisms using electronic circuits have been mainly adopted. . However, it is difficult to completely eliminate the anxiety about the failure of the electronic circuit by the method relying only on the electronic circuit.
In addition, for the purpose of improving safety, it has been studied to replace the non-aqueous electrolyte, which is a flammable material, with a non-flammable inorganic solid electrolyte, but the battery characteristics required in the market cannot be sufficiently obtained, It has not been put into practical use yet.

ところで、従来から、正極活物質の材料については、主に電池の高容量化を目的として検討されている。
例えば、特許文献1では、リチウム二次電池の高容量化を目的として、リチウム遷移金属オキサイドに含まれる酸素の一部をフッ素に置換した非晶質のリチウム遷移金属オキサイドを用いることが提案されている。具体的には、一般式:Li4−a(式中、Mは、Fe、Mn、Co、Ni、Ti、V及びCuからなる群より選ばれる少なくとも1種の元素であり、xおよびaは、それぞれ2<x≦7および0.5≦a≦1.5を満たす。)で表される非晶質のリチウム遷移金属オキサイドを用いることが提案されている。
By the way, conventionally, materials for positive electrode active materials have been studied mainly for the purpose of increasing the capacity of batteries.
For example, Patent Document 1 proposes using amorphous lithium transition metal oxide in which part of oxygen contained in lithium transition metal oxide is replaced with fluorine for the purpose of increasing the capacity of a lithium secondary battery. Yes. Specifically, the general formula: Li x M 2 O 4-a F a ( wherein, M is Fe, Mn, Co, Ni, Ti, at least one element selected from the group consisting of V and Cu And x and a satisfy 2 <x ≦ 7 and 0.5 ≦ a ≦ 1.5, respectively.) It has been proposed to use an amorphous lithium transition metal oxide represented by:

また、特許文献2では、リチウム二次電池の低コスト化で高エネルギー密度化を目的として、LiMnOまたはLiFeOの酸素の一部をフッ素に置換したリチウム遷移金属オキシフルオライドを用いることが提案されている。具体的には、一般式:LiMO2−x (式中、MはMnおよびFeよりなる群から選ばれる少なくとも1種の元素であり、xは0.05≦x≦0.3を満たす。)を用いることが提案されている。この結晶構造は層状構造であり、空間群はR−3mと考えられる。 In Patent Document 2, proposed to use for the purpose of high energy density at low cost of the lithium secondary batteries, a lithium transition metal oxyfluoride obtained by replacing part of the oxygen of LiMnO 2 or LiFeO 2 fluorine Has been. Specifically, the general formula: LiMO in 2-x F x (wherein, M is at least one element selected from the group consisting of Mn and Fe, x satisfies 0.05 ≦ x ≦ 0.3 .) Is proposed. This crystal structure is a layered structure, and the space group is considered to be R-3m.

過充電時の電池の発熱を抑制する方法としては、上記の電子回路による過充電防止機構や不燃性の無機固体電解質の使用以外に、正極活物質を改良することが考えられる。しかし、過充電の電池の発熱を抑制することを目的とした正極活物質に関する検討は依然として十分に行われていない。
特開2006−190556号公報 特開平08−171900号公報
As a method for suppressing the heat generation of the battery at the time of overcharge, it is conceivable to improve the positive electrode active material in addition to the overcharge prevention mechanism by the electronic circuit and the use of a nonflammable inorganic solid electrolyte. However, studies on the positive electrode active material aiming at suppressing the heat generation of the overcharged battery have not been sufficiently performed.
JP 2006-190556 A Japanese Patent Laid-Open No. 08-171900

そこで、本発明は、上記従来の問題を解決するために、過充電時において、電池温度の大幅な上昇が抑制される高容量の非水電解質二次電池用活物質を提供することを目的とする。また、上記活物質を用いることにより高容量かつ高信頼性の非水電解液二次電池を提供することを目的とする。   Accordingly, an object of the present invention is to provide a high-capacity non-aqueous electrolyte secondary battery active material in which a significant increase in battery temperature is suppressed during overcharging in order to solve the above-described conventional problems. To do. It is another object of the present invention to provide a high capacity and high reliability non-aqueous electrolyte secondary battery by using the above active material.

上記問題を解決するためには、正極活物質に対しては、例えば、以下の(1)〜(3)の条件が求められる。
(1)正極活物質の安定性を高めて、正極活物質の分解を抑制する。
(2)正極活物質の分解により発生する酸素の量を低減する。
(3)正極活物質が分解しても、負極活物質や非水溶媒との反応熱量が少ない物質を生成する。
In order to solve the above problem, for example, the following conditions (1) to (3) are required for the positive electrode active material.
(1) Increase the stability of the positive electrode active material and suppress the decomposition of the positive electrode active material.
(2) The amount of oxygen generated by the decomposition of the positive electrode active material is reduced.
(3) Even when the positive electrode active material is decomposed, a material having a small amount of heat of reaction with the negative electrode active material or the nonaqueous solvent is generated.

上記(1)〜(3)の条件を満たす正極活物質の改良を実現するために、本発明者は鋭意検討した。その結果、酸素の一部をフッ素に置換したリチウム遷移金属オキサイドが安定性に優れていることを見出した。酸素に比べてフッ素は、遷移金属との電気陰性度の差が大きいために、物質が安定化し分解を抑制できると考えた。また、酸素の一部がフッ素に置換されているので、活物質から発生する酸素の量は自ずと減少する。また、分解してフッ素が発生しても負極活物質や非水溶媒との反応熱量は酸素よりも少なくなると考えた。   In order to realize the improvement of the positive electrode active material that satisfies the above conditions (1) to (3), the inventor has intensively studied. As a result, it was found that a lithium transition metal oxide in which a part of oxygen is substituted with fluorine is excellent in stability. Compared with oxygen, fluorine has a large difference in electronegativity with transition metals, and thus the substance is considered to be stabilized and decomposition can be suppressed. Further, since a part of oxygen is substituted with fluorine, the amount of oxygen generated from the active material is naturally reduced. Moreover, even if it decomposes | disassembles and generate | occur | produces, it was thought that the calorie | heat amount of reaction with a negative electrode active material and a nonaqueous solvent will be less than oxygen.

リチウム遷移金属オキサイドに含まれる酸素の全部をフッ素に置換した組成の材料はリチウム遷移金属フルオライドとなるが、フッ素は酸素よりも遷移金属との電気陰性度の差が大きいために、リチウム遷移金属フルオライド中の遷移金属とフッ素との結合はイオン結合性が大きくなる。このことで、材料の電子伝導性が減少して、電池の放電特性が損なわれることが考えられたので、フッ素と酸素とが共に含まれるリチウム遷移金属オキシフルオライドが好ましいと考えた。
リチウム遷移金属オキシフルオライドとしては、上記特許文献1および2の材料などが挙げられるが、過充電時の電池の発熱を抑制することについては十分に検討されていない。
A material having a composition in which all of oxygen contained in lithium transition metal oxide is substituted with fluorine is lithium transition metal fluoride. However, since fluorine has a larger difference in electronegativity with transition metal than oxygen, lithium transition metal fluoride is used. The bond between the transition metal and fluorine in the ionic bond increases. As a result, it was considered that the electron conductivity of the material was reduced and the discharge characteristics of the battery were impaired. Therefore, lithium transition metal oxyfluoride containing both fluorine and oxygen was considered preferable.
Examples of the lithium transition metal oxyfluoride include the materials of Patent Documents 1 and 2 described above, but it has not been sufficiently studied to suppress the heat generation of the battery during overcharge.

そこで、高容量を維持しつつ過充電時の発熱量の低減を目的として、リチウム遷移金属オキシフルオライドの組成および結晶構造を詳細に検討した。その結果、以下に示す3つの組成および結晶構造を有する活物質を見出した。   Therefore, the composition and crystal structure of the lithium transition metal oxyfluoride were studied in detail for the purpose of reducing the amount of heat generated during overcharge while maintaining a high capacity. As a result, an active material having the following three compositions and crystal structures was found.

