JP2009063430A - Two-axis capacitive acceleration sensor, and two-axis capacitive accelerometer - Google Patents

Two-axis capacitive acceleration sensor, and two-axis capacitive accelerometer Download PDF

Info

Publication number
JP2009063430A
JP2009063430A JP2007231601A JP2007231601A JP2009063430A JP 2009063430 A JP2009063430 A JP 2009063430A JP 2007231601 A JP2007231601 A JP 2007231601A JP 2007231601 A JP2007231601 A JP 2007231601A JP 2009063430 A JP2009063430 A JP 2009063430A
Authority
JP
Japan
Prior art keywords
axis
electrode
movable electrode
fixed electrode
acceleration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007231601A
Other languages
Japanese (ja)
Inventor
Shintaro Ichikawa
真太郎 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2007231601A priority Critical patent/JP2009063430A/en
Publication of JP2009063430A publication Critical patent/JP2009063430A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/082Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for two degrees of freedom of movement of a single mass

Landscapes

  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two-axis capacitive acceleration sensor that can suppress the occurrence of another axis sensitivity without enlarging the size of the sensor, and has high linearity. <P>SOLUTION: The two-axis capacitive acceleration sensor includes a substrate 110 where one or more X-axis fixed electrodes 111 and one or more Y-axis fixed electrodes 112 are formed on the same plate surface, and a structure 120. The structure 120 has a frame 121 that is facedly arranged to the substrate 110 in parallel and is disposed at the outer rim, an X-axis movable electrode 123 that is displaceably supported in the X axis direction by a plurality of beams 122 inside the flame 121, and establishes a predetermined relation between the displacement in the X axis direction and the variation of the area facing the X-axis fixed electrodes 111, and a Y-axis movable electrode 125 that is displaceably supported in the Y axis direction by a plurality of beams 124 inside the X-axis movable electrode 123, and establishes a predetermined relation between the displacement in the Y axis direction and the variation of the area facing the Y-axis fixed electrodes 112. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、2軸方向の加速度を、対向する電極対の相対的な変位による電極間の静電容量の変化からそれぞれ検知する2軸静電容量型加速度センサ、及びそれを用いた2軸静電容量型加速度計に関する。   The present invention relates to a biaxial capacitive acceleration sensor for detecting biaxial acceleration from changes in capacitance between electrodes due to relative displacement of opposing electrode pairs, and biaxial static using the same. The present invention relates to a capacitive accelerometer.

従来から知られている静電容量型の加速度センサを大きく分けると、対向する電極の間隔の変化により検知する方式と、電極の対向する面積の変化により検知する方式とに分けられる。   Conventionally known capacitance type acceleration sensors can be broadly divided into a detection method based on a change in the distance between opposing electrodes and a detection method based on a change in the opposing area of the electrodes.

図13は、電極の間隔の変化により加速度を検知する静電容量型加速度センサ10の構成例を示す断面図である。静電容量型加速度センサ10は、基板11と、基板11に固定された固定電極12と、可動電極13と、基板11に対して変位自在に可動電極13を支持する梁14とから構成される。固定電極12と可動電極13とで平行平板コンデンサが形成され、そこに生じる静電容量Cは以下の式で表すことができる。   FIG. 13 is a cross-sectional view illustrating a configuration example of the capacitive acceleration sensor 10 that detects acceleration based on a change in electrode spacing. The capacitive acceleration sensor 10 includes a substrate 11, a fixed electrode 12 fixed to the substrate 11, a movable electrode 13, and a beam 14 that supports the movable electrode 13 so as to be displaceable with respect to the substrate 11. . A parallel plate capacitor is formed by the fixed electrode 12 and the movable electrode 13, and the capacitance C generated there can be expressed by the following equation.

C=ε・S/d (1)
ここで、εは固定電極12と可動電極13の間の空間の誘電率、Sは固定電極12と可動電極13との間の対向面積、dは固定電極12と可動電極13との間の距離である。図13に示す方向の加速度が静電容量型加速度センサ10に加わると梁14が撓み、可動電極13が変位して距離dに変化が生じる。従って、可動電極13の変位を静電容量の変化として検知することにより、図13に示す方向の加速度を求めることができる。このような検知方式を採用している公知技術は、特許文献1、2等で開示されている。
C = ε · S / d (1)
Here, ε is the dielectric constant of the space between the fixed electrode 12 and the movable electrode 13, S is the facing area between the fixed electrode 12 and the movable electrode 13, and d is the distance between the fixed electrode 12 and the movable electrode 13. It is. When acceleration in the direction shown in FIG. 13 is applied to the capacitive acceleration sensor 10, the beam 14 bends, the movable electrode 13 is displaced, and the distance d changes. Therefore, the acceleration in the direction shown in FIG. 13 can be obtained by detecting the displacement of the movable electrode 13 as a change in capacitance. Known techniques that employ such a detection method are disclosed in Patent Documents 1 and 2 and the like.

しかし、電極の間隔の変化から検知する方式は、式(1)からわかるように距離dの変化が小さい場合でも静電容量Cを感度良く検知できるという利点がある反面、静電容量Cが1/dに比例することから直線性が悪い。   However, the detection method based on the change in the distance between the electrodes has an advantage that the capacitance C can be detected with high sensitivity even when the change in the distance d is small as can be seen from the equation (1). Linearity is poor because it is proportional to / d.

一方、電極の対向する面積の変化により検知する方式は、変位量が小さい場合の感度については電極間隔の変化から検知する方式に比べて劣るものの、静電容量Cが対向面積Sに比例するため直線性が良い。図14(a)は、電極の対向する面積の変化により加速度を検知する静電容量型加速度センサ20の構成例を示す平面図であり、図14(b)は図14(a)のa−a´の部分の断面図である。静電容量型加速度センサ20は、フレーム21と、固定電極22と、錘23と、錘23と一体的に変位する可動電極24と、フレーム21に対して変位自在に錘23を支持する梁25とから構成される。図14(a)に示す方向の加速度が静電容量型加速度センサ20に加わると、可動電極24が錘23とともに振動して固定電極22と可動電極24とが対向する長さLに変位が生じる。そして電極の対向面積Sは、S=L×H(Hは電極の高さ)であり、Lの変位に比例して変化することから、このSの変化を静電容量の変化として検知することにより、変位方向の加速度を求めることができる。このような検知方式を採用している公知技術は、特許文献3、4等で開示されている。
特開2001−4658公報 特開2002−365306公報 特開2000−266777公報 特開平9−89927公報
On the other hand, the detection method based on the change in the area where the electrodes face each other is inferior to the detection method based on the change in the electrode interval in terms of sensitivity when the displacement is small, but the capacitance C is proportional to the opposed area S. Good linearity. FIG. 14A is a plan view showing a configuration example of a capacitive acceleration sensor 20 that detects acceleration based on a change in the area where the electrodes face each other, and FIG. 14B is a plan view of FIG. It is sectional drawing of the part of a '. The capacitive acceleration sensor 20 includes a frame 21, a fixed electrode 22, a weight 23, a movable electrode 24 that is integrally displaced with the weight 23, and a beam 25 that supports the weight 23 so as to be displaceable with respect to the frame 21. It consists of. When acceleration in the direction shown in FIG. 14 (a) is applied to the capacitive acceleration sensor 20, the movable electrode 24 vibrates with the weight 23 and a displacement occurs in the length L where the fixed electrode 22 and the movable electrode 24 face each other. . The opposing area S of the electrode is S = L × H (H is the height of the electrode), and changes in proportion to the displacement of L. Therefore, this change in S is detected as a change in capacitance. Thus, the acceleration in the displacement direction can be obtained. Known techniques employing such a detection method are disclosed in Patent Documents 3 and 4 and the like.
JP 2001-4658 A JP 2002-365306 A JP 2000-266777 A Japanese Patent Laid-Open No. 9-89927

