JP2009061901A - Monitoring method, and its device and program - Google Patents

Monitoring method, and its device and program Download PDF

Info

Publication number
JP2009061901A
JP2009061901A JP2007231199A JP2007231199A JP2009061901A JP 2009061901 A JP2009061901 A JP 2009061901A JP 2007231199 A JP2007231199 A JP 2007231199A JP 2007231199 A JP2007231199 A JP 2007231199A JP 2009061901 A JP2009061901 A JP 2009061901A
Authority
JP
Japan
Prior art keywords
explosion
equipment
structural material
damage
physical quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007231199A
Other languages
Japanese (ja)
Inventor
Tetsuji Miyashita
哲治 宮下
Tetsuya Nakamura
哲也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Shipbuilding Corp
Original Assignee
Universal Shipbuilding Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Shipbuilding Corp filed Critical Universal Shipbuilding Corp
Priority to JP2007231199A priority Critical patent/JP2009061901A/en
Publication of JP2009061901A publication Critical patent/JP2009061901A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monitoring method for monitoring a degree of damage to a point where a physical quantity is not measured, on part of a hull structural material and/or an equipment product, and to provide its device and program. <P>SOLUTION: The monitoring method comprises a step of acquiring impact response data, a step of measuring an amount of strain produced at a selective point on part of the hull structural material and/or the equipment product, a step of estimating an explosion position in accordance with information for the measured amount of strain, a step of estimating the amount of strain produced on part of the hull structural material and/or the equipment product in accordance with the estimated explosion position, the information of the measured amount of strain and the impact response data, and determining a degree of damage to part of the hull structural material and/or the equipment product in accordance with the information for the amount of strain, and a step of outputting information for the determination result. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、船舶の船体構造材及び/又は装備品の損傷の度合いをモニタするモニタリング方法、その装置及びプログラムに関する。   The present invention relates to a monitoring method for monitoring the degree of damage to a hull structural material and / or equipment of a ship, an apparatus and a program therefor.

従来の船体状態の監視制御装置として、「船舶の運航中、船首部に取り付けられた加速度センサー,上甲板部に取り付けられた縦曲げ応力計によりそれぞれ得られる加速度,縦曲げ応力データの変動を常時解析監視する船体状態の監視制御装置において、データ監視装置により警報基準値を越える過大データが計測されたとき、音声データを内蔵する音声警報出力装置により音声警報を出力すると同時に、自動的に同過大データをそれぞれ正常値に復帰させるように推進機器,舵をそれぞれ制御する推進制御装置,舵角制御装置を具えた」ものが提案されてている(例えば、特許文献1参照)。   As a conventional hull condition monitoring and control device, “When the ship is in operation, the acceleration and longitudinal bending stress data obtained by the acceleration sensor attached to the bow and the longitudinal bending stress meter attached to the upper deck are always monitored. In the monitoring and control device of the hull state to be analyzed and monitored, when excessive data exceeding the alarm reference value is measured by the data monitoring device, a voice alarm is output by the voice alarm output device incorporating the voice data and at the same time automatically There has been proposed a device including a propulsion device, a propulsion control device that controls the rudder, and a rudder angle control device so that the data is restored to normal values (see, for example, Patent Document 1).

また、船体強度モニタリングの一般要素、目的に応じてモニタされるべき要素として、「船の安全運航は航海中の船の運動、荷重などが危険領域に入り込まないように航行するとともに、運航データに基づき常時船体構造部材に損傷発生の可能性がないかチェックするシステムにより達成される」ことが開示されている(例えば、非特許文献1参照)。   In addition, as a general element of hull strength monitoring, and an element to be monitored according to the purpose, `` safe ship operation is performed so that the movement and load of the ship during navigation do not enter the dangerous area, and It is achieved by a system that always checks whether there is a possibility of occurrence of damage to the hull structural member ”(see Non-Patent Document 1, for example).

特開平8−175487号公報JP-A-8-175487 日本造船学会,「経年船の安全を考える」,船体構造委員会DA−WG報告書(平成7年),第6章−第7章Japan Society of Shipbuilding, “Considering Safety of Aged Ships”, Hull Structure Committee DA-WG Report (1995), Chapters 6-7

船舶が機雷や魚雷等の水中爆発に曝された場合、その衝撃によって船体構造材や船体に備え付けられた機器などの装備品に非常に大きな振動が発生し、損傷を受けることがある。近年、外部衝撃に対する船体構造材や装備品の耐損傷性の要求が強くなっており、乗組員の安全性確保の観点からも、水中爆発により生じた船体構造材や装備品の被害状況を少しでも早く把握し、対策を行うことが必要となっている。   When a ship is exposed to underwater explosions such as mines and torpedoes, the shock may cause damage to the hull structural materials and equipment such as equipment installed on the hull, causing damage. In recent years, the demand for damage resistance of hull structural materials and equipment against external impacts has increased, and from the viewpoint of ensuring the safety of crew members, the damage status of hull structural materials and equipment caused by underwater explosions has been slightly increased. However, it is necessary to grasp quickly and take countermeasures.

一般的には水中爆発などに曝された場合、乗組員が船体構造材や装備品に損傷、不具合が生じていないかを目視(装備品は動作確認など)により点検するが、全ての船体構造材、装備品を点検するには時間がかかるため、重要な(危険な)損傷、不具合の発見が遅れる可能性がある。
そのため、あらかじめ船体構造材や装備品に何らかの物理量(例えば加速度など)を計測するセンサーを取り付けて状態を監視しておき、閾値を超える衝撃を受けたり、損傷や不具合が生じたりしたときに警報を発するようなモニタリング装置を備えることもある(例えば、特許文献1参照)。これらのモニタリング装置を使用することで、船舶が衝撃を受けた際の損傷の度合いや、損傷場所をあらかじめ把握することができるため、優先度をつけて点検を行って損傷の大きい箇所を優先的に点検、補修することができ、その結果安全性の向上につながる。
In general, when exposed to an underwater explosion, the crew checks the hull structure materials and equipment for damage and malfunctions by visual inspection (equipment confirmation of operation, etc.). Since it takes time to inspect materials and equipment, it may delay the discovery of important (dangerous) damage and malfunctions.
For this reason, a sensor that measures some physical quantity (such as acceleration) is attached to the hull structural materials and equipment in advance to monitor the condition, and an alarm is issued when an impact exceeding the threshold is received, or when a damage or malfunction occurs. A monitoring device that emits light may be provided (for example, see Patent Document 1). By using these monitoring devices, it is possible to grasp in advance the degree of damage and the location of damage when a ship is impacted. Can be inspected and repaired, leading to improved safety.

しかしながら、従来のモニタリング装置では、物理量を計測するセンサーを直接取り付けた船体構造材や装備品の衝撃応答しか計測できない。したがって、状態監視の精度を高くするためには多くの船体構造材や装備品にセンサーを取り付ける必要があり、その結果コストが高くなる。逆にコストを抑制するためにセンサーの取り付け箇所を減らすと、状態を監視できる船体構造材や装備品が限定されてしまうという課題があった。   However, the conventional monitoring device can measure only the impact response of a hull structure material or equipment directly attached with a sensor for measuring a physical quantity. Therefore, in order to increase the accuracy of state monitoring, it is necessary to attach sensors to many hull structural materials and equipment, resulting in high costs. Conversely, if the number of sensor mounting locations is reduced in order to reduce costs, there is a problem that the hull structural materials and equipment that can monitor the state are limited.

本発明は、上述のような課題を解決するためになされたもので、船体構造材及び/又は装備品の各部の内、物理量を計測していない箇所の損傷の度合いをモニタすることができるモニタリング方法、その装置及びプログラムを得ることを目的とする。   The present invention has been made in order to solve the above-described problems, and is capable of monitoring the degree of damage in a part where a physical quantity is not measured among the respective parts of the hull structural material and / or equipment. It is an object to obtain a method, an apparatus thereof, and a program.

本発明に係るモニタリング方法は、船舶の船体構造材及び/又は装備品の損傷の度合いをモニタするモニタリング方法であって、爆発の衝撃によって船体構造材及び/又は装備品の各部に生じる物理量が、複数の爆発位置及び各爆発位置における1若しくは複数の爆発威力に応じて求められた衝撃応答情報を取得するステップと、前記船体構造材及び/又は装備品の各部の内、任意の箇所に生じた物理量を計測するステップと、計測した前記物理量の情報に基づき、爆発位置を推定するステップと、推定した前記爆発位置と、計測した前記物理量の情報と、前記衝撃応答情報とに基づき、前記船体構造材及び/又は装備品の各部に生じる物理量を推定し、当該物理量の情報に基づいて前記船体構造材及び/又は装備品の各部の損傷の度合いを判定するステップと、前記判定結果の情報を出力するステップとを有するものである。   The monitoring method according to the present invention is a monitoring method for monitoring the degree of damage to a hull structural material and / or equipment of a ship, and a physical quantity generated in each part of the hull structural material and / or equipment due to an impact of an explosion, A step of acquiring impact response information obtained according to a plurality of explosion positions and one or a plurality of explosion powers at each explosion position, and occurred at an arbitrary position among the respective parts of the hull structural material and / or equipment. Based on the step of measuring a physical quantity, the step of estimating an explosion position based on the measured physical quantity information, the estimated explosion position, the measured physical quantity information, and the impact response information, the hull structure The physical quantity generated in each part of the material and / or equipment is estimated, and the degree of damage of each part of the hull structural material and / or equipment is determined based on the information on the physical quantity. Those having the steps of constant, and outputting the information of the determination result.

