JP2009061850A - Hybrid vehicle - Google Patents

Hybrid vehicle Download PDF

Info

Publication number
JP2009061850A
JP2009061850A JP2007229994A JP2007229994A JP2009061850A JP 2009061850 A JP2009061850 A JP 2009061850A JP 2007229994 A JP2007229994 A JP 2007229994A JP 2007229994 A JP2007229994 A JP 2007229994A JP 2009061850 A JP2009061850 A JP 2009061850A
Authority
JP
Japan
Prior art keywords
electric motor
electric
amount
electric storage
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007229994A
Other languages
Japanese (ja)
Inventor
Morihito Asano
守人 浅野
Kimihiro Asahata
公宏 麻畠
Koji Suzuki
浩司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2007229994A priority Critical patent/JP2009061850A/en
Publication of JP2009061850A publication Critical patent/JP2009061850A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hybrid vehicle in which storage battery deterioration is not promoted and an electric storage amount does not decrease even when the batteries are repeatedly charged and discharged under high temperature conditions in summer or the like. <P>SOLUTION: The hybrid vehicle comprises an internal combustion engine 1, an electric motor 2 functioning also as a generator, an electric storage means 6 electrically connected to the electric motor, a traveling mode control means 4 for switching the operation of the electric motor according to the electric storage amount of the electric storage means, and uses at least one of the internal combustion engine and the electric motor as power source according to the electric storage amount of the electric storage means. The traveling mode control means activates the electric motor in discharge traveling mode for traveling while mainly supplying power to the electric motor from the electric storage means until the lower limit of electric storage amount, which indicates availability, is detected when the electric storage means is in the state of high electric storage amount, having a high electric storage amount, and after traveling by the discharge traveling mode, activates the electric motor as the generator in charge traveling mode for traveling while mainly supplying power to the electric storage means from the electric motor until the state of the high electric storage amount is detected when the lower limit of electric storage amount is detected and the electric storage means is in the state of low electric storage amount having a low electric storage amount. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関と電動機とを搭載して、少なくともそのいずれか一方を走行のための動力源とするハイブリッド車両に関するものである。   The present invention relates to a hybrid vehicle equipped with an internal combustion engine and an electric motor and using at least one of them as a power source for traveling.

従来、この種のハイブリッド車両は、電動機の電源として充電池を備えており、走行に際して充電池からの放電により電動機を作動させ、例えば減速などにより電動機を回生運転した場合は、電動機が発電した電力により充電池を充電するものである。このようなハイブリッド車両においては、充電池を効率よく充放電させるために、充電量に基づいて充放電の制御を行っている。   Conventionally, this type of hybrid vehicle has been provided with a rechargeable battery as a power source for the electric motor. When the electric motor is operated by discharging from the rechargeable battery during traveling, for example, when the motor is regeneratively operated by deceleration or the like, the electric power generated by the electric motor is generated. To charge the rechargeable battery. In such a hybrid vehicle, in order to charge / discharge the rechargeable battery efficiently, charge / discharge control is performed based on the charge amount.

例えば特許文献1に記載のものでは、充電池の端子電流を検出し、検出した端子電流を積算し、その積算値が所定の範囲における定常値近傍にあるときには充放電を繰り返す定常モードとし、定常値より大きいときには充電を抑制し放電を助長する放電モードとし、定常値より小さいときには放電を抑制し充電を助長する充電モードとして、充電池の充電量を管理するものである。
特開平5−316658号公報
For example, in Patent Document 1, the terminal current of a rechargeable battery is detected, the detected terminal currents are integrated, and when the integrated value is in the vicinity of a steady value in a predetermined range, a steady mode in which charging / discharging is repeated is set. The charging amount of the rechargeable battery is managed as a discharging mode that suppresses charging and promotes discharging when larger than the value, and as a charging mode that suppresses discharging and promotes charging when smaller than the steady value.
JP-A-5-316658

ところが、このような構成のものであると、車両を電動機で走行し、充電池の充電量が減少し、充電モードとなった後、充電量が増加すると放電モードになり、そのまま走行を継続するとこのように充電モードと放電モードを頻繁に繰り返すところとなる。   However, with such a configuration, when the vehicle is driven by an electric motor, the charge amount of the rechargeable battery is reduced and the charging mode is entered, the charging mode is increased and then the discharging mode is entered, and the driving is continued as it is. Thus, the charge mode and the discharge mode are frequently repeated.

