JP2009063427A - Radio wave anechoic box - Google Patents

Radio wave anechoic box Download PDF

Info

Publication number
JP2009063427A
JP2009063427A JP2007231531A JP2007231531A JP2009063427A JP 2009063427 A JP2009063427 A JP 2009063427A JP 2007231531 A JP2007231531 A JP 2007231531A JP 2007231531 A JP2007231531 A JP 2007231531A JP 2009063427 A JP2009063427 A JP 2009063427A
Authority
JP
Japan
Prior art keywords
radio wave
wave absorber
frequency band
electromagnetic waves
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007231531A
Other languages
Japanese (ja)
Inventor
Hiroshi Kitada
浩志 北田
Yukio Yamamoto
幸雄 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2007231531A priority Critical patent/JP2009063427A/en
Publication of JP2009063427A publication Critical patent/JP2009063427A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radio wave anechoic box capable of measuring the characteristics of an object to be measured for radiating electromagnetic waves at a plurality of frequency bands. <P>SOLUTION: A cylindrical member 7 capable of moving axially is provided inside a metal casing 2 and a screen member 12 capable of moving axially is provided in the cylindrical member 7. Then, radio wave absorbers 3, 5, 14 for absorbing electromagnetic waves at a frequency band of a high-frequency side are provided on a front wall surface 2A of a metal casing 2, on an inner-periphery surface, and on the front of the screen member 12, respectively. Radio wave absorbers 4, 11, 15 for absorbing electromagnetic waves at a frequency band of a low-frequency side are provided on a rear wall surface 2B of the metal casing 2, on an inner-periphery surface of the cylindrical member 7, and on the rear surface of the screen member 12, respectively. Therefore, by moving the cylindrical member 7 and the screen member 12 axially, either the radio wave absorbers 3, 5, 14 or radio wave absorbers 4, 11, 15 can be exposed to the metal casing 2 selectively. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば携帯電話等から放射される電磁波を測定するときに用いて好適な電波無響箱に関する。   The present invention relates to an anechoic box suitable for use when measuring electromagnetic waves radiated from, for example, a mobile phone.

一般に、電波無響箱として、小型の金属筐体内に電波吸収シート等を設けると共に、金属筐体内に携帯電話等の被測定物を配置し、該被測定物に設けられたアンテナの放射効率等を測定するものが知られている(例えば特許文献1,2参照)。そして、特許文献1には、小型で安価な測定空間を提供するために、電波無響箱の内部に特定の周波数帯域で使用する電波吸収シートを設けた構成が開示されている。このとき、電波吸収シートは、電磁波の測定周波数帯域で電波吸収特性を有している。このため、携帯電話の使用周波数帯域に応じて異なる電波吸収シートを用いる構成となっている。即ち、例えば800MHz帯に対しては700〜900MHzで電波吸収特性を有する電波吸収シートを使用し、1.5GHz帯に対しては1.4〜1.65GHzで電波吸収特性を有する電波吸収シートを使用し、1.9GHz帯に対しては1.75〜2.0GHzで電波吸収特性を有する電波吸収シートを使用し、2.5GHz帯に対しては2.35〜2.65GHzで電波吸収特性を有する電波吸収シートを使用している。   In general, a radio wave anechoic box is provided with a radio wave absorption sheet or the like in a small metal casing, and a measurement object such as a mobile phone is arranged in the metal casing, and the radiation efficiency of the antenna provided on the measurement object Is known (for example, see Patent Documents 1 and 2). Patent Document 1 discloses a configuration in which a radio wave absorption sheet used in a specific frequency band is provided inside a radio anechoic box in order to provide a small and inexpensive measurement space. At this time, the radio wave absorption sheet has radio wave absorption characteristics in the measurement frequency band of electromagnetic waves. For this reason, it is the structure which uses a different electromagnetic wave absorption sheet according to the use frequency band of a mobile telephone. That is, for example, a radio wave absorption sheet having a radio wave absorption characteristic at 700 to 900 MHz is used for the 800 MHz band, and a radio wave absorption sheet having a radio wave absorption characteristic at 1.4 to 1.65 GHz for the 1.5 GHz band. Use a radio wave absorption sheet having radio wave absorption characteristics at 1.75 to 2.0 GHz for the 1.9 GHz band, and radio wave absorption characteristics at 2.35 to 2.65 GHz for the 2.5 GHz band. The radio wave absorption sheet having

特開平10−93286号公報JP-A-10-93286

ところで、特許文献1による電波無響箱では、測定可能な周波数帯域が電波吸収シートで吸収可能な帯域に限定される。このため、例えば複数の周波数帯の電磁波を放射可能な周波数帯域の広い携帯電話用アンテナの特性を評価する場合には、電波吸収シートの異なる複数の電波無響箱を用意し、これら複数の電波無響箱で測定を行う必要がある。この結果、測定時間が長くなると共に、複数の電波無響箱を置くために広い空間が必要になるという問題がある。一方、広帯域の電磁波を吸収可能な電波吸収体を用いた場合には、電波吸収体が大きくなるから、電波無響箱も大型化してしまう。   By the way, in the radio wave anechoic box according to Patent Document 1, the measurable frequency band is limited to the band that can be absorbed by the radio wave absorbing sheet. For this reason, for example, when evaluating the characteristics of a mobile phone antenna having a wide frequency band that can radiate electromagnetic waves of a plurality of frequency bands, a plurality of radio wave anechoic boxes with different radio wave absorption sheets are prepared. It is necessary to measure in an anechoic box. As a result, there are problems that the measurement time becomes long and a large space is required to place a plurality of radio anechoic boxes. On the other hand, when a radio wave absorber capable of absorbing broadband electromagnetic waves is used, the radio wave absorber becomes large, and the radio wave anechoic box is also enlarged.

本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、複数の周波数帯の電磁波を放射する被測定物の特性を測定することができる電波無響箱を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a radio anechoic box capable of measuring characteristics of an object to be measured that emits electromagnetic waves in a plurality of frequency bands. It is in.

上述した課題を解決するために、請求項1の発明による電波無響箱は、軸方向両端が閉塞された筒状に形成された金属筐体と、該金属筐体の軸方向の一側端面に設けられ第1の周波数帯の電磁波を吸収する第1の端面側電波吸収体と、前記金属筐体の軸方向の他側端面に設けられ第2の周波数帯の電磁波を吸収する第2の端面側電波吸収体と、前記金属筐体の内周面に設けられ第1の周波数帯の電磁波を吸収する第1の内周面側電波吸収体と、前記金属筐体の内部に位置して軸方向に移動可能に設けられた筒状部材と、該筒状部材の内周面に設けられ第2の周波数帯の電磁波を吸収する第2の内周面側電波吸収体と、前記金属筐体の内部で前記第1,第2の端面側電波吸収体の間に位置し、該筒状部材を通過して軸方向に移動可能に設けられた平板状の衝立部材と、該衝立部材のうち前記第1の端面側電波吸収体と対向した面に設けられ第1の周波数帯の電磁波を吸収する第1の衝立側電波吸収体と、前記衝立部材のうち前記第2の端面側電波吸収体と対向した面に設けられ第2の周波数帯の電磁波を吸収する第2の衝立側電波吸収体とによって構成している。   In order to solve the above-described problem, a radio wave anechoic box according to the invention of claim 1 includes a metal casing formed in a cylindrical shape whose both ends in the axial direction are closed, and one end face in the axial direction of the metal casing. A first end face side wave absorber that absorbs electromagnetic waves in the first frequency band, and a second end face side electromagnetic wave absorber that absorbs electromagnetic waves in the second frequency band provided on the other end face in the axial direction of the metal casing. An end surface side electromagnetic wave absorber, a first inner peripheral surface side electromagnetic wave absorber that is provided on the inner peripheral surface of the metal casing and absorbs electromagnetic waves in the first frequency band, and is located inside the metal casing. A cylindrical member provided so as to be movable in the axial direction; a second inner peripheral surface-side wave absorber provided on an inner peripheral surface of the cylindrical member for absorbing electromagnetic waves in a second frequency band; and the metal casing. It is located between the first and second end face side wave absorbers inside the body and is provided so as to be movable in the axial direction through the cylindrical member. A flat partition member, a first partition-side radio wave absorber that is provided on a surface of the partition member facing the first end-surface-side radio wave absorber and absorbs electromagnetic waves in a first frequency band, and the partition The member includes a second partition side radio wave absorber that is provided on a surface of the member that faces the second end face side radio wave absorber and absorbs electromagnetic waves in the second frequency band.

請求項2の発明では、前記金属筐体には、被測定物を支持する被測定物固定治具と測定用アンテナを支持するアンテナ取付治具とを設け、前記第1の周波数帯の特性を測定するときには、前記筒状部材を金属筐体の軸方向端部側に配置し、前記衝立部材を金属筐体の軸方向の他側端面側に配置し、かつ前記被測定物固定治具およびアンテナ取付治具を前記筒状部材を避けた位置で第1の端面側電波吸収体と第1の衝立側電波吸収体との間に配置する構成とし、前記第2の周波数帯の特性を測定するときには、前記筒状部材を金属筐体の軸方向中央側に配置し、前記衝立部材を金属筐体の軸方向の一側端面側に配置し、かつ前記被測定物固定治具およびアンテナ取付治具を前記筒状部材を挟んだ位置で第2の端面側電波吸収体と第2の衝立側電波吸収体との間に配置する構成としている。   According to a second aspect of the present invention, the metal casing is provided with an object fixing jig for supporting the object to be measured and an antenna mounting jig for supporting the antenna for measurement, and the characteristics of the first frequency band are obtained. When measuring, the cylindrical member is disposed on the end side in the axial direction of the metal casing, the partition member is disposed on the other end face side in the axial direction of the metal casing, and the workpiece fixing jig and The antenna mounting jig is arranged between the first end face side wave absorber and the first partition side wave absorber at a position avoiding the cylindrical member, and the characteristics of the second frequency band are measured. The cylindrical member is disposed on the center side in the axial direction of the metal casing, the partition member is disposed on one end face side in the axial direction of the metal casing, and the workpiece fixing jig and the antenna are mounted. At the position where the jig sandwiches the cylindrical member, the second end face side electromagnetic wave absorber and the second partition side electric It is configured to be disposed between the absorbent body.

請求項3の発明では、前記筒状部材は、軸方向途中位置で分割可能な複数の分割筒体によって構成され、該複数の分割筒体は、前記第1の周波数帯の特性を測定するときには、前記金属筐体の軸方向両端側に互いに分離した状態で配置し、前記第2の周波数帯の特性を測定するときには、前記金属筐体の軸方向中央側に互いに衝合した状態で配置する構成としている。   According to a third aspect of the present invention, the cylindrical member includes a plurality of divided cylinders that can be divided at an intermediate position in the axial direction, and the plurality of divided cylinders measure the characteristics of the first frequency band. When the characteristics of the second frequency band are measured, the metal casings are arranged in contact with each other in the axial center of the metal casing. It is configured.

請求項4の発明では、前記第1の端面側電波吸収体、第1の内周面側電波吸収体および第1の衝立側電波吸収体は、高周波側の第1の周波数帯の電磁波を吸収する構成とし、前記第2の端面側電波吸収体、第2の内周面側電波吸収体および第2の衝立側電波吸収体は、前記第1の周波数帯よりも低い低周波側の第2の周波数帯の電磁波を吸収する構成としている。   According to a fourth aspect of the present invention, the first end surface side radio wave absorber, the first inner peripheral surface side radio wave absorber, and the first partition side radio wave absorber absorb electromagnetic waves in the first frequency band on the high frequency side. The second end face side radio wave absorber, the second inner peripheral side radio wave absorber, and the second partition side radio wave absorber are second low frequency side lower than the first frequency band. It absorbs electromagnetic waves in the frequency band.

請求項5の発明では、前記第1の端面側電波吸収体、第1の内周面側電波吸収体および第1の衝立側電波吸収体は、カーボンを含有した電波吸収材料を用いてピラミッド形状またはテーパ形状に形成し、前記第2の端面側電波吸収体、第2の内周面側電波吸収体および第2の衝立側電波吸収体は、フェライト材料を用いて平板形状に形成している。   In the invention of claim 5, the first end face side radio wave absorber, the first inner peripheral side radio wave absorber, and the first partition side radio wave absorber are made of pyramidal shapes using carbon-containing radio wave absorbers. Alternatively, the second end face side radio wave absorber, the second inner peripheral side radio wave absorber, and the second partition side radio wave absorber are formed in a flat plate shape using a ferrite material. .

請求項1の発明によれば、金属筐体の軸方向の一側端面に第1の端面側電波吸収体を設け、金属筐体の内周面に第1の内周面側電波吸収体を設けるのに加え、軸方向に移動可能な衝立部材には第1の端面側電波吸収体と対向した面に第1の衝立側電波吸収体を設ける構成とした。これにより、例えば衝立部材を金属筐体の軸方向他側に配置することによって、金属筐体の内部には第1の周波数帯の電磁波を吸収する空間を確保することができる。このため、この金属筐体内の空間を用いることによって、第1の周波数帯の電磁波に対する特性を測定することができる。   According to the first aspect of the present invention, the first end face side wave absorber is provided on one end face in the axial direction of the metal casing, and the first inner circumference side wave absorber is provided on the inner peripheral face of the metal casing. In addition to the provision, the first partition side radio wave absorber is provided on the surface facing the first end surface side radio wave absorber on the screen member that is movable in the axial direction. Thereby, for example, by arranging the partition member on the other side in the axial direction of the metal casing, a space for absorbing electromagnetic waves in the first frequency band can be secured inside the metal casing. For this reason, the characteristic with respect to the electromagnetic wave of the 1st frequency band can be measured by using the space in this metal housing.