図14の静電容量型加速度センサ20は、電極の対向する面積の変化により1軸方向の加速度を検知する構成である。この構成を2軸方向の検知を行う2軸静電容量型加速度センサ30に応用した場合、例えば図15(a)のような構成となる。特許文献4で開示されている構成もこれに類するものである。しかし、図15(a)のような構成の場合、例えば図15(b)に示すようにX軸方向に変位が生じた時、X軸方向検知部31において固定電極と可動電極とが対向する長さにΔLの変位が生じるだけでなく、可動電極が一体化されているため、Y軸方向検知部32において固定電極と可動電極との間隔にΔdの変位も生じてしまう。そのため、実際にはY軸方向の変位が無いにもかかわらず、Y軸方向にも加速度があると誤検知してしまう。また、Y軸方向の変位に対しても、同様にX軸方向の加速度の誤検知が生じうる。   The capacitive acceleration sensor 20 in FIG. 14 is configured to detect acceleration in one axial direction based on a change in the facing area of electrodes. When this configuration is applied to a biaxial capacitive acceleration sensor 30 that performs biaxial detection, for example, the configuration is as shown in FIG. The configuration disclosed in Patent Document 4 is similar to this. However, in the case of the configuration shown in FIG. 15A, for example, when the displacement occurs in the X-axis direction as shown in FIG. 15B, the fixed electrode and the movable electrode face each other in the X-axis direction detection unit 31. Not only the displacement of ΔL occurs in the length, but also the movable electrode is integrated, so that a displacement of Δd also occurs in the interval between the fixed electrode and the movable electrode in the Y-axis direction detection unit 32. Therefore, although there is actually no displacement in the Y-axis direction, it is erroneously detected that there is also an acceleration in the Y-axis direction. Similarly, misdetection of the acceleration in the X-axis direction can occur with respect to the displacement in the Y-axis direction.

更に、このような他軸感度の発生の問題は、電極の間隔の変化により加速度を検知する方式においても生じうることであり、特許文献2で開示されている構成のようにX軸方向用のセンサとY軸方向用のセンサを分離するという対処も考えられる。しかし、単純に分離すればセンサのサイズが2倍になり、分離しつつ同じサイズに収めようとすれば、各軸の検知部に充てられるスペースが1/2になってしまうため、その分電極を減らさざるを得ず、その結果、感度が損なわれる。   Furthermore, such a problem of the occurrence of other-axis sensitivity can also occur in a method of detecting acceleration by a change in the distance between the electrodes, as in the configuration disclosed in Patent Document 2, A countermeasure of separating the sensor and the sensor for the Y-axis direction is also conceivable. However, if the sensor is simply separated, the size of the sensor is doubled. If the sensor is separated and stored in the same size, the space allocated to the detection unit of each axis will be halved. Must be reduced, resulting in a loss of sensitivity.

本発明の目的は、センサのサイズを拡大することなく、他軸感度の発生を抑えることができ、かつ直線性のよい2軸静電容量型加速度センサ、及びそれを用いた2軸静電容量型加速度計を実現することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a biaxial capacitive acceleration sensor having good linearity and capable of suppressing the occurrence of other-axis sensitivity without increasing the size of the sensor, and a biaxial capacitive using the same. The realization of a type accelerometer.

本発明の2軸静電容量型加速度センサは、1以上のX軸固定電極と、1以上のY軸固定電極とが同一の板面に形成された基板と、当該基板と平行に対向して配置され、外周縁に設けられたフレームと、当該フレームの内側に複数の梁によりX軸方向に変位自在に支持され、X軸方向への変位と、X軸固定電極と対向する面積の変化との間にあらかじめ定めた関係が成立するX軸可動電極と、X軸可動電極の内側に、複数の梁によりY軸方向に変位自在に支持され、Y軸方向への変位と、Y軸固定電極と対向する面積の変化との間にあらかじめ定めた関係が成立するY軸可動電極とを有する構造体とを備える。   The biaxial capacitive acceleration sensor of the present invention includes a substrate on which one or more X-axis fixed electrodes and one or more Y-axis fixed electrodes are formed on the same plate surface, in parallel with the substrate. A frame disposed on the outer peripheral edge, and supported by a plurality of beams inside the frame so as to be displaceable in the X-axis direction; displacement in the X-axis direction; and change in area facing the X-axis fixed electrode; An X-axis movable electrode that establishes a predetermined relationship between them, and is supported inside the X-axis movable electrode so as to be displaceable in the Y-axis direction by a plurality of beams, and the displacement in the Y-axis direction and the Y-axis fixed electrode And a structure having a Y-axis movable electrode in which a predetermined relationship is established between the facing area and the change in the facing area.

平行平板コンデンサが、X軸固定電極とX軸可動電極、及びY軸固定電極とY軸可動電極とでそれぞれ形成され、X軸方向、Y軸方向の加速度が加わると、X軸可動電極、Y軸可動電極それぞれに変位が生じる。そして、その変位を静電容量の変化として検知する。   A parallel plate capacitor is formed of an X-axis fixed electrode and an X-axis movable electrode, and a Y-axis fixed electrode and a Y-axis movable electrode, respectively. When acceleration in the X-axis direction and the Y-axis direction is applied, the X-axis movable electrode, Y A displacement occurs in each of the shaft movable electrodes. The displacement is detected as a change in capacitance.

本発明によれば、センサのサイズを拡大することなく他軸感度の発生を抑えることができ、かつ直線性のよい2軸静電容量型加速度センサ、及びそれを用いた2軸静電容量型加速度計を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of the sensitivity of another axis | shaft can be suppressed without enlarging the size of a sensor, and the 2-axis electrostatic capacitance type acceleration sensor with good linearity, and a biaxial electrostatic capacitance type using the same An accelerometer can be realized.