充電池の種類によっては、このような充放電を繰り返して行うと劣化を促進してしまうことがある。例えば一般的な鉛蓄電池では、高温の使用環境下で充放電を繰り返すと、劣化が早くなる場合が生じる。このように劣化が進むにしたがって、蓄電池の蓄電量が減少し、さらに進行すると十分な蓄電が困難になる。この結果、電動機を動力源として走行し得る走行距離が短くなる上、最終的にはそのような蓄電池を廃棄して新しいものに交換しなければならず、維持費が増加した。   Depending on the type of rechargeable battery, repeated charging and discharging may promote deterioration. For example, in a general lead storage battery, when charging / discharging is repeated under a high temperature use environment, deterioration may be accelerated. As the deterioration progresses in this way, the amount of electricity stored in the storage battery decreases, and when it further advances, it becomes difficult to sufficiently store electricity. As a result, the travel distance that can be traveled by using the electric motor as a power source is shortened, and finally, such a storage battery must be discarded and replaced with a new one, which increases the maintenance cost.

そこで本発明は、このような不具合を解消することを目的としている。   Therefore, the present invention aims to eliminate such problems.

すなわち、本発明のハイブリッド車両は、内燃機関と、発電機としても機能する電動機と、電動機に電気的に接続される蓄電手段と、蓄電手段の蓄電量に応じて電動機の作動を切り替える走行モード制御手段とを備え、蓄電手段の蓄電量に応じて内燃機関と電動機との少なくとも一方を動力源するハイブリッド車両であって、走行モード制御手段は、蓄電手段が蓄電量の高い高蓄電量状態にある場合に利用可能な下限蓄電量が検出されるまでは主として蓄電手段から電動機に給電して走行する放電走行モードで電動機を作動させ、放電走行モードによる走行の後に下限蓄電量が検出されて蓄電手段が蓄電量の低い低蓄電量状態にある場合には高蓄電量状態が検出されるまで主として電動機から蓄電手段に給電する充電走行モードで電動機を発電機として作動させることを特徴とする。   That is, the hybrid vehicle of the present invention includes an internal combustion engine, an electric motor that also functions as a generator, power storage means that is electrically connected to the motor, and travel mode control that switches the operation of the motor according to the amount of power stored in the power storage means. Means for driving at least one of the internal combustion engine and the electric motor according to the amount of electricity stored in the electricity storage means, wherein the travel mode control means is in a state of high electricity storage where the electricity storage means has a high electricity storage amount. Until the lower limit storage amount that can be used is detected, the electric motor is operated mainly in the discharge travel mode in which the electric power is supplied from the power storage means to the motor, and the lower limit storage amount is detected after traveling in the discharge travel mode. When the battery is in a low storage state with a low storage amount, the motor is started in a charge running mode in which power is supplied mainly from the motor to the storage means until a high storage state is detected. And wherein the actuating as machine.

このような構成であれば、走行モード制御手段が、下限蓄電量が検出されるまで放電走行モードで電動機を作動させるので、蓄電手段を放電させることになり、一方、下限蓄電量が検出されて後は充電走行モードで電動機を発電機として作動させるので、蓄電手段を充電することになる。この結果、蓄電手段の充電と放電とを切り替える回数を低減することが可能になり、よって蓄電手段の経時劣化を抑制することが可能になる。   With such a configuration, since the traveling mode control means operates the electric motor in the discharge traveling mode until the lower limit storage amount is detected, the storage means is discharged, while the lower limit storage amount is detected. After that, since the electric motor is operated as a generator in the charge running mode, the power storage means is charged. As a result, it is possible to reduce the number of times of switching between charging and discharging of the power storage means, and thus it is possible to suppress deterioration over time of the power storage means.