すなわち、本発明の第1の非水電解液二次電池用活物質は、一般式(1):LiFe1−yOF (式中、MはMn、Co、およびNiからなる群より選択される少なくとも1種であり、xおよびyはそれぞれ0≦x≦1および0≦y≦0.5を満たす。)で表され、かつ空間群P42/mnmに属する結晶構造を有するリチウム遷移金属オキシフルオライドであることを特徴とする。 That is, the first non-aqueous electrolyte secondary battery active material of the present invention has the general formula (1): Li x Fe 1-y M y OF (wherein M is a group consisting of Mn, Co, and Ni) At least one selected from the group consisting of x and y satisfying 0 ≦ x ≦ 1 and 0 ≦ y ≦ 0.5, respectively, and having a crystal structure belonging to the space group P42 / mnm It is a metal oxyfluoride.

本発明の第2の非水電解液二次電池用活物質は、一般式(2):LiTi1−yOF (式中、MはMn、Fe、Co、およびNiからなる群より選択される少なくとも1種であり、xおよびyはそれぞれ0≦x≦1および0≦y≦0.5を満たす。)で表され、かつ空間群Pm3−mに属する結晶構造を有するリチウム遷移金属オキシフルオライドであることを特徴とする。 The second non-aqueous electrolyte secondary battery active material of the present invention has the general formula (2): Li x Ti 1-y M y OF 2 (wherein M is Mn, Fe, Co, and Ni). And at least one selected from the group wherein x and y satisfy 0 ≦ x ≦ 1 and 0 ≦ y ≦ 0.5, respectively, and have a crystal structure belonging to the space group Pm3-m It is a transition metal oxyfluoride.

本発明の第3の非水電解液二次電池用活物質は、一般式(3):LiNb1−yOF (式中、MはMn、Fe、Co、およびNiからなる群より選択される少なくとも1種であり、xおよびyはそれぞれ0≦x≦1および0≦y≦0.5を満たす。) で表され、かつ空間群R3cに属する結晶構造を有するリチウム遷移金属オキシフルオライドであることを特徴とする非水電解液二次電池用活物質。 The third non-aqueous electrolyte secondary battery active material of the present invention has the general formula (3): Li x Nb 1-y M y OF 3 (wherein M is Mn, Fe, Co, and Ni). At least one selected from the group, and x and y satisfy 0 ≦ x ≦ 1 and 0 ≦ y ≦ 0.5, respectively, and have a crystal structure belonging to the space group R3c An active material for a non-aqueous electrolyte secondary battery, characterized by being oxyfluoride.

また、本発明は、上記の第1〜3の活物質のいずれかを用いた非水電解液二次電池に関する。   The present invention also relates to a non-aqueous electrolyte secondary battery using any one of the first to third active materials.

本発明によれば、過充電時に電池温度が上昇した場合でも、負極活物質や非水溶媒の酸化反応に伴う発熱が低減され、安全性に優れた高信頼性の非水電解液二次電池を提供することができる。   According to the present invention, even when the battery temperature rises during overcharge, the heat generated by the oxidation reaction of the negative electrode active material or the nonaqueous solvent is reduced, and the highly reliable nonaqueous electrolyte secondary battery is excellent in safety. Can be provided.

本発明の第1の非水電解液二次電池用活物質(以下、第1の活物質と表す)は、一般式(1):LiFe1−yOF (式中、MはMn、Co、およびNiからなる群より選択される少なくとも1種であり、xおよびyはそれぞれ0≦x≦1および0≦y≦0.5を満たす。)で表され、かつ空間群P42/mnmに属する結晶構造を有するリチウム遷移金属オキシフルオライドである。
本発明者は、空間群P42/mnmに属する結晶構造を有するLiFeOFが電池材料に適していることを見出した。酸化還元可能なFeを含むこと、および結晶構造的にLiが拡散可能な原子配列を有することが、電池材料として機能する主たる要因であると考えられる。LiFeOFにおけるFeの一部をMに置換したLiFe1−yOFでも、構成元素であるFe、Mn、Co、およびNiは酸化還元可能であり、空間群で規定される原子配列は同じであるため、Liは拡散可能であると考えられる。
The first non-aqueous electrolyte secondary battery active material of the present invention (hereinafter referred to as the first active material) is represented by the general formula (1): Li x Fe 1-y M y OF (where M is And at least one selected from the group consisting of Mn, Co, and Ni, and x and y satisfy 0 ≦ x ≦ 1 and 0 ≦ y ≦ 0.5, respectively, and the space group P42 / It is a lithium transition metal oxyfluoride having a crystal structure belonging to mnm.
The present inventor has found that Li x FeOF having a crystal structure belonging to the space group P42 / mnm is suitable for battery materials. It is considered that the main factor that functions as a battery material is to contain Fe that can be oxidized / reduced and to have an atomic arrangement in which Li can diffuse in the crystal structure. Even in Li x Fe 1-y M y OF, in which part of Fe in Li x FeOF is replaced with M, the constituent elements Fe, Mn, Co, and Ni can be oxidized and reduced, and atoms defined by the space group Since the arrangement is the same, Li is considered to be diffusible.

本発明の第2の非水電解液二次電池用活物質(以下、第2の活物質と表す)は、一般式(2):LiTi1−yOF (式中、MはMn、Fe、Co、およびNiから選択される少なくとも1種であり、xおよびyはそれぞれ0≦x≦1および0≦y≦0.5を満たす。)で表され、かつ空間群Pm3−mに属する結晶構造を有するリチウム遷移金属オキシフルオライドである。
本発明者は、空間群Pm3−mに属する結晶構造を有するLiTiOFが電池材料に適していることを見出した。酸化還元可能なTiを含むこと、および結晶構造的にLiが拡散可能な原子配列を有することが、電池材料として機能する主たる要因であると考えられる。LiTiOFにおけるTiの一部をMに置換したLiTi1−yOFでも、構成元素であるTi、Fe、Mn、Co、およびNiが酸化還元可能であり、空間群で規定される原子配列は同じであるため、Liは拡散可能であると考えられる。
The second non-aqueous electrolyte secondary battery active material of the present invention (hereinafter referred to as the second active material) is represented by the general formula (2): Li x Ti 1-y M y OF 2 (where M Is at least one selected from Mn, Fe, Co, and Ni, and x and y satisfy 0 ≦ x ≦ 1 and 0 ≦ y ≦ 0.5, respectively, and the space group Pm3− It is a lithium transition metal oxyfluoride having a crystal structure belonging to m.
The present inventor has found that Li x TiOF 2 having a crystal structure belonging to the space group Pm3-m is suitable for battery materials. It is considered that the inclusion of Ti that can be oxidized / reduced and the atomic arrangement in which Li can diffuse in the crystal structure are the main factors that function as a battery material. Li x a part of Ti in TiOF 2 even Li x Ti 1-y M y OF 2 substituted on M, a Ti as an element, Fe, Mn, Co, and Ni can redox, space group Since the defined atomic arrangement is the same, Li is considered to be diffusible.

本発明の第3の非水電解液二次電池用活物質(以下、第3の活物質と表す)は、一般式(3):LiNb1−yOF (式中,MはMn、Fe、Co、およびNiからなる群より選択される少なくとも1種であり、xおよびyはそれぞれ0≦x≦1および0≦y≦0.5を満たす。) で表され、かつ空間群R3cに属する結晶構造を有するリチウム遷移金属オキシフルオライドである。
本発明者は、空間群R3cに属する結晶構造を有するLiNbOFが電池材料として適していることを見出した。酸化還元可能なTiを含むこと、および結晶構造的にLiが拡散可能な原子配列を有することが、電池材料として機能する主たる要因であると考えられる。LiNbOFにおけるTiの一部をMに置換したLiNb1−yOFでも、構成元素であるNb、Fe、Mn、Co、およびNiが酸化還元可能であり、空間群で規定される原子配列は同じであるため、Liは拡散可能であると考えられる。
The third non-aqueous electrolyte secondary battery active material of the present invention (hereinafter referred to as a third active material) is represented by the general formula (3): Li x Nb 1- y My OF 3 (where M Is at least one selected from the group consisting of Mn, Fe, Co, and Ni, and x and y satisfy 0 ≦ x ≦ 1 and 0 ≦ y ≦ 0.5, respectively. Lithium transition metal oxyfluoride having a crystal structure belonging to Group R3c.
The present inventor has found that Li x NbOF 3 having a crystal structure belonging to the space group R3c is suitable as a battery material. It is considered that the inclusion of Ti that can be oxidized / reduced and the atomic arrangement in which Li can diffuse in the crystal structure are the main factors that function as a battery material. Li x a part of Ti in NbOF 3 even Li x Nb 1-y M y OF 3 substituted on M, a Nb as a constituent element, Fe, Mn, Co, and Ni can redox, space group Since the defined atomic arrangement is the same, Li is considered to be diffusible.