〔第1実施形態〕
図1は、本発明の2軸静電容量型加速度センサ100の構成例の分解平面図である。 2軸静電容量型加速度センサ100は、基板110と構造体120とから構成され、 図1の(a)(b)は2軸静電容量型加速度センサ100をそれぞれ基板110、構造体120に分解したものである。また、図2(a)は2軸静電容量型加速度センサ100の斜視図、 図2(b)は分解斜視図、図3(a)は平面図、(b)(c)はそれぞれ図3(a)のa−a´断面図、b−b´断面図である。
[First Embodiment]
FIG. 1 is an exploded plan view of a configuration example of a biaxial capacitive acceleration sensor 100 of the present invention. The biaxial capacitive acceleration sensor 100 includes a substrate 110 and a structure 120. FIGS. 1A and 1B show the biaxial capacitive acceleration sensor 100 as a substrate 110 and a structure 120, respectively. It has been disassembled. 2A is a perspective view of the biaxial capacitive acceleration sensor 100, FIG. 2B is an exploded perspective view, FIG. 3A is a plan view, and FIGS. 3B and 3C are FIG. It is aa 'sectional drawing of (a), and bb' sectional drawing.

基板110は、例えばガラス基板が用いられ、板面には1以上のX軸固定電極111と1以上のY軸固定電極112とが形成される。   For example, a glass substrate is used as the substrate 110, and one or more X-axis fixed electrodes 111 and one or more Y-axis fixed electrodes 112 are formed on the plate surface.

構造体120は、例えばSOIウエハで作製され、その各部分は、外周縁に設けられたフレーム121と、当該フレームの内側に複数の梁122によりX軸方向に変位自在に支持され、X軸方向への変位と、X軸固定電極と対向する面積の変化との間にあらかじめ定めた関係が成立するX軸可動電極123と、X軸可動電極123の内側に、複数の梁124によりY軸方向に変位自在に支持され、Y軸方向への変位と、Y軸固定電極と対向する面積の変化との間にあらかじめ定めた関係が成立するY軸可動電極125とから構成される。このように、X軸可動電極123にY軸可動電極125が内包されるジンバル構造とすることでセンササイズを小型化することができる。構造体120は、基板110と平行に対向し、X軸固定電極111及びY軸固定電極112とそれぞれコンデンサを形成するように接合される。なお、梁122と梁124を同一の形状とすると、X軸可動電極123はY軸可動電極125を内包するため変位のしやすさが異なり、その結果、感度が等しくならない。X軸方向の加速度に対する感度とY軸方向の加速度に対する感度とを等しくしたい場合には、X軸方向の加速度によるX軸可動電極123の変位のしやすさと、Y軸方向の加速度によるY軸可動電極125の変位のしやすさとが同じになるようにすればよく、例えば、梁124のX軸方向の長さを梁122のY軸方向の長さより長くする。また、Z軸方向への加速度に対する感度の発生を抑えるため、梁122はX軸方向の厚さと比べZ軸方向の長さが十分に長い形状とすることが望ましい。具体的には、梁の変位のしにくさは一般に梁の厚みの3乗に比例することから、例えばZ軸方向の長さをX軸方向の厚さの10倍にすると、Z軸方向にはX軸方向に比べ1000倍動きにくくすることができる。同様に、梁124についてもY軸方向の厚さと比べZ軸方向の長さを十分に長くすることでZ軸方向に動きにくくすることができる。   The structure 120 is made of, for example, an SOI wafer, and each part thereof is supported by a frame 121 provided on the outer peripheral edge and a plurality of beams 122 inside the frame so as to be displaceable in the X-axis direction. The X-axis movable electrode 123 in which a predetermined relationship is established between the displacement to the X-axis and the change in the area facing the X-axis fixed electrode, and the X-axis movable electrode 123 inside the Y-axis direction by a plurality of beams 124. And a Y-axis movable electrode 125 in which a predetermined relationship is established between the displacement in the Y-axis direction and the change in the area facing the Y-axis fixed electrode. Thus, the sensor size can be reduced by using a gimbal structure in which the Y-axis movable electrode 125 is included in the X-axis movable electrode 123. The structure 120 faces the substrate 110 in parallel and is joined to the X-axis fixed electrode 111 and the Y-axis fixed electrode 112 so as to form capacitors. If the beam 122 and the beam 124 have the same shape, the X-axis movable electrode 123 includes the Y-axis movable electrode 125, so that the ease of displacement differs, and as a result, the sensitivity is not equal. When it is desired to make the sensitivity to the acceleration in the X-axis direction equal to the sensitivity to the acceleration in the Y-axis direction, the ease of displacement of the X-axis movable electrode 123 due to the acceleration in the X-axis direction and the Y-axis movable due to the acceleration in the Y-axis direction. For example, the length of the beam 124 in the X-axis direction is longer than the length of the beam 122 in the Y-axis direction. In order to suppress the occurrence of sensitivity to acceleration in the Z-axis direction, it is desirable that the beam 122 has a shape that is sufficiently longer in the Z-axis direction than the thickness in the X-axis direction. Specifically, since the difficulty of displacement of the beam is generally proportional to the cube of the thickness of the beam, for example, if the length in the Z-axis direction is 10 times the thickness in the X-axis direction, Can be made 1000 times harder to move than in the X-axis direction. Similarly, the beam 124 can be made difficult to move in the Z-axis direction by sufficiently increasing the length in the Z-axis direction compared to the thickness in the Y-axis direction.

構造体120は全体が接地電位であり、その構成部分であるX軸可動電極123、Y軸可動電極125は、それぞれX軸固定電極111、Y軸固定電極112と対向する部分においてコンデンサを構成する。2軸静電容量型加速度センサ100にX軸方向、Y軸方向の加速度が加わると、各可動電極の質量に作用して慣性力を生じ、X軸可動電極123、Y軸可動電極125はそれぞれ−X軸方向、−Y軸方向に変位する。本発明においては、この変位により固定電極と可動電極との対向面積を変化させて静電容量を変化させる。対向面積を変化させる電極形状の形成方法としては、例えば図1に示すようにX軸可動電極123に穴126を、Y軸可動電極125に穴127を適切な位置に開ける方法が考えられる。具体的には、各可動電極が変位する範囲において、図3に示すように各穴の一部が固定電極と対向する位置に穴を開ける。このような位置に穴を開けることで、図4(b)に示すように固定電極が穴と対向する部分が大きくなる方向に可動電極が変位した時は、固定電極と可動電極との対向面積が小さくなり、図4(c)に示すように固定電極が穴と対向する部分が小さくなる方向に可動電極が変位した時は、固定電極と可動電極との対向面積が大きくなるというように変化させることができる。また、穴を開ける以外にも、例えば図5に示すように可動電極の外形を変えることによっても、上述の穴を開けた場合と同様な原理で対向面積を変化させることができる。   The entire structure 120 has a ground potential, and the X-axis movable electrode 123 and the Y-axis movable electrode 125, which are constituent parts thereof, constitute a capacitor in a portion facing the X-axis fixed electrode 111 and the Y-axis fixed electrode 112, respectively. . When acceleration in the X-axis direction and the Y-axis direction is applied to the biaxial capacitive acceleration sensor 100, an inertial force is generated by acting on the mass of each movable electrode, and the X-axis movable electrode 123 and the Y-axis movable electrode 125 are respectively Displacement in −X axis direction and −Y axis direction. In the present invention, the capacitance is changed by changing the facing area between the fixed electrode and the movable electrode by this displacement. As an electrode shape forming method for changing the facing area, for example, as shown in FIG. 1, a method of forming a hole 126 in the X-axis movable electrode 123 and a hole 127 in the Y-axis movable electrode 125 at appropriate positions is conceivable. Specifically, in the range where each movable electrode is displaced, as shown in FIG. 3, a part of each hole is formed at a position facing the fixed electrode. When the movable electrode is displaced in such a direction that the portion where the fixed electrode faces the hole becomes large as shown in FIG. 4 (b), by opening the hole at such a position, the facing area between the fixed electrode and the movable electrode When the movable electrode is displaced in a direction in which the portion where the fixed electrode faces the hole becomes smaller as shown in FIG. 4C, the area where the fixed electrode and the movable electrode face each other is increased. Can be made. In addition to making a hole, for example, by changing the outer shape of the movable electrode as shown in FIG. 5, the facing area can be changed on the same principle as when the hole is made.