また、筒状部材の内周面には第2の内周面側電波吸収体を設けると共に、衝立部材には第2の端面側電波吸収体と対向した面に第2の衝立側電波吸収体を設ける構成とした。これにより、例えば衝立部材を金属筐体の軸方向一側に配置することによって、筒状部材の内部には第2の周波数帯の電磁波を吸収する空間を確保することができる。このため、この筒状部材内の空間を用いることによって、第2の周波数帯の電磁波に対する特性を測定することができる。   In addition, a second inner peripheral surface side wave absorber is provided on the inner peripheral surface of the cylindrical member, and the second partition side radio wave absorber is provided on a surface facing the second end surface side radio wave absorber on the partition member. It was set as the structure which provides. Accordingly, for example, by arranging the partition member on one side in the axial direction of the metal casing, a space for absorbing the electromagnetic wave in the second frequency band can be secured inside the cylindrical member. For this reason, the characteristic with respect to the electromagnetic wave of the 2nd frequency band can be measured by using the space in this cylindrical member.

この結果、単一の電波無響箱内で互いに異なる2つの周波数帯の電磁波を測定することができる。このため、例えばマルチバンドの携帯電話のように、2つの周波数帯の電磁波を放射する被測定物の特性を評価する場合でも、単一の電波無響箱内で全ての周波数帯の電磁波を測定することができ、従来技術のように複数の電波無響箱を用いて測定する必要がなく、測定作業の効率を高めることができる。   As a result, electromagnetic waves in two different frequency bands can be measured within a single anechoic box. For this reason, even when evaluating the characteristics of an object that emits electromagnetic waves in two frequency bands, such as a multi-band mobile phone, the electromagnetic waves in all frequency bands are measured in a single anechoic box. Therefore, it is not necessary to perform measurement using a plurality of anechoic boxes as in the prior art, and the efficiency of measurement work can be increased.

請求項2の発明によれば、金属筐体には、被測定物を支持する被測定物固定治具と測定用アンテナを支持するアンテナ取付治具とを設ける構成とした。このため、第1の周波数帯の特性を測定するときには、筒状部材を金属筐体の軸方向端部側に配置すると共に、衝立部材を金属筐体の軸方向の他側端面側に配置する。これにより、金属筐体の軸方向のうち第1の端面側電波吸収体と第1の衝立側電波吸収体との間には、第1の周波数帯の電磁波を吸収する空間を確保することができる。このため、被測定物固定治具およびアンテナ取付治具を筒状部材を避けた位置に配置することによって、この空間内に被測定物固定治具およびアンテナ取付治具を配置することができ、第1の周波数帯の特性を測定することができる。   According to the second aspect of the present invention, the metal casing is provided with the measured object fixing jig for supporting the measured object and the antenna mounting jig for supporting the measurement antenna. For this reason, when measuring the characteristics of the first frequency band, the cylindrical member is disposed on the axial end portion side of the metal casing, and the partition member is disposed on the other end face side in the axial direction of the metal casing. . Accordingly, a space for absorbing electromagnetic waves in the first frequency band can be secured between the first end surface side radio wave absorber and the first partition side radio wave absorber in the axial direction of the metal casing. it can. For this reason, by arranging the measurement object fixing jig and the antenna mounting jig at a position avoiding the cylindrical member, the measurement object fixing jig and the antenna mounting jig can be arranged in this space. The characteristics of the first frequency band can be measured.

一方、第2の周波数帯の特性を測定するときには、筒状部材を金属筐体の軸方向中央側に配置すると共に、衝立部材を金属筐体の軸方向の一側端面側に配置する。これにより、筒状部材の内部に位置して金属筐体の軸方向のうち第2の端面側電波吸収体と第2の衝立側電波吸収体との間には、第2の周波数帯の電磁波を吸収する空間を確保することができる。このため、被測定物固定治具およびアンテナ取付治具を筒状部材を挟んだ位置に配置することによって、この空間内に被測定物固定治具およびアンテナ取付治具を配置することができ、第2の周波数帯の特性を測定することができる。   On the other hand, when measuring the characteristics of the second frequency band, the cylindrical member is disposed on the center side in the axial direction of the metal casing, and the partition member is disposed on one end face side in the axial direction of the metal casing. As a result, the electromagnetic wave in the second frequency band is located between the second end face side wave absorber and the second partition side wave absorber in the axial direction of the metal casing located inside the cylindrical member. It is possible to secure a space to absorb For this reason, by placing the measured object fixing jig and the antenna mounting jig at a position sandwiching the cylindrical member, the measured object fixing jig and the antenna mounting jig can be disposed in this space. The characteristic of the second frequency band can be measured.

請求項3の発明によれば、筒状部材は、軸方向途中位置で分割可能な複数の分割筒体によって構成した。このため、第1の周波数帯の特性を測定するときには、複数の分割筒体は金属筐体の軸方向両端側に互いに分離した状態で配置することができる。一方、第2の周波数帯の特性を測定するときには、金属筐体の軸方向中央側に互いに衝合した状態で配置することができる。   According to invention of Claim 3, the cylindrical member was comprised with the some division | segmentation cylinder body which can be divided | segmented in the axial direction middle position. For this reason, when measuring the characteristics of the first frequency band, the plurality of divided cylinders can be arranged in a state of being separated from each other at both axial ends of the metal casing. On the other hand, when measuring the characteristics of the second frequency band, they can be arranged in the state of abutting each other on the axially central side of the metal casing.

請求項4の発明によれば、第1の端面側電波吸収体、第1の内周面側電波吸収体および第1の衝立側電波吸収体は、高周波側の第1の周波数帯の電磁波を吸収する構成とし、第2の端面側電波吸収体、第2の内周面側電波吸収体および第2の衝立側電波吸収体は、低周波側の第2の周波数帯の電磁波を吸収する構成とした。ここで、一般的に高周波側の電磁波を吸収する電波吸収体はピラミッド形状に形成されると共に、その突出寸法が大きい。このため、例えば筒状部材の内周側に位置する第2の内周面側電波吸収体が高周波側の電磁波を吸収する構成とした場合には、電波吸収体と測定用アンテナや被測定物との間の距離を十分に確保できず、電波吸収体と測定用アンテナ等との間でカップリングが生じ、電磁波の測定精度が低下するという問題がある。また、電波吸収体と測定用アンテナ等の距離を十分に確保した場合には、電波無響箱全体が大型化してしまう。   According to the invention of claim 4, the first end surface side radio wave absorber, the first inner peripheral surface side radio wave absorber and the first partition side radio wave absorber absorb electromagnetic waves in the first frequency band on the high frequency side. The second end surface side radio wave absorber, the second inner circumferential surface side radio wave absorber, and the second partition side radio wave absorber absorb the electromagnetic waves in the second frequency band on the low frequency side. It was. Here, a radio wave absorber that absorbs electromagnetic waves on the high frequency side is generally formed in a pyramid shape and has a large protruding dimension. For this reason, for example, when the second inner circumferential surface side radio wave absorber located on the inner circumferential side of the tubular member absorbs electromagnetic waves on the high frequency side, the radio wave absorber, the antenna for measurement, and the object to be measured A sufficient distance cannot be secured, and coupling occurs between the radio wave absorber and the measurement antenna or the like, resulting in a problem that the measurement accuracy of the electromagnetic wave is lowered. In addition, when a sufficient distance between the radio wave absorber and the measurement antenna is secured, the entire radio anechoic box becomes large.

これに対し、本発明では、第1の内周面側電波吸収体は高周波側の第1の周波数帯の電磁波を吸収する構成としたから、第1の内周面側電波吸収体は筒状部材の内部に比べて測定用アンテナ等との距離を離すことができる。このため、電波吸収体と測定用アンテナ等との間のカップリングを減少させることができ、電磁波の測定精度を高めることができると共に、電波無響箱全体を小型化することができる。   On the other hand, in the present invention, since the first inner peripheral surface side radio wave absorber is configured to absorb electromagnetic waves in the first frequency band on the high frequency side, the first inner peripheral surface side radio wave absorber is cylindrical. The distance from the measurement antenna or the like can be increased compared to the inside of the member. For this reason, the coupling between the radio wave absorber and the measurement antenna and the like can be reduced, the electromagnetic wave measurement accuracy can be increased, and the entire radio anechoic box can be miniaturized.

請求項5の発明によれば、第1の端面側電波吸収体、第1の内周面側電波吸収体および第1の衝立側電波吸収体は、カーボンを含有した電波吸収材料を用いてピラミッド形状またはテーパ形状に形成したから、ピラミッド形状等の電波吸収体を用いて高周波側の電磁波を吸収することができる。   According to the invention of claim 5, the first end face side radio wave absorber, the first inner peripheral side radio wave absorber, and the first partition side radio wave absorber are made of carbon-containing radio wave absorbers and pyramids. Since it is formed in a shape or a taper shape, an electromagnetic wave on the high frequency side can be absorbed using a wave absorber such as a pyramid shape.

一方、第2の端面側電波吸収体、第2の内周面側電波吸収体および第2の衝立側電波吸収体は、フェライト材料を用いて平板形状に形成したから、フェライト材料の電波吸収体を用いて低周波側の電磁波を吸収することができる。また、第2の内周面側電波吸収体等はフェライト材料を用いて平板形状に形成したから、電波吸収体の突出寸法を小さくすることができ、筒状部材等の内部に大きな測定空間を確保することができる。   On the other hand, since the second end surface side wave absorber, the second inner peripheral surface side wave absorber and the second partition side wave absorber are formed in a flat plate shape using a ferrite material, the ferrite material wave absorber Can be used to absorb electromagnetic waves on the low frequency side. In addition, since the second inner peripheral surface side wave absorber and the like are formed in a flat plate shape using a ferrite material, the projecting dimension of the wave absorber can be reduced, and a large measurement space is provided inside the cylindrical member or the like. Can be secured.

以下、本発明の実施の形態による電波無響箱を添付図面に従って詳細に説明する。   Hereinafter, an anechoic box according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1ないし図14において、電波無響箱1は、例えば1〜2mm程度の厚さ寸法をもったアルミニウムの板材を用いて箱状に形成された金属筐体2と、該金属筐体2の内部に設けられた電波吸収体3とによって構成されている。そして、電波無響箱1は、外部からの電磁波を遮断すると共に、内部の電磁波の反射を防止するものである。   1 to 14, a radio anechoic box 1 includes a metal casing 2 formed in a box shape using an aluminum plate having a thickness of, for example, about 1 to 2 mm, and the metal casing 2 It is comprised by the electromagnetic wave absorber 3 provided in the inside. The radio wave anechoic box 1 blocks external electromagnetic waves and prevents reflection of internal electromagnetic waves.

ここで、金属筐体2は、幅方向(X方向)、軸方向(Y方向)、高さ方向(Z方向)に対して、それぞれ例えば50〜100cm程度の長さ寸法をもって形成されている。また、金属筐体2は、軸方向両側に位置する前壁面2A、後壁面2Bと、幅方向両側に位置する左壁面2C、右壁面2Dと、高さ方向両側に位置する天井面2E、底面2Fとを有している。このとき、前,後の壁面2A,2Bは、互いに対向した対向面を形成している。また、左,右の壁面2C,2Dも互いに対向した対向面を形成すると共に、天井面2E、底面2Fも互いに対向した対向面を形成している。   Here, the metal housing 2 is formed with a length dimension of about 50 to 100 cm, for example, with respect to the width direction (X direction), the axial direction (Y direction), and the height direction (Z direction). The metal housing 2 includes a front wall surface 2A and a rear wall surface 2B located on both sides in the axial direction, a left wall surface 2C and a right wall surface 2D located on both sides in the width direction, a ceiling surface 2E located on both sides in the height direction, and a bottom surface. 2F. At this time, the front and rear wall surfaces 2A and 2B form opposing surfaces facing each other. The left and right wall surfaces 2C and 2D also form opposed surfaces that face each other, and the ceiling surface 2E and the bottom surface 2F also form opposed surfaces that face each other.

また、左,右の壁面2C,2Dおよび天井面2E、底面2Fは軸方向に延びて四角形筒状をなすと共に、軸方向の両端側は前壁面2Aと後壁面2Bによって閉塞されている。そして、右壁面2Dには、後述する被測定物17を金属筐体2内に装着するために、ドア2Gが開,閉可能に取付けられている。   The left and right wall surfaces 2C and 2D, the ceiling surface 2E, and the bottom surface 2F extend in the axial direction to form a rectangular cylinder, and both end sides in the axial direction are closed by the front wall surface 2A and the rear wall surface 2B. A door 2G is attached to the right wall surface 2D so as to be openable and closable in order to mount an object to be measured 17 described later in the metal casing 2.

第1の端面側電波吸収体3は、図2ないし図5に示すように、金属筐体2の軸方向両側に位置する前壁面2Aと後壁面2Bとのうち例えば前壁面2Aに設けられ、該前壁面2Aの略全面を覆っている。また、端面側電波吸収体3は、例えばカーボンを含有したウレタン材料等の電波吸収材料を用いて10〜15cm程度の突出寸法をもったピラミッド形状またはテーパ形状に形成され、金属筐体2の内部に向けて突出している。そして、端面側電波吸収体3は、被測定物17が2つの周波数帯の電磁波を放射するときに、高周波側の周波数帯の電磁波では吸収特性が高く、低周波側の周波数帯の電磁波では吸収特性が低い構成となっている。具体的に説明すると、例えば被測定物17として800MHz帯、1.9GHz帯の2つの周波数帯の電磁波を放射可能な携帯電話を用いるときには、端面側電波吸収体3は、1.9GHz帯以上の周波数帯の電磁波では吸収特性が高く、1.9GHz帯よりも低い周波数帯の電磁波では吸収特性が低くなっている。このため、端面側電波吸収体3は、1.9GHz帯以上の電磁波では例えば−20dBよりも高い吸収特性を有し、1.9GHz帯よりも低い周波数帯の電磁波では−20dBよりも低い吸収特性を有する構成となっている。   As shown in FIGS. 2 to 5, the first end surface side radio wave absorber 3 is provided, for example, on the front wall surface 2 </ b> A among the front wall surface 2 </ b> A and the rear wall surface 2 </ b> B located on both sides in the axial direction of the metal casing 2. It covers substantially the entire front wall surface 2A. Further, the end surface side radio wave absorber 3 is formed in a pyramid shape or a taper shape having a projecting dimension of about 10 to 15 cm using a radio wave absorber material such as a urethane material containing carbon. Protrusively toward. The end-surface-side radio wave absorber 3 has high absorption characteristics for electromagnetic waves in the frequency band on the high frequency side and absorbs electromagnetic waves in the frequency band on the low frequency side when the DUT 17 radiates electromagnetic waves in the two frequency bands. The structure has low characteristics. More specifically, for example, when a cellular phone capable of emitting electromagnetic waves in two frequency bands of 800 MHz band and 1.9 GHz band is used as the object to be measured 17, the end surface side radio wave absorber 3 has a frequency of 1.9 GHz band or higher. The electromagnetic wave in the frequency band has high absorption characteristics, and the electromagnetic wave in the frequency band lower than the 1.9 GHz band has low absorption characteristics. For this reason, the end surface side radio wave absorber 3 has an absorption characteristic higher than, for example, −20 dB for electromagnetic waves in the 1.9 GHz band or higher, and an absorption characteristic lower than −20 dB for electromagnetic waves in a frequency band lower than the 1.9 GHz band. It has composition which has.