また、本発明に係るプログラムは、上記モニタリング方法をコンピュータに実行させるものである。   A program according to the present invention causes a computer to execute the monitoring method.

また、本発明に係るモニタリング装置は、船舶の船体構造材及び/又は装備品の損傷の度合いをモニタするモニタリング装置であって、爆発の衝撃によって船体構造材及び/又は装備品の各部に生じる物理量が、複数の爆発位置及び各爆発位置における1若しくは複数の爆発威力に応じて求められた衝撃応答情報を予め記憶する記憶部と、前記船体構造材及び/又は装備品の各部の内、任意の箇所に生じた物理量を計測する計測部と、前記計測部が計測した物理量に基づき、爆発位置を推定する爆発位置算出部と、前記爆発位置算出部が推定した推定爆発位置と、前記計測部が計測した任意の箇所の物理量と、前記衝撃応答情報とに基づき、前記船体構造材及び/又は装備品の各部に生じる物理量を推定し、当該物理量の情報に基づいて前記船体構造材及び/又は装備品の各部の損傷の度合いを判定する損傷レベル判定部とを備えたものである。   The monitoring device according to the present invention is a monitoring device for monitoring the degree of damage to the hull structural material and / or equipment of a ship, and is a physical quantity generated in each part of the hull structural material and / or equipment by the impact of an explosion. A storage unit that stores in advance a plurality of explosion positions and impact response information obtained in accordance with one or a plurality of explosion powers at each explosion position, and any of the respective parts of the hull structural material and / or equipment A measurement unit that measures a physical quantity generated at a location, an explosion position calculation unit that estimates an explosion position based on the physical quantity measured by the measurement unit, an estimated explosion position estimated by the explosion position calculation unit, and the measurement unit Based on the measured physical quantity of any location and the impact response information, estimate the physical quantity generated in each part of the hull structural material and / or equipment, and based on the information on the physical quantity In which the degree of damage of each part of the body structural member and / or equipment and a determining damage level determining section.

また、本発明に係るモニタリング装置においては、前記損傷レベル判定部は、前記推定爆発位置と、前記計測部が計測した任意の箇所の物理量とに基づき、爆発威力を推定し、前記複数の爆発位置及び複数の爆発威力に応じた衝撃応答情報の内、推定した爆発威力と、前記推定爆発位置とに対応する前記衝撃応答情報に基づき、前記船体構造材及び/又は装備品の各部に生じる物理量を推定し、当該物理量の情報に基づいて前記船体構造材及び/又は装備品の各部の損傷の度合いを判定するものである。   Further, in the monitoring device according to the present invention, the damage level determination unit estimates an explosion power based on the estimated explosion position and a physical quantity at an arbitrary position measured by the measurement unit, and the plurality of explosion positions And physical quantities generated in each part of the hull structural material and / or equipment based on the estimated explosion power and the estimated response position corresponding to the estimated explosion position among the plurality of explosion response information. It is estimated and the degree of damage of each part of the hull structural material and / or equipment is determined based on the information on the physical quantity.

また、本発明に係るモニタリング装置においては、前記損傷レベル判定部は、前記複数の爆発位置及び所定の爆発威力に応じた衝撃応答情報の内、前記推定爆発位置に対応する、前記船体構造材及び/又は装備品の各部に生じる物理量の情報を取得し、取得した前記物理量の情報と、前記計測部が計測した任意の箇所の物理量とに基づき、前記船体構造材及び/又は装備品の各部に生じる物理量を推定し、当該物理量の情報に基づいて前記船体構造材及び/又は装備品の各部の損傷の度合いを判定するものである。   Further, in the monitoring device according to the present invention, the damage level determination unit includes the hull structural material corresponding to the estimated explosion position among impact response information corresponding to the plurality of explosion positions and a predetermined explosion power. Information on physical quantities generated in each part of the equipment is acquired, and based on the acquired information on the physical quantities and the physical quantities at arbitrary locations measured by the measuring unit, The generated physical quantity is estimated, and the degree of damage of each part of the hull structural material and / or equipment is determined based on the information on the physical quantity.

また、本発明に係るモニタリング装置においては、前記記憶部は、前記船体構造材及び/又は装備品の各部ごとに、前記物理量に応じた損傷の度合いを示す損傷判定情報が予め記憶され、前記損傷レベル判定部は、前記損傷判定情報と、推定した前記物理量の情報とに基づき、前記船体構造材及び/又は装備品の各部の損傷の度合いを判定するものである。   In the monitoring device according to the present invention, the storage unit stores in advance damage determination information indicating a degree of damage according to the physical quantity for each part of the hull structural material and / or equipment, and the damage The level determination unit determines the degree of damage of each part of the hull structural material and / or equipment based on the damage determination information and the information on the estimated physical quantity.

また、本発明に係るモニタリング装置においては、前記計測部は、前記船体構造材及び/又は装備品の各部の内、少なくとも3箇所以上を計測し、前記爆発位置算出部は、各計測部が衝撃による物理量を計測した時間差と、当該衝撃の伝播速度とを用いて、爆発位置を推定するものである。   In the monitoring device according to the present invention, the measurement unit measures at least three or more of the parts of the hull structure material and / or equipment, and the explosion position calculation unit is configured such that each measurement unit has an impact. The explosion position is estimated by using the time difference when the physical quantity is measured and the propagation speed of the impact.

また、本発明に係るモニタリング装置は、前記計測部が計測した物理量に基づき、衝撃発生の有無を判定する衝撃レベル判定部を更に備え、前記損傷レベル判定部は、前記衝撃レベル判定部が衝撃の発生を判定したとき、前記船体構造材及び/又は装備品の各部の損傷の度合いを判定するものである。   The monitoring apparatus according to the present invention further includes an impact level determination unit that determines whether or not an impact has occurred based on the physical quantity measured by the measurement unit, and the damage level determination unit includes the impact level determination unit that is When the occurrence is determined, the degree of damage of each part of the hull structural material and / or equipment is determined.

また、本発明に係るモニタリング装置においては、前記計測部は、前記船体構造材及び/又は装備品が爆発の衝撃により生じるひずみを計測するひずみゲージである。   In the monitoring device according to the present invention, the measuring unit is a strain gauge that measures strain generated by an explosion impact of the hull structural material and / or equipment.

また、本発明に係るモニタリング装置においては、前記計測部は、前記船体構造材及び/又は装備品が爆発の衝撃により生じる振動の加速度を計測する加速度センサーである。   In the monitoring device according to the present invention, the measurement unit is an acceleration sensor that measures acceleration of vibration generated by an explosion impact of the hull structural material and / or equipment.

本発明は、船体構造材及び/又は装備品の各部の内、任意の箇所に生じた物理量を計測し、取得した物理量の情報に基づき爆発位置を推定し、推定した爆発位置と、計測した物理量の情報と、取得した衝撃応答情報とに基づき、船体構造材及び/又は装備品の各部に生じる物理量を推定し、当該物理量の情報に基づいて船体構造材及び/又は装備品の各部の損傷の度合いを判定することにより、船体構造材及び/又は装備品の各部の内、物理量を計測していない箇所の損傷の度合いをモニタすることができる。   The present invention measures the physical quantity generated in any part of each part of the hull structural material and / or equipment, estimates the explosion position based on the acquired physical quantity information, the estimated explosion position, and the measured physical quantity The physical quantity generated in each part of the hull structural material and / or equipment is estimated based on the information on the above and the acquired impact response information, and the damage of each part of the hull structural material and / or equipment is estimated based on the information on the physical quantity. By determining the degree, it is possible to monitor the degree of damage of the part where the physical quantity is not measured among the respective parts of the hull structural material and / or equipment.

実施の形態1.
本発明に係るモニタリング装置は、船舶の船体構造材及び/又は装備品の損傷の度合いをモニタするものである。以下、本実施の形態1においては、海面を移動する船舶をモニタリング対象物とし、水中爆発による衝撃によって船舶の船体構造材が受ける損傷の度合いを、ひずみゲージ(後述)を用いてモニタする場合を説明する。
Embodiment 1 FIG.
The monitoring device according to the present invention monitors the degree of damage to the hull structural material and / or equipment of a ship. Hereinafter, in the first embodiment, a ship moving on the sea surface is a monitoring object, and the degree of damage to the ship's hull structural material due to an impact caused by an underwater explosion is monitored using a strain gauge (described later). explain.

図1は本発明の実施の形態1に係るモニタリング装置の構成ブロック図である。図1において、本実施の形態1におけるモニタリング装置1は、船体構造材が爆発の衝撃により生じるひずみを計測する計測部であるひずみゲージ10と、データ処理部11と、衝撃発生の有無を判定する衝撃レベル判定部12と、水中爆発が起きた地点(以下「爆発位置」という)を推定する爆発位置算出部13と、後述する衝撃応答情報(データ)及び損傷判定情報(データ)を記憶する記憶部14と、船体構造材の各部の損傷の度合いを判定する損傷レベル判定部15と、判定結果の情報を出力する出力部16とにより構成されている。   FIG. 1 is a configuration block diagram of a monitoring apparatus according to Embodiment 1 of the present invention. In FIG. 1, the monitoring device 1 according to the first embodiment determines a strain gauge 10 that is a measurement unit that measures strain generated by the impact of an explosion of a hull structural material, a data processing unit 11, and whether or not an impact has occurred. An impact level determination unit 12, an explosion position calculation unit 13 that estimates a point where an underwater explosion has occurred (hereinafter referred to as an “explosion position”), and a memory that stores impact response information (data) and damage determination information (data) to be described later Part 14, a damage level determination part 15 that determines the degree of damage of each part of the hull structural material, and an output part 16 that outputs information of the determination result.