各軸可動電極の変位により生じる静電容量の変化から加速度を求めるためには、各軸可動電極の各軸方向への変位と、各軸固定電極と各軸可動電極とが対向する面積の変化との間にあらかじめ定めた関係、基本的には比例関係が成立するように穴の位置や大きさを決める必要がある。例えば、図1に示すように、X軸固定電極111についてはY軸方向を長手方向とする矩形とし、X軸可動電極123にはX軸固定電極111と同数のY軸方向を長手方向とする矩形の穴126を、X軸可動電極123が変位する範囲においてそれぞれの穴126の一部がそれぞれのX軸固定電極111と1対1に対向し、かつX軸可動電極123の変位により生じるX軸固定電極111と穴126との対向部分の面積の増減の方向がすべての当該穴126について同じであるように、位置・大きさを決めて開ける。また、Y軸固定電極112についてもX軸方向を長手方向とする矩形とし、Y軸可動電極125にはY軸固定電極112と同数のX軸方向を長手方向とする矩形の穴127を、Y軸可動電極125が変位する範囲においてそれぞれの穴127の一部がそれぞれのY軸固定電極112と1対1に対向し、かつY軸可動電極125の変位により生じるY軸固定電極112と穴127との対向部分の面積の増減の方向がすべての当該穴127について同じであるように、位置・大きさを決めて開ける。このように固定電極と穴を共に矩形とし、可動電極が変位する範囲においてそれぞれの穴の一部がそれぞれの固定電極と1対1で対向し、かつ可動電極の変位により生じる固定電極と穴との対向部分の面積の増減の方向がすべての当該穴について同じになるように穴の位置・大きさを決めることで、可動電極の変位と、固定電極と可動電極とが対向する面積の変化との間で比例関係を持たせることができる。   In order to obtain the acceleration from the change in capacitance caused by the displacement of each axis movable electrode, the displacement of each axis movable electrode in each axis direction and the change in the area where each axis fixed electrode and each axis movable electrode face each other It is necessary to determine the position and size of the holes so that a predetermined relationship, basically a proportional relationship, is established. For example, as shown in FIG. 1, the X-axis fixed electrode 111 has a rectangular shape with the Y-axis direction as the longitudinal direction, and the X-axis movable electrode 123 has the same number of Y-axis directions as the X-axis fixed electrode 111 as the longitudinal direction. In the range where the X-axis movable electrode 123 is displaced, a part of each of the holes 126 faces the X-axis fixed electrode 111 in a one-to-one relationship and the X-axis movable electrode 123 is displaced. The positions and sizes are determined and opened so that the direction of increase / decrease in the area of the facing portion between the shaft fixing electrode 111 and the hole 126 is the same for all the holes 126. Also, the Y-axis fixed electrode 112 has a rectangular shape whose longitudinal direction is the X-axis direction, and the Y-axis movable electrode 125 has a rectangular hole 127 whose longitudinal direction is the same number of X-axis directions as the Y-axis fixed electrode 112. In a range in which the movable shaft electrode 125 is displaced, a part of each hole 127 faces the Y-axis fixed electrode 112 on a one-to-one basis, and the Y-axis fixed electrode 112 and the hole 127 generated by the displacement of the Y-axis movable electrode 125. The positions and sizes of the holes 127 are determined and opened so that the direction of increase / decrease of the area of the facing portion is the same for all the holes 127. In this way, both the fixed electrode and the hole are rectangular, and within a range in which the movable electrode is displaced, a part of each hole is opposed to each fixed electrode on a one-to-one basis, and the fixed electrode and the hole generated by the displacement of the movable electrode By deciding the position and size of the hole so that the direction of increase / decrease of the area of the opposing part is the same for all the holes, the displacement of the movable electrode and the change of the area where the fixed electrode and the movable electrode face each other Can have a proportional relationship.

固定電極と穴の一部とが1対1で対向している場合、固定電極及び穴の個数分だけコンデンサが形成されることになる。例えば、図6(a)のように固定電極と穴がそれぞれ1個の場合は、固定電極と可動電極とが対向しているLの幅の部分に1個のコンデンサが形成される。そして、可動電極に図6(b)のようにΔLの変位が生じた時、電極の長手方向の長さをMとすると、変位による静電容量の変化量ΔCは式(1)より次のように求められる。   When the fixed electrode and a part of the hole face each other on a one-to-one basis, capacitors corresponding to the number of the fixed electrode and the hole are formed. For example, as shown in FIG. 6A, in the case where there is one fixed electrode and one hole, one capacitor is formed in a portion of L width where the fixed electrode and the movable electrode face each other. When the displacement of ΔL occurs in the movable electrode as shown in FIG. 6B, if the length of the electrode in the longitudinal direction is M, the amount of change in capacitance ΔC due to the displacement is represented by the following equation (1). Asking.

ΔC=ε・S/d=ε・ΔL・M/d (2)
一方、固定電極及び穴を細かく分割した場合、例えば図6(c)のように各4個ずつとした場合、変位ΔLによる静電容量の変化量ΔC´は次のように求められる。
ΔC = ε · S / d = ε · ΔL · M / d (2)
On the other hand, when the fixed electrode and the hole are finely divided, for example, when there are four each as shown in FIG. 6C, the change amount ΔC ′ of the capacitance due to the displacement ΔL can be obtained as follows.

ΔC´=ε・4ΔL・M/d=4ΔC (3)
このように、固定電極及び穴を細かく分割して数を多くすることで、同じ変位量でも静電容量の変化をより大きく得ることができる。
ΔC ′ = ε · 4ΔL · M / d = 4ΔC (3)
As described above, by dividing the fixed electrode and the hole finely to increase the number, the change in the capacitance can be obtained even with the same amount of displacement.

以上のような構成により、センサのサイズを拡大することなくX軸方向のセンシングの際のY軸方向の感度の発生を抑えることができ、かつ直線性のよい2軸静電容量型加速度センサを実現することができる。   With the configuration as described above, it is possible to suppress the generation of sensitivity in the Y-axis direction during sensing in the X-axis direction without increasing the size of the sensor, and to provide a highly linear biaxial capacitive acceleration sensor. Can be realized.