充放電の切り替え頻度を少なくするためには、走行モード制御手段は、充電走行モードにあって、蓄電手段の蓄電状態が所定の距離を走行し得るに十分な蓄電量となるまで充電走行モードで電動機を作動させることが好ましい。また、走行モード制御手段は、充電走行モードにあって、蓄電手段の蓄電状態が所定の距離を走行し得るに十分な蓄電量となった際に放電走行モードで電動機を作動させるものが好適である。   In order to reduce the charge / discharge switching frequency, the travel mode control means is in the charge travel mode and is in the charge travel mode until the power storage state of the power storage means is sufficient to travel a predetermined distance. It is preferable to operate the electric motor. Further, the travel mode control means is preferably in the charge travel mode, and operates the electric motor in the discharge travel mode when the power storage state of the power storage means becomes a sufficient amount of power that can travel a predetermined distance. is there.

本発明は、以上説明したような構成であり、走行モード制御手段が、蓄電手段の蓄電量に応じて放電走行モードと充電走行モードとで電動機を作動させるので、蓄電手段の充電と放電とを切り替える回数を低減することができ、よって蓄電手段の経時劣化を抑制することができる。   The present invention is configured as described above, and the traveling mode control means operates the electric motor in the discharge traveling mode and the charging traveling mode according to the amount of power stored in the power storage means. The number of times of switching can be reduced, and thus deterioration with time of the power storage means can be suppressed.

以下、本発明の第一実施形態を、図面を参照して説明する。   Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.

この実施形態のハイブリッド車両HVは、走行に要する駆動力を発生する内燃機関1及び電動機2と、内燃機関1及び電動機2に駆動される駆動輪3と、走行の際の内燃機関1及び電動機2の運転状態を制御する電子制御装置4と、電動機2と電気的に接続されるインバータ5と、インバータ5に電気的に接続される蓄電手段6とを備えている。内燃機関1は、例えばガソリンエンジンやディーゼルエンジンなどである。   The hybrid vehicle HV of this embodiment includes an internal combustion engine 1 and an electric motor 2 that generate a driving force required for traveling, drive wheels 3 driven by the internal combustion engine 1 and the electric motor 2, and an internal combustion engine 1 and an electric motor 2 when traveling. The electronic control device 4 that controls the operation state of the motor, the inverter 5 that is electrically connected to the electric motor 2, and the power storage means 6 that is electrically connected to the inverter 5 are provided. The internal combustion engine 1 is, for example, a gasoline engine or a diesel engine.

電動機2は、蓄電手段6から供給される電力により、走行に必要な駆動力を発生するとともに、内燃機関1もしくは駆動輪3により駆動されて回生運転により発電機としても機能して、蓄電手段6のバッテリ7を充電するものである。すなわち、電動機2は、蓄電手段6のバッテリ7からの直流をインバータ5により変換された交流により駆動力を発生するもので、一方、例えば駆動輪3により駆動された場合には、交流をインバータ5により直流に変換してバッテリ7を充電するものである。   The electric motor 2 generates a driving force necessary for traveling by the electric power supplied from the electric storage means 6 and is also driven by the internal combustion engine 1 or the driving wheel 3 to function as a generator by a regenerative operation. The battery 7 is charged. That is, the electric motor 2 generates a driving force by an alternating current obtained by converting the direct current from the battery 7 of the power storage means 6 by the inverter 5. On the other hand, when the electric motor 2 is driven by the driving wheel 3, for example, Thus, the battery 7 is charged by converting into direct current.