上記一般式(1)〜(3)中におけるリチウムの組成を示すxは、充放電時に変化する。活物質合成時のxの値は1である。充放電時において、xは0〜1の範囲で変化する。一般式(1)〜(3)中におけるyが0.5を超えると、後述する活物質作製時に副生成物が得られ、目的の組成の活物質を得ることが難しい。
上記第1〜第3の活物質を用いることにより、過充電時における電池の発熱が抑制され、高容量および高信頼性の非水電解液二次電池が得られる。
In the above general formulas (1) to (3), x indicating the composition of lithium changes during charge and discharge. The value of x at the time of active material synthesis is 1. At the time of charging / discharging, x changes in the range of 0-1. When y in the general formulas (1) to (3) exceeds 0.5, a by-product is obtained at the time of preparing an active material described later, and it is difficult to obtain an active material having a target composition.
By using the first to third active materials, heat generation of the battery during overcharge is suppressed, and a high capacity and high reliability nonaqueous electrolyte secondary battery is obtained.

高い正極電位が得られるため、一般式(1)〜(3)におけるMはCoまたはNiであるのが好ましく、yは0.3〜0.5であるのが好ましい。   In order to obtain a high positive electrode potential, M in the general formulas (1) to (3) is preferably Co or Ni, and y is preferably 0.3 to 0.5.

上記活物質は、例えば、以下の方法により得られる。
第1の方法としては、リチウムを含む原料としてリチウムの酸化物またはフッ化物と、遷移金属を含む原料として遷移金属の酸化物やフッ化物とを混合した後、加熱する方法が挙げられる。第2の方法としては、フッ素を含まないリチウムを含む原料と、フッ素を含まない遷移金属を含む原料とを混合した後、フッ素を含む雰囲気中でこの混合物を加熱する方法が挙げられる。第3の方法としては、リチウムを含む原料としてリチウムのフッ化物と、遷移金属を含む原料として遷移金属のフッ化物とを混合した後、酸素を含む雰囲気中でこの混合物を加熱する方法が挙げられる。
The active material is obtained, for example, by the following method.
As the first method, there is a method in which a lithium oxide or fluoride as a raw material containing lithium and a transition metal oxide or fluoride as a raw material containing a transition metal are mixed and then heated. As a second method, there is a method in which a raw material containing lithium not containing fluorine and a raw material containing a transition metal not containing fluorine are mixed, and then the mixture is heated in an atmosphere containing fluorine. As a third method, there is a method of mixing lithium fluoride as a raw material containing lithium and a transition metal fluoride as a raw material containing a transition metal, and then heating the mixture in an oxygen-containing atmosphere. .

リチウムを含む原料としては、例えば、金属リチウム、酸化リチウム、過酸化リチウム、水酸化リチウム、炭酸リチウム、硝酸リチウム、フッ化リチウムが挙げられる。遷移金属を含む原料としては、例えば、単体の金属、構成する金属元素からなる合金、単純酸化物、構成する金属元素からなる複合酸化物、単純フッ化物、構成する金属元素からなる複合フッ化物、単純水酸化物、構成する金属元素からなる複合水酸化物、単純炭酸塩、構成する金属元素からなる複合炭酸塩が挙げられる。   Examples of the raw material containing lithium include metal lithium, lithium oxide, lithium peroxide, lithium hydroxide, lithium carbonate, lithium nitrate, and lithium fluoride. Examples of the raw material containing a transition metal include, for example, a single metal, an alloy composed of a constituent metal element, a simple oxide, a composite oxide composed of a constituent metal element, a simple fluoride, a composite fluoride composed of a constituent metal element, Simple hydroxides, composite hydroxides composed of constituent metal elements, simple carbonates, and composite carbonates composed of constituent metal elements.

加熱時の雰囲気には、例えば、酸素、フッ素、フッ化水素などの純粋ガス、これらの混合ガス、アルゴンなどの希ガスや窒素を含む混合ガスが用いられる。雰囲気中の圧力は適宜調整すればよい。リチウムと遷移金属だけでなく、フッ素や酸素を含めた元素の原料組成が、得ようとするリチウム遷移金属オキシフルオライドの組成と一致している場合は、フッ素や酸素を含む雰囲気中で原料混合物を加熱する必要が無いので、原料混合物を密閉した容器中で加熱しても良い。
上記方法では、通常、リチウム遷移金属オキシフルオライドは、粉末またはその焼結体として得られるが、適切な形状と粒径を有する粉体とすべく、必要に応じて粉砕や分級した後に活物質として使用すればよい。
For the atmosphere during heating, for example, a pure gas such as oxygen, fluorine or hydrogen fluoride, a mixed gas thereof, a rare gas such as argon, or a mixed gas containing nitrogen is used. What is necessary is just to adjust the pressure in atmosphere suitably. When the raw material composition of elements including not only lithium and transition metals but also fluorine and oxygen is the same as the composition of lithium transition metal oxyfluoride to be obtained, the raw material mixture in an atmosphere containing fluorine and oxygen Therefore, the raw material mixture may be heated in a sealed container.
In the above method, the lithium transition metal oxyfluoride is usually obtained as a powder or a sintered body thereof. The active material is pulverized or classified as necessary to obtain a powder having an appropriate shape and particle size. Can be used as

本発明の非水電解質二次電池は、正極、負極、正極と負極との間に配されるセパレータ、および非水電解液を備える。
正極は、例えば、正極集電体、ならびに前記正極集電体上に形成された、正極活物質、導電材、および結着剤を含む正極合剤層からなる。
正極は、例えば、以下のようにして得られる。正極活物質、導電材、および結着剤を混合し、この混合物に適当な溶媒を加えて、ペースト状の正極合剤を得る。正極合剤を、アルミニウムなどの金属箔の集電体表面に塗布、乾燥し、その後圧延する。このようにして、正極集電体上に活物質を含む正極合剤層が形成された正極を得る。
上記の活物質、導電材、結着剤を分散させる溶媒には、例えば、N−メチル−2−ピロリドンなどの有機溶媒や水が用いられる。ペースト状の正極合剤の経時安定性や分散性を高めるために、正極合剤に界面活性剤などの添加剤を加えてもよい。
The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte.
The positive electrode includes, for example, a positive electrode current collector, and a positive electrode mixture layer including a positive electrode active material, a conductive material, and a binder formed on the positive electrode current collector.
The positive electrode is obtained, for example, as follows. A positive electrode active material, a conductive material, and a binder are mixed, and an appropriate solvent is added to the mixture to obtain a paste-like positive electrode mixture. The positive electrode mixture is applied to the surface of a current collector of a metal foil such as aluminum, dried, and then rolled. In this way, a positive electrode in which a positive electrode mixture layer containing an active material is formed on the positive electrode current collector is obtained.
For example, an organic solvent such as N-methyl-2-pyrrolidone or water is used as the solvent in which the active material, the conductive material, and the binder are dispersed. In order to improve the temporal stability and dispersibility of the paste-like positive electrode mixture, an additive such as a surfactant may be added to the positive electrode mixture.

導電材は、正極合剤層の電気伝導性を高めるために用いられる。導電材には、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛などの炭素材料が挙げられる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。   The conductive material is used to increase the electrical conductivity of the positive electrode mixture layer. Examples of the conductive material include carbon materials such as carbon black, acetylene black, ketjen black, and graphite. These may be used alone or in combination of two or more.

