JP2009062875A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2009062875A
JP2009062875A JP2007231446A JP2007231446A JP2009062875A JP 2009062875 A JP2009062875 A JP 2009062875A JP 2007231446 A JP2007231446 A JP 2007231446A JP 2007231446 A JP2007231446 A JP 2007231446A JP 2009062875 A JP2009062875 A JP 2009062875A
Authority
JP
Japan
Prior art keywords
exhaust
inner diameter
shell
catalyst
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007231446A
Other languages
Japanese (ja)
Inventor
Kuniharu Tobe
邦治 戸部
Masahiro Kimura
昌裕 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2007231446A priority Critical patent/JP2009062875A/en
Publication of JP2009062875A publication Critical patent/JP2009062875A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device capable of reducing cost (reducing a noble metal quantity), by restraining catalyst performance to a necessary sufficient proper grade, while excellently maintaining exhaust emission control performance. <P>SOLUTION: This exhaust emission control device is mounted in the middle of an exhaust pipe 3 by embracing-holding a front stage oxidation catalyst 2 (an exhaust emission control catalyst for passing and purifying exhaust gas) and a particulate filter 1 by a shell 4, and is interposed with a cone 6 of diametrically expanding in the flowing direction of the exhaust gas 5 so as to gradually increase an inner diameter dp of the exhaust pipe 3 up to an inner diameter ds of the shell 4 on the inlet side of this shell 4. A dimensionless value ζ is set so as to become a range of 2.2-4.0 by dividing a distance L up to an inlet side end surface of the front stage oxidation catalyst 2 from an inlet of the cone 6 by a difference between the inner diameter ds of the shell 4 and the inner diameter dp of the exhaust pipe 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

ディーゼルエンジンから排出されるパティキュレート(Particulate Matter:粒子状物質)は、炭素質から成る煤分と、高沸点炭化水素成分から成るSOF分(Soluble Organic Fraction:可溶性有機成分)とを主成分とし、更に微量のサルフェート(ミスト状硫酸成分)を含んだ組成を成すものであるが、この種のパティキュレートの低減対策としては、排気ガスが流通する排気管の途中に、パティキュレートフィルタを装備することが従来より行われている。   Particulate matter (particulate matter) discharged from a diesel engine is mainly composed of a soot fraction composed of carbon and a SOF fraction (Soluble Organic Fraction) composed of a high-boiling hydrocarbon component. Furthermore, the composition contains a small amount of sulfate (mist-like sulfuric acid component). As a measure to reduce this type of particulates, a particulate filter is installed in the middle of the exhaust pipe through which the exhaust gas flows. Has been performed conventionally.

前記パティキュレートフィルタは、コージェライト等のセラミックから成る多孔質のハニカム構造となっており、格子状に区画された各流路の入口が交互に目封じされ、入口が目封じされていない流路については、その出口が目封じされるようになっており、各流路を区画する多孔質薄壁を透過した排気ガスのみが下流側へ排出されるようにしてある。   The particulate filter has a porous honeycomb structure made of a ceramic such as cordierite, and the inlets of the respective channels partitioned in a lattice shape are alternately sealed, and the channels are not sealed. The outlet is sealed, and only the exhaust gas that has permeated through the porous thin wall that defines each flow path is discharged downstream.

そして、排気ガス中のパティキュレートは、前記多孔質薄壁の内側表面に捕集されて堆積するので、目詰まりにより排気抵抗が増加しないうちにパティキュレートを適宜に燃焼除去してパティキュレートフィルタの再生を図る必要があるが、通常のディーゼルエンジンの運転状態においては、パティキュレートが自己燃焼するほどの高い排気温度が得られる機会が少ない為、酸化触媒を一体的に担持させた触媒再生型のパティキュレートフィルタの採用が検討されている。   Then, the particulates in the exhaust gas are collected and deposited on the inner surface of the porous thin wall, so that the particulates are appropriately burned and removed before the exhaust resistance increases due to clogging. It is necessary to regenerate, but in normal diesel engine operation conditions, there are few opportunities to obtain exhaust temperatures that are high enough for particulates to self-combust, so a catalyst regeneration type that integrally supports an oxidation catalyst. Adoption of a particulate filter is being studied.