電子制御装置4は、内燃機関1の運転状態を制御するとともに、走行モードに対応して電動機2の作動状態を制御するものである。すなわち、電子制御装置4は、機関回転数及び負荷に基づいて燃料噴射量を演算するとともに、後述する走行モードを制御プログラムにより走行モードに応じて電動機2を制御するものである。この電子制御装置4には、内燃機関1の機関回転数を検出する回転数センサ、アクセルペダルの操作量に応じて負荷の状態を検出するアクセルセンサ、車速を検出する車速センサ、蓄電手段6のバッテリ7の蓄電量を検出するバッテリセンサ等の各センサが電気的に接続されているとともに、内燃機関1の燃料制御弁及びインバータに少なくとも電気的に接続されている。   The electronic control unit 4 controls the operating state of the internal combustion engine 1 and also controls the operating state of the electric motor 2 corresponding to the travel mode. In other words, the electronic control unit 4 calculates the fuel injection amount based on the engine speed and the load, and controls the electric motor 2 according to the travel mode using a control program for a travel mode described later. The electronic control unit 4 includes a rotation speed sensor that detects the engine speed of the internal combustion engine 1, an accelerator sensor that detects a load state according to an operation amount of an accelerator pedal, a vehicle speed sensor that detects a vehicle speed, and a power storage means 6. Each sensor such as a battery sensor for detecting the storage amount of the battery 7 is electrically connected, and at least electrically connected to the fuel control valve and the inverter of the internal combustion engine 1.

電子制御装置4に格納される走行モード制御プログラムは、蓄電手段6が蓄電量の高い高蓄電量状態にある場合に利用可能な下限蓄電量が検出されるまでは主として蓄電手段6から電動機2に給電して走行する放電走行モードで電動機2を作動させ、放電走行モードによる走行の後に下限蓄電量が検出されて蓄電手段6が蓄電量の低い低蓄電量状態にある場合には高蓄電量状態が検出されるまで主として電動機2から蓄電手段6に給電する充電走行モードで電動機2を発電機として作動させるように制御する構成である。したがって、電子制御装置4が走行モード制御手段を構成するものである。   The travel mode control program stored in the electronic control unit 4 mainly transfers power from the power storage unit 6 to the motor 2 until a lower limit storage amount that can be used when the power storage unit 6 is in a high power storage amount state where the power storage amount is high. When the electric motor 2 is operated in the discharge travel mode in which power is supplied to travel, and the lower limit power storage amount is detected after travel in the discharge travel mode, and the power storage means 6 is in the low power storage state where the power storage amount is low, the high power storage state In such a configuration, the electric motor 2 is controlled to operate as a generator in the charging travel mode in which power is supplied from the electric motor 2 to the power storage means 6 until the electric power is detected. Therefore, the electronic control unit 4 constitutes a travel mode control means.

高蓄電量状態とは、下限蓄電量を超える蓄電量がある状態であり、必ずしも満充電状態を意味するものではない。この場合に、電動機2に給電することを継続し満充電状態から下限蓄電量になるまでに、車両が所定距離例えば一般的な車両が一日に走行する走行距離に基づいて設定される距離を少なくとも走行できるように、下限蓄電量を設定しておくものである。これに加えて、下限蓄電量は、バッテリ7に不具合が発生しない最小限の蓄電量に合わすことが好ましい。このような下限蓄電量の設定により、満充電状態からの使用における走行距離を十分に確保することができる。   The high power storage amount state is a state where there is a power storage amount exceeding the lower limit power storage amount, and does not necessarily mean a fully charged state. In this case, the electric power is continuously supplied to the electric motor 2 and the distance set based on a predetermined distance, for example, the distance traveled by a general vehicle in one day, from the fully charged state to the lower limit storage amount. The lower limit storage amount is set so that the vehicle can travel at least. In addition to this, it is preferable that the lower limit charged amount matches the minimum charged amount that does not cause a problem in the battery 7. By setting the lower limit storage amount as described above, it is possible to secure a sufficient traveling distance in use from the fully charged state.

これに対して低蓄電量状態とは、放電走行モードによる走行を継続して、バッテリ7の蓄電量が下限蓄電量以下に一旦なった後のバッテリ7の状態を指すもので、実質的な蓄電量は下限値蓄電量以下あるいは下限蓄電量を上回る量のいずれであってもよい。   On the other hand, the low storage amount state refers to the state of the battery 7 after the traveling in the discharge travel mode is continued and the storage amount of the battery 7 once becomes below the lower limit storage amount. The amount may be any of an amount less than or equal to the lower limit storage amount or an amount exceeding the lower limit storage amount.