〔第2実施形態〕
第1実施形態の構成においては、Y軸可動電極125がX軸可動電極123の内側にあるため、Y軸方向のセンシングの際にはX軸方向の感度の発生を抑えることができるが、X軸方向のセンシングの際にはY軸方向の感度が発生する場合がある。例えば、Y軸固定電極112とY軸可動電極125の長手方向の長さが同じであり、無変位時に両者が図7(a-1)に示すように対向している場合、X軸可動電極123に変位が生じると、X軸可動電極123の内側で梁124を介して一体化しているY軸可動電極125も図7(a-2)に示すように変位する。その結果、図7(a-2)に示すように対向面積が増加し、Y軸方向に変位が生じていない時にもY軸固定電極112とY軸可動電極125との間の静電容量が変化してしまう。
[Second Embodiment]
In the configuration of the first embodiment, since the Y-axis movable electrode 125 is inside the X-axis movable electrode 123, the occurrence of sensitivity in the X-axis direction can be suppressed during sensing in the Y-axis direction. When sensing in the axial direction, sensitivity in the Y-axis direction may occur. For example, when the Y-axis fixed electrode 112 and the Y-axis movable electrode 125 have the same length in the longitudinal direction and are opposed to each other as shown in FIG. When displacement occurs in 123, the Y-axis movable electrode 125 integrated inside the X-axis movable electrode 123 via the beam 124 is also displaced as shown in FIG. 7 (a-2). As a result, as shown in FIG. 7A-2, the facing area is increased, and the capacitance between the Y-axis fixed electrode 112 and the Y-axis movable electrode 125 is increased even when no displacement occurs in the Y-axis direction. It will change.

そこで、第2実施形態の構成は、X軸方向への変位量を考慮して、Y軸固定電極112の長手方向の長さをY軸可動電極125の穴127の長手方向の長さより長くするものである。具体的には、X軸方向への変位が生じてもY軸固定電極112とY軸可動電極125との間の静電容量が変化しないようにすればよいことから、X軸可動電極123が両方向にそれぞれ長さaずつ可動である場合、図7(b)に示すようにY軸固定電極112の長手方向の長さをY軸可動電極125の穴127の長手方向の長さより両側に長さa以上ずつ合計2×aの長さ以上長くする。このように構成することで、図7(b)に示すようにX軸可動電極123の変位の有無にかかわらず穴にかからない部分の長さを一定長(2×a)に保つことができるため、X軸方向への変位によるY軸固定電極112とY軸可動電極125との間の静電容量の変化の発生を防ぐことができる。   Therefore, in the configuration of the second embodiment, the length in the longitudinal direction of the Y-axis fixed electrode 112 is made longer than the length in the longitudinal direction of the hole 127 of the Y-axis movable electrode 125 in consideration of the amount of displacement in the X-axis direction. Is. Specifically, since the electrostatic capacitance between the Y-axis fixed electrode 112 and the Y-axis movable electrode 125 should not be changed even if the displacement in the X-axis direction occurs, the X-axis movable electrode 123 is When the length a is movable in both directions, the longitudinal length of the Y-axis fixed electrode 112 is longer on both sides than the longitudinal length of the hole 127 of the Y-axis movable electrode 125 as shown in FIG. The total length is increased by at least 2 × a. With this configuration, as shown in FIG. 7B, the length of the portion that does not reach the hole can be kept constant (2 × a) regardless of whether or not the X-axis movable electrode 123 is displaced. Thus, it is possible to prevent a change in capacitance between the Y-axis fixed electrode 112 and the Y-axis movable electrode 125 due to the displacement in the X-axis direction.

なお、Y軸可動電極125の穴127の長手方向の長さが、Y軸固定電極112の長手方向の長さよりX軸可動電極123の可動長以上に長い場合は、X軸可動電極123の変位が生じても対向部分の面積の変化は生じない。従って、このような場合はY軸固定電極112とY軸可動電極125との間の静電容量は一定となるため、Y軸固定電極112の長手方向の長さを上記のように長くすることは不要である。   When the longitudinal length of the hole 127 of the Y-axis movable electrode 125 is longer than the longitudinal length of the Y-axis fixed electrode 112, the displacement of the X-axis movable electrode 123 is longer than the movable length of the X-axis movable electrode 123. Even if this occurs, the area of the opposing portion does not change. Therefore, in such a case, since the electrostatic capacitance between the Y-axis fixed electrode 112 and the Y-axis movable electrode 125 is constant, the longitudinal length of the Y-axis fixed electrode 112 is increased as described above. Is unnecessary.

以上のように、第2実施形態の構成にすることにより、X軸方向の加速度に対してもY軸方向の加速度に対しても他軸感度の発生を抑えることができる。   As described above, with the configuration of the second embodiment, it is possible to suppress the occurrence of other-axis sensitivity for both the X-axis direction acceleration and the Y-axis direction acceleration.

〔第3実施形態〕
各軸可動電極の各軸方向への変位と、各軸固定電極と各軸可動電極とが対向する面積の変化との間に比例関係を成立させるために、可動電極が変位する範囲において可動電極の各穴の一部が各固定電極と1対1で対向するように穴を開ける際、図8(a)に示すように無変位時に穴が固定電極とわずかの長さしか対向していない場合、例えば図面上、可動電極が固定電極の左端を超えて変位すると、対向面積は増加から減少(又は一定値)に転じるため、比例関係が損なわれる。従って、このような位置関係で穴を開けた場合に比例関係を成立させるためには、図8(a)に示すように許容変位幅が小さくなってしまい、加速度の検出範囲を狭めてしまう。そこで、第3実施形態では、図8(b)に示すように無変位時に穴が固定電極と略半分の長さだけ対向するように穴を開ける。このような位置関係で穴を開けることで、図8(b)に示すように固定電極の全幅を可動電極の許容変位幅にできるため、加速度の検出範囲を大きくすることができる。
[Third Embodiment]
In order to establish a proportional relationship between the displacement of each axis movable electrode in each axial direction and the change in the area where each axis fixed electrode and each axis movable electrode face each other, the movable electrode is within the range in which the movable electrode is displaced. When a hole is drilled so that a part of each hole faces the fixed electrode on a one-to-one basis, as shown in FIG. 8 (a), the hole faces the fixed electrode only slightly when no displacement occurs. In this case, for example, when the movable electrode is displaced beyond the left end of the fixed electrode in the drawing, the opposing area changes from increasing to decreasing (or a constant value), and thus the proportional relationship is impaired. Therefore, in order to establish a proportional relationship when a hole is drilled in such a positional relationship, the allowable displacement width becomes small as shown in FIG. 8A, and the acceleration detection range is narrowed. Therefore, in the third embodiment, as shown in FIG. 8 (b), the hole is formed such that the hole faces the fixed electrode by approximately half the length when there is no displacement. By drilling holes in such a positional relationship, the entire width of the fixed electrode can be made the allowable displacement width of the movable electrode as shown in FIG. 8B, so that the acceleration detection range can be increased.