結着剤は、活物質粒子および導電材粒子間の良好な接触状態を維持し、かつこれらの粒子を含む正極合剤層を集電体表面に確実に結着させるために用いられる。結着剤には、ポリテトラフルオロエチレン(PTFE)、PTFEの変性体、ポリフッ化ビニリデン(PVDF)、PVDFの変性体、フッ素ゴムなどの含フッ素樹脂、ポリプロピレンやポリエチレンなどの熱可塑性樹脂、または変性アクリロニトリルゴム粒子(日本ゼオン(株)製の「BM−500B(商品名)」等)が用いられる。PTFEやBM−500Bは、増粘剤と併用するのが好ましい。増粘剤には、例えばカルボキシメチルセルロース(CMC)、ポリエチレンオキシド(PEO)、変性アクリロニトリルゴム(日本ゼオン(株)製の「BM−720H(商品名)」等)が用いられる。
正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、アルミニウムなどの正極の電位範囲で安定な金属を表層に配置したフィルムなどが用いられる。集電性を高めるために、集電体の表面に凹凸を設けてもよく、穿孔してもよい。
The binder is used to maintain a good contact state between the active material particles and the conductive material particles, and to reliably bind the positive electrode mixture layer containing these particles to the current collector surface. Examples of the binder include polytetrafluoroethylene (PTFE), a modified PTFE, a polyvinylidene fluoride (PVDF), a modified PVDF, a fluorine-containing resin such as fluororubber, a thermoplastic resin such as polypropylene and polyethylene, or a modified material. Acrylonitrile rubber particles (such as “BM-500B (trade name)” manufactured by Nippon Zeon Co., Ltd.) are used. PTFE and BM-500B are preferably used in combination with a thickener. As the thickener, for example, carboxymethyl cellulose (CMC), polyethylene oxide (PEO), modified acrylonitrile rubber (“BM-720H (trade name)” manufactured by Nippon Zeon Co., Ltd.) and the like are used.
As the positive electrode current collector, a metal foil that is stable in the potential range of the positive electrode such as aluminum, a film in which a metal that is stable in the potential range of the positive electrode such as aluminum is disposed on the surface layer, or the like is used. In order to improve the current collecting property, the surface of the current collector may be provided with irregularities or may be perforated.

負極は、例えば、負極集電体、ならびに前記負極集電体上に形成された、リチウムイオンを吸蔵・脱離可能な負極活物質および結着剤を含む負極活物質層からなる。
負極は、例えば、以下のようにして得られる。負極活物質に結着剤を混合し、適当な溶媒を加えて、ペースト状の負極合剤を得る。この負極合剤を、銅などの金属箔の集電体表面に塗布、乾燥し、その後圧延する。このようにして、集電体上に活物質を含む負極合剤層が形成された負極を得る。
The negative electrode includes, for example, a negative electrode current collector, and a negative electrode active material layer that is formed on the negative electrode current collector and includes a negative electrode active material capable of inserting and extracting lithium ions and a binder.
A negative electrode is obtained as follows, for example. A binder is mixed with the negative electrode active material, and an appropriate solvent is added to obtain a paste-like negative electrode mixture. This negative electrode mixture is applied to the surface of a current collector of a metal foil such as copper, dried, and then rolled. In this way, a negative electrode in which a negative electrode mixture layer containing an active material is formed on a current collector is obtained.

負極活物質には、天然黒鉛、人造黒鉛、石油コークス、炭素繊維、有機高分子焼成物、カーボンナノチューブ、カーボンナノホーンなどの炭素材料、酸化物、シリサイド等のシリコン、スズ含有複合材料、各種金属もしくは合金材料などの公知の活物質が用いられる。   Examples of the negative electrode active material include natural graphite, artificial graphite, petroleum coke, carbon fiber, organic polymer fired product, carbon material such as carbon nanotube and carbon nanohorn, silicon such as oxide and silicide, tin-containing composite material, various metals or Known active materials such as alloy materials are used.

結着剤は、特に限定されないが、少量で結着性を発揮できる観点からゴム粒子が好ましく、特にスチレン単位およびブタジエン単位を含むものが好ましい。結着剤には、例えば、スチレン−ブタジエン共重合体(SBR)、SBRの変性体などが用いられる。負極結着剤としてゴム粒子を用いる場合、水溶性高分子からなる増粘剤を併用することが望ましい。水溶性高分子としては、セルロース系樹脂が好ましく、特にCMCが好ましい。結着剤には、他にPVDF、PVDFの変性体を用いてもよい。
負極集電体としては、銅などの負極の電位範囲で安定な金属の箔、銅などの負極の電位範囲で安定な金属を表層に配置したフィルムなどを用いることができる。集電性を高めるために、集電体の表面に凹凸を設けてもよく、穿孔してもよい。
The binder is not particularly limited, but rubber particles are preferable from the viewpoint of exhibiting binding properties in a small amount, and those containing styrene units and butadiene units are particularly preferable. As the binder, for example, a styrene-butadiene copolymer (SBR), a modified SBR, or the like is used. When rubber particles are used as the negative electrode binder, it is desirable to use a thickener composed of a water-soluble polymer. As the water-soluble polymer, a cellulose resin is preferable, and CMC is particularly preferable. In addition, PVDF or a modified PVDF may be used as the binder.
As the negative electrode current collector, a metal foil that is stable in the potential range of the negative electrode such as copper, a film in which a metal that is stable in the potential range of the negative electrode such as copper is arranged on the surface layer, or the like can be used. In order to improve the current collecting property, the surface of the current collector may be provided with irregularities or may be perforated.

セパレータは、電池の使用環境に耐え得る材料からなり、電解液のイオンを透過させ、正負極間を絶縁する性質を有する微多孔膜や不織布であればよい。セパレータには、一般的に、ポリオレフィン樹脂からなる微多孔膜が用いられる。ポリオレフィン樹脂としては、例えばポリエチレンやポリプロピレンが用いられる。微多孔膜は、1種の樹脂からなる単層膜でもよく、2種以上の樹脂からなる多層膜でもよい。また、樹脂とアルミナなどの無機材料からなる多層膜でもよい。   The separator is made of a material that can withstand the use environment of the battery, and may be a microporous film or a non-woven fabric having a property of allowing ions of the electrolytic solution to permeate and insulating between the positive and negative electrodes. Generally, a microporous film made of a polyolefin resin is used for the separator. As the polyolefin resin, for example, polyethylene or polypropylene is used. The microporous film may be a single layer film made of one kind of resin or a multilayer film made of two or more kinds of resins. Further, it may be a multilayer film made of an inorganic material such as resin and alumina.

非水電解液には、支持塩が溶解した有機溶媒が用いられる。有機溶媒は、通常の非水電解液二次電池に使用可能であればよく、特に限定されない。例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物が用いられる。これらの中でも、エチレンカーボネート(EC)、プロピレンカーボネート(PC)などの高誘電率溶媒と、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)などの低粘性溶媒との混合溶媒が好ましい。また、副溶媒として、ジメトキシエタン(DME)、テトラヒドロフラン(THF)およびγ−ブチロラクトン(GBL)を用いてもよい。なお、保存特性、サイクル特性、安全性などの電池特性を向上する目的で、種々の添加剤を添加してもよい。添加剤としては、ビニレンカーボネート(VC)、シクロヘキシルベンゼン(CHB)、およびそれらの誘導体が挙げられる。   An organic solvent in which the supporting salt is dissolved is used for the non-aqueous electrolyte. The organic solvent is not particularly limited as long as it can be used for a normal nonaqueous electrolyte secondary battery. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones, and oxolane compounds are used. Among these, a mixed solvent of a high dielectric constant solvent such as ethylene carbonate (EC) or propylene carbonate (PC) and a low viscosity solvent such as dimethyl carbonate (DMC), diethyl carbonate (DEC), or ethyl methyl carbonate (EMC). Is preferred. Further, dimethoxyethane (DME), tetrahydrofuran (THF) and γ-butyrolactone (GBL) may be used as a co-solvent. Various additives may be added for the purpose of improving battery characteristics such as storage characteristics, cycle characteristics, and safety. Additives include vinylene carbonate (VC), cyclohexylbenzene (CHB), and derivatives thereof.