蓄電手段6は、例えば100Vの交流を整流する充電回路8を備えてなり、家庭のコンセントなどの電灯線から100Vの交流の供給を受けることによりバッテリ7を充電し得るようになっている。蓄電手段6は、バッテリ7に対する充電電流を計測し、蓄電量が最大になる満充電状態において充電を停止する構成である。バッテリ7としては、鉛蓄電池が好適である。そして、バッテリ7の充電電流と放電電流とはそれぞれ計測されて、それぞれの積算電流値に基づいて、電子制御装置4において蓄電量を演算するように構成してある。   The power storage means 6 includes a charging circuit 8 that rectifies 100V alternating current, for example, and can charge the battery 7 by receiving supply of 100V alternating current from a power line such as a household outlet. The power storage means 6 is configured to measure the charging current for the battery 7 and stop charging in a fully charged state where the amount of power storage is maximized. As the battery 7, a lead storage battery is suitable. Then, the charging current and the discharging current of the battery 7 are measured, respectively, and the electric storage amount is calculated in the electronic control unit 4 based on the respective integrated current values.

このような構成において、車両を走行させると、蓄電手段6のバッテリ7の充電状態に応じて、以下に説明するように、電子制御装置4は走行モードを制御するものである。走行モードを制御するに際して、電子制御装置4は、バッテリ7の充電電流と放電電流とを計測し、計測した充電電流と放電電流とのそれぞれを積算して得る積算値と満充電状態の蓄電量(以下、満蓄電量と称する)とに基づいて、バッテリ7のその時点の残存の充電量である蓄電量を演算するものである。   In such a configuration, when the vehicle travels, the electronic control unit 4 controls the travel mode as described below according to the state of charge of the battery 7 of the power storage means 6. When controlling the running mode, the electronic control unit 4 measures the charging current and discharging current of the battery 7 and integrates the measured charging current and discharging current, respectively, and the accumulated amount of charge in the fully charged state. (Hereinafter, referred to as the fully charged amount), the charged amount that is the remaining charged amount of the battery 7 at that time is calculated.

走行を開始すると、蓄電手段6のバッテリ7の蓄電状態を判断するもので、蓄電量が高蓄電量状態から下限蓄電量以下になったか否かを判定する(ステップS1)。バッテリの蓄電量が下限蓄電量以下でないと判定した場合は、電子制御装置4はインバータ5を作動させて蓄電手段6から電動機2に給電する(ステップS2)。これにより、ハイブリッド車両HVは、バッテリ7が放電を継続する放電走行モードとなり、バッテリ7からの電力により電動機2を作動させて走行する。なお、この放電走行モードにより走行している間に、下り坂の走行や交差点近傍における走行などにより減速しても、電動機2を回生運転させない。つまり、放電走行モードにあっては、バッテリ7は放電するのみで、その間にバッテリ7を充電することはない。   When traveling is started, the storage state of the battery 7 of the storage means 6 is determined, and it is determined whether or not the storage amount has fallen below the lower storage amount from the high storage state (step S1). If it is determined that the amount of electricity stored in the battery is not less than or equal to the lower limit amount of electricity, the electronic control unit 4 operates the inverter 5 to supply power from the electricity storage means 6 to the electric motor 2 (step S2). Accordingly, the hybrid vehicle HV enters a discharge travel mode in which the battery 7 continues to be discharged, and travels by operating the electric motor 2 with the electric power from the battery 7. Note that the motor 2 is not regeneratively operated even if the vehicle is decelerated by traveling on a downhill or in the vicinity of an intersection while traveling in the discharge traveling mode. That is, in the discharge travel mode, the battery 7 is only discharged, and the battery 7 is not charged during that time.