第2の端面側電波吸収体4は、金属筐体2の軸方向両側に位置する前壁面2Aと後壁面2Bとのうち第1の端面側電波吸収体3が設けられた前壁面2Aとは異なる後壁面2Bに設けられ、該後壁面2Bの略全面を覆っている。また、端面側電波吸収体4は、電磁波を吸収する材料として例えばフェライト材料を用いて平板状に形成されている。そして、端面側電波吸収体4は、被測定物17が2つの周波数帯の電磁波を放射するときに、低周波側の周波数帯の電磁波では吸収特性が高く、高周波側の周波数帯の電磁波では吸収特性が低い構成となっている。このため、端面側電波吸収体4は、例えば800MHz帯以下の周波数帯の電磁波では−20dBよりも高い吸収特性を有し、800MHz帯よりも高い周波数帯の電磁波では−20dBよりも低い吸収特性を有する構成となっている。   The second end face side wave absorber 4 is the front wall face 2A provided with the first end face side wave absorber 3 of the front wall face 2A and the rear wall face 2B located on both axial sides of the metal housing 2. It is provided on a different rear wall surface 2B and covers substantially the entire rear wall surface 2B. Moreover, the end surface side electromagnetic wave absorber 4 is formed in a flat plate shape using, for example, a ferrite material as a material that absorbs electromagnetic waves. The end-surface-side radio wave absorber 4 has high absorption characteristics for electromagnetic waves in the frequency band on the low frequency side and absorbs electromagnetic waves in the frequency band on the high frequency side when the DUT 17 radiates electromagnetic waves in the two frequency bands. The structure has low characteristics. For this reason, the end surface side radio wave absorber 4 has an absorption characteristic higher than −20 dB for electromagnetic waves in a frequency band of, for example, 800 MHz or less, and an absorption characteristic lower than −20 dB for electromagnetic waves in a frequency band higher than the 800 MHz band. It is the composition which has.

第1の内周面側電波吸収体5は、金属筐体2の内周面となる左壁面2C、右壁面2D、天井面2Eおよび底面2Fに設けられ、これらの略全面を覆っている。また、内周面側電波吸収体5は、端面側電波吸収体3とほぼ同様にカーボンを含有した電波吸収材料を用いてピラミッド形状等に形成されている。そして、内周面側電波吸収体5は、高周波側(1.9GHz帯以上)の周波数帯の電磁波では吸収特性が高く、低周波側(1.9GHz帯よりも低い)の周波数帯の電磁波では吸収特性が低くなっている。   The first inner peripheral surface side wave absorber 5 is provided on the left wall surface 2C, the right wall surface 2D, the ceiling surface 2E, and the bottom surface 2F, which are the inner peripheral surface of the metal casing 2, and covers substantially the entire surface thereof. Further, the inner peripheral surface side radio wave absorber 5 is formed in a pyramid shape or the like using a radio wave absorbing material containing carbon in substantially the same manner as the end surface side radio wave absorber 3. The inner peripheral surface side electromagnetic wave absorber 5 has a high absorption characteristic in the electromagnetic wave in the frequency band on the high frequency side (1.9 GHz band or higher), and the electromagnetic wave in the frequency band on the low frequency side (lower than the 1.9 GHz band). Absorption characteristics are low.

保持筒体6は、金属筐体2の内部に位置して軸方向に移動可能に設けられている。また、保持筒体6は、例えば略四角形の筒状に形成され、軸方向の両端側が開放されている。さらに、保持筒体6は、幅方向両側に位置する左壁面6A、右壁面6Bと、高さ方向両側に位置する天井面6C、底面6Dとを有している。そして、保持筒体6は、後述する衝立部材12を金属筐体2の前壁面2A側に配置したときに、その内部に衝立部材12を収容するものである。   The holding cylinder 6 is provided inside the metal housing 2 so as to be movable in the axial direction. Further, the holding cylinder 6 is formed in, for example, a substantially rectangular cylinder, and both end sides in the axial direction are open. Furthermore, the holding cylinder 6 has a left wall surface 6A and a right wall surface 6B located on both sides in the width direction, and a ceiling surface 6C and a bottom surface 6D located on both sides in the height direction. And the holding cylinder 6 accommodates the partition member 12 in the inside, when the partition member 12 mentioned later is arrange | positioned at the front wall surface 2A side of the metal housing | casing 2. As shown in FIG.

筒状部材7は、金属筐体2の内部に位置して軸方向に移動可能に設けられている。また、筒状部材7は、軸方向途中位置で分割可能な第1,第2の分割筒体8,9によって構成されている。ここで、分割筒体8,9は、例えば略四角形の筒状に形成され、軸方向の両端側が開放されている。そして、分割筒体8,9は、幅方向両側に位置する左壁面8A,9A、右壁面8B,9Bと、高さ方向両側に位置する天井面8C,9C、底面8D,9Dとを有している。また、分割筒体8,9は、保持筒体6と略同じ大きさで同じ形状に形成されているものの、保持筒体6に比べて軸方向の長さ寸法が大きくなっている。   The cylindrical member 7 is provided inside the metal housing 2 so as to be movable in the axial direction. Moreover, the cylindrical member 7 is comprised by the 1st, 2nd division | segmentation cylinders 8 and 9 which can be divided | segmented in the axial middle position. Here, the divided cylindrical bodies 8 and 9 are formed in, for example, a substantially rectangular cylindrical shape, and both end sides in the axial direction are open. The divided cylinders 8 and 9 have left wall surfaces 8A and 9A and right wall surfaces 8B and 9B located on both sides in the width direction, and ceiling surfaces 8C and 9C and bottom surfaces 8D and 9D located on both sides in the height direction. ing. The divided cylinders 8 and 9 are substantially the same size and the same shape as the holding cylinder 6, but the axial length is larger than that of the holding cylinder 6.

さらに、保持筒体6、分割筒体8,9の底面6D,8D,9Dには、金属筐体2の底面2Fとの間に位置して各筒体6,8,9を軸方向に移動させるための移動機構10が設けられている。このとき、移動機構10は、金属筐体2の底面2F上に設けられた2本のレール10Aと、筒体6,8,9の底面6D,8D,9Dに設けられ該レール10Aに沿って移動する車輪10Bとによって構成されている。また、レール10Aは、金属筐体2の軸方向に沿って直線状に延びている。一方、車輪10Bは、レール10Aによって支持された状態で、レール10Aに沿って軸方向に進行する。このため、筒体6,8,9は、移動機構10によって、軸方向に向けて円滑に移動する構成となっている。   Further, the bottom surfaces 6D, 8D, and 9D of the holding cylinder 6 and the divided cylinders 8 and 9 are positioned between the bottom surface 2F of the metal housing 2 and move the cylinders 6, 8, and 9 in the axial direction. A moving mechanism 10 is provided. At this time, the moving mechanism 10 is provided on the two rails 10A provided on the bottom surface 2F of the metal casing 2 and the bottom surfaces 6D, 8D, and 9D of the cylinders 6, 8, and 9 along the rail 10A. It is comprised by the wheel 10B which moves. Further, the rail 10 </ b> A extends linearly along the axial direction of the metal housing 2. On the other hand, the wheel 10B advances in the axial direction along the rail 10A while being supported by the rail 10A. For this reason, the cylinders 6, 8, and 9 are configured to smoothly move in the axial direction by the moving mechanism 10.

そして、高周波側(1.9GHz帯以上)の周波数帯の特性を測定するときには、保持筒体6および第1の分割筒体8は例えば金属筐体2の前壁面2A側に配置される。一方、第2の分割筒体9は、第2の端面側電波吸収体4を覆った状態で後述の衝立部材12を保持するために、例えば金属筐体2の後壁面2B側に配置される。このとき、第2の分割筒体9内には、衝立部材12が収容される。これにより、分割筒体8,9は、金属筐体2の軸方向両端側に互いに分離した状態で配置される。   When measuring the characteristics of the frequency band on the high frequency side (1.9 GHz band or higher), the holding cylinder 6 and the first divided cylinder 8 are arranged on the front wall surface 2A side of the metal housing 2, for example. On the other hand, the second divided cylindrical body 9 is disposed, for example, on the rear wall 2B side of the metal housing 2 in order to hold a partition member 12 described later in a state of covering the second end surface side wave absorber 4. . At this time, the partition member 12 is accommodated in the second divided cylindrical body 9. Thereby, the division cylinders 8 and 9 are arrange | positioned in the state isolate | separated from the axial direction both ends of the metal housing | casing 2 mutually.

一方、低周波側(800MHz帯以上)の周波数帯の特性を測定するときには、保持筒体6は、第1の端面側電波吸収体3を覆った状態で後述の衝立部材12を保持するために、例えば金属筐体2の前壁面2A側に配置される。このとき、保持筒体6内には、衝立部材12が収容される。また、第1,第2の分割筒体8,9は、金属筐体2の軸方向中央側に位置して、互いに衝合した状態で配置される。   On the other hand, when measuring the characteristics of the frequency band on the low frequency side (800 MHz band or higher), the holding cylinder 6 holds the partition member 12 described later in a state of covering the first end face side radio wave absorber 3. For example, it arrange | positions at the front wall surface 2A side of the metal housing | casing 2. FIG. At this time, the partition member 12 is accommodated in the holding cylinder 6. Further, the first and second divided cylindrical bodies 8 and 9 are located on the axially central side of the metal housing 2 and are arranged in contact with each other.

第2の内周面側電波吸収体11は、各筒体6,8,9の内周面に設けられ、これらの略全面を覆っている。このため、内周面側電波吸収体11は、分割筒体6,8,9の左壁面6A,8A,9A、右壁面6B,8B,9B、天井面6C,8C,9Cおよび底面6D,8D,9Dに設けられている。また、内周面側電波吸収体11は、端面側電波吸収体4とほぼ同様にフェライト材料を用いて平板状に形成されている。そして、内周面側電波吸収体11は、低周波側(800MHz帯以下)の周波数帯の電磁波では吸収特性が高く、高周波側(800MHz帯よりも高い)の周波数帯の電磁波では吸収特性が低くなっている。   The second inner peripheral surface side radio wave absorber 11 is provided on the inner peripheral surface of each of the cylinders 6, 8, 9 and covers substantially the entire surface thereof. For this reason, the inner peripheral surface side electromagnetic wave absorber 11 includes the left wall surfaces 6A, 8A, 9A, the right wall surfaces 6B, 8B, 9B, the ceiling surfaces 6C, 8C, 9C and the bottom surfaces 6D, 8D of the divided cylinders 6, 8, 9. , 9D. Further, the inner peripheral surface side wave absorber 11 is formed in a flat plate shape using a ferrite material in substantially the same manner as the end surface side wave absorber 4. The inner peripheral surface side electromagnetic wave absorber 11 has high absorption characteristics for electromagnetic waves in the frequency band on the low frequency side (800 MHz band or lower), and low absorption characteristics for electromagnetic waves in the frequency band on the high frequency side (higher than 800 MHz band). It has become.

衝立部材12は、軸方向と直交した平面(XZ平面)を有する平板状に形成され、金属筐体2の内部に位置して軸方向に対して第1,第2の端面側電波吸収体3,4の間に配置されている。また、衝立部材12は、筒状部材7の開口面積よりも小さい面積を有して筒状部材7の開口を塞ぐと共に、筒状部材7の内部を通過して軸方向に移動可能に設けられている。   The partition member 12 is formed in a flat plate shape having a plane (XZ plane) orthogonal to the axial direction, and is located inside the metal housing 2 and is located in the first and second end face side wave absorbers 3 with respect to the axial direction. , 4 are arranged. The partition member 12 has an area smaller than the opening area of the tubular member 7 so as to close the opening of the tubular member 7 and is provided so as to be movable in the axial direction through the inside of the tubular member 7. ing.