〔第4実施形態〕
第1実施形態から第3実施形態のいずれかに記載の2軸静電容量型加速度センサ100を用いて2軸静電容量型加速度計200を構成することができる。図9は、本発明の2軸静電容量型加速度計200の構成例である。2軸静電容量型加速度計200は、2軸静電容量型加速度センサ100とX軸信号処理部201とY軸信号処理部202とから構成される。X軸信号処理部201とY軸信号処理部202は、図9に示すように接続される静電容量がX軸静電容量であるかY軸静電容量であるかという違いがある以外は全く同じ構成である。以下、各信号処理部の動作原理を説明する。各信号処理部は、測定対象である各軸静電容量とオフセット用容量素子にそれぞれ抵抗素子を負荷した1対のCR遅延回路を構成している。入力端子に与えられた矩形波は各軸静電容量側とオフセット用容量素子側の2つの経路に分岐されて、EX−OR素子で再び合流する。この時、2つの経路でそれぞれの遅延回路の時定数によって定まる位相差(t3−t1)が生じ、この位相差は図10に示すように図9の端点X1、X2における信号波形として表れる。また、EX−OR素子の端子Yには、入力端X1、X2の信号の位相差に対応する幅のパルス波形が図10に示すように表れる。つまり、各軸静電容量とオフセット用容量の差分の変化に伴いパルス幅が変化する。そして、端子Yの出力は平滑回路で平滑化され、出力端子において、静電容量の変化に応じたアナログ出力を得ることができる。
[Fourth Embodiment]
The biaxial capacitive accelerometer 200 can be configured using the biaxial capacitive acceleration sensor 100 described in any one of the first to third embodiments. FIG. 9 is a configuration example of the biaxial capacitive accelerometer 200 of the present invention. The biaxial capacitive accelerometer 200 includes a biaxial capacitive acceleration sensor 100, an X axis signal processing unit 201, and a Y axis signal processing unit 202. The X-axis signal processing unit 201 and the Y-axis signal processing unit 202 are different except that the connected capacitance is an X-axis capacitance or a Y-axis capacitance as shown in FIG. The configuration is exactly the same. Hereinafter, the operation principle of each signal processing unit will be described. Each signal processing unit constitutes a pair of CR delay circuits in which a resistance element is loaded on each axis capacitance and offset capacitance element to be measured. The rectangular wave given to the input terminal is branched into two paths on each axis electrostatic capacity side and offset capacitive element side, and merges again with the EX-OR element. At this time, a phase difference (t3-t1) determined by the time constant of each delay circuit is generated in the two paths, and this phase difference appears as signal waveforms at the end points X1 and X2 in FIG. 9, as shown in FIG. Further, a pulse waveform having a width corresponding to the phase difference between the signals at the input terminals X1 and X2 appears at the terminal Y of the EX-OR element as shown in FIG. That is, the pulse width changes with the change in the difference between the capacitance of each axis and the offset capacitance. The output from the terminal Y is smoothed by a smoothing circuit, and an analog output corresponding to the change in capacitance can be obtained at the output terminal.

〔作製方法〕
本発明の2軸静電容量型加速度センサの作製方法の例を、図11に示す流れに沿って説明する。
[Production method]
An example of a manufacturing method of the biaxial capacitive acceleration sensor of the present invention will be described along the flow shown in FIG.

(1)SOIウエハのデバイス層にICPエッチングで構造体120のパターンを作製する。
(2)ハンドル層側からKOHでエッチングする。
(3)犠牲層をエッチングする。
(4)基板110上にHFエッチングで電極間ギャップ用の段差をつける。
(5)スパッタによってAu膜をつけ、段差内にフォトリソグラフィーによって電極パターンを作製する。
(6)基板110と構造体120とを陽極接合により貼り合わせる。
(1) A pattern of the structure 120 is formed on the device layer of the SOI wafer by ICP etching.
(2) Etching with KOH from the handle layer side.
(3) The sacrificial layer is etched.
(4) A step for the gap between the electrodes is formed on the substrate 110 by HF etching.
(5) An Au film is formed by sputtering, and an electrode pattern is formed in the step by photolithography.
(6) The substrate 110 and the structure 120 are bonded together by anodic bonding.

〔解析〕
本発明の2軸静電容量型加速度センサ100について、以下の寸法等により解析を行った。
〔analysis〕
The biaxial capacitive acceleration sensor 100 of the present invention was analyzed based on the following dimensions and the like.

◎寸法等
外形寸法及び電極構成について図12に示す。なお、図12(a)は外形寸法を示し、電極構成は簡易的に表記している。電極構成の詳細は図12(b)に示している。
・X軸固定電極111、穴126の数=各344
・Y軸固定電極112、穴127の数=各94
・X軸固定電極111の寸法=0.8mm×0.01mm
・X軸可動電極123に穴126により形成されるX軸固定電極111と対となる電極部分の寸法=0.78mm×0.01mm
・Y軸固定電極112の寸法=2.88mm×0.01mm
・Y軸可動電極125に穴127により形成されるY軸固定電極112と対となる電極部分の寸法=2.86mm×0.01mm
・各軸固定電極の配列間隔、及び各穴の短手方向の長さ=0.002mm
・可動電極の厚さ(Z軸方向の寸法)=0.15mm
・梁122、梁124の本数=各4本
◎ Dimensions External dimensions and electrode configuration are shown in FIG. FIG. 12A shows the outer dimensions, and the electrode configuration is simply shown. Details of the electrode configuration are shown in FIG.
-Number of X-axis fixed electrodes 111 and holes 126 = 344 each
-Number of Y-axis fixed electrodes 112 and holes 127 = 94 each
・ Dimension of X-axis fixed electrode 111 = 0.8 mm × 0.01 mm
The size of the electrode part paired with the X-axis fixed electrode 111 formed by the hole 126 in the X-axis movable electrode 123 = 0.78 mm × 0.01 mm
・ Dimension of Y-axis fixed electrode 112 = 2.88 mm × 0.01 mm
The size of the electrode part paired with the Y-axis fixed electrode 112 formed by the hole 127 in the Y-axis movable electrode 125 = 2.86 mm × 0.01 mm
-Arrangement interval of each axis fixed electrode, and length of each hole in short direction = 0.002 mm
-Thickness of movable electrode (dimension in the Z-axis direction) = 0.15 mm
・ Number of beams 122 and beams = 4 each

◎解析結果
変位感度と容量感度について、X軸とY軸とが同等であることが判明し、良好な結果が得られた。
・電極面積(無変位時):X軸電極1.34mm、Y軸電極1.34mm
・ノミナル容量:X軸電極5.94pF、Y軸電極5.95pF
・変位感度:X軸電極1.9μm/G、Y軸電極1.63μm/G
・容量感度:X軸電極2.26pF/G、Y軸電極1.94pF/G
◎ Analysis result It was found that the X-axis and Y-axis were equivalent in terms of displacement sensitivity and capacity sensitivity, and good results were obtained.
Electrode area (no displacement): X-axis electrode 1.34 mm 2 , Y-axis electrode 1.34 mm 2
Nominal capacity: X-axis electrode 5.94 pF, Y-axis electrode 5.95 pF
Displacement sensitivity: X-axis electrode 1.9 μm / G, Y-axis electrode 1.63 μm / G
Capacitance sensitivity: X-axis electrode 2.26 pF / G, Y-axis electrode 1.94 pF / G

本発明は、小型のセンサを用いて高精度かつ容易な信号処理で2軸方向の加速度を検知したい場合に有用である。   The present invention is useful when it is desired to detect acceleration in two axes with high accuracy and easy signal processing using a small sensor.