即ち、このような触媒再生型のパティキュレートフィルタを採用すれば、捕集されたパティキュレートの酸化反応が促進されて着火温度が低下し、従来より低い排気温度でもパティキュレートを燃焼除去することが可能となる。   That is, if such a catalyst regeneration type particulate filter is employed, the oxidation reaction of the collected particulates is promoted to lower the ignition temperature, and the particulates can be burned and removed even at an exhaust temperature lower than the conventional one. It becomes possible.

ただし、斯かる触媒再生型のパティキュレートフィルタを採用した場合であっても、排気温度の低い運転領域では、パティキュレートの処理量よりも捕集量が上まわってしまうので、このような低い排気温度での運転状態が続くと、パティキュレートフィルタの再生が良好に進まずに該パティキュレートフィルタが過捕集状態に陥る虞れがある。   However, even when such a catalyst regeneration type particulate filter is used, the trapped amount exceeds the particulate processing amount in the operation region where the exhaust temperature is low, so such a low exhaust gas. If the operation state at the temperature continues, there is a possibility that the particulate filter will fall into an over trapped state without the regeneration of the particulate filter proceeding well.

そこで、パティキュレートフィルタの前段に、フロースルー型の酸化触媒を別途配置し、パティキュレートの堆積量が増加してきた段階で前記酸化触媒より上流側の排気ガス中に燃料を添加してパティキュレートフィルタの強制再生を行うことが考えられている。   Therefore, a flow-through type oxidation catalyst is separately arranged in front of the particulate filter, and fuel is added to the exhaust gas upstream of the oxidation catalyst at the stage where the amount of particulate accumulation has increased. It is considered to perform forced regeneration.

つまり、パティキュレートフィルタより上流側で添加された燃料(HC)が前段の酸化触媒を通過する間に酸化反応し、その反応熱で昇温した排気ガスの流入により直後のパティキュレートフィルタの触媒床温度が上げられてパティキュレートが燃やし尽くされ、パティキュレートフィルタの再生化が図られることになる。   That is, the fuel (HC) added on the upstream side of the particulate filter undergoes an oxidation reaction while passing through the preceding oxidation catalyst, and the catalyst bed of the particulate filter immediately after the inflow of exhaust gas heated by the reaction heat. The temperature is raised, the particulates are burned out, and the particulate filter is regenerated.

この種の燃料添加を実行するための具体的手段としては、圧縮上死点付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射を追加することで排気ガス中に燃料を添加すれば良い。   As a specific means for executing this kind of fuel addition, post-injection is added at the timing of non-ignition later than the compression top dead center following the main injection of fuel performed near the compression top dead center. What is necessary is just to add a fuel in gas.

図3に示す如く、このようなパティキュレートフィルタ1を前段の酸化触媒2と一緒に排気管3の途中に装備するにあたっては、パティキュレートフィルタ1及び酸化触媒2をシェル4により抱持して排気管3の途中に装備し、このシェル4の入側に排気管3の内径dpをシェル4の内径dsまで漸増するよう排気ガス5の流れ方向に拡径するコーン6を介装するようにしている。   As shown in FIG. 3, when such a particulate filter 1 is mounted in the middle of the exhaust pipe 3 together with the preceding oxidation catalyst 2, the particulate filter 1 and the oxidation catalyst 2 are held by a shell 4 and exhausted. It is equipped in the middle of the pipe 3, and a cone 6 that expands in the flow direction of the exhaust gas 5 so as to gradually increase the inner diameter dp of the exhaust pipe 3 to the inner diameter ds of the shell 4 is interposed on the entrance side of the shell 4. Yes.