支持塩には、LiPF、LiBF、LiClOおよびLiAsFから選ばれる無機塩、ならびにその誘導体が用いられる。また、LiSOCF、LiC(SOCF、LiN(SOCF、LiN(SOおよびLiN(SOCF)(SO)から選ばれる有機塩、ならびにその誘導体が用いられる。電解液中の支持塩の濃度は特に限定されないが、通常は0.5〜2.0mol/lである。
本発明の非水電解液二次電池の形状は特に限定されない。例えば、円筒型、角型ならびにシート型などの公知の電池で使用可能である。
As the supporting salt, an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 and derivatives thereof are used. Further, LiSO 3 CF 3 , LiC (SO 3 CF 3 ) 2 , LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 And organic derivatives selected from these and derivatives thereof. Although the density | concentration of the support salt in electrolyte solution is not specifically limited, Usually, it is 0.5-2.0 mol / l.
The shape of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited. For example, it can be used with known batteries such as a cylindrical type, a square type and a sheet type.

以下に本発明の実施例を詳細に説明するが、本発明はこれらの実施例に限定されない。
《実施例1》
(1)正極活物質の作製
原料には、(株)レアメタリック製の試薬を用いた。具体的には、酸化リチウム(Li2O)、フッ化鉄(FeF3)、酸化鉄(Fe2O3)、フッ化マンガン(MnF2)、酸化マンガン(MnO2)、フッ化コバルト(CoF2)、酸化コバルト(Co3O4)、フッ化ニッケル(NiF2)、酸化ニッケル(NiO)、フッ化チタン(TiF4)、酸化チタン(TiO2)、フッ化ニオブ(NbF5)、酸化ニオブ(Nb2O5)を用いた。
Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.
Example 1
(1) Preparation of positive electrode active material A reagent made by Rare Metallic Co., Ltd. was used as a raw material. Specifically, lithium oxide (Li 2 O), iron fluoride (FeF 3 ), iron oxide (Fe 2 O 3 ), manganese fluoride (MnF 2 ), manganese oxide (MnO 2 ), cobalt fluoride (CoF 2 ), cobalt oxide (Co 3 O 4 ), nickel fluoride (NiF 2 ), nickel oxide (NiO), titanium fluoride (TiF 4 ), titanium oxide (TiO 2 ), niobium fluoride (NbF 5 ), oxidation Niobium (Nb 2 O 5 ) was used.

これらから得ようとするリチウム遷移金属オキシフルオライドの化学組成に合わせて上記より適宜原料を選択し、秤量し、乳鉢で混合した。混合物を金製の密閉容器に入れ、500〜1000℃の温度で20〜60時間加熱してリチウム遷移金属オキシフルオライドを合成した。加熱する際は、リチウム遷移金属オキシフルオライドに副生成物が含まれないように加熱温度および加熱時間を調整した。得られた生成物を乳鉢で粉砕して、目開き45μmの篩いを通過した粉末を活物質とした。
各粉末材料について、X線回折装置((株)リガク製RINT2500)を用いて粉末X線回折測定を行い、得られた回折プロファイルから結晶構造の空間群を決定した。
According to the chemical composition of the lithium transition metal oxyfluoride to be obtained from these, raw materials were appropriately selected from the above, weighed, and mixed in a mortar. The mixture was put in a gold sealed container and heated at a temperature of 500 to 1000 ° C. for 20 to 60 hours to synthesize lithium transition metal oxyfluoride. When heating, the heating temperature and the heating time were adjusted so that no by-product was contained in the lithium transition metal oxyfluoride. The obtained product was pulverized in a mortar, and powder that passed through a sieve having an opening of 45 μm was used as an active material.
About each powder material, the powder X-ray-diffraction measurement was performed using the X-ray-diffraction apparatus (RINT2500 by Rigaku Corporation), and the space group of the crystal structure was determined from the obtained diffraction profile.

本実施例で作製した活物質の組成を以下に示す。
一般式(1)で表される活物質として、活物質1-1:LiFeOF、活物質1-2:LiFe0.9Mn0.1OF、活物質1-3:LiFe0.7Mn0.3OF、活物質1-4:LiFe0.5Mn0.5OF、活物質1-5:LiFe0.9Co0.1OF、活物質1-6:LiFe0.7Con0.3OF、活物質1-7:LiFe0.5Co0.5OF、活物質1-8:LiFe0.9Ni0.1OF、活物質1-9:LiFe0.7Ni0.3OF、活物質1-10:LiFe0.5Ni0.5OF、活物質1-11:
LiFe0.7Mn0.1Co0.1Ni0.1OFを作製した。粉末X線回折による解析の結果から、これらの粉末材料の空間群はP42/mnmに帰属された。なお、一般式(1)においてyの値が0.5を超えると、副生成物が存在して、目的のものを得ることができなかった。
The composition of the active material produced in this example is shown below.
As the active material represented by the general formula (1), active material 1-1: LiFeOF, active material 1-2: LiFe 0.9 Mn 0.1 OF, active material 1-3: LiFe 0.7 Mn 0.3 OF, active material 1-4 : LiFe 0.5 Mn 0.5 OF, active material 1-5: LiFe 0.9 Co 0.1 OF, active material 1-6: LiFe 0.7 Con 0.3 OF, active material 1-7: LiFe 0.5 Co 0.5 OF, active material 1-8: LiFe 0.9 Ni 0.1 OF, active material 1-9: LiFe 0.7 Ni 0.3 OF, active material 1-10: LiFe 0.5 Ni 0.5 OF, active material 1-11:
LiFe 0.7 Mn 0.1 Co 0.1 Ni 0.1 OF was prepared. From the results of analysis by powder X-ray diffraction, the space group of these powder materials was assigned to P42 / mnm. In addition, when the value of y exceeded 0.5 in General formula (1), the by-product existed and the target product could not be obtained.

一般式(2)で表される活物質として、活物質2-1:LiTiOF2、活物質2-2:LiTi0.9Mn0.1OF2、活物質2-3:LiTi0.7Mn0.3OF2、活物質2-4:LiTi0.5Mn0.5OF2、活物質2-5:LiTi0.9Fe0.1OF2、活物質2-6:LiTi0.7Fe0.3OF2、活物質2-7:LiTi0.5Fe0.5OF2、活物質2-8:LiTi0.9Co0.1OF2、活物質2-9:LiTi0.7Co0.3OF2、活物質2-10:LiTi0.5Co0.5OF2、活物質2-11:LiTi0.9Ni0.1OF2、活物質2-12:LiTi0.7Ni0.3OF2、活物質2-13:LiTi0.5Co0.5OF2、活物質2-14:LiTi0.6Mn0.1Fe0.1Co0.1Ni0.1OF2を作製した。粉末X線回折による解析の結果から、これらの粉末材料の空間群はPm3-mに帰属された。なお、一般式(2)においてyの値が0.5を超えると、副生成物が存在して、目的のものを得ることができなかった。 As the active material represented by the general formula (2), active material 2-1: LiTiOF 2 , active material 2-2: LiTi 0.9 Mn 0.1 OF 2 , active material 2-3: LiTi 0.7 Mn 0.3 OF 2 , active material 2-4: LiTi 0.5 Mn 0.5 OF 2 , active material 2-5: LiTi 0.9 Fe 0.1 OF 2 , active material 2-6: LiTi 0.7 Fe 0.3 OF 2 , active material 2-7: LiTi 0.5 Fe 0.5 OF 2 , Active material 2-8: LiTi 0.9 Co 0.1 OF 2 , Active material 2-9: LiTi 0.7 Co 0.3 OF 2 , Active material 2-10: LiTi 0.5 Co 0.5 OF 2 , Active material 2-11: LiTi 0.9 Ni 0.1 OF 2 , Active material 2-12: LiTi 0.7 Ni 0.3 OF 2 , Active material 2-13: LiTi 0.5 Co 0.5 OF 2 , Active material 2-14: LiTi 0.6 Mn 0.1 Fe 0.1 Co 0.1 Ni 0.1 OF 2 were prepared. From the results of analysis by powder X-ray diffraction, the space group of these powder materials was assigned to Pm3-m. In general formula (2), when the value of y exceeded 0.5, by-products were present and the desired product could not be obtained.