さらに、衝立部材12の底部には、各筒体6,8,9の底面6D,8D,9Dとの間に位置して衝立部材12を軸方向に移動させるための移動機構13が設けられている。このとき、移動機構13は、筒体6,8,9の内部に位置して底面6D,8D,9D上に設けられた2本のレール13Aと、衝立部材12の底部に設けられ該レール13Aに沿って移動する車輪13Bとによって構成されている。また、レール13Aは、筒体6,8,9毎に分割されるものの、分割筒体6,8,9が連結されたときに互いに接続されて金属筐体2の軸方向に沿って直線状に延びる構成となっている。一方、車輪13Bは、レール13Aによって支持された状態で、レール13Aに沿って軸方向に進行する。このため、衝立部材12は、移動機構13によって、筒状部材7の内部を軸方向に向けて円滑に移動する構成となっている。   Furthermore, a moving mechanism 13 is provided at the bottom of the partition member 12 to move the partition member 12 in the axial direction, located between the bottom surfaces 6D, 8D, and 9D of the cylinders 6, 8, and 9. Yes. At this time, the moving mechanism 13 is located inside the cylinders 6, 8, 9, two rails 13 </ b> A provided on the bottom surfaces 6 </ b> D, 8 </ b> D, 9 </ b> D, and the rail 13 </ b> A provided at the bottom of the partition member 12. And a wheel 13 </ b> B that moves along the wheel. Further, although the rail 13A is divided into the cylinders 6, 8, and 9, they are connected to each other when the divided cylinders 6, 8, and 9 are connected, and are linear along the axial direction of the metal housing 2. It is the structure extended to. On the other hand, the wheel 13B advances in the axial direction along the rail 13A while being supported by the rail 13A. For this reason, the partition member 12 is configured to smoothly move the inside of the cylindrical member 7 in the axial direction by the moving mechanism 13.

第1の衝立側電波吸収体14は、衝立部材12のうち第1の端面側電波吸収体3と対向した前面に設けられている。また、衝立側電波吸収体14は、端面側電波吸収体3とほぼ同様にカーボンを含有した電波吸収材料を用いてピラミッド形状等に形成され、衝立部材12の後面を略全面に亘って覆っている。そして、衝立側電波吸収体14は、高周波側(1.9GHz帯以上)の周波数帯の電磁波では吸収特性が高く、低周波側(1.9GHz帯よりも低い)の周波数帯の電磁波では吸収特性が低くなっている。   The first partition side radio wave absorber 14 is provided on the front surface of the partition member 12 facing the first end surface side radio wave absorber 3. The partition-side radio wave absorber 14 is formed in a pyramid shape or the like using a radio wave absorbing material containing carbon in substantially the same manner as the end-surface-side radio wave absorber 3, and covers the rear surface of the partition member 12 over substantially the entire surface. Yes. The partition-side radio wave absorber 14 has high absorption characteristics for electromagnetic waves in the frequency band on the high frequency side (1.9 GHz band or higher), and has absorption characteristics for electromagnetic waves in the frequency band on the low frequency side (lower than the 1.9 GHz band). Is low.

さらに、衝立側電波吸収体14は、衝立部材12と一緒に軸方向に移動すると共に、衝立部材12が前壁面2A側に配置されたときには、端面側電波吸収体3と接近した状態で対面する。このとき、衝立側電波吸収体14は、その突出端部(ピラミッド形状の頂点部分)が端面側電波吸収体3の突出端部と接触(干渉)しないように、Z方向およびX方向に対して互い違いに配置されている。これにより、端面側電波吸収体3と衝立側電波吸収体14とが軸方向に重なり合ったときに、これらの電波吸収体3,14を合計した軸方向寸法を小さくすることができる。この結果、衝立部材12が必要以上に金属筐体2内に進入することがなくなるから、衝立部材12と測定用アンテナ19等との干渉を防ぐことができると共に、金属筐体2の軸方向寸法を小さくすることができる。   Furthermore, the partition-side radio wave absorber 14 moves in the axial direction together with the partition member 12 and faces the end-surface-side radio wave absorber 3 in a state of being close when the partition member 12 is disposed on the front wall surface 2A side. . At this time, the partitioning-side radio wave absorber 14 is in the Z direction and the X direction so that the protruding end portion (the apex portion of the pyramid shape) does not contact (interfere) with the protruding end portion of the end surface side radio wave absorber 3. They are staggered. Thereby, when the end surface side radio wave absorber 3 and the partition side radio wave absorber 14 overlap each other in the axial direction, the total axial dimension of the radio wave absorbers 3 and 14 can be reduced. As a result, the partition member 12 does not enter the metal housing 2 more than necessary, so that interference between the partition member 12 and the measurement antenna 19 can be prevented and the axial dimension of the metal housing 2 can be prevented. Can be reduced.

第2の衝立側電波吸収体15は、衝立部材12のうち第2の端面側電波吸収体4と対向した後面に設けられている。また、衝立側電波吸収体15は、端面側電波吸収体4とほぼ同様にフェライト材料を用いた平板状に形成され、衝立部材12の後面を略全面に亘って覆っている。そして、衝立側電波吸収体15は、低周波側(800MHz帯以下)の周波数帯の電磁波では吸収特性が高く、高周波側(800MHz帯よりも高い)の周波数帯の電磁波では吸収特性が低くなっている。   The second partition side radio wave absorber 15 is provided on the rear surface of the partition member 12 facing the second end surface side radio wave absorber 4. The partition-side radio wave absorber 15 is formed in a flat plate shape using a ferrite material in substantially the same manner as the end-surface-side radio wave absorber 4 and covers the rear surface of the partition member 12 over substantially the entire surface. The partition-side radio wave absorber 15 has high absorption characteristics for electromagnetic waves in the frequency band on the low frequency side (800 MHz band or lower), and has low absorption characteristics for electromagnetic waves in the frequency band on the high frequency side (higher than 800 MHz band). Yes.

被測定物固定治具16は、金属筐体2の後壁面2B側に設けられている。また、被測定物固定治具16は、金属筐体2の天井面2Eから垂下した状態で取付けられ、その先端に被測定物17を取付けるための固定台座16Aが設けられている。そして、被測定物固定治具16は、例えば2軸方向に回転する回転機構(図示せず)を備え、2軸ポジショナを構成している。このため、被測定物固定治具16は、被測定物17を高さ方向(Z方向)に平行なO1軸周りで方位角θ方向に回転させると共に、軸方向(Y方向)に平行なO2軸周りで仰角φ方向に回転させる構成となっている。   The measurement object fixing jig 16 is provided on the rear wall surface 2 </ b> B side of the metal housing 2. Further, the measurement object fixing jig 16 is attached in a state of hanging from the ceiling surface 2E of the metal casing 2, and a fixed base 16A for attaching the measurement object 17 is provided at the tip thereof. And the to-be-measured object fixing jig 16 is provided with a rotating mechanism (not shown) that rotates in a biaxial direction, for example, and constitutes a biaxial positioner. Therefore, the object fixing jig 16 rotates the object 17 in the azimuth angle θ direction around the O1 axis parallel to the height direction (Z direction) and O2 parallel to the axial direction (Y direction). It is configured to rotate around the axis in the elevation angle φ direction.

また、被測定物固定治具16は、高さ方向に向けて変位可能に取付けられ、金属筐体2内に進退可能な構成となっている。このため、被測定物固定治具16は、筒状部材7および衝立部材12を軸方向に移動させるときには、金属筐体2内から退出し、被測定物17の電磁波特性を測定するときには、金属筐体2内に進入する。   Further, the DUT 16 is attached so as to be displaceable in the height direction, and is configured to be able to advance and retreat in the metal housing 2. For this reason, the workpiece fixing jig 16 is retracted from the metal housing 2 when the cylindrical member 7 and the partition member 12 are moved in the axial direction, and when measuring the electromagnetic wave characteristics of the workpiece 17 Enter the case 2.

被測定物17は、被測定物固定治具16の固定台座16Aに取付けられ、図2および図6に示すように、O1軸とO2軸との2軸周りに回転する。また、被測定物17は、例えば携帯電話、携帯端末等によって構成されると共に、放射効率を測定する測定対象としての被測定アンテナ17Aを備えている。このとき、被測定アンテナ17Aは、例えばホイップアンテナ、内蔵のチップアンテナ等によって構成されている。また、被測定物17には、例えば800MHz帯および1.9GHz帯のように複数の周波数帯の電磁波を放射することができる携帯電話等が適用される。なお、被測定物17は2つの周波数帯の電磁波を放射するものとして例示したが、2つ以上の周波数帯の電磁波を放射する構成としてもよい。   The object to be measured 17 is attached to a fixed base 16A of the object to be measured fixing jig 16, and rotates around two axes of the O1 axis and the O2 axis as shown in FIGS. In addition, the device under test 17 includes, for example, a mobile phone, a mobile terminal, and the like, and includes a device under test 17A as a measurement target for measuring the radiation efficiency. At this time, the antenna 17A to be measured is constituted by, for example, a whip antenna, a built-in chip antenna, or the like. Further, for example, a cellular phone that can radiate electromagnetic waves of a plurality of frequency bands such as 800 MHz band and 1.9 GHz band is applied to the object to be measured 17. In addition, although the to-be-measured object 17 illustrated as what radiates | emits electromagnetic waves of two frequency bands, it is good also as a structure which radiates | emits electromagnetic waves of two or more frequency bands.

アンテナ取付治具18は、図2および図3に示すように、金属筐体2の前壁面2A側に設けられている。また、アンテナ取付治具18は、被測定物固定治具16と同様に金属筐体2の天井面2Eから垂下した状態で取付けられると共に、その先端には後述の測定用アンテナ19が取付けられる。そして、アンテナ取付治具18は、測定用アンテナ19によって測定する偏波(水平偏波、垂直偏波)を切換える構成となっている。   The antenna mounting jig 18 is provided on the front wall surface 2A side of the metal housing 2 as shown in FIGS. The antenna mounting jig 18 is mounted in a state where it is suspended from the ceiling surface 2E of the metal casing 2 in the same manner as the measured object fixing jig 16, and a measurement antenna 19 described later is mounted on the tip thereof. The antenna mounting jig 18 is configured to switch the polarization (horizontal polarization, vertical polarization) measured by the measurement antenna 19.

また、アンテナ取付治具18は、被測定物固定治具16と同様に、高さ方向に向けて変位可能に取付けられ、金属筐体2内に進退可能な構成となっている。このため、アンテナ取付治具18は、筒状部材7および衝立部材12を軸方向に移動させるときには、金属筐体2内から退出し、被測定物17の電磁波特性を測定するときには、金属筐体2内に進入する。   The antenna mounting jig 18 is mounted so as to be displaceable in the height direction and is configured to be able to advance and retreat in the metal housing 2, similarly to the measurement object fixing jig 16. For this reason, the antenna mounting jig 18 moves out of the metal casing 2 when moving the cylindrical member 7 and the partition member 12 in the axial direction, and when measuring the electromagnetic wave characteristics of the object 17 to be measured, Enter 2

測定用アンテナ19は、金属筐体2の内部で例えば軸方向のうち前壁面2A側に設けられている。また、測定用アンテナ19は、アンテナ取付治具18の先端側に取付けられ、被測定物17と軸方向(Y方向)で所定の距離寸法だけ離間した位置に対向した状態で配置されている。ここで、測定用アンテナ19は、例えば小型バイコニカルアンテナによって構成され、水平偏波と垂直偏波とのうちいずれか一方を選択的に測定する。また、測定用アンテナ19は、後述のネットワークアナライザ20に接続されている。   The measurement antenna 19 is provided inside the metal housing 2, for example, on the front wall surface 2 </ b> A side in the axial direction. Further, the measurement antenna 19 is attached to the tip end side of the antenna attachment jig 18 and is disposed in a state of being opposed to a position separated from the DUT 17 by a predetermined distance dimension in the axial direction (Y direction). Here, the measurement antenna 19 is constituted by a small biconical antenna, for example, and selectively measures one of horizontal polarization and vertical polarization. The measurement antenna 19 is connected to a network analyzer 20 described later.

ネットワークアナライザ20は、被測定物17(被測定アンテナ17A)が放射する電磁界を測定する電磁界測定器を構成し、高周波ケーブル20Aを通じて被測定アンテナ17Aに接続されると共に、高周波ケーブル20Bを通じて測定用アンテナ19に接続されている。そして、ネットワークアナライザ20は、被測定アンテナ17Aから送信した電磁波(高周波信号)を測定用アンテナ19を用いて受信する。これにより、ネットワークアナライザ20は、被測定アンテナ17Aに供給した電力と測定用アンテナ19から受信した電力との比率を演算し、空間の損失分に相当するS行列のパラメータS21を測定する。   The network analyzer 20 constitutes an electromagnetic field measuring device that measures the electromagnetic field radiated by the device under test 17 (measured antenna 17A), and is connected to the measured antenna 17A through the high frequency cable 20A and measured through the high frequency cable 20B. It is connected to the antenna 19 for use. The network analyzer 20 receives the electromagnetic wave (high-frequency signal) transmitted from the antenna to be measured 17 </ b> A using the measurement antenna 19. As a result, the network analyzer 20 calculates the ratio between the power supplied to the antenna to be measured 17A and the power received from the measurement antenna 19, and measures the parameter S21 of the S matrix corresponding to the space loss.

本実施の形態による電波無響箱1は上述のように構成されるものであり、次に測定用アンテナ19を用いて測定する電磁波の周波数帯を高周波側(1.9GHz帯)と低周波側(800MHz帯)とで切換える測定周波数帯の切換方法について説明する。   The radio wave anechoic box 1 according to the present embodiment is configured as described above. Next, the frequency bands of electromagnetic waves to be measured using the measurement antenna 19 are set to the high frequency side (1.9 GHz band) and the low frequency side. A method of switching the measurement frequency band that is switched between (800 MHz band) will be described.