尚、このような前段の酸化触媒2とパティキュレートフィルタ1との配置状態について技術開示した先行技術文献情報としては、例えば、本発明と同じ出願人による下記の特許文献1等がある。
特開2006−77591号公報
In addition, as prior art document information that technically discloses the arrangement state of the preceding oxidation catalyst 2 and the particulate filter 1, for example, there is the following Patent Document 1 by the same applicant as the present invention.
JP 2006-77591 A

しかしながら、従来においては、生産性や搭載性等の事情を考慮してコーン6の入口から酸化触媒2の入側端面までの距離Lを決定し、前段の酸化触媒2の触媒性能(貴金属量等)を調整することで排気浄化性能を満足させるようにしていた為、本来発揮されるべき触媒性能が十分に引き出されないまま高コストの貴金属等が過剰に使用されている虞れがあった。   However, conventionally, the distance L from the entrance of the cone 6 to the entrance end surface of the oxidation catalyst 2 is determined in consideration of the circumstances such as productivity and mountability, and the catalytic performance (precious metal amount, etc.) of the preceding oxidation catalyst 2 is determined. ) Is adjusted so as to satisfy the exhaust purification performance, there is a possibility that a high-cost noble metal or the like is excessively used without sufficiently obtaining the catalyst performance to be originally exhibited.

本発明は上述の実情に鑑みてなしたもので、排気浄化性能を良好に維持しつつ触媒性能を必要十分な適正グレードに抑えてコストの削減化(貴金属量の削減)を図り得る排気浄化装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an exhaust emission control device capable of reducing the cost (reducing the amount of noble metal) by suppressing the catalyst performance to a necessary and appropriate grade while maintaining good exhaust emission purification performance. The purpose is to provide.

本発明は、排気ガスを通過させて浄化する排気浄化触媒をシェルにより抱持して排気管途中に装備し、このシェルの入側に排気管内径をシェル内径まで漸増するよう排気ガスの流れ方向に拡径するコーンを介装した排気浄化装置において、コーンの入口から排気浄化触媒の入側端面までの距離をシェル内径と排気管内径との差分で除算して無次元化した値が2.2〜4.0の範囲となるように設定したことを特徴とするものである。   In the present invention, an exhaust gas purification catalyst that passes exhaust gas to be purified is held by a shell and is provided in the middle of the exhaust pipe, and the flow direction of the exhaust gas gradually increases the inner diameter of the exhaust pipe to the shell inner diameter on the inlet side of the shell. In the exhaust purification device having a cone that expands to a diameter of 2, the dimensionless value obtained by dividing the distance from the inlet of the cone to the inlet end surface of the exhaust purification catalyst by the difference between the shell inner diameter and the exhaust pipe inner diameter is 2. It is characterized by being set to be in the range of 2 to 4.0.

而して、このように無次元化した値が2.2〜4.0の範囲となるように設定すれば、前記の無次元化した値を2.2より小さくした場合に生じる排気ガスの分散性の極端な悪化を未然に回避することが可能であり、本来発揮されるべき触媒性能が十分に引き出されて良好な排気浄化性能が得られることになる。   Thus, if the dimensionless value is set to be in the range of 2.2 to 4.0, the exhaust gas generated when the dimensionless value is made smaller than 2.2. It is possible to avoid the extreme deterioration of dispersibility, and the catalyst performance that should be originally exhibited can be sufficiently derived to obtain good exhaust purification performance.

事実、本発明者による検証実験によれば、前記の無次元化した値を2.2より小さくした場合に、排気ガスの分散性が極端に悪化してしまうことが判明しており、また、前記の無次元化した値を2.2〜4.0の範囲とした場合には、排気ガスの分散性が十分に高いレベルで値の増加に伴い徐々に良化しつつほぼ横這いに推移することが判明している。   In fact, according to a verification experiment by the present inventors, it has been found that when the dimensionless value is made smaller than 2.2, the dispersibility of the exhaust gas is extremely deteriorated. When the dimensionless value is in the range of 2.2 to 4.0, the dispersibility of the exhaust gas is at a sufficiently high level and gradually becomes better as the value increases, and is almost flat. Is known.