ひずみゲージ10は、船体構造材のひずみ計側点(後述)に少なくとも3つ以上設置され、船体構造材の材料に外力が加わったときの当該材料の変形(ひずみ)を検知して、ひずみ応答としてデータ処理部11に出力する。例えば、電気抵抗式のひずみゲージは材料の変形に応じて電気抵抗が変化するものである。このひずみゲージ10を設置する計測点は、例えば、後述する衝撃応答計算の結果を比較して、種々の位置における水中爆発に対して衝撃応答(ひずみ応答)が大きく、また水中爆発の発生点による応答の違いが大きい位置を数点〜数十点選択し、船体構造材のひずみ計測点として設定する。設定した計測点にひずみゲージ10を貼付し、後述する動作により、運行中常時ひずみ値を監視する。計測点が多いほど計測精度は向上するが、コストも上昇するので、費用対効果の最も高い計測点数を設定する。   At least three strain gauges 10 are installed at the strain gauge side points (described later) of the hull structure material, and detect the deformation (strain) of the material when an external force is applied to the material of the hull structure material. To the data processing unit 11. For example, an electric resistance type strain gauge changes its electric resistance in accordance with the deformation of the material. The measurement point at which the strain gauge 10 is installed has a large impact response (strain response) with respect to underwater explosions at various positions, for example, by comparing the results of impact response calculation described later, and depends on the point of occurrence of the underwater explosion. Select several points to several tens of points where the difference in response is large, and set it as the strain measurement point of the hull structural material. The strain gauge 10 is affixed to the set measurement point, and the strain value is constantly monitored during operation by the operation described later. As the number of measurement points increases, the measurement accuracy improves, but the cost also increases. Therefore, the most cost-effective number of measurement points is set.

データ処理部11は、各ひずみゲージ10からのひずみ応答(例えば電気抵抗値)をそれぞれ取得して、例えばサンプリング等の処理を施して、それぞれのひずみ応答をデジタルデータの信号に変換する(以下、ひずみ応答に基づくデータを「ひずみ応答データ」という)。衝撃レベル判定部12は、データ処理部11からのひずみ応答データが入力され、後述する動作により、データ処理部11から入力されたひずみ応答データに基づき、当該船舶2の付近での水中爆発の発生を判断する。爆発位置算出部13は、後述する動作により、少なくとも3つ以上のひずみゲージ10の計測時間の時間差と、衝撃の伝播速度とを用いて、爆発位置を推定する。記憶部14は、例えばHDD(Hard Disk Drive)等の記憶装置で構成されるデータベース(DB)であり、後述する衝撃応答データ及び損傷判定データが予め記憶されている。損傷レベル判定部15は、爆発位置算出部13により推定された爆発位置の情報と、データ処理部11からのひずみ応答データとが入力され、記憶部14に記憶された情報に基づき、後述する動作により、船体構造材の各部の損傷の度合いを判定し、判定結果の情報を出力部16に出力する。出力部16は、例えば液晶ディスプレイ、スピーカなどにより構成され、損傷レベル判定部15から入力された判断結果の情報を出力する。   The data processing unit 11 acquires a strain response (for example, an electric resistance value) from each strain gauge 10, respectively, performs a process such as sampling, and converts each strain response into a digital data signal (hereinafter, referred to as “digital data signal”). Data based on strain response is called “strain response data”). The impact level determination unit 12 receives strain response data from the data processing unit 11 and generates an underwater explosion near the ship 2 based on strain response data input from the data processing unit 11 by an operation described later. Judging. The explosion position calculation unit 13 estimates the explosion position using the time difference between the measurement times of at least three or more strain gauges 10 and the propagation speed of the impact by an operation described later. The storage unit 14 is a database (DB) configured by a storage device such as an HDD (Hard Disk Drive), for example, and stores impact response data and damage determination data described later in advance. The damage level determination unit 15 receives the explosion position information estimated by the explosion position calculation unit 13 and the strain response data from the data processing unit 11, and operates as described later based on the information stored in the storage unit 14. Thus, the degree of damage of each part of the hull structural material is determined, and information on the determination result is output to the output unit 16. The output unit 16 includes, for example, a liquid crystal display, a speaker, and the like, and outputs information on the determination result input from the damage level determination unit 15.

ここで、衝撃レベル判定部12、爆発位置算出部13、及び損傷レベル判定部15は、例えば、回路デバイスのようなハードウェアで構成することもできるし、CPU(Central processing Unit)やマイコンのような演算装置により実行されるソフトウェアとして構成することもできる。ソフトウェアとして実現する場合は、ROM(Read Only Memory)やHDD(Hard Disk Drive)等にこれら各部の機能を実現するプログラムを格納しておき、CPUやマイコンなどの演算装置がそのプログラムを読み込んで、プログラムの指示に従って各部の機能に相当する処理を実行することにより、構成することができる。また、ここではそれぞれ別の構成部として構成しているが、例えば、各構成部が行うプログラムに基づく処理を1つの演算装置により行うようにしてもよい。   Here, the impact level determination unit 12, the explosion position calculation unit 13, and the damage level determination unit 15 may be configured by hardware such as a circuit device, or may be a CPU (Central Processing Unit) or a microcomputer. It can also be configured as software executed by a simple arithmetic device. When implemented as software, ROM (Read Only Memory), HDD (Hard Disk Drive), etc. store the program that realizes the functions of these units, and an arithmetic device such as a CPU or microcomputer reads the program, It can be configured by executing processing corresponding to the function of each unit in accordance with the instructions of the program. Although each component is configured as a separate component here, for example, processing based on a program performed by each component may be performed by one arithmetic device.

このような構成により、本実施の形態におけるモニタリング装置1は、船体構造材の各部の内、計測点に生じるひずみを計測し、ひずみゲージ10が計測したひずみ応答に基づき爆発位置を推定し、推定した爆発位置と、計測したひずみ応答データと、予め記憶された衝撃応答データとに基づき、船体構造材の各部に生じるひずみ値を推定し、当該船体構造材の各部の損傷の度合いを判定する。そして、この判定結果の情報を出力部16へ出力する。このような動作の詳細を図3〜図8を用いて、(1)衝撃応答計算、(2)損傷判定レベルの設定、(3)損傷度判定とに分けて以下に説明する。   With such a configuration, the monitoring device 1 in the present embodiment measures the strain generated at the measurement point in each part of the hull structural material, estimates the explosion position based on the strain response measured by the strain gauge 10, and estimates Based on the explosion position, the measured strain response data, and the impact response data stored in advance, the strain value generated in each part of the hull structure material is estimated, and the degree of damage of each part of the hull structure material is determined. Then, the information of the determination result is output to the output unit 16. Details of such an operation will be described below with reference to FIGS. 3 to 8 and divided into (1) impact response calculation, (2) damage determination level setting, and (3) damage degree determination.

(1)衝撃応答計算
まず、水中爆発現象について説明する。水中において例えば魚雷や機雷などの炸薬が爆発すると以下のような順番で爆発現象が生じる。
(i)衝撃波が発生する。
(ii)ガスバブル(高温・高圧の気泡)が発生する。
(iii)衝撃波が水中を伝播する(この衝撃波を「Shock Wave」という)。
(iv)高圧のガスバブルと水圧とが作用してガスバブルは膨張、収縮を繰り返す。このときに衝撃波が発生する(この衝撃波を「Bubble Pulse」という)。
(v)ガスバブルが水面上に浮上したときに水柱が立つ(バブルジェット(登録商標)現象)。
上記爆発が生じた爆発位置が船体から遠距離(遠距離水中爆発)にある場合、(i),(iii)の現象のみ考慮すればよい。このような水中(流体)を伝播する衝撃波(Shock Wave)と船体(構造)との連成(構造−流体連成問題という。)を解くには陽解法FEM解析を用いることが一般的である。
(1) Impact response calculation First, the underwater explosion phenomenon will be described. For example, when a glaze such as a torpedo or mine explodes in water, an explosion phenomenon occurs in the following order.
(i) A shock wave is generated.
(ii) Gas bubbles (high-temperature, high-pressure bubbles) are generated.
(iii) A shock wave propagates in water (this shock wave is called "Shock Wave").
(iv) The gas bubble repeats expansion and contraction due to the action of the high-pressure gas bubble and the water pressure. At this time, a shock wave is generated (this shock wave is called “Bubble Pulse”).
(v) A water column stands when a gas bubble rises above the water surface (bubble jet (registered trademark) phenomenon).
When the explosion location where the explosion occurred is at a long distance (far-water underwater explosion) from the hull, only the phenomena (i) and (iii) should be considered. To solve such a shock wave (shock wave) propagating in water (fluid) and the hull (structure) (called a structure-fluid coupling problem), an explicit FEM analysis is generally used.