本発明の2軸静電容量型加速度センサの構成例の分解平面図。The disassembled top view of the structural example of the biaxial capacitive acceleration sensor of this invention. 本発明の2軸静電容量型加速度センサの構成例の斜視図、分解斜視図。The perspective view of the structural example of the biaxial capacitive acceleration sensor of this invention, and a disassembled perspective view. 本発明の2軸静電容量型加速度センサの構成例の断面図。Sectional drawing of the structural example of the biaxial capacitive acceleration sensor of this invention. 固定電極と可動電極との対向状態の変化を示す図。The figure which shows the change of the opposing state of a fixed electrode and a movable electrode. 本発明の2軸静電容量型加速度センサの別の構造体の例を示す図。The figure which shows the example of another structure of the biaxial capacitive acceleration sensor of this invention. 電極数を増やすことによる検知感度の向上効果を示す図。The figure which shows the improvement effect of the detection sensitivity by increasing the number of electrodes. Y軸固定電極の拡幅による効果を示す図。The figure which shows the effect by the widening of a Y-axis fixed electrode. 固定電極の略半分を可動電極と対向させることによる効果を示す図。The figure which shows the effect by making substantially half of a fixed electrode oppose a movable electrode. 本発明の2軸静電容量型加速度計の例を示す構成図。The block diagram which shows the example of the biaxial electrostatic capacitance type accelerometer of this invention. 信号処理部における論理演算の内容を示す図。The figure which shows the content of the logical operation in a signal processing part. 本発明の2軸静電容量型加速度センサの作製フロー図。The manufacturing flowchart of the biaxial capacitive acceleration sensor of this invention. 解析を行った2軸静電容量型加速度センサの構成図。The block diagram of the biaxial capacitive acceleration sensor which analyzed. 従来の静電容量型加速度センサの構成例を示す図。The figure which shows the structural example of the conventional electrostatic capacitance type acceleration sensor. 従来の静電容量型加速度センサの別の構成例を示す図。The figure which shows another structural example of the conventional electrostatic capacitance type acceleration sensor. 従来技術による2軸静電容量型加速度センサの構成例を示す図。The figure which shows the structural example of the biaxial capacitive acceleration sensor by a prior art.

Claims (6)

X軸、Y軸、Z軸を互いに直交する軸とし、
板面の法線がZ軸方向であり、
1以上のX軸固定電極と、
1以上のY軸固定電極と、
が同一の板面に形成された基板と、
上記基板と平行に対向して配置され、
外周縁に設けられたフレームと、
上記フレームの内側に、複数の梁によりX軸方向に変位自在に支持され、X軸方向への変位と、上記X軸固定電極と対向する面積の変化との間にあらかじめ定めた関係が成立するX軸可動電極と、
上記X軸可動電極の内側に、複数の梁によりY軸方向に変位自在に支持され、Y軸方向への変位と、上記Y軸固定電極と対向する面積の変化との間にあらかじめ定めた関係が成立するY軸可動電極と、
を有する構造体と、
を備える2軸静電容量型加速度センサ。
X axis, Y axis and Z axis are orthogonal to each other,
The normal of the plate surface is the Z-axis direction,
One or more X-axis fixed electrodes;
One or more Y-axis fixed electrodes;
Are formed on the same plate surface, and
Arranged in parallel to the substrate,
A frame provided on the outer periphery;
A predetermined relationship is established between the displacement in the X-axis direction and the change in the area facing the X-axis fixed electrode. An X-axis movable electrode;
A predetermined relationship between the displacement in the Y-axis direction and the change in the area facing the Y-axis fixed electrode is supported inside the X-axis movable electrode so as to be displaceable in the Y-axis direction by a plurality of beams. A Y-axis movable electrode where
A structure having
A biaxial capacitive acceleration sensor.
請求項1に記載の2軸静電容量型加速度センサであって、
上記X軸固定電極は、Y軸方向を長手方向とする矩形であり、
上記Y軸固定電極は、X軸方向を長手方向とする矩形であり、
上記X軸可動電極は、上記X軸固定電極と同数の、Y軸方向を長手方向とする矩形の穴を有し、当該X軸可動電極が変位する範囲において、それぞれの穴の一部が上記X軸固定電極のそれぞれと1対1で対向し、上記X軸可動電極の変位により生じる対向する部分の増減の方向がすべての穴について同じであり、
上記Y軸可動電極は、上記Y軸固定電極と同数の、X軸方向を長手方向とする矩形の穴を有し、当該Y軸可動電極が変位する範囲において、それぞれの穴の一部が上記Y軸固定電極のそれぞれと1対1で対向し、上記Y軸可動電極の変位により生じる対向する部分の増減の方向がすべての穴について同じである
ことを特徴とする2軸静電容量型加速度センサ。
The biaxial capacitive acceleration sensor according to claim 1,
The X-axis fixed electrode is a rectangle whose longitudinal direction is the Y-axis direction,
The Y-axis fixed electrode is a rectangle whose longitudinal direction is the X-axis direction,
The X-axis movable electrode has the same number of rectangular holes as the X-axis fixed electrode, the longitudinal direction of which is the Y-axis direction. Each of the X-axis fixed electrodes face each other in a one-to-one relationship, and the direction of increase / decrease of the facing portions caused by the displacement of the X-axis movable electrode is the same for all holes,
The Y-axis movable electrode has the same number of rectangular holes with the X-axis direction as the longitudinal direction as the Y-axis fixed electrode, and a part of each hole is within the range in which the Y-axis movable electrode is displaced. A biaxial capacitive acceleration characterized by facing each Y-axis fixed electrode on a one-to-one basis and having the same increase / decrease direction for all the holes due to the displacement of the Y-axis movable electrode. Sensor.
請求項2に記載の2軸静電容量型加速度センサであって、
上記Y軸固定電極の長手方向の長さと上記Y軸可動電極の穴の長手方向の長さとは、X軸可動電極の可動長以上の差があることを特徴とする2軸静電容量型加速度センサ。
The biaxial capacitive acceleration sensor according to claim 2,
The biaxial capacitive acceleration characterized in that the length in the longitudinal direction of the Y axis fixed electrode and the length in the longitudinal direction of the hole in the Y axis movable electrode have a difference greater than or equal to the movable length of the X axis movable electrode. Sensor.
請求項2又は3に記載の2軸静電容量型加速度センサであって、
上記X軸可動電極の変位が無い状態で、上記X軸固定電極と上記X軸可動電極の穴とが上記X軸固定電極の短手方向について略半分の長さが対向していることを特徴とする2軸静電容量型加速度センサ。
The biaxial capacitive acceleration sensor according to claim 2 or 3,
The X-axis fixed electrode and the hole of the X-axis movable electrode are substantially half the length in the short direction of the X-axis fixed electrode with no displacement of the X-axis movable electrode. A biaxial capacitive acceleration sensor.
請求項2から4のいずれかに記載の2軸静電容量型加速度センサであって、
上記Y軸可動電極の変位が無い状態で、上記Y軸固定電極と上記Y軸可動電極の穴とが上記Y軸固定電極の短手方向について略半分の長さが対向していることを特徴とする2軸静電容量型加速度センサ。
A biaxial capacitive acceleration sensor according to any one of claims 2 to 4,
In a state where the Y-axis movable electrode is not displaced, the Y-axis fixed electrode and the hole of the Y-axis movable electrode are substantially half the length in the short direction of the Y-axis fixed electrode. A biaxial capacitive acceleration sensor.
請求項1から5のいずれかに記載の2軸静電容量型加速度センサと、
上記X軸固定電極と上記X軸可動電極との間の静電容量を検出してX軸方向の加速度を計算するX軸信号処理部と、
上記Y軸固定電極と上記Y軸可動電極との間の静電容量を検出してY軸方向の加速度を計算するY軸信号処理部と、
を備える2軸静電容量型加速度計。
A biaxial capacitive acceleration sensor according to any one of claims 1 to 5,
An X-axis signal processing unit for detecting an electrostatic capacitance between the X-axis fixed electrode and the X-axis movable electrode and calculating an acceleration in the X-axis direction;
A Y-axis signal processing unit for detecting an electrostatic capacitance between the Y-axis fixed electrode and the Y-axis movable electrode and calculating an acceleration in the Y-axis direction;
A biaxial capacitive accelerometer.
JP2007231601A 2007-09-06 2007-09-06 Two-axis capacitive acceleration sensor, and two-axis capacitive accelerometer Pending JP2009063430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007231601A JP2009063430A (en) 2007-09-06 2007-09-06 Two-axis capacitive acceleration sensor, and two-axis capacitive accelerometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007231601A JP2009063430A (en) 2007-09-06 2007-09-06 Two-axis capacitive acceleration sensor, and two-axis capacitive accelerometer