他方、この無次元化した値を4.0より大きくしても、コーンの入口から排気浄化触媒の入側端面までの距離が増えるばかりで、排気ガスの分散性の良化には殆ど寄与しないことが判明しており、車両への搭載性を悪化させてしまうことにしかならない。   On the other hand, even if this dimensionless value is made larger than 4.0, the distance from the inlet of the cone to the inlet side end face of the exhaust purification catalyst only increases, and hardly contributes to the improvement of the dispersibility of the exhaust gas. It has been found that this will only worsen the mountability on the vehicle.

上記した本発明の排気浄化装置によれば、コーンの入口から排気浄化触媒の入側端面までの距離をシェル内径と排気管内径との差分で除算して無次元化した値を2.2〜4.0の範囲となるように設定したことによって、排気ガスの分散性の極端な悪化を未然に回避しつつ該排気ガスの分散性を十分に高いレベルに確保することができ、本来発揮されるべき触媒性能を十分に引き出して良好な排気浄化性能を得ることができるので、その排気浄化性能を良好に維持しながらも触媒性能を必要十分な適正グレードに抑えることができてコストの削減化(貴金属量の削減)を図ることができるという優れた効果を奏し得る。   According to the above-described exhaust purification apparatus of the present invention, the dimensionless value obtained by dividing the distance from the cone inlet to the inlet side end face of the exhaust purification catalyst by the difference between the shell inner diameter and the exhaust pipe inner diameter is 2.2 to By setting it to be in the range of 4.0, the exhaust gas dispersibility can be ensured at a sufficiently high level while avoiding an extreme deterioration of the exhaust gas dispersibility, which is originally exhibited. The catalyst performance should be fully extracted and good exhaust purification performance can be obtained, so that while maintaining the exhaust purification performance good, the catalyst performance can be suppressed to the appropriate and appropriate grade and the cost can be reduced. An excellent effect that (a reduction in the amount of noble metal) can be achieved can be achieved.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、先に説明した図3のものと略同様に、前段の酸化触媒2(排気ガスを通過させて浄化する排気浄化触媒)とパティキュレートフィルタ1とをシェル4により抱持して排気管3の途中に装備し、このシェル4の入側に排気管3の内径dpをシェル4の内径dsまで漸増するよう排気ガス5の流れ方向に拡径するコーン6を介装した排気浄化装置に関し、コーン6の入口から前段の酸化触媒2の入側端面までの距離Lをシェル4の内径dsと排気管3の内径dpとの差分で除算して無次元化した値ζが2.2〜4.0の範囲となるように設定している。   FIG. 1 shows an example of an embodiment for carrying out the present invention. As in the case of FIG. 3 described above, an oxidation catalyst 2 in the previous stage (an exhaust purification catalyst for purifying exhaust gas through it) and particulates. The filter 1 is held in the middle of the exhaust pipe 3 by being held by the shell 4, and the exhaust gas 5 flows in the flow direction so as to gradually increase the inner diameter dp of the exhaust pipe 3 to the inner diameter ds of the shell 4 on the entrance side of the shell 4. With regard to the exhaust gas purification device having an enlarged cone 6, the distance L from the inlet of the cone 6 to the inlet side end surface of the preceding oxidation catalyst 2 is divided by the difference between the inner diameter ds of the shell 4 and the inner diameter dp of the exhaust pipe 3. Thus, the dimensionless value ζ is set to be in the range of 2.2 to 4.0.

即ち、このように無次元化した値ζが2.2〜4.0の範囲となるように設定すれば、この値ζを2.2より小さくした場合に生じる排気ガス5の分散性の極端な悪化を未然に回避することが可能であり、本来発揮されるべき触媒性能が十分に引き出されて良好な排気浄化性能が得られることになる。   That is, if the dimensionless value ζ is set to be in the range of 2.2 to 4.0, the extreme dispersibility of the exhaust gas 5 generated when the value ζ is made smaller than 2.2. Such deterioration can be avoided in advance, and the catalyst performance that should be originally exhibited can be sufficiently extracted to obtain good exhaust purification performance.