次に、遠距離水中爆発に曝されたときの船体の挙動について説明する。まず、上述のように、水中爆発がおきると衝撃波(Shock Wave)が船体に到達する。この衝撃波によって船体は上下方向に持ち上げられる。また、流体と接している部分の船体構造材には衝撃波によって振動が発生する。そして、船体構造材に発生した振動が構造各部を伝播し、装備品や電子機器などに振動が伝わる。その振動によって装備品や電子機器に搭載されている配線がショートすることや、部品が欠落することがある。FEM解析では、衝撃波(Shock Wave)を考慮した計算を行い、船体構造材のひずみや加速度、及び装備品の加速度を求める。   Next, the behavior of the hull when exposed to a long-distance underwater explosion will be described. First, as described above, when an underwater explosion occurs, a shock wave reaches the hull. The hull is lifted up and down by this shock wave. In addition, vibration is generated in the hull structural material in contact with the fluid by shock waves. And the vibration which generate | occur | produced in the hull structure material propagates through each structure part, and a vibration is transmitted to an equipment, an electronic device, etc. The vibration may cause short-circuiting of the wirings mounted on the equipment and the electronic device, or missing parts. In the FEM analysis, calculation considering shock waves is performed, and the strain and acceleration of the hull structural material and the acceleration of the equipment are obtained.

図2はDytranを用いた水中爆発解析方法を説明する図である。図2により、上述したFEM解析法の一例として、汎用ソフトのMSC.Dytranを用いた水中爆発解析手法の手順について説明する。
(i)まず、FEM解析を行う船体の構造詳細モデル(FEMモデル)を作成する。
(ii)起爆条件として、炸薬量(爆発威力)、起爆位置(爆発位置)を設定する。
(iii)水中爆発解析プログラムを起動し、船体外板に作用する衝撃圧力を求める。
(iv)求めた衝撃圧力を入力として、FEM非線形解析を行い、船体構造材のひずみや加速度、または装備品の加速度を計算する。
FIG. 2 is a diagram for explaining an underwater explosion analysis method using Dytran. As an example of the FEM analysis method described above, the procedure of an underwater explosion analysis method using general-purpose software MSC.Dytran will be described with reference to FIG.
(i) First, a detailed structural model (FEM model) of the hull for FEM analysis is created.
(ii) As the detonation conditions, set the amount of glaze (explosion power) and detonation position (explosion position).
(iii) Launch the underwater explosion analysis program and determine the impact pressure acting on the hull skin.
(iv) FEM nonlinear analysis is performed using the obtained impact pressure as input, and the strain and acceleration of the hull structural material or the acceleration of the equipment is calculated.

本実施の形態1においては、爆発位置とショックファクター(爆発威力)とをパラメタとして、船舶2の船体構造材について任意の複数箇所(各部)に生じるひずみ値を、上述のような水中爆発解析によって計算された結果(衝撃応答データ)が記憶部14に予め記憶される。この衝撃応答データについて図3及び図4を用いて次に説明する。   In the first embodiment, with the explosion position and the shock factor (explosion power) as parameters, the strain values generated at any of a plurality of locations (each part) of the hull structure material of the ship 2 are analyzed by underwater explosion analysis as described above. The calculated result (impact response data) is stored in advance in the storage unit 14. This impact response data will be described next with reference to FIGS.

図3は本発明の実施の形態1に係る爆発相対位置の定義を説明する図、図4は本発明の実施の形態1に係る衝撃応答データのデータ構造の概念図である。図3に示すように、爆発位置を船舶2からの相対位置、即ち方向(0°〜360°)、水平距離H、深さDを用いて定義する。そして、図4に示すように、各爆発位置における複数のショックファクターに応じて求められた、船体構造材の各部に対応するひずみ値(衝撃応答)の情報がデータベース化される。
尚、上記説明では、汎用ソフトによりFEM解析を行う場合を説明したが、本発明はこれに限るものではなく、他の解析方法や実験データ等に基づき求めても良い。
FIG. 3 is a diagram illustrating the definition of the explosion relative position according to the first embodiment of the present invention, and FIG. 4 is a conceptual diagram of the data structure of impact response data according to the first embodiment of the present invention. As shown in FIG. 3, the explosion position is defined using a relative position from the ship 2, that is, a direction (0 ° to 360 °), a horizontal distance H, and a depth D. And as shown in FIG. 4, the information of the distortion value (impact response) corresponding to each part of the hull structure material calculated | required according to the some shock factor in each explosion position is databaseed.
In the above description, the case where FEM analysis is performed using general-purpose software has been described. However, the present invention is not limited to this, and may be obtained based on other analysis methods, experimental data, or the like.

(2)損傷判定レベルの設定
図5は本発明の実施の形態1に係る損傷判定データのデータ構造の概念図である。
記憶部14には、船体構造材の各部ごとに、ひずみ応答に応じた損傷の度合いを示す損傷判定データ(損傷判定情報)が予め記憶されている。この損傷判定データは、上述した衝撃応答計算を行った船体構造材の各部に対し、ひずみ応答のレベル(大きさ)と船体構造材の損傷度との関係を求め、損傷度判定のレベル判定の範囲が設定されている。例えば、図5に示すように、当該箇所に生じるひずみ応答に対し、それぞれ安全レベル1〜4、危険の5段階で設定し、各部ごとに異なるレベル判定の範囲が設定される。これにより、船体構造材の各部の安全率や重要度などを加味して判定基準を作成することが可能となる。
(2) Setting of Damage Determination Level FIG. 5 is a conceptual diagram of the data structure of damage determination data according to Embodiment 1 of the present invention.
The storage unit 14 stores in advance damage determination data (damage determination information) indicating the degree of damage corresponding to the strain response for each part of the hull structural material. This damage determination data is used to determine the relationship between the level (size) of the strain response and the degree of damage to the hull structural material for each part of the hull structural material that has been subjected to the impact response calculation described above. A range is set. For example, as shown in FIG. 5, safety levels 1 to 4 and 5 levels of danger are set for the strain response generated at the relevant location, and different level determination ranges are set for each part. As a result, it is possible to create a criterion based on the safety factor and importance of each part of the hull structural material.

(3)損傷度判定
図6は本発明の実施の形態1に係る損傷度判定の動作を示すフローチャート、図7は本発明の実施の形態1に係る爆発相対位置の推定方法を説明する図、図8は本発明の実施の形態1に係る衝撃波の到達時間差を示す図である。以下、図6のフローチャートに基づき図7及び図8を参照しながら損傷判定動作について説明する。
(3) Degree of damage determination FIG. 6 is a flowchart showing an operation of damage degree determination according to Embodiment 1 of the present invention, and FIG. 7 is a diagram for explaining a method for estimating an explosion relative position according to Embodiment 1 of the present invention. FIG. 8 is a diagram showing a difference in arrival time of shock waves according to Embodiment 1 of the present invention. The damage determination operation will be described below with reference to FIGS. 7 and 8 based on the flowchart of FIG.

(S101)
各計測点のひずみゲージ10は、常時、船体構造材の計測点におけるひずみを検出し、それぞれひずみ応答をデータ処理部11に入力する。データ処理部11は、入力されたひずみ応答をデジタルデータに変換し、ひずみ応答データとして衝撃レベル判定部12及び損傷レベル判定部15へ出力する。
(S101)
The strain gauge 10 at each measurement point always detects the strain at the measurement point of the hull structure material, and inputs the strain response to the data processing unit 11. The data processing unit 11 converts the input strain response into digital data, and outputs it to the impact level determination unit 12 and the damage level determination unit 15 as strain response data.

(S102)
次に、衝撃レベル判定部12は、取得した各計測点でのひずみ応答データのうち、例えばいずれかの計測点のひずみ応答が所定の閾値を超えた場合に、付近で水中爆発が起こったと判定する(衝撃発生の判定)。尚、爆発の発生の判断は、これに限らず、例えば複数箇所のひずみ応答が閾値を越えた場合、又は各計測点の平均値が所定の閾値を越えた場合に水中爆発の発生を判断しても良い。
(S102)
Next, the impact level determination unit 12 determines that an underwater explosion has occurred in the vicinity of the acquired strain response data at each measurement point, for example, when the strain response at any of the measurement points exceeds a predetermined threshold. Yes (judgment of impact occurrence). The determination of the occurrence of an explosion is not limited to this. For example, the occurrence of an underwater explosion is determined when the strain response at a plurality of locations exceeds a threshold value, or when the average value of each measurement point exceeds a predetermined threshold value. May be.