このようにしてバッテリ7から電動機2に給電するのみで走行することを継続し、ステップS1において、バッテリ7の蓄電量が下限蓄電量以下になったと判定すると、電子制御装置4がインバータ5を制御して電動機2への給電を停止して、充電走行モードにする(ステップS3)。したがって、走行に要する駆動力は内燃機関1により駆動輪3に供給される。この後、ブレーキの操作あるいは車両の走行速度の変化に基づいて減速状態であるか否かを判定し(ステップS4)、減速中は電動機2を回生運転して蓄電手段6のバッテリ7を充電する(ステップS5)。このように、高蓄電量状態から下限蓄電量以下となった後は、蓄電手段6から電動機2への給電はせず、かつ車両が減速中において電動機2を発電機として作動させてバッテリ7の充電を実施するものである。なお、バッテリ7の蓄電量が一旦下限蓄電量以下になったとの判定は、走行が継続している間、言い換えればバッテリ7が高充電状態になるまで記憶しておく。   In this way, the vehicle 7 continues to travel only by supplying power to the electric motor 2, and when it is determined in step S <b> 1 that the charged amount of the battery 7 has become equal to or less than the lower limit charged amount, the electronic control unit 4 controls the inverter 5. Then, the power supply to the electric motor 2 is stopped and the charging travel mode is set (step S3). Accordingly, the driving force required for traveling is supplied to the drive wheels 3 by the internal combustion engine 1. Thereafter, it is determined whether or not the vehicle is in a decelerating state based on a brake operation or a change in the traveling speed of the vehicle (step S4). During the deceleration, the electric motor 2 is regenerated and the battery 7 of the power storage means 6 is charged. (Step S5). As described above, after the state of high power storage amount falls below the lower limit power storage amount, power is not supplied from the power storage means 6 to the electric motor 2, and the electric motor 2 is operated as a generator while the vehicle is decelerating. Charging is performed. The determination that the stored amount of the battery 7 has once decreased below the lower limit stored amount is stored while the traveling is continued, in other words, until the battery 7 is in a high charge state.

この第一実施形態においては、図3に示すように、例えば使用しない日や夜間などにおいてガレージで駐車している間に充電回路8を介してバッテリ7を充電し、バッテリ7が満蓄電量である満充電状態から走行を開始し、加速して適切な走行速度(車速)にて走行を継続している間は、放電走行モードを実施する。この間、バッテリ7の蓄電量は放電により減少する。そして蓄電量が下限蓄電量以下になった時点で充電走行モードに切り替わり、車両が減速を開始した時点でバッテリ7を充電するものである。さらに、この充電走行モードにあっては、車両が走行を継続している間は、電動機2による走行、つまりバッテリ7が放電する走行は行わない。したがって、減速状態以外の走行状態にあっては、バッテリ7の蓄電量は変化せず、充電走行モードでの充電による蓄電量を維持するものである。   In the first embodiment, as shown in FIG. 3, for example, the battery 7 is charged via the charging circuit 8 while the garage is parked on a non-use day or night, and the battery 7 is fully charged. While the vehicle starts traveling from a certain fully charged state and accelerates and continues traveling at an appropriate traveling speed (vehicle speed), the discharge traveling mode is performed. During this time, the amount of power stored in the battery 7 decreases due to discharge. Then, when the storage amount becomes equal to or lower than the lower limit storage amount, the mode is switched to the charging travel mode, and the battery 7 is charged when the vehicle starts to decelerate. Further, in this charging travel mode, while the vehicle continues traveling, traveling by the electric motor 2, that is, traveling in which the battery 7 is discharged is not performed. Therefore, in a traveling state other than the deceleration state, the amount of electricity stored in the battery 7 does not change, and the amount of electricity stored by charging in the charge traveling mode is maintained.

このような充電走行モードにあって、一回もしくは複数回の回生運転により蓄電手段6を構成するバッテリ7の充電状態が所定の距離を走行し得るに十分な充電量となるまで、充電走行モードで電動機2を作動させる、つまり回生運転により電動機2を発電機として作動させるものである。そして、回生運転による充電の結果、バッテリ7が所定の距離を走行し得るに十分な充電量となった場合は、放電走行モードに切り替えて、バッテリ7からの給電により電動機2を作動させるものである。   In such a charge travel mode, the charge travel mode is maintained until the charge state of the battery 7 constituting the power storage means 6 is sufficient to travel a predetermined distance by one or a plurality of regenerative operations. Thus, the electric motor 2 is operated, that is, the electric motor 2 is operated as a generator by regenerative operation. Then, as a result of charging by regenerative operation, when the battery 7 has a sufficient amount of charge that can travel a predetermined distance, the motor 2 is operated by supplying power from the battery 7 by switching to the discharge travel mode. is there.