一般式(3)で表される活物質として、活物質3-1:LiNbOF3、活物質3-2:LiNb0.9Mn0.1OF3、活物質3-3:LiNb0.7Mn0.3OF3、活物質3-4:LiNb0.5Mn0.5OF3、活物質3-5:LiNb0.9Fe0.1OF3、活物質3-6:LiNb0.7Fe0.3OF3、活物質3-7:LiNb0.5Fe0.5OF3、活物質3-8:LiNb0.9Co0.1OF3、活物質3-9:LiNb0.7Co0.3OF3、活物質3-10:LiNb0.5Co0.5OF3、活物質3-11:LiNb0.9Ni0.1OF3、活物質3-12:LiNb0.7Ni0.3OF3、活物質3-13:LiNb0.5Ni0.5OF3、活物質3-14:LiNb0.6Mn0.1Fe0.1Co0.1Ni0.1OF3を作製した。粉末X線回折による解析の結果から、これらの粉末材料の空間群はR3cに帰属された。なお、一般式(3)においてyの値が0.5を超えると、副生成物が存在して、目的のものを得ることができなかった。 As the active material represented by the general formula (3), active material 3-1: LiNbOF 3 , active material 3-2: LiNb 0.9 Mn 0.1 OF 3 , active material 3-3: LiNb 0.7 Mn 0.3 OF 3 , active material 3-4: LiNb 0.5 Mn 0.5 OF 3 , active material 3-5: LiNb 0.9 Fe 0.1 OF 3 , active material 3-6: LiNb 0.7 Fe 0.3 OF 3 , active material 3-7: LiNb 0.5 Fe 0.5 OF 3 , Active material 3-8: LiNb 0.9 Co 0.1 OF 3 , Active material 3-9: LiNb 0.7 Co 0.3 OF 3 , Active material 3-10: LiNb 0.5 Co 0.5 OF 3 , Active material 3-11: LiNb 0.9 Ni 0.1 OF 3 , active material 3-12: LiNb 0.7 Ni 0.3 OF 3 , active material 3-13: LiNb 0.5 Ni 0.5 OF 3 , active material 3-14: LiNb 0.6 Mn 0.1 Fe 0.1 Co 0.1 Ni 0.1 OF 3 were prepared. From the results of analysis by powder X-ray diffraction, the space group of these powder materials was assigned to R3c. In addition, when the value of y exceeded 0.5 in General formula (3), the by-product existed and the target product could not be obtained.

(2)正極の作製
上記の正極活物質粉末(活物質1-1〜活物質3-14)300gと、正極結着剤として呉羽化学(株)製の「#1320(商品名)」(PVDFを12重量%含むNMP溶液)100gと、導電剤としてアセチレンブラック9gと、適量のNMPとを、双腕式練合機にて攪拌し、ペースト状の正極合剤を得た。この正極合剤を、正極集電体である厚み15μmのアルミニウム箔の両面に、正極リードの接続部と導電性ポリマー膜の接合部を除いて塗布し、乾燥後の塗膜をローラで圧延した。そして、アルミニウム箔の両面に活物質密度(活物質重量/合剤層体積)が3.3g/cmである正極合剤層を形成した。この際、アルミニウム箔および正極合剤層からなる極板の厚みを160μmに制御した。その後、円筒型電池(品番18650)の電池缶に挿入可能な幅に極板をスリットし、フープ状の正極を得た。
(2) Production of positive electrode 300 g of the above positive electrode active material powder (active material 1-1 to active material 3-14) and “# 1320 (trade name)” (PVDF) manufactured by Kureha Chemical Co., Ltd. as a positive electrode binder. NMP solution containing 12 wt%), 9 g of acetylene black as a conductive agent, and an appropriate amount of NMP were stirred with a double-arm kneader to obtain a paste-like positive electrode mixture. This positive electrode mixture was applied to both surfaces of a 15 μm-thick aluminum foil as a positive electrode current collector, excluding the connection portion of the positive electrode lead and the conductive polymer film, and the dried coating film was rolled with a roller. . A positive electrode mixture layer having an active material density (active material weight / mixture layer volume) of 3.3 g / cm 3 was formed on both surfaces of the aluminum foil. Under the present circumstances, the thickness of the electrode plate which consists of aluminum foil and a positive mix layer was controlled to 160 micrometers. Thereafter, the electrode plate was slit to a width that can be inserted into a battery can of a cylindrical battery (Part No. 18650) to obtain a hoop-shaped positive electrode.

(3)負極の作製
負極活物質として人造黒鉛300gと、負極結着剤として日本ゼオン(株)製の「BM−400B(商品名)」(スチレン−ブタジエン共重合体の変性体を40重量%含む水性分散液)7.5gと、増粘剤としてCMC3gと、適量の水とを、双腕式練合機にて攪拌し、ペースト状の負極合剤を得た。この負極合剤を負極集電体である厚さ10μmの銅箔の両面に、負極リード接続部と導電性ポリマー膜の接合部を除いて塗布し、乾燥後の塗膜をローラで圧延した。このようにして、銅箔の両面に活物質密度(活物質重量/合剤層体積)が1.4g/cmの負極合剤層を形成した。この際、銅箔および負極合剤層からなる極板の厚みを180μmに制御した。その後、円筒型電池(品番18650)の電池缶に挿入可能な幅に極板をスリットし、フープ状の負極を得た。
(3) Production of negative electrode 300 g of artificial graphite as a negative electrode active material, and “BM-400B (trade name)” manufactured by Nippon Zeon Co., Ltd. as a negative electrode binder (40% by weight of a modified styrene-butadiene copolymer) An aqueous dispersion containing 7.5 g, 3 g of CMC as a thickener, and an appropriate amount of water were stirred with a double-arm kneader to obtain a paste-like negative electrode mixture. This negative electrode mixture was applied to both surfaces of a 10 μm thick copper foil as a negative electrode current collector, excluding the negative electrode lead connecting portion and the conductive polymer film joint, and the dried coating film was rolled with a roller. In this way, negative electrode mixture layers having an active material density (active material weight / mixture layer volume) of 1.4 g / cm 3 were formed on both surfaces of the copper foil. Under the present circumstances, the thickness of the electrode plate which consists of copper foil and a negative mix layer was controlled to 180 micrometers. Thereafter, the electrode plate was slit to a width that can be inserted into a battery can of a cylindrical battery (Part No. 18650) to obtain a hoop-shaped negative electrode.

(4)非水電解液の調製
体積比2:3:3のECとDMCとEMCとを含む混合溶媒に、支持塩としてLiPF6を1mol/Lの濃度で溶解し非水電解液を得た。さらに、この非水電解液にVCを非水電解液100重量部あたり3重量部添加した。
(4) Preparation of Nonaqueous Electrolyte Solution A nonaqueous electrolyte solution was obtained by dissolving LiPF 6 as a supporting salt at a concentration of 1 mol / L in a mixed solvent containing EC, DMC, and EMC at a volume ratio of 2: 3: 3. . Further, 3 parts by weight of VC per 100 parts by weight of the non-aqueous electrolyte was added to this non-aqueous electrolyte.

(5)円筒型電池の作製
上記で得られた正極、負極および非水電解液を用いて、以下の手順で図1に示す品番18650の円筒型電池を作製した。図1は、円筒型電池の縦断面図である。
まず、フープ状の正極と負極とをそれぞれ所定の長さに切断し、正極5および負極6を得た。正極リード5aの一方の端を正極5の正極リード接続部に接続し、負極リード接続部を介して負極リード6aの一方の端を負極6の負極リード接続部に接続した。正極5と負極6とを、厚み15μmのポリエチレン樹脂製の微多孔膜からなるセパレータ7を介して巻回し、円筒状の電極体を構成した。この電極体を、リング状の上部絶縁板8aと下部絶縁板8bで挟み、これを電池缶1に収容した。
(5) Production of Cylindrical Battery Using the positive electrode, the negative electrode, and the nonaqueous electrolytic solution obtained above, a cylindrical battery having a product number 18650 shown in FIG. 1 was produced by the following procedure. FIG. 1 is a longitudinal sectional view of a cylindrical battery.
First, the hoop-shaped positive electrode and the negative electrode were each cut into predetermined lengths to obtain the positive electrode 5 and the negative electrode 6. One end of the positive electrode lead 5 a was connected to the positive electrode lead connection portion of the positive electrode 5, and one end of the negative electrode lead 6 a was connected to the negative electrode lead connection portion of the negative electrode 6 through the negative electrode lead connection portion. The positive electrode 5 and the negative electrode 6 were wound through a separator 7 made of a microporous film made of polyethylene resin having a thickness of 15 μm to constitute a cylindrical electrode body. The electrode body was sandwiched between a ring-shaped upper insulating plate 8a and a lower insulating plate 8b and accommodated in the battery can 1.