まず、電波無響箱1は、高周波側(1.9GHz帯)の周波数帯の電磁波を測定する構成について説明する。この場合、図2に示すように、筒状部材7の分割筒体8,9を金属筐体2の軸方向両端側に分離して配置し、衝立部材12を分割筒体9の内部に収容した状態で金属筐体2の後壁面2B側に配置する。また、被測定物固定治具16およびアンテナ取付治具18を分割筒体8,9を避けた位置として軸方向に離間した分割筒体8,9の間に配置し、第1の端面側電波吸収体3と第1の衝立側電波吸収体14との間に配置する。これにより、被測定物17および測定用アンテナ19は、第1の内周面側電波吸収体5によって取囲まれると共に、電波吸収体3,14によって軸方向両側が挟まれる。このため、被測定物17と測定用アンテナ19との間の一次反射面は、高周波側の周波数帯の電磁波を吸収する電波吸収体3,5,14によって覆われる。   First, the radio anechoic box 1 will be described with respect to a configuration for measuring electromagnetic waves in a frequency band on the high frequency side (1.9 GHz band). In this case, as shown in FIG. 2, the divided cylindrical bodies 8 and 9 of the cylindrical member 7 are arranged separately on both ends in the axial direction of the metal housing 2, and the partition member 12 is accommodated inside the divided cylindrical body 9. In this state, the metal housing 2 is disposed on the rear wall 2B side. Further, the measurement object fixing jig 16 and the antenna mounting jig 18 are arranged between the divided cylinders 8 and 9 spaced apart from each other in the axial direction so as to avoid the divided cylinders 8 and 9, and the first end surface side radio wave It arrange | positions between the absorber 3 and the 1st screen side electromagnetic wave absorber 14. FIG. As a result, the DUT 17 and the measurement antenna 19 are surrounded by the first inner circumferential surface side wave absorber 5, and both sides in the axial direction are sandwiched between the wave absorbers 3 and 14. For this reason, the primary reflection surface between the DUT 17 and the measurement antenna 19 is covered with the radio wave absorbers 3, 5, and 14 that absorb electromagnetic waves in the high frequency band.

次に、高周波用の電波吸収体3,5,14(図2の状態)を低周波用の電波吸収体4,11,15(図3の状態)に切換える手順について、図7ないし図10を参照しつつ説明する。   Next, a procedure for switching the high frequency radio wave absorbers 3, 5, and 14 (the state of FIG. 2) to the low frequency radio wave absorbers 4, 11, and 15 (the state of FIG. 3) will be described with reference to FIGS. This will be described with reference to FIG.

まず、金属筐体2のドア2Gを開き、被測定物固定治具16から被測定物17を取外すと共に、アンテナ取付治具18から測定用アンテナ19を取外す。その後、図7に示すように、被測定物固定治具16およびアンテナ取付治具18を引上げ、これらを金属筐体2内から退出させる。これにより、筒状部材7および衝立部材12は軸方向に移動可能な状態となる。   First, the door 2G of the metal housing 2 is opened, the measurement object 17 is removed from the measurement object fixing jig 16, and the measurement antenna 19 is removed from the antenna attachment jig 18. Thereafter, as shown in FIG. 7, the workpiece fixing jig 16 and the antenna mounting jig 18 are pulled up, and these are retracted from the metal housing 2. Thereby, the cylindrical member 7 and the partition member 12 will be in the state which can move to an axial direction.

次に、図8に示すように、分割筒体9を後壁面2B側から前壁面2A側に向けて軸方向に移動させる。このとき、分割筒体9の内部には、衝立部材12が収容されている。このため、衝立部材12も、分割筒体9と一緒に前壁面2A側に向けて軸方向に移動する。   Next, as shown in FIG. 8, the split cylinder 9 is moved in the axial direction from the rear wall surface 2B side toward the front wall surface 2A side. At this time, the partition member 12 is accommodated in the divided cylindrical body 9. For this reason, the partition member 12 also moves in the axial direction toward the front wall surface 2 </ b> A together with the divided cylindrical body 9.

そして、前壁面2A側に移動した分割筒体9は、分割筒体8の端部に衝合し、筒体6,8に連結される。これにより、移動機構13のレール13Aは、筒体6,8,9の底面6D,8D,9D上で接続される。   Then, the divided cylinder 9 that has moved to the front wall surface 2 </ b> A abuts on the end of the divided cylinder 8 and is connected to the cylinders 6 and 8. Thereby, the rail 13A of the moving mechanism 13 is connected on the bottom surfaces 6D, 8D, and 9D of the cylinders 6, 8, and 9.

次に、車輪13Bがレール13Aに沿って移動することによって、衝立部材12は、図9に示すように、分割筒体9内から保持筒体6内に移動する。これにより、第1の衝立側電波吸収体14は、前壁面2Aに設けられた第1の端面側電波吸収体3に接近し、互いに重なり合った状態で配置される。一方、第2の衝立側電波吸収体15は前壁面2A側に位置するのに対し、第2の端面側電波吸収体4は後壁面2Bに設けられている。このため、電波吸収体4,15は、金属筐体2の軸方向両端側にそれぞれ配置される。   Next, as the wheel 13B moves along the rail 13A, the partition member 12 moves from the divided cylinder 9 into the holding cylinder 6 as shown in FIG. Thereby, the 1st partition side electromagnetic wave absorber 14 approaches the 1st end surface side electromagnetic wave absorber 3 provided in 2 A of front wall surfaces, and is arrange | positioned in the state which mutually overlapped. On the other hand, the second partition side radio wave absorber 15 is located on the front wall surface 2A side, while the second end surface side radio wave absorber 4 is provided on the rear wall surface 2B. For this reason, the radio wave absorbers 4 and 15 are disposed on both ends in the axial direction of the metal casing 2.

次に、図10に示すように、被測定物固定治具16を引き下げて、金属筐体2の内部に進入させる。この状態で、筒状部材7の分割筒体8,9を金属筐体2の軸方向中央側に移動させる。このとき、衝立部材12は、保持筒体6と一緒に金属筐体2の前壁面2A側に保持される。また、分割筒体8,9の端面は互いに衝合しているから、分割筒体8,9は互いに連結された状態となる。そして、被測定物固定治具16の固定台座16Aは、分割筒体9の内部に配置される。   Next, as shown in FIG. 10, the workpiece fixing jig 16 is pulled down to enter the inside of the metal housing 2. In this state, the divided cylinders 8 and 9 of the cylindrical member 7 are moved to the center side in the axial direction of the metal housing 2. At this time, the partition member 12 is held on the front wall surface 2 </ b> A side of the metal housing 2 together with the holding cylinder 6. Moreover, since the end surfaces of the divided cylinders 8 and 9 are in contact with each other, the divided cylinders 8 and 9 are connected to each other. The fixed base 16 </ b> A of the measurement object fixing jig 16 is disposed inside the divided cylindrical body 9.

次に、アンテナ取付治具18を引き下げて、金属筐体2の内部に進入させる。これにより、被測定物固定治具16とアンテナ取付治具18との間には、分割筒体8,9(筒状部材7)が挟まれた状態で配置される。   Next, the antenna mounting jig 18 is pulled down to enter the inside of the metal housing 2. As a result, the divided cylinders 8 and 9 (tubular member 7) are disposed between the DUT 16 and the antenna mounting jig 18.

最後に、図3に示すように、被測定物固定治具16の固定台座16Aに被測定物17を取付けると共に、アンテナ取付治具18に測定用アンテナ19を取付ける。これにより、筒状部材7は金属筐体2の軸方向中央側に配置され、衝立部材12は保持筒体6の内部に収容された状態で金属筐体2の軸方向の前壁面2A側に配置される。また、被測定物固定治具16およびアンテナ取付治具18は、筒状部材7を挟んだ状態で第2の端面側電波吸収体4と第2の衝立側電波吸収体15との間に配置される。この結果、被測定物17および測定用アンテナ19は、筒状部材7の内部に位置して第2の内周面側電波吸収体11によって取囲まれると共に、電波吸収体4,15によって軸方向両側が挟まれる。このため、被測定物17と測定用アンテナ19との間の一次反射面は、低周波側の周波数帯の電磁波を吸収する電波吸収体4,11,15によって覆われる。   Finally, as shown in FIG. 3, the measurement object 17 is attached to the fixed base 16 </ b> A of the measurement object fixing jig 16, and the measurement antenna 19 is attached to the antenna attachment jig 18. Thereby, the cylindrical member 7 is arrange | positioned at the axial direction center side of the metal housing | casing 2, and the partition member 12 is in the state which was accommodated in the inside of the holding | maintenance cylinder 6, and the axial front wall surface 2A side of the metallic housing 2 Be placed. Further, the DUT 16 and the antenna mounting jig 18 are disposed between the second end face side wave absorber 4 and the second partition side wave absorber 15 with the cylindrical member 7 interposed therebetween. Is done. As a result, the DUT 17 and the measurement antenna 19 are located inside the cylindrical member 7 and are surrounded by the second inner peripheral surface side wave absorber 11 and are also axially moved by the wave absorbers 4 and 15. Both sides are sandwiched. For this reason, the primary reflection surface between the DUT 17 and the measurement antenna 19 is covered with the radio wave absorbers 4, 11, 15 that absorb electromagnetic waves in the low frequency band.

次に、前述とは逆に、低周波用の電波吸収体4,11,15(図3の状態)を高周波用の電波吸収体3,5,14(図2の状態)に切換える手順について、図11ないし図14を参照しつつ説明する。   Next, contrary to the above, the procedure for switching the low-frequency wave absorbers 4, 11, and 15 (state of FIG. 3) to the high-frequency wave absorbers 3, 5, and 14 (state of FIG. 2), This will be described with reference to FIGS.

まず、金属筐体2のドア2Gを開き、被測定物固定治具16から被測定物17を取外すと共に、アンテナ取付治具18から測定用アンテナ19を取外す。その後、図11に示すように、アンテナ取付治具18を引上げて金属筐体2内から退出させる。これにより、筒状部材7は軸方向で前壁面2A側に向けて移動可能な状態となる。そこで、保持筒体6に接触する位置まで、筒状部材7を前壁面2A側に移動させる。このとき、保持筒体6は、分割筒体8の端部に衝合し、分割筒体8,9に連結される。このため、移動機構13のレール13Aは、筒体6,8,9の底面6D,8D,9D上で接続される。そして、筒状部材7が移動した後に、被測定物固定治具16を引上げて金属筐体2内から退出させる。   First, the door 2G of the metal housing 2 is opened, the measurement object 17 is removed from the measurement object fixing jig 16, and the measurement antenna 19 is removed from the antenna attachment jig 18. Thereafter, as shown in FIG. 11, the antenna mounting jig 18 is pulled up and retracted from the metal housing 2. Thereby, the cylindrical member 7 will be in the state which can move toward the front wall surface 2A side in an axial direction. Therefore, the cylindrical member 7 is moved to the front wall surface 2 </ b> A side until it comes into contact with the holding cylinder 6. At this time, the holding cylinder 6 abuts on the end of the divided cylinder 8 and is connected to the divided cylinders 8 and 9. For this reason, the rail 13A of the moving mechanism 13 is connected on the bottom surfaces 6D, 8D, and 9D of the cylinders 6, 8, and 9. And after the cylindrical member 7 moves, the to-be-measured object fixing jig 16 is pulled up and retracted from the inside of the metal housing 2.

次に、図12に示すように、保持筒体6を筒状部材7と一緒に前壁面2A側から後壁面2B側に向けて軸方向に移動させる。このとき、保持筒体6の内部には、衝立部材12が収容されている。このため、衝立部材12も、保持筒体6と一緒に後壁面2B側に向けて軸方向に移動する。そして、筒体6,8,9が連結した状態で、分割筒体9が後壁面2Bに接触(衝合)するまで、これらの筒体6,8,9を後壁面2B側に移動させる。   Next, as shown in FIG. 12, the holding cylinder 6 is moved together with the cylindrical member 7 in the axial direction from the front wall surface 2A side to the rear wall surface 2B side. At this time, the partition member 12 is accommodated in the holding cylinder 6. For this reason, the partition member 12 also moves in the axial direction toward the rear wall surface 2 </ b> B together with the holding cylinder 6. Then, in a state where the cylinders 6, 8, and 9 are connected, the cylinders 6, 8, and 9 are moved to the rear wall 2B side until the divided cylinder 9 comes into contact (abutment) with the rear wall 2B.

次に、車輪13Bがレール13Aに沿って移動することによって、衝立部材12は、図13に示すように、保持筒体6内から分割筒体9内に移動する。これにより、第2の衝立側電波吸収体15は、後壁面2Bに設けられた第2の端面側電波吸収体4に接近し、互いに重なり合った状態で配置される。一方、第1の衝立側電波吸収体14は後壁面2B側に位置するのに対し、第1の端面側電波吸収体3は前壁面2Aに設けられている。このため、電波吸収体3,14は、金属筐体2の軸方向両端側にそれぞれ配置される。   Next, as the wheel 13B moves along the rail 13A, the partition member 12 moves from the holding cylinder 6 into the divided cylinder 9 as shown in FIG. Thereby, the 2nd partition side electromagnetic wave absorber 15 approaches the 2nd end surface side electromagnetic wave absorber 4 provided in the rear wall surface 2B, and is arrange | positioned in the state which mutually overlapped. On the other hand, the first partition side radio wave absorber 14 is located on the rear wall surface 2B side, while the first end surface side radio wave absorber 3 is provided on the front wall surface 2A. For this reason, the radio wave absorbers 3 and 14 are disposed on both ends of the metal housing 2 in the axial direction.

次に、図14に示すように、保持筒体6および分割筒体8を前壁面2A側に移動させる。これにより、分割筒体8,9の間には、第1の内周面側電波吸収体5が露出した空間が画成される。   Next, as shown in FIG. 14, the holding cylinder 6 and the divided cylinder 8 are moved to the front wall surface 2A side. Thereby, a space in which the first inner peripheral surface side wave absorber 5 is exposed is defined between the divided cylindrical bodies 8 and 9.

次に、被測定物固定治具16およびアンテナ取付治具18を引き下げて、金属筐体2の内部に進入させる。このとき、被測定物固定治具16およびアンテナ取付治具18は、分割筒体8,9を避けた位置として軸方向に対して分割筒体8,9の間に配置される。   Next, the workpiece fixing jig 16 and the antenna mounting jig 18 are pulled down to enter the inside of the metal housing 2. At this time, the DUT 16 and the antenna mounting jig 18 are disposed between the divided cylinders 8 and 9 with respect to the axial direction as positions avoiding the divided cylinders 8 and 9.