このように、満充電状態から下限蓄電量になるまでバッテリ7を放電させるのみで、その間は充電することがなく、また下限蓄電量に一旦なった後はバッテリ7を充電するが電動機に給電してバッテリ7を放電させることはないので、バッテリ7の充放電を切り替える回数を極力少なくすることができる。したがって、蓄電手段6のバッテリ7の経時劣化を抑制することができる。これに伴い、電動機2を利用して走行できる距離が減少することも抑制することができ、放電走行モードの間は、ほぼ燃料を消費することなく走行することができる。   As described above, the battery 7 is only discharged from the fully charged state until the lower limit charged amount is reached, and is not charged during that time. After the lower limit charged amount is reached, the battery 7 is charged but the motor is supplied with power. Thus, the battery 7 is not discharged, so that the number of times of switching between charging and discharging of the battery 7 can be minimized. Therefore, deterioration with time of the battery 7 of the power storage means 6 can be suppressed. Accordingly, it is possible to suppress a decrease in the distance that can be traveled using the electric motor 2, and it is possible to travel without consuming fuel during the discharge travel mode.

また、充電手段6が、家庭の電灯線からの電力を用いてバッテリ7を充電することができるので、例えばガレージに駐車中にバッテリ7を充電し、ハイブリッド車両HVの使用開始までに常時高充電状態に維持することができる。   Moreover, since the charging means 6 can charge the battery 7 using the electric power from a household electric power line, for example, the battery 7 is charged while parked in a garage, and is constantly charged until the hybrid vehicle HV starts to be used. Can be maintained in a state.

次に本発明の第二実施形態を説明する。この第二実施形態にあっても、ハイブリッド車両HVの機械的な構成は、上述の第一実施形態のものと同じであり、図1に示すものである。   Next, a second embodiment of the present invention will be described. Even in the second embodiment, the mechanical configuration of the hybrid vehicle HV is the same as that of the first embodiment described above, and is shown in FIG.

この第二実施形態にあっては、図4及び図5に示すように、高蓄電量状態において、バッテリ7に蓄えられた電力を使うばかりではなく、車両が減速走行をする場合にはバッテリ7を充電する構成である。したがって、この第二実施形態にあっては、走行モードを制御するに際して、電子制御装置4は、バッテリ7の充電電流と放電電流とを計測し、計測した充電電流と放電電流とをそれぞれ積算して得るそれぞれの積算値と満充電状態の満蓄電量とに基づいて、バッテリ7のその時点の残存の蓄電量である蓄電量を演算するものである。   In the second embodiment, as shown in FIGS. 4 and 5, not only the electric power stored in the battery 7 is used in the high power storage state but also the battery 7 when the vehicle travels at a reduced speed. It is the structure which charges. Therefore, in this second embodiment, when controlling the running mode, the electronic control unit 4 measures the charging current and discharging current of the battery 7 and integrates the measured charging current and discharging current, respectively. On the basis of the respective integrated values obtained and the fully charged amount in the fully charged state, the charged amount that is the remaining charged amount of battery 7 at that time is calculated.

すなわち、走行を開始すると、ステップS101において、蓄電手段6のバッテリ7の蓄電量が、高蓄電量状態から下限蓄電量以下に変化したか否かを判定する。バッテリ7の蓄電量が下限蓄電量以下でないと判定した場合は、ステップS102において、下り坂の走行や交差点近傍における走行で車両が減速走行中か否かをその車速などにより判定する。   That is, when traveling is started, in step S101, it is determined whether or not the storage amount of the battery 7 of the storage means 6 has changed from the high storage state to the lower limit storage amount. If it is determined that the charged amount of the battery 7 is not less than or equal to the lower limit charged amount, it is determined in step S102 based on the vehicle speed or the like whether or not the vehicle is traveling at a reduced slope or traveling near the intersection.