(S103)
爆発位置算出部13は、衝撃レベル判定部12により水中爆発の発生が判定されたとき、当該爆発の爆発位置の推定を行う。この爆発位置の推定は、例えば、少なくとも3箇所の計測点において計測されたひずみ応答を利用し、各計測点が衝撃によるひずみを計測した時間差と、当該衝撃の伝播速度とを用いて、爆発位置を推定するものである。つまり、図7に示すように、ひずみゲージ10の設置位置は既知であるので、各ひずみゲージ10と爆発位置との相対距離(L1〜L3)を求めることにより、爆発位置を船舶2からの相対位置(方向、水平距離H、深さD)を算出することができる。この相対距離(L1〜L3)は、図8に示すように、ひずみ応答が所定の閾値超えたとき、又は最大値の発生時間を基準として、各ひずみゲージ10での衝撃応答の到達時間差を求め、衝撃波が水中を伝播する速度は約1500m/sであるから、この速度に時間差を乗ずることにより、各ひずみゲージ10と爆発位置との距離差を求めて相対距離を算出する。
(S103)
When the impact level determination unit 12 determines that an underwater explosion has occurred, the explosion position calculation unit 13 estimates the explosion position of the explosion. The explosion position is estimated by using, for example, strain responses measured at at least three measurement points, and using the time difference at which each measurement point measures strain due to impact and the propagation speed of the impact, Is estimated. That is, as shown in FIG. 7, since the installation position of the strain gauge 10 is known, the relative position (L1 to L3) between each strain gauge 10 and the explosion position is obtained, so that the explosion position is relative to the ship 2. The position (direction, horizontal distance H, depth D) can be calculated. As shown in FIG. 8, the relative distances (L1 to L3) are calculated as the difference in arrival time of the impact response at each strain gauge 10 when the strain response exceeds a predetermined threshold value or based on the generation time of the maximum value. Since the speed at which the shock wave propagates in water is about 1500 m / s, the relative distance is calculated by obtaining the distance difference between each strain gauge 10 and the explosion position by multiplying this speed by the time difference.

(S104)
次に、損傷レベル判定部15は、爆発位置算出部13が推定した爆発位置(以下、「推定爆発位置」という)を基に、記憶部14に記憶された衝撃応答データのうち、当該推定爆発位置に最も近い爆発位置での計算結果を選択する。
(S104)
Next, the damage level determination unit 15 uses the estimated explosion of the impact response data stored in the storage unit 14 based on the explosion position estimated by the explosion position calculation unit 13 (hereinafter referred to as “estimated explosion position”). Select the calculation result at the explosion position closest to the position.

(S105)
そして、ひずみゲージ10が計測したひずみ応答データと衝撃応答データとを照合し(パターン照合)、選択した爆発位置における複数のショックファクターのうち、ひずみ値の計算結果と、各ひずみゲージ10が計測したひずみ応答とが最も近いショックファクターを推定する。これにより推定したショックファクターと推定爆発位置とにおける衝撃応答データから、船体構造材の各部の衝撃応答(ひずみ値)を求めることができる。
(S105)
Then, the strain response data measured by the strain gauge 10 and the impact response data are collated (pattern collation), and among the plurality of shock factors at the selected explosion position, the calculation result of the strain value and each strain gauge 10 measure. Estimate the shock factor closest to the strain response. Thus, the shock response (strain value) of each part of the hull structural material can be obtained from the shock response data at the estimated shock factor and the estimated explosion position.

(S106)
次に、損傷レベル判定部15は、得られた船体構造材の各部のひずみ値と、図5に示した損傷判定データとを比較し、損傷度判定(安全レベル1〜4,危険)を行い、当該損傷判定結果の情報を出力部16へ出力する。
(S106)
Next, the damage level determination unit 15 compares the strain value of each part of the obtained hull structural material with the damage determination data shown in FIG. 5 and performs damage level determination (safety level 1 to 4, danger). The information of the damage determination result is output to the output unit 16.

(S107)
出力部16は、入力された判定結果の情報を、ディスプレイ、音声等により出力する。このとき、例えば危険度の判定レベルに応じて色を変えて船体図上に表示することにより、被害の推定状況を視覚的に判断することが可能となる。
(S107)
The output unit 16 outputs information on the input determination result using a display, sound, or the like. At this time, for example, it is possible to visually determine the estimated state of damage by changing the color according to the determination level of the risk level and displaying it on the hull map.

以上のように本実施の形態1においては、計測点に生じたひずみを計測し、ひずみ応答データに基づき爆発位置を推定し、推定した爆発位置と、計測したひずみ応答データと、衝撃応答データとに基づき、船体構造材の各部に生じるひずみ値を推定し、このひずみ値に基づいて船体構造材の各部の損傷の度合いを判定することにより、直接計測している計測点は無論、計測していない箇所の衝撃によるひずみ値を求め、損傷の度合いを判定して、判断結果の情報を乗員に示すことができる。   As described above, in the first embodiment, the strain generated at the measurement point is measured, the explosion position is estimated based on the strain response data, the estimated explosion position, the measured strain response data, the impact response data, Based on this, we estimate the strain value generated in each part of the hull structure material, and determine the degree of damage of each part of the hull structure material based on this strain value. It is possible to obtain a strain value due to an impact at a nonexistent location, determine the degree of damage, and show information on the determination result to the occupant.

また、水中爆発に対する損傷の度合いを判定してその結果を乗員に視覚的又は音声により提示することにより、被害の推定状況を視覚的に判断することが可能となる。したがって、乗員は、被害の推定状況をより早く的確に把握することができ、その結果としてより危険な箇所の点検調査を優先的に行うことができ、危険な箇所を早期に発見して補修等を行うことが可能となるので、安全性の向上に大きく寄与する。   Further, it is possible to visually determine the estimated situation of damage by determining the degree of damage to the underwater explosion and presenting the result visually or by voice to the occupant. Therefore, passengers can grasp the estimated situation of damage more quickly and accurately, and as a result, they can preferentially conduct inspection surveys of more dangerous parts, detect dangerous parts early, repair, etc. Can greatly contribute to the improvement of safety.

さらに、損傷度の判定基準(損傷判定データ)を作成する際に、船体構造材の各部のうち、重要度を加味して判定基準を作成することにより、より安全性を向上することができる。   Furthermore, when creating the damage criterion (damage determination data), the safety can be further improved by creating the criterion based on the importance of each part of the hull structural material.

また、直接計測していない箇所のひずみ値を求めることができるので、配置するひずみゲージ10(計測センサー)の数を減らすことができ、設置コスト、及びランニングコストの削減が可能となる。また、ひずみゲージ10の点数が減ることにより計測システムを簡素化することができるので、計測システムの維持が容易となるので信頼性の向上につながる。   Moreover, since the strain value of the part which is not directly measured can be calculated | required, the number of the strain gauges 10 (measurement sensor) to arrange | position can be reduced, and the installation cost and the running cost can be reduced. Moreover, since the measurement system can be simplified by reducing the number of strain gauges 10, the measurement system can be easily maintained, leading to an improvement in reliability.

尚、本実施の形態1においては、出力部16を設け、損傷レベル判定部15の判定結果の情報を出力部16により出力する場合を説明したが、本発明はこれに限らず、出力部16を設けずに、例えば、他の情報処理装置などに当該判定結果の情報を出力するようにしても良いし、外部記憶装置などに逐次記憶させても良い。   In the first embodiment, the case where the output unit 16 is provided and the information of the determination result of the damage level determination unit 15 is output by the output unit 16 has been described. However, the present invention is not limited thereto, and the output unit 16 is not limited thereto. For example, the information of the determination result may be output to another information processing apparatus or the like, or may be sequentially stored in an external storage device or the like.

また、損傷レベル判定部15が求めた衝撃応答(ひずみ値)を、例えば記憶部14又は外部記憶装置などに逐次記憶させ、船舶2の損傷の履歴として管理し、設備維持・経年劣化診断などに利用しても良い。   Further, the impact response (strain value) obtained by the damage level determination unit 15 is sequentially stored in the storage unit 14 or an external storage device, for example, and managed as a damage history of the ship 2 for equipment maintenance / aging deterioration diagnosis and the like. May be used.

尚、本実施の形態1においては、船舶2の船体構造材の各部をひずみゲージ10を用いて、損傷の度合いをモニタする場合を説明したが、本発明はこれに限るものではなく、船舶2に艤装される装備品にひずみゲージ10を貼付し、同様の動作により損傷の度合いをモニタするようにしても良い。   In the first embodiment, the case where each part of the hull structural material of the ship 2 is monitored for the degree of damage using the strain gauge 10 has been described. However, the present invention is not limited to this, and the ship 2 The strain gauge 10 may be affixed to the equipment to be mounted on and the degree of damage may be monitored by the same operation.

実施の形態2.
上記実施の形態1では、水中爆発による衝撃によって船舶2の船体構造材が受ける損傷の度合いをモニタする場合を説明したが、本実施の形態2では、船舶2に艤装される装備品が水中爆発による衝撃によって受ける損傷の度合いを、加速度センサーを用いてモニタする場合を説明する。
Embodiment 2. FIG.
In the first embodiment, the case has been described in which the degree of damage to the hull structure material of the ship 2 due to the impact of the underwater explosion is monitored. However, in the second embodiment, the equipment fitted to the ship 2 is underwater explosion. A case will be described in which the degree of damage received by an impact due to is monitored using an acceleration sensor.

図9は本発明の実施の形態2に係るモニタリング装置の構成ブロック図である。図9において、本実施の形態2におけるモニタリング装置1は、上述した実施の形態1のひずみゲージ10に換えて、船舶の装備品が爆発の衝撃により生じる振動の加速度を計測する加速度センサー20を設ける構成とする。その他の構成は上述した実施の形態1と同様である。   FIG. 9 is a configuration block diagram of a monitoring apparatus according to Embodiment 2 of the present invention. In FIG. 9, the monitoring device 1 according to the second embodiment is provided with an acceleration sensor 20 that measures the acceleration of vibration generated by the impact of the explosion of the ship equipment, instead of the strain gauge 10 of the first embodiment described above. The configuration. Other configurations are the same as those in the first embodiment.