最後に、図2に示すように、被測定物固定治具16の固定台座16Aに被測定物17を取付けると共に、アンテナ取付治具18に測定用アンテナ19を取付ける。これにより、分割筒体8,9は金属筐体2の軸方向両端側に分離して配置され、衝立部材12は分割筒体9の内部に収容された状態で金属筐体2の後壁面2B側に配置される。また、被測定物固定治具16およびアンテナ取付治具18は、軸方向に離間した分割筒体8,9の間に位置して第1の端面側電波吸収体3と第1の衝立側電波吸収体14との間に配置される。この結果、被測定物17と測定用アンテナ19との間の一次反射面は、高周波側の周波数帯の電磁波を吸収する電波吸収体3,5,14によって覆われる。   Finally, as shown in FIG. 2, the measurement object 17 is attached to the fixed base 16 </ b> A of the measurement object fixing jig 16, and the measurement antenna 19 is attached to the antenna mounting jig 18. Thereby, the divided cylinders 8 and 9 are arranged separately on both ends in the axial direction of the metal casing 2, and the partition wall 12 is accommodated inside the divided cylinder 9 and the rear wall surface 2 </ b> B of the metal casing 2. Placed on the side. The object fixing jig 16 and the antenna mounting jig 18 are located between the divided cylindrical bodies 8 and 9 spaced apart in the axial direction, and the first end face side radio wave absorber 3 and the first partition side radio wave. It arrange | positions between the absorbers 14. As a result, the primary reflection surface between the DUT 17 and the measurement antenna 19 is covered with the radio wave absorbers 3, 5, and 14 that absorb electromagnetic waves in the high frequency band.

本実施の形態による電波無響箱1は上述のように構成されるものであり、次に該電波無響箱1を用いたアンテナ特性(アンテナ放射効率)の測定方法について説明する。   The radio anechoic box 1 according to the present embodiment is configured as described above. Next, a method for measuring antenna characteristics (antenna radiation efficiency) using the radio anechoic box 1 will be described.

まず、金属筐体2の内部は、図2に示すように、例えば高周波用の電波吸収体3,5,14が露出した状態にする。この状態で、被測定物固定治具16に対して被測定物17を取付ける。このとき、被測定物17は水平な状態で設置する。また、測定を開始する前に、ネットワークアナライザ20は、被測定物17に接続する高周波ケーブル20Aと測定用アンテナ19に接続する高周波ケーブル20Bとを直結し、高周波ケーブル20A,20Bによる損失分だけ目盛りの修正(キャリブレーション)を行う。   First, as shown in FIG. 2, the inside of the metal housing 2 is in a state in which, for example, radio wave absorbers 3, 5, and 14 for high frequency are exposed. In this state, the measurement object 17 is attached to the measurement object fixing jig 16. At this time, the DUT 17 is installed in a horizontal state. Before starting the measurement, the network analyzer 20 directly connects the high-frequency cable 20A connected to the device under test 17 and the high-frequency cable 20B connected to the measurement antenna 19, and is calibrated by the loss due to the high-frequency cables 20A and 20B. Correct (calibration).

次に、被測定物固定治具16を用いて、被測定物17の姿勢を方位角θと仰角φがいずれも0°の位置で固定する。この状態で、ネットワークアナライザ20を用いて、被測定物17(被測定アンテナ17A)から高周波側の周波数帯(1.9GHz帯)の電磁波を放射すると共に、放射した水平偏波を測定用アンテナ19によって受信し、このときのパラメータS21(R0,0°,0°)を測定する。そして、被測定物17の1つの姿勢でパラメータS21(R0,θ,φ)の測定が終了すると、被測定物固定治具16を用いて、被測定物17の方位角θを10°増加させて再びパラメータS21(R0,10°,0°)の測定を行う。この操作を方位角θが0°〜360°の範囲で繰返す。   Next, using the measurement object fixing jig 16, the posture of the measurement object 17 is fixed at a position where the azimuth angle θ and the elevation angle φ are both 0 °. In this state, the network analyzer 20 is used to radiate electromagnetic waves in the frequency band (1.9 GHz band) on the high frequency side from the device under test 17 (measuring antenna 17A), and to measure the radiated horizontally polarized waves to the measuring antenna 19. The parameter S21 (R0, 0 °, 0 °) at this time is measured. When the measurement of the parameter S21 (R0, θ, φ) is completed in one posture of the device under test 17, the azimuth angle θ of the device under test 17 is increased by 10 ° using the device under test fixture 16. The parameter S21 (R0, 10 °, 0 °) is measured again. This operation is repeated when the azimuth angle θ is in the range of 0 ° to 360 °.

そして、被測定物17を方位角θ方向に1周分だけ回転させた後には、ネットワークアナライザ20を用いて、被測定物17(被測定アンテナ17A)から放射される垂直偏波を測定用アンテナ19によって受信する。このとき、アンテナ取付治具18を用いて、測定用アンテナ19によって測定する偏波を水平偏波から垂直偏波に切換える。この状態で、前述した水平偏波のときと同様に、再び被測定物17の仰角φを0°に固定した状態で、被測定物17を方位角θ方向に回転させる。これにより、方位角θが0°〜360°の範囲で例えば10°毎に方位角θ方向のパラメータS21(R,θ,0°)を測定する。   Then, after rotating the device under test 17 by one turn in the azimuth angle θ direction, the network analyzer 20 is used to measure the vertical polarization radiated from the device under test 17 (measuring antenna 17A). 19 to receive. At this time, the antenna mounting jig 18 is used to switch the polarization measured by the measurement antenna 19 from horizontal polarization to vertical polarization. In this state, as in the case of the horizontal polarization described above, the device under test 17 is rotated in the azimuth angle θ direction with the elevation angle φ of the device under test 17 fixed at 0 ° again. Thus, the parameter S21 (R, θ, 0 °) in the azimuth angle θ direction is measured every 10 °, for example, in the range of the azimuth angle θ of 0 ° to 360 °.

仰角φを0°に固定した場合の測定が終了した後には、被測定物固定治具16を用いて、被測定物17の仰角φを10°増加させる。この状態で再び方位角θが0°〜360°の範囲で10°毎に変化させて、水平偏波および垂直偏波に対するパラメータS21(R,θ,10°)の測定を行う。以上の操作を、方位角θが0°〜360°の範囲および仰角φが0°〜180°の範囲で繰返し、それぞれの方位角θと仰角φにおけるパラメータS21(R,θ,φ)を測定する。   After the measurement is completed when the elevation angle φ is fixed at 0 °, the elevation angle φ of the measurement object 17 is increased by 10 ° using the measurement object fixing jig 16. In this state, the azimuth angle θ is changed again every 10 ° in the range of 0 ° to 360 °, and the parameter S21 (R, θ, 10 °) for horizontal polarization and vertical polarization is measured. The above operation is repeated for the azimuth angle θ in the range of 0 ° to 360 ° and the elevation angle φ in the range of 0 ° to 180 °, and the parameter S21 (R, θ, φ) at each azimuth angle θ and elevation angle φ is measured. To do.

そして、全ての方位角θおよび仰角φに対する測定が終了すると、各方位角θおよび仰角φ毎に水平偏波の測定結果の2乗S212(R,θ,φ)と垂直偏波の測定結果の2乗S212(R,θ,φ)とを加算し、最終的なパラメータS21の2乗S212(R,θ,φ)を算出する。このとき、水平偏波の測定結果と垂直偏波の測定結果とは、ネットワークアナライザ20によって測定した対数表示(dB)の測定値ではなく、真数に変換した数値で加算を行う。 When the measurement for all the azimuth angles θ and elevation angles φ is completed, the square polarization S21 2 (R, θ, φ) of the horizontal polarization measurement results and the measurement results of vertical polarization for each azimuth angle θ and elevation angle φ. square S21 2 of (R, theta, phi) adds the squared S21 2 final parameter S21 (R, θ, φ) is calculated. At this time, the measurement result of the horizontal polarization and the measurement result of the vertical polarization are added not by the logarithmic display (dB) measured by the network analyzer 20 but by a numerical value converted to a true number.

最後に、水平偏波の測定結果および垂直偏波の測定結果に基づくパラメータS21(R,θ,φ)を全空間に対して球面積分し、被測定物17の放射効率η(被測定アンテナ17Aのアンテナ特性)を以下の数1の式に基づいて算出する。   Finally, the parameter S21 (R, θ, φ) based on the measurement result of the horizontal polarization and the measurement result of the vertical polarization is spherically integrated over the entire space, and the radiation efficiency η of the DUT 17 (the antenna to be measured) 17A antenna characteristics) is calculated based on the following equation (1).

Figure 2009063427
Figure 2009063427

なお、数1の式において、λ0は測定周波数の波長を示し、Gは測定用アンテナ19の利得を示している。また、Δφは仰角φ方向の測定角度ステップを示し、本実施の形態はΔφは10°(Δφ=π/18[ラジアン])となっている。さらに、Δθは方位角θ方向の測定角度ステップを示し、本実施の形態では例えばΔθは10°(Δθ=π/18[ラジアン])となっている。   In Equation 1, λ 0 represents the wavelength of the measurement frequency, and G represents the gain of the measurement antenna 19. Further, Δφ represents a measurement angle step in the elevation angle φ direction. In the present embodiment, Δφ is 10 ° (Δφ = π / 18 [radian]). Further, Δθ indicates a measurement angle step in the azimuth angle θ direction. In the present embodiment, for example, Δθ is 10 ° (Δθ = π / 18 [radian]).

そして、被測定物17に対する高周波側の周波数帯(1.9GHz帯)の測定が終了した後には、図3に示すように、電波無響箱1の高周波用の電波吸収体3,5,14を低周波用の電波吸収体4,11,15に切換える。この状態で、前述した測定手順を繰返すことによって、被測定物17に対する低周波側の周波数帯(800MHz帯)の測定を行う。この結果、単一の電波無響箱1を用いて2つの周波数帯の測定を行うことができる。   Then, after the measurement of the frequency band on the high frequency side (1.9 GHz band) for the DUT 17 is completed, as shown in FIG. Are switched to the low-frequency wave absorbers 4, 11, 15. In this state, the measurement procedure described above is repeated to measure the low frequency side frequency band (800 MHz band) of the DUT 17. As a result, two frequency bands can be measured using the single anechoic box 1.

かくして、本実施の形態では、金属筐体2の軸方向の前壁面2Aに第1の端面側電波吸収体3を設け、金属筐体2の内周面に第1の内周面側電波吸収体5を設けるのに加え、軸方向に移動可能な衝立部材12には第1の端面側電波吸収体3と対向した前面に第1の衝立側電波吸収体14を設ける構成とした。これにより、例えば衝立部材12を金属筐体2の軸方向の後壁面2B側に配置することによって、金属筐体2の内部には高周波側の周波数帯(1.9GHz帯)の電磁波を吸収する空間を確保することができる。このため、この金属筐体2内の空間を用いることによって、高周波側の周波数帯の電磁波に対する特性を測定することができる。   Thus, in the present embodiment, the first end surface side radio wave absorber 3 is provided on the axial front wall surface 2 </ b> A of the metal casing 2, and the first inner peripheral surface side radio wave absorption is provided on the inner peripheral surface of the metal casing 2. In addition to providing the body 5, the partition member 12 movable in the axial direction has a configuration in which the first partition side radio wave absorber 14 is provided on the front surface facing the first end surface side radio wave absorber 3. Thereby, for example, by arranging the partition member 12 on the rear wall surface 2B side in the axial direction of the metal casing 2, electromagnetic waves in the frequency band (1.9 GHz band) on the high frequency side are absorbed inside the metal casing 2. Space can be secured. For this reason, the characteristic with respect to the electromagnetic wave of the frequency band of a high frequency side can be measured by using the space in this metal housing | casing 2. FIG.

また、筒状部材7の内周面には第2の内周面側電波吸収体11を設けると共に、衝立部材12には第2の端面側電波吸収体4と対向した後面に第2の衝立側電波吸収体15を設ける構成とした。これにより、例えば衝立部材12を金属筐体2の軸方向の前壁面2A側に配置することによって、筒状部材7の内部には低周波側の周波数帯(800MHz帯)の電磁波を吸収する空間を確保することができる。このため、この筒状部材7内の空間を用いることによって、低周波側の周波数帯の電磁波に対する特性を測定することができる。   A second inner peripheral surface side wave absorber 11 is provided on the inner peripheral surface of the cylindrical member 7, and a second partition is provided on the rear surface of the partition member 12 that faces the second end surface side radio wave absorber 4. The side radio wave absorber 15 is provided. Thereby, for example, by arranging the partition member 12 on the side of the front wall surface 2 </ b> A in the axial direction of the metal housing 2, a space that absorbs electromagnetic waves in the low frequency side frequency band (800 MHz band) inside the cylindrical member 7. Can be secured. For this reason, the characteristic with respect to the electromagnetic wave of the frequency band of a low frequency side can be measured by using the space in this cylindrical member 7. FIG.

この結果、単一の電波無響箱1内で互いに異なる2つの周波数帯の電磁波を測定することができる。このため、例えばマルチバンドの携帯電話のように、2つの周波数帯の電磁波を放射する被測定物17の特性を評価する場合でも、単一の電波無響箱1内で全ての周波数帯の電磁波を測定することができ、従来技術のように複数の電波無響箱を用いて測定する必要がなく、測定作業の効率を高めることができる。   As a result, electromagnetic waves in two different frequency bands can be measured in the single anechoic box 1. For this reason, even when evaluating the characteristics of the object to be measured 17 that radiates electromagnetic waves of two frequency bands, such as a multi-band mobile phone, the electromagnetic waves of all frequency bands within the single anechoic box 1. It is not necessary to measure using a plurality of radio anechoic boxes as in the prior art, and the efficiency of measurement work can be increased.