事実、本発明者による検証実験によれば、例えば、図2にグラフ(一様度[Uniformity Index]と値ζとの関係を示したもの)で示す如き実験結果が得られており、このグラフから明らかであるように、シェル4の内径dsを大、中、小の三種類の何れとした場合でも、また、排気管3の内径dpを現状のものより大きくした場合でも、前記の無次元化した値ζが2.2より小さくなると、排気ガス5の一様度が著しく低下して分散性が極端に悪化してしまうことが判明している。   In fact, according to the verification experiment by the present inventor, for example, an experimental result as shown in a graph (showing the relationship between the uniformity [Uniformity Index] and the value ζ) in FIG. 2 is obtained. As is clear from the above, the dimensionless shape of the shell 4 regardless of whether the inner diameter ds of the shell 4 is large, medium, or small, or when the inner diameter dp of the exhaust pipe 3 is larger than the present one. It has been found that when the normalized value ζ is smaller than 2.2, the uniformity of the exhaust gas 5 is significantly lowered and the dispersibility is extremely deteriorated.

ここで、シェル4の内径dsが中のデータは、シェル4の内径dsが199mmで排気管3の内径dpが57.5mmとした現状のものであり、シェル4の内径dsが大のデータは、排気管3の内径dpを現状の57.5mmとしたままシェル4の内径dsを259mmに拡大したものであり、シェル4の内径dsが小のデータは、排気管3の内径dpを現状の57.5mmとしたままシェル4の内径dsを154mmに縮小したものであり、排気管3の内径dpが大のデータは、シェル4の内径dsを現状の199mmとしたまま排気管3の内径dpを77.0mmに拡大したものである。   Here, the data in which the inner diameter ds of the shell 4 is medium is the current data in which the inner diameter ds of the shell 4 is 199 mm and the inner diameter dp of the exhaust pipe 3 is 57.5 mm. The inner diameter dp of the shell 4 is expanded to 259 mm while keeping the inner diameter dp of the exhaust pipe 3 at the current 57.5 mm, and the data with the smaller inner diameter ds of the shell 4 is the current inner diameter dp of the exhaust pipe 3. The inner diameter ds of the shell 4 is reduced to 154 mm while keeping the inner diameter dp of the exhaust pipe 3 while the inner diameter dp of the exhaust pipe 3 is large. Is enlarged to 77.0 mm.

尚、一様度とは、排気ガス5の分散性を偏差的手法により評価したもので、下記の数1で示されるものである[γ:一様度、W:ローカル流速、Wmean:平均流速]。

Figure 2009062875
The uniformity is an evaluation of the dispersibility of the exhaust gas 5 by a deviating method, and is expressed by the following equation 1 [γ: uniformity, Wi : local flow velocity, Wmean : Average flow rate].
Figure 2009062875

この一様度における値は0〜1の範囲となり、一様度が1の時は、理想的な流れとなって担体内の軸方向流速が何処でも同じ流速となる状態を表し、一様度が0の時は、全流量が一つのセルに流れて他のセルの流速が0となる状態を表しており、通常の場合は0.7〜0.98程度となる。   The value in this uniformity is in the range of 0 to 1, and when the uniformity is 1, it represents an ideal flow and the axial flow velocity in the carrier is the same flow velocity everywhere. When 0 is 0, this represents a state in which the total flow rate flows to one cell and the flow rate of the other cells becomes 0. In a normal case, it is about 0.7 to 0.98.

また、図2のグラフから判る通り、前記の無次元化した値ζを2.2〜4.0の範囲とした場合には、排気ガス5の分散性が十分に高いレベルで値ζの増加に伴い徐々に良化しつつほぼ横這いに推移することが判明している。   Further, as can be seen from the graph of FIG. 2, when the dimensionless value ζ is in the range of 2.2 to 4.0, the value ζ increases at a sufficiently high level of dispersibility of the exhaust gas 5. It has been found that it will be almost flat, gradually improving.