加速度センサー20は、装備品の加速度センサー計測点(後述)に少なくとも3つ以上設置され、装備品の振動の加速度を検知して、加速度応答としてデータ処理部11に出力する。この加速度センサー20を設置する計測点は、上述したひずみ計測点と同様に、例えば、衝撃応答計算の結果を比較して、種々の位置における水中爆発に対して衝撃応答(加速度応答)が大きく、また水中爆発の発生点による応答の違いが大きい位置を数点〜数十点選択し、装備品の加速度センサー計測点として設定し、この計測点に加速度センサー20を貼付する。   At least three acceleration sensors 20 are installed at the acceleration sensor measurement points (described later) of the equipment, detect the acceleration of vibration of the equipment, and output the acceleration response to the data processing unit 11. The measurement point where the acceleration sensor 20 is installed has a large impact response (acceleration response) with respect to underwater explosions at various positions, for example, by comparing the results of impact response calculation, similar to the strain measurement point described above. Also, several to several tens of positions where the difference in response depending on the point of occurrence of the underwater explosion is selected are set as the acceleration sensor measurement points of the equipment, and the acceleration sensor 20 is attached to the measurement points.

データ処理部11は、各加速度センサー20からの加速度応答をそれぞれ取得して、例えばサンプリング等の処理を施して、それぞれの加速度応答をデジタルデータの信号に変換する(以下、加速度応答に基づくデータを「加速度応答データ」という)。衝撃レベル判定部12は、データ処理部11からの加速度応答データが入力され、データ処理部11から入力された加速度応答データに基づき、当該船舶2の付近での水中爆発の発生を判断する。爆発位置算出部13は、少なくとも3つ以上の加速度センサー20の計測時間の時間差と、衝撃の伝播速度とを用いて、爆発位置を推定する。   The data processing unit 11 acquires acceleration responses from the respective acceleration sensors 20, respectively, performs processing such as sampling, and converts each acceleration response into a digital data signal (hereinafter, data based on the acceleration response is referred to as data). "Acceleration response data"). The impact level determination unit 12 receives the acceleration response data from the data processing unit 11, and determines the occurrence of an underwater explosion near the ship 2 based on the acceleration response data input from the data processing unit 11. The explosion position calculation unit 13 estimates the explosion position using the time difference between the measurement times of at least three acceleration sensors 20 and the propagation velocity of the impact.

本実施の形態2の記憶部14には、実施の形態1で説明した船体構造材の各部におけるひずみ値の衝撃応答データに換えて、爆発位置とショックファクターとをパラメタとして、船舶2の装備品の各部に生じる加速度の値を、水中爆発解析によって計算された衝撃応答データが記憶される。更に、記憶部14には、実施の形態1で説明したひずみ応答に応じた損傷の度合いを示す損傷判定データに換えて、装備品の各部ごとに、加速度応答に応じた損傷の度合いを示す損傷判定データが記憶される。   The storage unit 14 of the second embodiment replaces the impact response data of the strain values in the respective parts of the hull structure material described in the first embodiment with the explosion position and the shock factor as parameters, and the equipment of the ship 2 The impact response data calculated by the underwater explosion analysis is stored as the acceleration value generated in each part. Further, the storage unit 14 replaces the damage determination data indicating the degree of damage according to the strain response described in the first embodiment with the damage indicating the degree of damage according to the acceleration response for each part of the equipment. Determination data is stored.

損傷レベル判定部15は、爆発位置算出部13により推定された爆発位置の情報と、データ処理部11からの加速度応答データとが入力され、記憶部14に記憶された情報に基づき、装備品の各部の損傷の度合いを判定し、判定結果の情報を出力部16に出力する。出力部16は、例えば液晶ディスプレイ、スピーカなどにより構成され、損傷レベル判定部15から入力された判断結果の情報を出力する。   The damage level determination unit 15 receives the explosion position information estimated by the explosion position calculation unit 13 and the acceleration response data from the data processing unit 11, and based on the information stored in the storage unit 14, The degree of damage of each part is determined, and information on the determination result is output to the output unit 16. The output unit 16 includes, for example, a liquid crystal display, a speaker, and the like, and outputs information on the determination result input from the damage level determination unit 15.

このような構成により、本実施の形態2におけるモニタリング装置1は、装備品の各部の内、計測点に生じる加速度を計測し、加速度センサー20が計測した加速度応答に基づき、上述した実施の形態1と同様の動作により、爆発位置を推定し、推定した爆発位置と、計測した加速度応答データと、予め記憶された衝撃応答データとに基づき、船体構造材の各部に生じる加速度の値を推定し、当該装備品の各部の損傷の度合いを判定する。そして、この判定結果の情報を出力部16へ出力する。   With such a configuration, the monitoring device 1 according to the second embodiment measures the acceleration generated at the measurement point in each part of the equipment, and based on the acceleration response measured by the acceleration sensor 20, the first embodiment described above. With the same operation, the explosion position is estimated. Based on the estimated explosion position, the measured acceleration response data, and the impact response data stored in advance, the value of acceleration generated in each part of the hull structural material is estimated. Determine the degree of damage of each part of the equipment. Then, the information of the determination result is output to the output unit 16.

以上のように本実施の形態2においては、船舶2に艤装される装備品が水中爆発による衝撃によって受ける損傷の度合いを、加速度センサー20を用いてモニタすることにより、上述した実施の形態1と同様の効果を得ることができる。   As described above, in the second embodiment, the degree of damage to the equipment equipped on the ship 2 due to the impact caused by the underwater explosion is monitored by using the acceleration sensor 20, and thus the first embodiment and the above-described first embodiment. Similar effects can be obtained.

尚、本実施の形態2においては、装備品の各部を加速度センサー20を用いて、損傷の度合いをモニタする場合を説明したが、本発明はこれに限るものではなく、船舶2の船体構造材に加速度センサー20を貼付し、同様の動作により損傷の度合いをモニタするようにしても良い。   In the second embodiment, the case where the degree of damage is monitored for each part of the equipment using the acceleration sensor 20 has been described. However, the present invention is not limited to this, and the hull structural material of the ship 2 is used. Alternatively, the acceleration sensor 20 may be attached, and the degree of damage may be monitored by a similar operation.

尚、上記実施の形態1では船体構造材の各部をモニタする場合、本実施の形態2では装備品の各部をモニタする場合をそれぞれ説明したが、本発明はこれに限るものでなく、船体構造材及び装備品を同時にモニタする構成としても良い。このとき、爆発の衝撃によって船体構造材及び装備品の各部に生じる物理量を計測するセンサーとして、ひずみゲージ10又は加速度センサー20を任意に選択しても良い。   In the first embodiment, the case where each part of the hull structural material is monitored and the case where each part of the equipment is monitored is described in the second embodiment. However, the present invention is not limited to this. It is good also as composition which monitors material and equipment simultaneously. At this time, the strain gauge 10 or the acceleration sensor 20 may be arbitrarily selected as a sensor for measuring a physical quantity generated in each part of the hull structural material and equipment due to the impact of the explosion.

実施の形態3.
上記実施の形態1及び2では、複数の爆発位置と、各爆発位置における複数のショックファクターとをパラメータとして計算された衝撃応答データを用いたが、本実施の形態3では、複数のショックファクターに換えて、各爆発位置における1つのショックファクター(基準値)を用いて、衝撃の度合いをモニタする。尚、本実施の形態3における構成は上述した実施の形態1と同様である。
Embodiment 3 FIG.
In the first and second embodiments, shock response data calculated using a plurality of explosion positions and a plurality of shock factors at each explosion position as parameters are used. However, in the third embodiment, a plurality of shock factors are used. Instead, the degree of impact is monitored using one shock factor (reference value) at each explosion position. The configuration in the third embodiment is the same as that in the first embodiment.

図10は本発明の実施の形態3に係る衝撃応答データのデータ構造の概念図である。図10に示すように、本実施の形態3における記憶部14には、水中爆発解析による計算において、ショックファクターを基準値(例えば1.0)として計算された結果が衝撃応答データとして予め記憶される。   FIG. 10 is a conceptual diagram of a data structure of impact response data according to the third embodiment of the present invention. As shown in FIG. 10, in the storage unit 14 according to the third embodiment, the result calculated using the shock factor as a reference value (for example, 1.0) in the calculation based on the underwater explosion analysis is stored in advance as shock response data. The

ここで、爆発の衝撃によって船体構造材及び/又は装備品に生じる物理量(ひずみ)と、当該爆発のショックファクターとは比例の関係にある。そこで、本実施の形態3では、基準値での衝撃解析計算結果のみを衝撃応答データとして記憶し、この基準値での衝撃応答データと、計測したひずみ応答とを比較して、各部のひずみ応答を推定する。以下、上記実施の形態1との相違点を中心に動作を説明する。   Here, the physical quantity (strain) generated in the hull structural material and / or equipment due to the impact of the explosion is proportional to the shock factor of the explosion. Therefore, in the third embodiment, only the impact analysis calculation result at the reference value is stored as the impact response data, and the impact response data at the reference value is compared with the measured strain response, so that the strain response of each part. Is estimated. Hereinafter, the operation will be described focusing on the differences from the first embodiment.