Publications (1)

Publication Number Publication Date
JP2009063430A true JP2009063430A (en) 2009-03-26

Family

ID=40558130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007231601A Pending JP2009063430A (en) 2007-09-06 2007-09-06 Two-axis capacitive acceleration sensor, and two-axis capacitive accelerometer

Country Status (1)

Country Link
JP (1) JP2009063430A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136970A1 (en) * 2010-04-30 2011-11-03 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric three-axis gyroscope and stacked lateral overlap transducer (slot) based three-axis accelerometer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292409A (en) * 1996-04-26 1997-11-11 Hitachi Ltd Accelerometer
JP2003270265A (en) * 2002-03-13 2003-09-25 Toyota Central Res & Dev Lab Inc Multi-axis acceleration detector
JP2006084477A (en) * 2005-10-12 2006-03-30 Denso Corp Dynamic quantity sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292409A (en) * 1996-04-26 1997-11-11 Hitachi Ltd Accelerometer
JP2003270265A (en) * 2002-03-13 2003-09-25 Toyota Central Res & Dev Lab Inc Multi-axis acceleration detector
JP2006084477A (en) * 2005-10-12 2006-03-30 Denso Corp Dynamic quantity sensor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136970A1 (en) * 2010-04-30 2011-11-03 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric three-axis gyroscope and stacked lateral overlap transducer (slot) based three-axis accelerometer
WO2011136960A1 (en) * 2010-04-30 2011-11-03 Qualcomm Mems Technologies, Inc. Stacked lateral overlap transducer (slot) based three-axis accelerometer
CN102947712A (en) * 2010-04-30 2013-02-27 高通Mems科技公司 Stacked lateral overlap transducer (SLOT) based three-axis accelerometer
CN102959404A (en) * 2010-04-30 2013-03-06 高通Mems科技公司 Micromachined piezoelectric three-axis gyroscope and stacked lateral overlap transducer (SLOT) based three-axis accelerometer
US8516886B2 (en) 2010-04-30 2013-08-27 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric X-Axis gyroscope
US8516887B2 (en) 2010-04-30 2013-08-27 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric z-axis gyroscope
US8584522B2 (en) 2010-04-30 2013-11-19 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric x-axis gyroscope
US9021880B2 (en) 2010-04-30 2015-05-05 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric three-axis gyroscope and stacked lateral overlap transducer (slot) based three-axis accelerometer
US9032796B2 (en) 2010-04-30 2015-05-19 Qualcomm Mems Technologies, Inc. Stacked lateral overlap transducer (SLOT) based three-axis accelerometer
US9410805B2 (en) 2010-04-30 2016-08-09 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric z-axis gyroscope
US9459099B2 (en) 2010-04-30 2016-10-04 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric x-axis gyroscope
US9605965B2 (en) 2010-04-30 2017-03-28 Snaptrack, Inc. Micromachined piezoelectric x-axis gyroscope
US10209072B2 (en) 2010-04-30 2019-02-19 Snaptrack Inc. Stacked lateral overlap transducer (SLOT) based three-axis accelerometer

Similar Documents

Publication Publication Date Title
CN108020687B (en) MEMS accelerometer
US7814794B2 (en) Micromachined sensors
US8333113B2 (en) Triaxial acceleration sensor
US7878060B2 (en) Motion sensor and method of manufacturing the same
WO2010055716A1 (en) Acceleration sensor
CN101568840B (en) Multi-axle micromechanic acceleration sensor
US20120160029A1 (en) Acceleration sensor
JP7028293B2 (en) Low noise multi-axis MEMS accelerometer
EP3227691B1 (en) A mems sensor and a semiconductor package
JP2003240798A (en) Capacitive physical quantity sensor
WO2014192242A1 (en) Capacitive physical quantity sensor
JP6070113B2 (en) Acceleration sensor
WO2010023766A1 (en) Displacement sensor
JP2009063430A (en) Two-axis capacitive acceleration sensor, and two-axis capacitive accelerometer
US9612254B2 (en) Microelectromechanical systems devices with improved lateral sensitivity
JP4976349B2 (en) Capacitance type acceleration sensor and capacitance type accelerometer
WO2014057623A1 (en) Acceleration sensor
JP5783201B2 (en) Capacitive physical quantity sensor
WO2016117290A1 (en) Acceleration sensor and mounting structure for acceleration sensor
JP4466283B2 (en) Gyro sensor
JP2002071708A (en) Semiconductor dynamic quantity sensor
JP2005098891A (en) Electrostatic capacity type sensor
JP3124710B2 (en) Signal processing circuit for sensors using change in capacitance
WO2024004350A1 (en) Mems accelerometer
JP2009008414A (en) Fall detection sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101