他方、この無次元化した値ζを4.0より大きくしても、コーン6の入口から酸化触媒2の入側端面までの距離Lが増えるばかりで、排気ガス5の分散性の良化には殆ど寄与しないことが判明しており、車両への搭載性を悪化させてしまうことにしかならない。   On the other hand, even if the dimensionless value ζ is made larger than 4.0, the distance L from the entrance of the cone 6 to the entrance end surface of the oxidation catalyst 2 only increases, and the dispersibility of the exhaust gas 5 is improved. Has been found to contribute little, and can only worsen the ability to be mounted on a vehicle.

以上に述べた通り、上記形態例によれば、コーン6の入口から酸化触媒2の入側端面までの距離Lをシェル4の内径dsと排気管3の内径dpとの差分で除算して無次元化した値ζが2.2〜4.0の範囲となるように設定したことによって、排気ガス5の分散性の極端な悪化を未然に回避しつつ該排気ガス5の分散性を十分に高いレベルに確保することができ、本来発揮されるべき触媒性能を十分に引き出して良好な排気浄化性能を得ることができるので、その排気浄化性能を良好に維持しながらも触媒性能を必要十分な適正グレードに抑えることができてコストの削減化(貴金属量の削減)を図ることができる。   As described above, according to the above embodiment, the distance L from the inlet of the cone 6 to the inlet side end face of the oxidation catalyst 2 is not divided by the difference between the inner diameter ds of the shell 4 and the inner diameter dp of the exhaust pipe 3. By setting the dimensioned value ζ to be in the range of 2.2 to 4.0, the dispersibility of the exhaust gas 5 is sufficiently prevented while avoiding an extreme deterioration of the dispersibility of the exhaust gas 5 in advance. It can be secured at a high level, and it can draw out the catalyst performance that should be originally exhibited to obtain a good exhaust purification performance, so that the catalyst performance is necessary and sufficient while maintaining the exhaust purification performance well. The cost can be reduced to an appropriate grade, and the cost can be reduced (the amount of precious metal can be reduced).

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、排気管途中に装備される排気浄化触媒は、必ずしもパティキュレートフィルタの前段に付帯装備される酸化触媒に限定されるものではなく、パティキュレートフィルタ自体を担体とした酸化触媒であっても良いし、NOx吸蔵還元触媒、選択還元型触媒、三元触媒等といった様々な触媒であっても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the exhaust purification apparatus of the present invention is not limited to the above-described embodiment, and the exhaust purification catalyst equipped in the middle of the exhaust pipe is not necessarily limited to the oxidation catalyst attached to the front stage of the particulate filter. It may be an oxidation catalyst using the particulate filter itself as a carrier, or may be various catalysts such as a NOx storage reduction catalyst, a selective reduction catalyst, a three-way catalyst, etc. Of course, various modifications can be made without departing from the scope of the present invention.

本発明を実施する形態の一例を示す断面図である。It is sectional drawing which shows an example of the form which implements this invention. 一様度と無次元化した値ζとの関係を示すグラフである。It is a graph which shows the relationship between uniformity and the dimensionless value (zeta). 前段の酸化触媒とパティキュレートフィルタの配置状態を示す断面図である。It is sectional drawing which shows the arrangement | positioning state of the oxidation catalyst of a front | former stage, and a particulate filter.

符号の説明Explanation of symbols

1 パティキュレートフィルタ
2 酸化触媒(排気ガスを通過させて浄化する排気浄化触媒)
3 排気管
4 シェル
5 排気ガス
6 コーン
L コーンの入口から前段の酸化触媒の入側端面までの距離
dp 排気管の内径
ds シェルの内径
1 Particulate Filter 2 Oxidation Catalyst (Exhaust Gas Purification Catalyst Purified by Passing Exhaust Gas)
3 Exhaust pipe 4 Shell 5 Exhaust gas 6 Cone L Distance from the entrance of the cone to the inlet side end face of the preceding oxidation catalyst dp Inner diameter of exhaust pipe ds Inner diameter of shell

Claims (1)