上記実施の形態1と同様の動作により(S101〜S105)、損傷レベル判定部15は、推定爆発位置に最も近い爆発位置での計算結果を選択する。そして、ひずみゲージ10が計測したひずみ応答データ(実測値)と、選択した爆発位置における基準値のショックファクターでの計算結果とを照合し、実測値と計算値との関係(比率)を算出し、当該関係に基づいて、計測していない箇所における船体構造材の各部の衝撃応答(ひずみ値)を求めることができる。   By the same operation as that in the first embodiment (S101 to S105), the damage level determination unit 15 selects the calculation result at the explosion position closest to the estimated explosion position. Then, the strain response data (measured value) measured by the strain gauge 10 is collated with the calculation result of the shock factor of the reference value at the selected explosion position, and the relationship (ratio) between the measured value and the calculated value is calculated. Based on the relationship, the impact response (strain value) of each part of the hull structure material at a location where measurement is not performed can be obtained.

以上のように本実施の形態3においては、上述した実施の形態1の効果に加え、基準値のショックファクターでの衝撃応答データを用いることにより、ショックファクターをパラメタとした衝撃応答計算をする必要がなくなり、記憶部14に記憶される衝撃応答データを簡素化することができる。   As described above, in the third embodiment, in addition to the effects of the first embodiment described above, it is necessary to calculate the shock response using the shock factor as a parameter by using the shock response data at the shock factor of the reference value. The shock response data stored in the storage unit 14 can be simplified.

尚、本実施の形態3では、実施の形態1と同様の構成によりひずみ応答を用いて船体構造材をモニタする場合を説明したが、本発明はこれに限るものではなく、上記実施の形態2の構成により、加速度センサー20を用いて装備品をモニタする場合に、ショックファクターが基準値として計算された衝撃応答データを用いて、同様の動作によりモニタを行っても良い。   In the third embodiment, the case where the hull structural material is monitored using the strain response with the same configuration as in the first embodiment has been described. However, the present invention is not limited to this, and the second embodiment described above. With the configuration described above, when monitoring the equipment using the acceleration sensor 20, the monitoring may be performed by the same operation using the shock response data calculated with the shock factor as the reference value.

尚、上記実施の形態1〜3では、船体構造材及び/又は装備品が爆発の衝撃により生じる物理量を計測するセンサーとして、ひずみゲージ10又は加速度センサー20を用いる場合を説明したが、本発明はこれに限るものでなく、例えば、速度センサーなどの他のセンサーを用いても良い。この場合、当該センサーが計測する物理量に応じた衝撃解析を行い、計算結果を衝撃応答データとして記憶部14に記憶させる。   In the first to third embodiments, the case where the strain gauge 10 or the acceleration sensor 20 is used as a sensor for measuring the physical quantity generated by the impact of the explosion of the hull structural material and / or equipment has been described. For example, other sensors such as a speed sensor may be used. In this case, impact analysis is performed according to the physical quantity measured by the sensor, and the calculation result is stored in the storage unit 14 as impact response data.

本発明の実施の形態1に係るモニタリング装置の構成ブロック図である。1 is a configuration block diagram of a monitoring device according to Embodiment 1 of the present invention. Dytranを用いた水中爆発解析方法を説明する図である。It is a figure explaining the underwater explosion analysis method using Dytran. 本発明の実施の形態1に係る爆発相対位置の定義を説明する図である。It is a figure explaining the definition of the explosion relative position which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る衝撃応答データのデータ構造の概念図である。It is a conceptual diagram of the data structure of the impact response data which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る損傷判定データのデータ構造の概念図である。It is a conceptual diagram of the data structure of the damage determination data which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る損傷度判定の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the damage degree determination which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る爆発相対位置の推定方法を説明する図である。It is a figure explaining the estimation method of the explosion relative position which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る衝撃波の到達時間差を示す図である。It is a figure which shows the arrival time difference of the shock wave which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係るモニタリング装置の構成ブロック図である。It is a block diagram of the configuration of a monitoring device according to Embodiment 2 of the present invention. 本発明の実施の形態3に係る衝撃応答データのデータ構造の概念図である。It is a conceptual diagram of the data structure of the impact response data which concerns on Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 モニタリング装置、2 船舶、10 ひずみゲージ、11 データ処理部、12 衝撃レベル判定部、13 爆発位置算出部、14 記憶部、15 損傷レベル判定部、16 出力部、20 加速度センサー。   DESCRIPTION OF SYMBOLS 1 Monitoring apparatus, 2 ship, 10 Strain gauge, 11 Data processing part, 12 Impact level determination part, 13 Explosion position calculation part, 14 Storage part, 15 Damage level determination part, 16 Output part, 20 Acceleration sensor.

Claims (10)

船舶の船体構造材及び/又は装備品の損傷の度合いをモニタするモニタリング方法であって、
爆発の衝撃によって船体構造材及び/又は装備品の各部に生じる物理量が、複数の爆発位置及び各爆発位置における1若しくは複数の爆発威力に応じて求められた衝撃応答情報を取得するステップと、
前記船体構造材及び/又は装備品の各部の内、任意の箇所に生じた物理量を計測するステップと、
計測した前記物理量の情報に基づき、爆発位置を推定するステップと、
推定した前記爆発位置と、計測した前記物理量の情報と、前記衝撃応答情報とに基づき、前記船体構造材及び/又は装備品の各部に生じる物理量を推定し、当該物理量の情報に基づいて前記船体構造材及び/又は装備品の各部の損傷の度合いを判定するステップと、
前記判定結果の情報を出力するステップと
を有することを特徴とするモニタリング方法。
A monitoring method for monitoring the degree of damage to a ship's hull structural material and / or equipment,
A physical quantity generated in each part of the hull structural material and / or equipment due to the impact of the explosion, acquiring the impact response information obtained in accordance with a plurality of explosion positions and one or more explosion forces at each explosion position;
A step of measuring a physical quantity generated at an arbitrary location in each part of the hull structural material and / or equipment;
Estimating the explosion position based on the measured physical quantity information;
Based on the estimated explosion position, the measured physical quantity information, and the impact response information, the physical quantity generated in each part of the hull structural material and / or equipment is estimated, and the hull is based on the physical quantity information. Determining the degree of damage to each part of the structural material and / or equipment;
And a step of outputting information of the determination result.
請求項1記載のモニタリング方法をコンピュータに実行させることを特徴とするプログラム。   A program for causing a computer to execute the monitoring method according to claim 1. 船舶の船体構造材及び/又は装備品の損傷の度合いをモニタするモニタリング装置であって、
爆発の衝撃によって船体構造材及び/又は装備品の各部に生じる物理量が、複数の爆発位置及び各爆発位置における1若しくは複数の爆発威力に応じて求められた衝撃応答情報を予め記憶する記憶部と、
前記船体構造材及び/又は装備品の各部の内、任意の箇所に生じた物理量を計測する計測部と、
前記計測部が計測した物理量に基づき、爆発位置を推定する爆発位置算出部と、
前記爆発位置算出部が推定した推定爆発位置と、前記計測部が計測した任意の箇所の物理量と、前記衝撃応答情報とに基づき、前記船体構造材及び/又は装備品の各部に生じる物理量を推定し、当該物理量の情報に基づいて前記船体構造材及び/又は装備品の各部の損傷の度合いを判定する損傷レベル判定部と
を備えたことを特徴とするモニタリング装置。
A monitoring device for monitoring the degree of damage to a ship's hull structural material and / or equipment,
A storage unit that stores in advance a plurality of explosion positions and impact response information obtained in accordance with one or more explosion powers at each explosion position as physical quantities generated in each part of the hull structural material and / or equipment by the impact of the explosion; ,
A measuring unit for measuring a physical quantity generated in an arbitrary place among the respective parts of the hull structural material and / or equipment;
An explosion position calculation unit that estimates an explosion position based on the physical quantity measured by the measurement unit;
Based on the estimated explosion position estimated by the explosion position calculation unit, the physical quantity at any location measured by the measurement unit, and the impact response information, the physical quantity generated in each part of the hull structural material and / or equipment is estimated. And a damage level determination unit that determines a degree of damage of each part of the hull structural material and / or equipment based on the information on the physical quantity.
前記損傷レベル判定部は、
前記推定爆発位置と、前記計測部が計測した任意の箇所の物理量とに基づき、爆発威力を推定し、
前記複数の爆発位置及び複数の爆発威力に応じた衝撃応答情報の内、推定した爆発威力と、前記推定爆発位置とに対応する前記衝撃応答情報に基づき、前記船体構造材及び/又は装備品の各部に生じる物理量を推定し、
当該物理量の情報に基づいて前記船体構造材及び/又は装備品の各部の損傷の度合いを判定することを特徴とする請求項3記載のモニタリング装置。
The damage level determination unit
Based on the estimated explosion position and the physical quantity of any part measured by the measurement unit, the explosion power is estimated,
Based on the impact response information corresponding to the estimated explosion power and the estimated explosion position among the impact response information corresponding to the plurality of explosion positions and the plurality of explosion powers, the hull structural material and / or the equipment Estimate the physical quantity that occurs in each part,
The monitoring device according to claim 3, wherein a degree of damage of each part of the hull structural material and / or equipment is determined based on the physical quantity information.
前記損傷レベル判定部は、
前記複数の爆発位置及び所定の爆発威力に応じた衝撃応答情報の内、前記推定爆発位置に対応する、前記船体構造材及び/又は装備品の各部に生じる物理量の情報を取得し、
取得した前記物理量の情報と、前記計測部が計測した任意の箇所の物理量とに基づき、前記船体構造材及び/又は装備品の各部に生じる物理量を推定し、
当該物理量の情報に基づいて前記船体構造材及び/又は装備品の各部の損傷の度合いを判定することを特徴とする請求項3記載のモニタリング装置。
The damage level determination unit
Obtaining physical quantity information generated in each part of the hull structural material and / or equipment corresponding to the estimated explosion position among the impact response information corresponding to the plurality of explosion positions and predetermined explosion power,
Based on the acquired physical quantity information and the physical quantity at any location measured by the measurement unit, estimate the physical quantity generated in each part of the hull structural material and / or equipment,
The monitoring device according to claim 3, wherein a degree of damage of each part of the hull structural material and / or equipment is determined based on the physical quantity information.
前記記憶部は、
前記船体構造材及び/又は装備品の各部ごとに、前記物理量に応じた損傷の度合いを示す損傷判定情報が予め記憶され、
前記損傷レベル判定部は、
前記損傷判定情報と、推定した前記物理量の情報とに基づき、前記船体構造材及び/又は装備品の各部の損傷の度合いを判定することを特徴とする請求項3〜5記載のモニタリング装置。
The storage unit
For each part of the hull structural material and / or equipment, damage determination information indicating the degree of damage according to the physical quantity is stored in advance,
The damage level determination unit
6. The monitoring apparatus according to claim 3, wherein a degree of damage of each part of the hull structural material and / or equipment is determined based on the damage determination information and the estimated physical quantity information.
前記計測部は、
前記船体構造材及び/又は装備品の各部の内、少なくとも3箇所以上を計測し、
前記爆発位置算出部は、
各計測部が衝撃による物理量を計測した時間差と、当該衝撃の伝播速度とを用いて、爆発位置を推定することを特徴とする請求項3〜6の何れかに記載のモニタリング装置。
The measuring unit is
Measure at least three of each part of the hull structural material and / or equipment,
The explosion position calculation unit
The monitoring apparatus according to any one of claims 3 to 6, wherein each measurement unit estimates an explosion position using a time difference at which a physical quantity due to an impact is measured and a propagation speed of the impact.
前記計測部が計測した物理量に基づき、衝撃発生の有無を判定する衝撃レベル判定部を更に備え、
前記損傷レベル判定部は、
前記衝撃レベル判定部が衝撃の発生を判定したとき、前記船体構造材及び/又は装備品の各部の損傷の度合いを判定することを特徴とする請求項3〜7の何れかに記載のモニタリング装置。
An impact level determination unit that determines whether or not an impact has occurred based on the physical quantity measured by the measurement unit,
The damage level determination unit
The monitoring device according to claim 3, wherein when the impact level determination unit determines the occurrence of an impact, the degree of damage of each part of the hull structural material and / or equipment is determined. .
前記計測部は、
前記船体構造材及び/又は装備品が爆発の衝撃により生じるひずみを計測するひずみゲージであることを特徴とする請求項3〜8の何れかに記載のモニタリング装置。
The measuring unit is
The monitoring device according to claim 3, wherein the hull structural material and / or equipment is a strain gauge that measures strain generated by an impact of an explosion.
前記計測部は、
前記船体構造材及び/又は装備品が爆発の衝撃により生じる振動の加速度を計測する加速度計であることを特徴とする請求項3〜8の何れかに記載のモニタリング装置。
The measuring unit is
The monitoring apparatus according to claim 3, wherein the hull structural material and / or the equipment is an accelerometer that measures acceleration of vibration generated by an impact of an explosion.
JP2007231199A 2007-09-06 2007-09-06 Monitoring method, and its device and program Withdrawn JP2009061901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007231199A JP2009061901A (en) 2007-09-06 2007-09-06 Monitoring method, and its device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007231199A JP2009061901A (en) 2007-09-06 2007-09-06 Monitoring method, and its device and program