また、金属筐体2には、被測定物17を支持する被測定物固定治具16と測定用アンテナ19を支持するアンテナ取付治具18とを設ける構成とした。このため、高周波側の周波数帯の特性を測定するときには、筒状部材7を金属筐体2の軸方向両端側に配置すると共に、衝立部材12を金属筐体2の軸方向の後壁面2B側に配置する。これにより、金属筐体2の軸方向のうち第1の端面側電波吸収体3と第1の衝立側電波吸収体14との間には、高周波側の周波数帯の電磁波を吸収する空間を確保することができる。このため、この空間内に被測定物固定治具16およびアンテナ取付治具18を配置することによって、高周波側の周波数帯の特性を測定することができる。   Further, the metal casing 2 is provided with a device fixing jig 16 that supports the device 17 to be measured and an antenna mounting jig 18 that supports the measurement antenna 19. For this reason, when measuring the characteristics of the frequency band on the high frequency side, the cylindrical member 7 is disposed on both ends in the axial direction of the metal casing 2, and the partition member 12 is disposed on the rear wall 2 </ b> B side in the axial direction of the metal casing 2. To place. Thus, a space for absorbing electromagnetic waves in the frequency band on the high frequency side is secured between the first end surface side wave absorber 3 and the first partition side wave absorber 14 in the axial direction of the metal housing 2. can do. For this reason, the characteristics of the frequency band on the high frequency side can be measured by disposing the DUT 16 and the antenna mounting jig 18 in this space.

一方、低周波側の周波数帯の特性を測定するときには、筒状部材7を金属筐体2の軸方向中央側に配置すると共に、衝立部材12を金属筐体2の軸方向の前壁面2A側に配置する。これにより、筒状部材7の内部に位置して金属筐体2の軸方向のうち第2の端面側電波吸収体4と第2の衝立側電波吸収体15との間には、低周波側の周波数帯の電磁波を吸収する空間を確保することができる。このため、被測定物固定治具16およびアンテナ取付治具18を筒状部材7の軸方向両端側に配置することによって、低周波側の周波数帯の特性を測定することができる。   On the other hand, when measuring the characteristics of the frequency band on the low frequency side, the cylindrical member 7 is disposed on the center side in the axial direction of the metal housing 2, and the partition member 12 is disposed on the front wall surface 2 </ b> A side in the axial direction of the metal housing 2. To place. Thereby, the low frequency side is located between the second end face side wave absorber 4 and the second partition side wave absorber 15 in the axial direction of the metal housing 2 located inside the cylindrical member 7. A space for absorbing electromagnetic waves in the frequency band can be secured. For this reason, the characteristics of the frequency band on the low frequency side can be measured by disposing the DUT 16 and the antenna mounting jig 18 on both ends of the cylindrical member 7 in the axial direction.

また、筒状部材7は、軸方向途中位置で分割可能な2つの分割筒体8,9によって構成した。このため、高周波側の周波数帯の特性を測定するときには、分割筒体8,9は金属筐体2の軸方向両端側に互いに分離した状態で配置することができる。一方、低周波側の周波数帯の特性を測定するときには、金属筐体2の軸方向中央側に互いに衝合した状態で配置することができる。   Moreover, the cylindrical member 7 was comprised by the two division | segmentation cylinders 8 and 9 which can be divided | segmented in the axial middle position. For this reason, when measuring the characteristics of the frequency band on the high frequency side, the divided cylindrical bodies 8 and 9 can be arranged in a state of being separated from each other at both axial ends of the metal housing 2. On the other hand, when measuring the characteristics of the frequency band on the low frequency side, the metal casing 2 can be disposed in a state of being in contact with each other on the center side in the axial direction.

また、高周波側の周波数帯の電磁波を吸収する内周面側電波吸収体11はフェライト材料を用いて形成されているため、比較的重量が重く、動かし難い傾向がある。これに対し、本実施の形態では、筒状部材7を2つの分割筒体8,9に分割したから、それぞれの分割筒体8,9の重量を軽量化することができ、分割筒体8,9を容易に移動させることができる。   Moreover, since the inner peripheral surface side electromagnetic wave absorber 11 that absorbs electromagnetic waves in the frequency band on the high frequency side is formed using a ferrite material, it tends to be relatively heavy and difficult to move. On the other hand, in the present embodiment, since the cylindrical member 7 is divided into the two divided cylinders 8 and 9, the weight of each of the divided cylinders 8 and 9 can be reduced, and the divided cylinder 8 9 can be easily moved.

さらに、金属筐体2等に設けられた電波吸収体3,5,14は高周波側の周波数帯の電磁波を吸収する構成とし、筒状部材7等に設けられた電波吸収体4,11,15は、低周波側の周波数帯の電磁波を吸収する構成とした。ここで、一般的に高周波側の電磁波を吸収する電波吸収体はピラミッド形状に形成されると共に、その突出寸法が大きい。このため、例えば筒状部材7の内周側に位置する第2の内周面側電波吸収体11が高周波側の電磁波を吸収する構成とした場合には、電波吸収体11と測定用アンテナ19や被測定物17との間の距離を十分に確保できず、電波吸収体11と測定用アンテナ19等との間でカップリングが生じ、電磁波の測定精度が低下するという問題がある。また、電波吸収体11と測定用アンテナ19等の距離を十分に確保した場合には、電波無響箱1全体が大型化してしまう。   Furthermore, the radio wave absorbers 3, 5, and 14 provided in the metal housing 2 and the like are configured to absorb electromagnetic waves in the frequency band on the high frequency side, and the radio wave absorbers 4, 11, and 15 provided in the cylindrical member 7 and the like. Is configured to absorb electromagnetic waves in the frequency band on the low frequency side. Here, a radio wave absorber that absorbs electromagnetic waves on the high frequency side is generally formed in a pyramid shape and has a large protruding dimension. For this reason, for example, when the second inner peripheral surface side radio wave absorber 11 positioned on the inner peripheral side of the cylindrical member 7 absorbs electromagnetic waves on the high frequency side, the radio wave absorber 11 and the measurement antenna 19 are used. Further, there is a problem that a sufficient distance from the object to be measured 17 cannot be secured, coupling occurs between the radio wave absorber 11 and the measurement antenna 19 and the like, and the measurement accuracy of electromagnetic waves is lowered. Further, when a sufficient distance between the radio wave absorber 11 and the measurement antenna 19 is secured, the entire radio anechoic box 1 is increased in size.

これに対し、本実施の形態では、金属筐体2の内周面に設けた第1の内周面側電波吸収体5が高周波側の周波数帯の電磁波を吸収する構成としたから、第1の内周面側電波吸収体5は筒状部材7の内部に比べて測定用アンテナ19等との距離を離すことができる。このため、電波吸収体5と測定用アンテナ19等との間のカップリングを減少させることができ、電磁波の測定精度を高めることができると共に、電波無響箱1全体を小型化することができる。   On the other hand, in the present embodiment, the first inner peripheral surface side wave absorber 5 provided on the inner peripheral surface of the metal casing 2 is configured to absorb electromagnetic waves in the frequency band on the high frequency side. The inner peripheral surface side electromagnetic wave absorber 5 can be separated from the measurement antenna 19 and the like as compared with the inside of the cylindrical member 7. For this reason, it is possible to reduce the coupling between the radio wave absorber 5 and the measurement antenna 19 and the like, to improve the measurement accuracy of the electromagnetic wave, and to reduce the entire radio anechoic box 1. .

また、電波吸収体3,5,14は、カーボンを含有した電波吸収材料を用いてピラミッド形状またはテーパ形状に形成したから、ピラミッド形状等の電波吸収体3,5,14を用いて高周波側の電磁波を吸収することができる。   Further, since the radio wave absorbers 3, 5, and 14 are formed in a pyramid shape or a taper shape using a carbon-containing radio wave absorber material, the radio wave absorbers 3, 5, and 14 having a pyramid shape or the like are used on the high frequency side. It can absorb electromagnetic waves.

一方、電波吸収体4,11,15は、フェライト材料を用いて平板形状に形成したから、フェライト材料の電波吸収体4,11,15を用いて低周波側の電磁波を吸収することができる。また、第2の内周面側電波吸収体11等はフェライト材料を用いて平板形状に形成したから、電波吸収体11の突出寸法を小さくすることができ、筒状部材7等の内部に大きな測定空間を確保することができる。   On the other hand, since the radio wave absorbers 4, 11, and 15 are formed in a flat plate shape using a ferrite material, electromagnetic waves on the low frequency side can be absorbed using the radio wave absorbers 4, 11, and 15 of the ferrite material. Further, since the second inner peripheral surface side radio wave absorber 11 and the like are formed in a flat plate shape using a ferrite material, the projecting dimension of the radio wave absorber 11 can be reduced, and the inside of the cylindrical member 7 and the like is large. Measurement space can be secured.

さらに、筒状部材7および衝立部材12にはレール10A,13Aおよび車輪10B,13Bからなる移動機構10,13を設けた。このため、フェライト材料からなる電波吸収体11,15の重量が重いときでも、電波吸収体11,15が設けられた筒状部材7および衝立部材12を容易に軸方向に移動させることができる。このため、電波吸収体3,5,14と電波吸収体4,11,15との切換作業を容易かつ円滑に行うことができ、作業性を向上することができる。   Further, the cylindrical member 7 and the partition member 12 are provided with moving mechanisms 10 and 13 including rails 10A and 13A and wheels 10B and 13B. Therefore, even when the radio wave absorbers 11 and 15 made of ferrite material are heavy, the cylindrical member 7 and the partition member 12 provided with the radio wave absorbers 11 and 15 can be easily moved in the axial direction. For this reason, switching work between the radio wave absorbers 3, 5, 14 and the radio wave absorbers 4, 11, 15 can be performed easily and smoothly, and workability can be improved.

なお、前記実施の形態では、電波吸収体3,5,14はピラミッド形状またはテーパ形状に形成するものとしたが、例えば従来技術と同様に平板状(シート状)に形成してもよい。この場合、金属筐体2等に設けた電波吸収体3,5,14によって低周波側の周波数帯の電磁波を吸収し、筒状部材7等に設けた電波吸収体4,11,15によって高周波側の周波数帯の電磁波を吸収する構成としてもよい。   In the above-described embodiment, the radio wave absorbers 3, 5, and 14 are formed in a pyramid shape or a taper shape, but may be formed in a flat plate shape (sheet shape), for example, as in the related art. In this case, electromagnetic waves in the lower frequency band are absorbed by the radio wave absorbers 3, 5, and 14 provided in the metal housing 2 and the like, and high frequency is absorbed by the radio wave absorbers 4, 11 and 15 provided in the cylindrical member 7 and the like. It is good also as a structure which absorbs the electromagnetic waves of the side frequency band.

また、前記実施の形態では、被測定物17は800MHz帯および1.9GHz帯の2つの周波数帯の電磁波を放射する構成としたが、他の周波数帯(例えば、900MHz帯、1.5GHz帯、2.5GHz帯、5GHz帯等)の電磁波を放射する構成としてもよい。   Moreover, in the said embodiment, although the to-be-measured object 17 was set as the structure which radiates | emits electromagnetic waves of two frequency bands, 800 MHz band and 1.9 GHz band, other frequency bands (for example, 900 MHz band, 1.5 GHz band, (2.5 GHz band, 5 GHz band, etc.) may be configured to emit electromagnetic waves.

また、前記実施の形態では、電波吸収体3,5,14と電波吸収体4,11,15とは、互いに異なる1つの周波数帯(1.9GHz帯と800MHz帯)をそれぞれ吸収する構成とした。しかし、本発明はこれに限らず、例えば電波吸収体3,5,14は、高周波側の4つの周波数帯(1.5GHz帯、1.9GHz帯、2.5GHz帯、5GHz帯)の電磁波を吸収すると共に、電波吸収体4,11,15は、低周波側の2つの周波数帯(800MHz帯、900MHz帯)の電磁波を吸収する構成としてもよい。これにより、被測定物17が3つ以上の周波数帯の電磁波を放射する場合でも、この被測定物17の特性を単一の電波無響箱1を用いて測定することができる。   In the embodiment, the radio wave absorbers 3, 5, 14 and the radio wave absorbers 4, 11, 15 absorb one different frequency band (1.9 GHz band and 800 MHz band). . However, the present invention is not limited to this. For example, the radio wave absorbers 3, 5 and 14 transmit electromagnetic waves in four frequency bands (1.5 GHz band, 1.9 GHz band, 2.5 GHz band and 5 GHz band) on the high frequency side. The electromagnetic wave absorbers 4, 11, 15 may absorb electromagnetic waves in two frequency bands (800 MHz band and 900 MHz band) on the low frequency side while absorbing. Thus, even when the device under test 17 radiates electromagnetic waves in three or more frequency bands, the characteristics of the device under test 17 can be measured using the single anechoic box 1.

さらに、前記実施の形態では、被測定物17として携帯電話を用いる構成としたが、電磁波を放射する他の機器を用いる構成としてもよい。また、前記実施の形態では、測定用アンテナ19としてバイコニカルアンテナを用いる構成としたが、他の形式のアンテナを用いる構成としてもよい。   Furthermore, in the said embodiment, although it was set as the structure which uses a mobile telephone as the to-be-measured object 17, it is good also as a structure which uses the other apparatus which radiates | emits electromagnetic waves. In the above-described embodiment, a biconical antenna is used as the measurement antenna 19, but another type of antenna may be used.