排気ガスを通過させて浄化する排気浄化触媒をシェルにより抱持して排気管途中に装備し、このシェルの入側に排気管内径をシェル内径まで漸増するよう排気ガスの流れ方向に拡径するコーンを介装した排気浄化装置において、コーンの入口から排気浄化触媒の入側端面までの距離をシェル内径と排気管内径との差分で除算して無次元化した値が2.2〜4.0の範囲となるように設定したことを特徴とする排気浄化装置。   An exhaust purification catalyst that purifies by passing exhaust gas is held by the shell and installed in the middle of the exhaust pipe, and the diameter of the exhaust pipe is increased in the exhaust gas flow direction so that the inner diameter of the exhaust pipe is gradually increased to the shell inner diameter on the inlet side of the shell. In the exhaust purification apparatus having a cone, the dimensionless value obtained by dividing the distance from the inlet of the cone to the inlet end face of the exhaust purification catalyst by the difference between the shell inner diameter and the exhaust pipe inner diameter is 2.2-4. An exhaust emission control device set to be in a range of zero.
JP2007231446A 2007-09-06 2007-09-06 Exhaust emission control device Pending JP2009062875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007231446A JP2009062875A (en) 2007-09-06 2007-09-06 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007231446A JP2009062875A (en) 2007-09-06 2007-09-06 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2009062875A true JP2009062875A (en) 2009-03-26

Family

ID=40557682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007231446A Pending JP2009062875A (en) 2007-09-06 2007-09-06 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2009062875A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104454089A (en) * 2014-11-17 2015-03-25 无锡威孚力达催化净化器有限责任公司 Exhaust gas injection mechanism
CN106939812A (en) * 2017-04-01 2017-07-11 江门市资迪科技环保有限公司 A kind of stagewise oxidation particle trap and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1061431A (en) * 1996-08-26 1998-03-03 Calsonic Corp Catalyst converter for vehicle exhaust system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1061431A (en) * 1996-08-26 1998-03-03 Calsonic Corp Catalyst converter for vehicle exhaust system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104454089A (en) * 2014-11-17 2015-03-25 无锡威孚力达催化净化器有限责任公司 Exhaust gas injection mechanism
CN106939812A (en) * 2017-04-01 2017-07-11 江门市资迪科技环保有限公司 A kind of stagewise oxidation particle trap and preparation method thereof

Similar Documents

Publication Publication Date Title
US7806956B2 (en) Tuning particulate filter performance through selective plugging and use of multiple particulate filters to reduce emissions and improve thermal robustness
CN103306784B (en) Exhaust after treatment system and method for exhaust aftertreatment
JP6085316B2 (en) Use of catalytic converter parts and catalytic converter parts of automobile exhaust gas purification equipment
JP2022176975A (en) Catalyst aftertreatment system for automobile
EP2921665B1 (en) Exhaust gas purification system for internal-combustion engine
CN207363741U (en) Exhaust after treatment system for diesel engine
JP2007138866A (en) Regeneration control method for exhaust emission control system, and exhaust emission control system
WO2006028070A1 (en) Apparatus for clarifying exhaust gas
WO2005119021A1 (en) Particulate filter
US8986636B2 (en) Apparatus and method for filtering engine exhaust gases
JP2009062875A (en) Exhaust emission control device
JP2009013809A (en) Exhaust emission control device
JP4567968B2 (en) Exhaust gas purification device and exhaust gas purification method
JP5112815B2 (en) Exhaust purification device
JP5553562B2 (en) Exhaust purification device
JP2009013793A (en) Exhaust emission control device
JP6454067B2 (en) Exhaust purification device
JP2006161629A (en) Exhaust emission control device
JP2009007982A (en) Exhaust emission control device for internal combustion engine
JP2009115022A (en) Exhaust emission control device
JP2009150263A (en) Exhaust emission control device
JP2010222981A (en) Exhaust emission control device
JP2007120346A (en) Exhaust emission control device
JP6168304B2 (en) Engine exhaust gas purification device
KR101526373B1 (en) Exhaust gas purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120124