次いで、上記の非水電解液を5g秤量し、電池缶1内に注入した。そして、電池缶1内を133Paに減圧することで非水電解液を電極体に含ませた。正極リード5aの他方の端は電池蓋の裏面に、負極リード6aの他方の端は電池缶1の内底面に、それぞれ溶接した。最後に電池缶1の開口部を、周縁に絶縁パッキン3が配された電池蓋で塞いだ。電池蓋は正極端子を兼ねる封口板2を含む。このようにして、図1に示す円筒型電池を作製した。上記電池作製時において、活物質1-1〜活物質3-14を用いてそれぞれ電池1-1〜電池3-14を得た。   Next, 5 g of the above non-aqueous electrolyte was weighed and injected into the battery can 1. And the non-aqueous electrolyte was included in the electrode body by decompressing the inside of the battery can 1 to 133 Pa. The other end of the positive electrode lead 5a was welded to the back surface of the battery lid, and the other end of the negative electrode lead 6a was welded to the inner bottom surface of the battery can 1. Finally, the opening of the battery can 1 was closed with a battery lid having an insulating packing 3 disposed on the periphery. The battery lid includes a sealing plate 2 that also serves as a positive electrode terminal. In this way, the cylindrical battery shown in FIG. 1 was produced. During the production of the battery, batteries 1-1 to 3-14 were obtained using the active materials 1-1 to 3-14, respectively.

《比較例1》
酸化リチウムと酸化コバルトの混合物をアルミナ製のるつぼに入れ、空気中で900℃に加熱してコバルト酸リチウム(LiCoO2)を得た。これを乳鉢で粉砕して、目開き45μmの篩いを通過した粉末を正極活物質とした。正極活物質にコバルト酸リチウム(LiCoO2)粉末を用いた以外、実施例1と同様の方法により円筒型電池(比較電池)を作製した。LiCoO2は従来から非水電解液二次電池に使用されている代表的な活物質である。
<< Comparative Example 1 >>
A mixture of lithium oxide and cobalt oxide was placed in an alumina crucible and heated to 900 ° C. in air to obtain lithium cobaltate (LiCoO 2 ). This was pulverized in a mortar, and the powder that passed through a sieve having an opening of 45 μm was used as the positive electrode active material. A cylindrical battery (comparative battery) was produced in the same manner as in Example 1 except that lithium cobaltate (LiCoO 2 ) powder was used as the positive electrode active material. LiCoO 2 is a typical active material conventionally used in non-aqueous electrolyte secondary batteries.

[評価]
実施例1および比較例1の各電池を、20℃の環境下で、計算容量(理論容量)に対して120%充電し、電池を過充電状態とした。なお、計算容量とは、正極に含まれる活物質の重量をW(g)、活物質の組成式量をMとしたときに、次式で計算される容量(単位はAh)である。
計算容量=W/M×96500/3600
すなわち100%の計算容量とは、正極活物質に含まれる全てのリチウムが充電反応に利用されたとみなされる計算上の充電容量である。しかし、実際は、充電電流は、正極におけるリチウムの抽出反応(充電反応)のみならず、電解液の分解などの副反応にも費やされる。このため、上記のように計算容量に対して20%過剰に充電した。
過充電状態の各電池を、160℃、190℃、220℃の各温度に維持した恒温槽の中に1時間静置し、そのときの電池の状態を観察した。その結果を表1〜3に示す。
[Evaluation]
Each battery of Example 1 and Comparative Example 1 was charged 120% of the calculated capacity (theoretical capacity) in an environment of 20 ° C., and the battery was overcharged. The calculated capacity is a capacity (unit: Ah) calculated by the following equation, where W (g) is the weight of the active material contained in the positive electrode and M is the composition formula amount of the active material.
Calculation capacity = W / M × 96500/3600
That is, the calculated capacity of 100% is a calculated charge capacity that is considered that all lithium contained in the positive electrode active material is used for the charge reaction. However, in practice, the charging current is consumed not only for the lithium extraction reaction (charging reaction) at the positive electrode but also for side reactions such as decomposition of the electrolyte. For this reason, as described above, the battery was charged in excess of 20% with respect to the calculated capacity.
Each battery in an overcharged state was allowed to stand for 1 hour in a thermostat maintained at 160 ° C., 190 ° C., and 220 ° C., and the state of the battery at that time was observed. The results are shown in Tables 1-3.

なお、表1〜3中の○は、過充電時の電池の発熱が抑制され、電池温度が恒温槽の温度と同等である場合を示し、×は、過充電時の電池の発熱量が大きく、電池温度が大幅に上昇し、電池温度が300℃を超えた場合を示す。
従来の正極活物質を用いた比較電池では、雰囲気温度が160℃以上で電池温度が大幅に上昇した。これに対して、本発明の実施例の電池1-1〜1-11、電池2-1〜電池2-14、および電池3-1〜電池3-14では、雰囲気温度が160℃の場合、過充電時において電池の発熱が抑制され、電池の信頼性が向上した。
In Tables 1 to 3, circles indicate that the battery heat generation during overcharge is suppressed and the battery temperature is equivalent to the temperature of the thermostatic bath, and x indicates that the battery heat generation during overcharge is large. The case where the battery temperature rises significantly and the battery temperature exceeds 300 ° C. is shown.
In a comparative battery using a conventional positive electrode active material, the battery temperature rose significantly when the ambient temperature was 160 ° C. or higher. On the other hand, in the batteries 1-1 to 1-11, the batteries 2-1 to 2-14, and the batteries 3-1 to 3-14 of the examples of the present invention, when the ambient temperature is 160 ° C., The battery heat generation was suppressed during overcharge, and the battery reliability was improved.

表1の電池1-2〜1-6、電池1-8、電池1-11では、雰囲気温度が190℃の場合でも、過充電時において電池の発熱が抑制され、電池の信頼性が向上した。
また、表2および3の電池2-1〜電池2-14および電池3-1〜電池3-14では、雰囲気温度が190℃の場合でも、過充電時において電池の発熱が抑制され、電池の信頼性が向上した。
In the batteries 1-2 to 1-6, the batteries 1-8, and the batteries 1-11 in Table 1, even when the ambient temperature is 190 ° C., the heat generation of the batteries is suppressed during overcharge, and the reliability of the batteries is improved. .
In addition, in the batteries 2-1 to 2-14 and the batteries 3-1 to 3-14 in Tables 2 and 3, even when the ambient temperature is 190 ° C., heat generation of the battery during overcharge is suppressed, Reliability was improved.

本発明の活物質は、過充電により電池温度が上昇しても、負極活物質や非水溶媒の発熱反応を低減することができるため、非水電解液二次電池に好適に用いられる。   Since the active material of the present invention can reduce the exothermic reaction of the negative electrode active material and the nonaqueous solvent even when the battery temperature rises due to overcharging, it is suitably used for a nonaqueous electrolyte secondary battery.

本発明の非水電解液二次電池の一例である円筒型電池の縦断面図である。It is a longitudinal cross-sectional view of the cylindrical battery which is an example of the nonaqueous electrolyte secondary battery of this invention.