本発明の実施の形態による電波無響箱を示す斜視図である。It is a perspective view which shows the electromagnetic wave anechoic box by embodiment of this invention. 高周波側の周波数帯を測定するときの電磁無響箱を図1中の矢示II−II方向からみた断面図である。It is sectional drawing which looked at the electromagnetic anechoic box when measuring the frequency band of a high frequency side from the arrow II-II direction in FIG. 低周波側の周波数帯を測定するときの電磁無響箱を示す図2と同様位置の断面図である。It is sectional drawing of the same position as FIG. 2 which shows the electromagnetic anechoic box when measuring the frequency band on the low frequency side. 電磁無響箱を図3中の矢示IV−IV方向からみた断面図である。It is sectional drawing which looked at the electromagnetic anechoic box from the arrow IV-IV direction in FIG. 電磁無響箱を図3中の矢示V−V方向からみた断面図である。It is sectional drawing which looked at the electromagnetic anechoic box from the arrow VV direction in FIG. 図2中の被測定物の周囲を拡大して示す斜視図である。It is a perspective view which expands and shows the circumference | surroundings of the to-be-measured object in FIG. 図2中の被測定物固定治具およびアンテナ取付治具を引き上げた状態を示す断面図である。It is sectional drawing which shows the state which pulled up the to-be-measured object fixing jig and antenna attachment jig in FIG. 図7中の第2の分割筒体を前壁面側に移動させた状態を示す断面図である。It is sectional drawing which shows the state which moved the 2nd division | segmentation cylinder in FIG. 7 to the front wall surface side. 図8中の衝立部材を前壁面側に移動させると共に、被測定物固定治具を引き下げた状態を示す断面図である。It is sectional drawing which shows the state which moved the partition member in FIG. 8 to the front wall surface side, and pulled down the to-be-measured object fixing jig. 図9中の筒状部材を金属筐体の軸方向中央側に移動させた状態を示す断面図である。It is sectional drawing which shows the state which moved the cylindrical member in FIG. 9 to the axial direction center side of the metal housing | casing. 図3中の被測定物固定治具およびアンテナ取付治具を引き上げると共に、筒状部材を前壁面側に移動させた状態を示す断面図である。It is sectional drawing which shows the state which pulled up the to-be-measured object fixing jig and antenna mounting jig in FIG. 3, and moved the cylindrical member to the front wall surface side. 図11中の保持筒体および筒状部材を後壁面側に移動させた状態を示す断面図である。It is sectional drawing which shows the state which moved the holding cylinder and the cylindrical member in FIG. 11 to the back wall surface side. 図12中の衝立部材を後壁面側に移動させた状態を示す断面図である。It is sectional drawing which shows the state which moved the partition member in FIG. 12 to the back wall surface side. 図13中の保持筒体および第1の分割筒体を前壁面側に移動させた状態を示す断面図である。It is sectional drawing which shows the state which moved the holding | maintenance cylinder and the 1st division | segmentation cylinder in FIG. 13 to the front wall surface side.

符号の説明Explanation of symbols

1 電波無響箱
2 金属筐体
3 第1の端面側電波吸収体
4 第2の端面側電波吸収体
5 第1の内周面側電波吸収体
6 保持筒体
7 筒状部材
8,9 分割筒体
11 第2の内周面側電波吸収体
12 衝立部材
14 第1の衝立側電波吸収体
15 第2の衝立側電波吸収体
16 被測定物固定治具
17 被測定物
18 アンテナ取付治具
19 測定用アンテナ
DESCRIPTION OF SYMBOLS 1 Radio wave anechoic box 2 Metal housing 3 1st end surface side radio wave absorber 4 2nd end surface side radio wave absorber 5 1st inner peripheral surface side radio wave absorber 6 Holding cylinder 7 Cylindrical member 8,9 Division | segmentation Cylindrical body 11 Second inner peripheral surface side radio wave absorber 12 Screen member 14 First screen side radio wave absorber 15 Second screen side radio wave absorber 16 DUT to be measured 17 DUT 18 DUT 18 Antenna mounting jig 19 Antenna for measurement

Claims (5)

軸方向両端が閉塞された筒状に形成された金属筐体と、
該金属筐体の軸方向の一側端面に設けられ第1の周波数帯の電磁波を吸収する第1の端面側電波吸収体と、
前記金属筐体の軸方向の他側端面に設けられ第2の周波数帯の電磁波を吸収する第2の端面側電波吸収体と、
前記金属筐体の内周面に設けられ第1の周波数帯の電磁波を吸収する第1の内周面側電波吸収体と、
前記金属筐体の内部に位置して軸方向に移動可能に設けられた筒状部材と、
該筒状部材の内周面に設けられ第2の周波数帯の電磁波を吸収する第2の内周面側電波吸収体と、
前記金属筐体の内部で前記第1,第2の端面側電波吸収体の間に位置し、該筒状部材を通過して軸方向に移動可能に設けられた平板状の衝立部材と、
該衝立部材のうち前記第1の端面側電波吸収体と対向した面に設けられ第1の周波数帯の電磁波を吸収する第1の衝立側電波吸収体と、
前記衝立部材のうち前記第2の端面側電波吸収体と対向した面に設けられ第2の周波数帯の電磁波を吸収する第2の衝立側電波吸収体とによって構成してなる電波無響箱。
A metal housing formed in a cylindrical shape with both axial ends closed;
A first end-surface-side wave absorber that is provided on one end surface in the axial direction of the metal casing and absorbs electromagnetic waves in a first frequency band;
A second end face-side radio wave absorber that is provided on the other end face in the axial direction of the metal casing and absorbs electromagnetic waves in a second frequency band;
A first inner peripheral surface side wave absorber that is provided on the inner peripheral surface of the metal casing and absorbs electromagnetic waves in a first frequency band;
A tubular member located inside the metal housing and provided so as to be movable in the axial direction;
A second inner peripheral surface side wave absorber that is provided on the inner peripheral surface of the cylindrical member and absorbs electromagnetic waves in the second frequency band;
A partition in the form of a flat plate located between the first and second end face side wave absorbers inside the metal casing and provided to be movable in the axial direction through the cylindrical member;
A first partition-side radio wave absorber that is provided on a surface of the partition member facing the first end-surface-side radio wave absorber and absorbs electromagnetic waves in a first frequency band;
A radio wave anechoic box formed of a second partition side radio wave absorber that is provided on a surface of the screen member facing the second end face side radio wave absorber and absorbs electromagnetic waves in a second frequency band.
前記金属筐体には、被測定物を支持する被測定物固定治具と測定用アンテナを支持するアンテナ取付治具とを設け、
前記第1の周波数帯の特性を測定するときには、前記筒状部材を金属筐体の軸方向端部側に配置し、前記衝立部材を金属筐体の軸方向の他側端面側に配置し、かつ前記被測定物固定治具およびアンテナ取付治具を前記筒状部材を避けた位置で第1の端面側電波吸収体と第1の衝立側電波吸収体との間に配置する構成とし、
前記第2の周波数帯の特性を測定するときには、前記筒状部材を金属筐体の軸方向中央側に配置し、前記衝立部材を金属筐体の軸方向の一側端面側に配置し、かつ前記被測定物固定治具およびアンテナ取付治具を前記筒状部材を挟んだ位置で第2の端面側電波吸収体と第2の衝立側電波吸収体との間に配置する構成としてなる請求項1に記載の電波無響箱。
The metal casing is provided with an object fixing jig for supporting an object to be measured and an antenna mounting jig for supporting an antenna for measurement,
When measuring the characteristics of the first frequency band, the cylindrical member is disposed on the axial end portion side of the metal casing, the partition member is disposed on the other end face side in the axial direction of the metal casing, And the measurement object fixing jig and the antenna mounting jig are arranged between the first end face side wave absorber and the first partition side wave absorber at a position avoiding the cylindrical member,
When measuring the characteristics of the second frequency band, the cylindrical member is disposed on the axially central side of the metal housing, the partition member is disposed on one side end surface side of the metallic housing, and 2. The measurement object fixing jig and the antenna mounting jig are arranged between a second end face side wave absorber and a second partition side wave absorber at a position sandwiching the cylindrical member. 1. An anechoic box according to 1.
前記筒状部材は、軸方向途中位置で分割可能な複数の分割筒体によって構成され、
該複数の分割筒体は、前記第1の周波数帯の特性を測定するときには、前記金属筐体の軸方向両端側に互いに分離した状態で配置し、前記第2の周波数帯の特性を測定するときには、前記金属筐体の軸方向中央側に互いに衝合した状態で配置する構成としてなる請求項2に記載の電波無響箱。
The cylindrical member is constituted by a plurality of divided cylindrical bodies that can be divided at an intermediate position in the axial direction,
When measuring the characteristics of the first frequency band, the plurality of divided cylinders are arranged in a state of being separated from each other at both axial ends of the metal casing, and measure the characteristics of the second frequency band. 3. The radio anechoic box according to claim 2, wherein the radio anechoic box is configured to be disposed in a state of being abutted with each other on an axially central side of the metal casing.
前記第1の端面側電波吸収体、第1の内周面側電波吸収体および第1の衝立側電波吸収体は、高周波側の第1の周波数帯の電磁波を吸収する構成とし、
前記第2の端面側電波吸収体、第2の内周面側電波吸収体および第2の衝立側電波吸収体は、前記第1の周波数帯よりも低い低周波側の第2の周波数帯の電磁波を吸収する構成としてなる請求項1,2または3に記載の電波無響箱。
The first end surface side radio wave absorber, the first inner peripheral surface side radio wave absorber and the first partition side radio wave absorber are configured to absorb electromagnetic waves in the first frequency band on the high frequency side,
The second end surface side radio wave absorber, the second inner peripheral surface side radio wave absorber, and the second partition side radio wave absorber are in a second frequency band on a low frequency side lower than the first frequency band. The radio wave anechoic box according to claim 1, 2 or 3, wherein the radio wave anechoic box is configured to absorb electromagnetic waves.
前記第1の端面側電波吸収体、第1の内周面側電波吸収体および第1の衝立側電波吸収体は、カーボンを含有した電波吸収材料を用いてピラミッド形状またはテーパ形状に形成し、
前記第2の端面側電波吸収体、第2の内周面側電波吸収体および第2の衝立側電波吸収体は、フェライト材料を用いて平板形状に形成してなる請求項4に記載の電波無響箱。
The first end surface side radio wave absorber, the first inner peripheral surface side radio wave absorber and the first partition side radio wave absorber are formed into a pyramid shape or a taper shape using a radio wave absorbing material containing carbon,
5. The radio wave according to claim 4, wherein the second end surface side radio wave absorber, the second inner peripheral surface side radio wave absorber, and the second partition side radio wave absorber are formed in a flat plate shape using a ferrite material. Anechoic box.
JP2007231531A 2007-09-06 2007-09-06 Radio wave anechoic box Pending JP2009063427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007231531A JP2009063427A (en) 2007-09-06 2007-09-06 Radio wave anechoic box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007231531A JP2009063427A (en) 2007-09-06 2007-09-06 Radio wave anechoic box

Publications (1)

Publication Number Publication Date
JP2009063427A true JP2009063427A (en) 2009-03-26

Family

ID=40558127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007231531A Pending JP2009063427A (en) 2007-09-06 2007-09-06 Radio wave anechoic box

Country Status (1)

Country Link
JP (1) JP2009063427A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110047659A (en) * 2009-10-30 2011-05-09 엘지전자 주식회사 Absorber for absorbing an electronic wave and an apparatus for measuring the electronic wave using the absorber
KR102009668B1 (en) * 2018-03-28 2019-08-13 에스아이오티 주식회사 Movable electromagnetic wave shielding absorption performance measuring device
JP2020510834A (en) * 2017-03-06 2020-04-09 ブルーテスト、アクチボラグBluetest Ab Apparatus and method for measuring performance of device with wireless capability
JP7442448B2 (en) 2018-01-17 2024-03-04 ブルーテスト、アクチボラグ Apparatus and method for production testing of devices with wireless functionality

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110047659A (en) * 2009-10-30 2011-05-09 엘지전자 주식회사 Absorber for absorbing an electronic wave and an apparatus for measuring the electronic wave using the absorber
KR101644431B1 (en) * 2009-10-30 2016-08-01 엘지전자 주식회사 Absorber for absorbing an electronic wave and an apparatus for measuring the electronic wave using the absorber
JP2020510834A (en) * 2017-03-06 2020-04-09 ブルーテスト、アクチボラグBluetest Ab Apparatus and method for measuring performance of device with wireless capability
JP7019710B2 (en) 2017-03-06 2022-02-15 ブルーテスト、アクチボラグ Devices and methods for measuring the performance of devices with wireless capabilities
JP7442448B2 (en) 2018-01-17 2024-03-04 ブルーテスト、アクチボラグ Apparatus and method for production testing of devices with wireless functionality
KR102009668B1 (en) * 2018-03-28 2019-08-13 에스아이오티 주식회사 Movable electromagnetic wave shielding absorption performance measuring device

Similar Documents

Publication Publication Date Title
JP4438905B2 (en) Radiation efficiency measuring apparatus and radiation efficiency measuring method
US10725079B2 (en) Arrangement and method for measuring the performance of devices with wireless capability
KR102620154B1 (en) Compact multiband, near-field, far-field and direct far-field test systems
JP4957726B2 (en) Antenna characteristic measuring apparatus and antenna characteristic measuring method
US7444264B2 (en) Method and an apparatus for measuring the performance of antennas, mobile phones and other wireless terminals
KR101038352B1 (en) Electromagnetic wave measuring device
US10686540B2 (en) Anechoic test chamber, test system and test method for testing the antennas of a device under test
US10520534B1 (en) Integrated shielding for motor and test antenna de-coupling
JP7309847B2 (en) Near-field antenna for remote radio control of antenna arrays
KR102572513B1 (en) tester
US10746775B1 (en) Testing system and method with multiple antennas
JP2009063427A (en) Radio wave anechoic box
US7190301B2 (en) Radio frequency anechoic chamber with nonperturbing wireless signalling means
CN113242098B (en) Radio frequency performance test system and method
US20220128610A1 (en) Fixture for a device under test
US20080143628A1 (en) Reference oscillator assembly
CN214375029U (en) Compact range antenna test system
JP2005061949A (en) Electromagnetic wave measuring camera obscura
SE2030254A1 (en) A high-frequency mode stirrer for reverberation chambers
JP5577300B2 (en) Method and apparatus for measuring antenna reflection loss of wireless terminal
JP2004101300A (en) Electromagnetic wave measuring apparatus and electromagnetic wave measuring method
CN218499141U (en) Compact range testing system
JPH09318689A (en) Shield box
JP7247273B2 (en) ANECHOIC BOX AND TESTING DEVICE USING THE ANECHOIC BOX
JPH1078465A (en) Shielded box