Publications (1)

Publication Number Publication Date
JP2009061901A true JP2009061901A (en) 2009-03-26

Family

ID=40556914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007231199A Withdrawn JP2009061901A (en) 2007-09-06 2007-09-06 Monitoring method, and its device and program

Country Status (1)

Country Link
JP (1) JP2009061901A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025332A (en) * 2009-07-22 2011-02-10 Hitachi-Ge Nuclear Energy Ltd Water jet peening method and device
JP2016166001A (en) * 2012-05-30 2016-09-15 サイトロニク リミテッドCytroniq., Ltd. Control method through actual time monitoring of physical change to marine structure, and fuel reduction safety operation method, maintenance information providing method and control method through performing prediction monitoring or prediction control of external force, hull stress, six-degree-of-freedom of motion and position in gasdynamic or hydrodynamic environment to real time marine structure
KR20160138999A (en) * 2014-03-28 2016-12-06 티쎈크로프 마리네 지스템스 게엠베하 Method for detecting damage to an outer skin of a ship and film assembly for detecting damage to an outer skin of a ship
JP2021031273A (en) * 2019-08-28 2021-03-01 Jfeスチール株式会社 Method for updating girder flange supporting turning rail
CN117818851A (en) * 2024-03-04 2024-04-05 成都锦城学院 Ship monitoring system and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025332A (en) * 2009-07-22 2011-02-10 Hitachi-Ge Nuclear Energy Ltd Water jet peening method and device
JP2016166001A (en) * 2012-05-30 2016-09-15 サイトロニク リミテッドCytroniq., Ltd. Control method through actual time monitoring of physical change to marine structure, and fuel reduction safety operation method, maintenance information providing method and control method through performing prediction monitoring or prediction control of external force, hull stress, six-degree-of-freedom of motion and position in gasdynamic or hydrodynamic environment to real time marine structure
KR20160138999A (en) * 2014-03-28 2016-12-06 티쎈크로프 마리네 지스템스 게엠베하 Method for detecting damage to an outer skin of a ship and film assembly for detecting damage to an outer skin of a ship
KR102012547B1 (en) 2014-03-28 2019-08-20 티쎈크로프 마리네 지스템스 게엠베하 Method for detecting damage to an outer skin of a ship and film assembly for detecting damage to an outer skin of a ship
JP2021031273A (en) * 2019-08-28 2021-03-01 Jfeスチール株式会社 Method for updating girder flange supporting turning rail
JP7364393B2 (en) 2019-08-28 2023-10-18 Jfeスチール株式会社 How to update the girder flange that supports the swing rail
CN117818851A (en) * 2024-03-04 2024-04-05 成都锦城学院 Ship monitoring system and method
CN117818851B (en) * 2024-03-04 2024-05-24 成都锦城学院 Ship monitoring system and method

Similar Documents

Publication Publication Date Title
KR102419702B1 (en) Ship&#39;s hull structural monitoring system integrated with navigation decision support system
EP4239283A3 (en) System and method for providing information on fuel savings, safe operation, and maintenance by real-time predictive monitoring and predictive controlling of aerodynamic and hydrodynamic environmental internal/external forces, hull stresses, motion with
Lavroff et al. Wave slamming loads on wave-piercer catamarans operating at high-speed determined by hydro-elastic segmented model experiments
JP2009061901A (en) Monitoring method, and its device and program
CN111337514B (en) Arm support monitoring method and system, engineering machinery and machine readable storage medium
KR20080012331A (en) A system for ice load monitoring
EP2490003A1 (en) Method and device for calibrating load sensors
KR20210123436A (en) Hull stress monitoring system using digital twin and prediction method for fatigue fracture of ship
Hagesteijn et al. Development of a six-component blade load measurement test setup for propeller-ice impact
KR101726500B1 (en) Apparatus and method for vessel monitoring
KR101874378B1 (en) Method for Safety Assessment Real-Time of Landing Pier-Type Wharf Structure Based Internet of Things and System thereof
EP3431951B1 (en) Abnormality determination device and abnormality determination method
CN111693604B (en) Arm support monitoring method and system and engineering machinery comprising arm support monitoring system
KR20150044546A (en) System and method for Monitoring sloshing of liquid cargo in ship
Magoga et al. Comparison between fatigue life values calculated using standardised and measured stress spectra of a naval high speed light craft
Kahl et al. Whipping investigations based on large-scale measurements and experimental fatigue testing
RU2770255C2 (en) Method and device for determining direction and amplitude of force acting on propulsion compartment of vessel
JP7473169B2 (en) Anchor dragging risk assessment program, anchor dragging risk assessment system, and anchor dragging risk avoidance system
CN111693603B (en) Arm support monitoring method and system and engineering machinery comprising arm support monitoring system
Platonov et al. Development and application of monitoring systems for increasing reliability and safety of vessels and offshore structures
US4739646A (en) Method of testing an offshore structure for mechanical faults
KR20110117000A (en) Method for detecting the movement condition of a vessel with regard to a rolling movement resonance
KR101895129B1 (en) The sailing safety diagnosis system for stormy weather situation
JP2021160427A5 (en)
TWM639877U (en) Metal fatigue detection feedback device and ship using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101207