符号の説明Explanation of symbols

1 電池ケース
2 封口板
3 絶縁ガスケット
5 正極
5a 正極リード
6 負極
6a 負極リード
7 セパレータ
8a 上部絶縁板
8b 下部絶縁板
DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation gasket 5 Positive electrode 5a Positive electrode lead 6 Negative electrode 6a Negative electrode lead 7 Separator 8a Upper insulating plate 8b Lower insulating plate

Claims (4)

一般式(1):LiFe1−yOF(式中、MはMn、Co、およびNiからなる群より選択される少なくとも1種であり、xおよびyはそれぞれ0≦x≦1および0≦y≦0.5を満たす。)で表され、かつ空間群P42/mnmに属する結晶構造を有するリチウム遷移金属オキシフルオライドであることを特徴とする非水電解液二次電池用活物質。 General formula (1): Li x Fe 1-y M y OF (wherein M is at least one selected from the group consisting of Mn, Co, and Ni, and x and y are each 0 ≦ x ≦ 1 And 0 ≦ y ≦ 0.5), and a lithium transition metal oxyfluoride having a crystal structure belonging to the space group P42 / mnm. material. 一般式(2):LiTi1−yOF (式中、MはMn、Fe、Co、およびNiからなる群より選択される少なくとも1種であり、xおよびyはそれぞれ0≦x≦1および0≦y≦0.5を満たす。)で表され、かつ空間群Pm3−mに属する結晶構造を有するリチウム遷移金属オキシフルオライドであることを特徴とする非水電解液二次電池用活物質。 General formula (2): Li x Ti 1-y M y OF 2 (wherein M is at least one selected from the group consisting of Mn, Fe, Co, and Ni, and x and y are each 0 ≦ x ≦ 1 and 0 ≦ y ≦ 0.5.) and a lithium transition metal oxyfluoride having a crystal structure belonging to the space group Pm3-m. Battery active material. 一般式(3):LiNb1−yOF (式中,MはMn、Fe、Co、およびNiからなる群より選択される少なくとも1種であり、xおよびyはそれぞれ0≦x≦1および0≦y≦0.5を満たす。) で表され、かつ空間群R3cに属する結晶構造を有するリチウム遷移金属オキシフルオライドであることを特徴とする非水電解液二次電池用活物質。 General formula (3): Li x Nb 1-y M y OF 3 (wherein M is at least one selected from the group consisting of Mn, Fe, Co, and Ni, and x and y are each 0 ≦ x ≦ 1 and 0 ≦ y ≦ 0.5.) and a lithium transition metal oxyfluoride having a crystal structure belonging to the space group R3c, for a non-aqueous electrolyte secondary battery Active material. 請求項1〜3のいずれかに記載の活物質を含む電極を備えた非水電解液二次電池。   The nonaqueous electrolyte secondary battery provided with the electrode containing the active material in any one of Claims 1-3.
JP2007232663A 2007-09-07 2007-09-07 Active material for nonaqueous electrolyte secondary battery, and battery using the same Withdrawn JP2009064707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007232663A JP2009064707A (en) 2007-09-07 2007-09-07 Active material for nonaqueous electrolyte secondary battery, and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007232663A JP2009064707A (en) 2007-09-07 2007-09-07 Active material for nonaqueous electrolyte secondary battery, and battery using the same

Publications (1)

Publication Number Publication Date
JP2009064707A true JP2009064707A (en) 2009-03-26

Family

ID=40559106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007232663A Withdrawn JP2009064707A (en) 2007-09-07 2007-09-07 Active material for nonaqueous electrolyte secondary battery, and battery using the same

Country Status (1)

Country Link
JP (1) JP2009064707A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153487A1 (en) * 2011-05-06 2012-11-15 株式会社豊田自動織機 Negative active material for rechargeable lithium ion battery and manufacturing method for same, and rechargeable lithium ion battery and manufacturing method for same
WO2012176907A1 (en) 2011-06-22 2012-12-27 国立大学法人九州大学 Method for producing iron oxyfluoride positive electrode active substance and iron oxyfluoride positive electrode active substance
JP2015128023A (en) * 2013-12-27 2015-07-09 国立大学法人九州大学 Cathode active material for lithium ion battery and method of manufacturing the same
WO2016012851A1 (en) * 2014-07-22 2016-01-28 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2017047015A1 (en) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 Battery
WO2017047016A1 (en) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 Cathode active material and battery
JPWO2017047017A1 (en) * 2015-09-16 2018-07-05 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
JP2018116930A (en) * 2017-01-19 2018-07-26 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
CN111566853A (en) * 2018-01-26 2020-08-21 松下知识产权经营株式会社 Positive electrode material and battery using same
WO2023184274A1 (en) * 2022-03-30 2023-10-05 宁德新能源科技有限公司 Positive electrode active material, electrochemical device and electronic apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153487A1 (en) * 2011-05-06 2012-11-15 株式会社豊田自動織機 Negative active material for rechargeable lithium ion battery and manufacturing method for same, and rechargeable lithium ion battery and manufacturing method for same
JP2012234746A (en) * 2011-05-06 2012-11-29 Toyota Industries Corp Negative electrode active material for lithium ion secondary battery and manufacturing method thereof, as well as lithium ion secondary battery and manufacturing method thereof
WO2012176907A1 (en) 2011-06-22 2012-12-27 国立大学法人九州大学 Method for producing iron oxyfluoride positive electrode active substance and iron oxyfluoride positive electrode active substance
JP2015128023A (en) * 2013-12-27 2015-07-09 国立大学法人九州大学 Cathode active material for lithium ion battery and method of manufacturing the same
WO2016012851A1 (en) * 2014-07-22 2016-01-28 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JPWO2017047017A1 (en) * 2015-09-16 2018-07-05 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
WO2017047016A1 (en) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 Cathode active material and battery
CN107408692A (en) * 2015-09-16 2017-11-28 松下知识产权经营株式会社 Positive active material and battery
WO2017047015A1 (en) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 Battery
JPWO2017047016A1 (en) * 2015-09-16 2018-07-05 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
JPWO2017047015A1 (en) * 2015-09-16 2018-07-05 パナソニックIpマネジメント株式会社 battery
CN107408692B (en) * 2015-09-16 2021-09-17 松下知识产权经营株式会社 Positive electrode active material and battery
JP2018116930A (en) * 2017-01-19 2018-07-26 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
CN111566853A (en) * 2018-01-26 2020-08-21 松下知识产权经营株式会社 Positive electrode material and battery using same
CN111566853B (en) * 2018-01-26 2024-04-19 松下知识产权经营株式会社 Positive electrode material and battery using same
WO2023184274A1 (en) * 2022-03-30 2023-10-05 宁德新能源科技有限公司 Positive electrode active material, electrochemical device and electronic apparatus

Similar Documents

Publication Publication Date Title
JP5095098B2 (en) Nonaqueous electrolyte secondary battery
JP5132941B2 (en) Electrode additive coated with conductive material and lithium secondary battery comprising the same
JP4022889B2 (en) Electrolyte and battery
JP7116311B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
JP4952034B2 (en) Nonaqueous electrolyte secondary battery
JP2009064707A (en) Active material for nonaqueous electrolyte secondary battery, and battery using the same
US20110281165A1 (en) Non-aqueous electrolyte secondary battery
JP5099168B2 (en) Lithium ion secondary battery
JP2006286599A (en) Anode for nonaqueous secondary battery
JP2008243810A (en) Nonaqueous electrolyte secondary battery
JP2004342500A (en) Non-aqueous electrolyte secondary battery and battery charge/discharge system
JP2005267940A (en) Nonaqueous electrolyte battery
JP2008016414A (en) Non-aqueous electrolyte secondary battery
JP2009059514A (en) Negative electrode and battery
WO2011117992A1 (en) Active material for battery, and battery
KR100922685B1 (en) Cathode active material for lithium secondary battery
JP2011113869A (en) Positive electrode active material for lithium secondary battery and its manufacturing method
JP2006244991A (en) Non-aqueous secondary battery
US20110250506A1 (en) Non-aqueous electrolyte secondary battery
JP2021073666A (en) Cathode active material and cell
JP5017010B2 (en) Lithium secondary battery
WO2015045254A1 (en) Lithium-titanium compound oxide
JP4746846B2 (en) Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery
KR20240017067A (en) Battery cathode material, manufacturing method thereof, and application thereof
JP2005093238A (en) Electrolyte and battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100805

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120925