そして判定の結果、減速走行中でない場合は、ステップS103において、蓄電手段6のバッテリ7からインバータ5を介して電動機2に対して給電するものである。これにより、ハイブリッド車両HVは、バッテリ7が放電を継続する放電走行モードとなり、バッテリ7からの電力により電動機2を作動させて走行する。これに対して、減速走行であると判定した場合は、ステップS104において、電動機2を回生運転させる。すなわち、電動機2に駆動輪3からの駆動力を加え、電動機2をその駆動力により回転させて発電する。そして発電した電力は、インバータ5を介して蓄電手段6に供給されて、その間、バッテリ7が充電されるものである
このようにしてバッテリ7から電動機2に給電して走行することを継続し、ステップS101において、バッテリ7の蓄電量が下限蓄電量以下になったと判定すると、ステップS105において、電子制御装置4がインバータ5を制御して電動機2への給電を停止して、充電走行モードにする。したがって、走行に要する駆動力は内燃機関1により駆動輪3に供給される。この後、ステップS106では、ブレーキの操作あるいは車両の走行速度の変化に基づいて減速状態であるか否かを判定し、減速走行中と判定した場合は、ステップS106において電動機2を回生運転して蓄電手段6のバッテリ7を充電する。このように、バッテリ7の蓄電量が高蓄電量状態から下限蓄電量以下となった後は、蓄電手段6から電動機2への給電はせず、かつ車両が減速中において電動機2を発電機として作動させてバッテリ7の充電を実施するものである。なお、バッテリ7の蓄電量が下限蓄電量以下になったとの判定は、走行が継続している間、言い換えればバッテリ7が高充電状態になるまで記憶しておく。
As a result of the determination, if the vehicle is not decelerating, power is supplied from the battery 7 of the power storage means 6 to the electric motor 2 via the inverter 5 in step S103. Accordingly, the hybrid vehicle HV enters a discharge travel mode in which the battery 7 continues to be discharged, and travels by operating the electric motor 2 with the electric power from the battery 7. On the other hand, if it is determined that the vehicle is traveling at a reduced speed, the electric motor 2 is regenerated in step S104. That is, the driving force from the driving wheel 3 is applied to the electric motor 2, and the electric motor 2 is rotated by the driving force to generate electric power. Then, the generated electric power is supplied to the power storage means 6 via the inverter 5, and the battery 7 is charged during that time. In this way, the battery 7 continues to run while feeding the electric motor 2, If it is determined in step S101 that the charged amount of the battery 7 has become equal to or less than the lower limit charged amount, in step S105, the electronic control unit 4 controls the inverter 5 to stop the power supply to the electric motor 2 and enter the charging travel mode. . Accordingly, the driving force required for traveling is supplied to the drive wheels 3 by the internal combustion engine 1. Thereafter, in step S106, it is determined whether or not the vehicle is decelerating based on a brake operation or a change in the traveling speed of the vehicle. If it is determined that the vehicle is decelerating, the motor 2 is regeneratively operated in step S106. The battery 7 of the power storage means 6 is charged. As described above, after the amount of power stored in the battery 7 becomes less than or equal to the lower limit stored amount from the high power storage state, power is not supplied from the power storage means 6 to the motor 2 and the motor 2 is used as a generator while the vehicle is decelerating. The battery 7 is operated to be charged. Note that the determination that the stored amount of the battery 7 has become equal to or less than the lower limit stored amount is stored while the traveling is continued, in other words, until the battery 7 is in a high charge state.

この第二実施形態においては、図5に示すように、例えば使用しない日や夜間などにおいてガレージで駐車している間に充電回路8を介してバッテリ7を充電し、バッテリ7が満充電状態から走行を開始し、加速して適切な走行速度(車速)にて走行を継続している間は、主として放電走行モードを実施し、車両が減速走行となった際には電動機2の回生運転を実施する。したがって、基本的に放電走行モードによりバッテリ7の蓄電量は放電により減少するが、長い下り坂の走行のように、部分的に電動機2の回生運転を実施することにより、バッテリ7を充電するものである。   In the second embodiment, as shown in FIG. 5, for example, the battery 7 is charged via the charging circuit 8 while parked in a garage on a non-use day or night, and the battery 7 is not fully charged. While the vehicle is starting to travel and accelerating and continuing to travel at an appropriate travel speed (vehicle speed), the discharge travel mode is mainly implemented. When the vehicle is decelerated, the regenerative operation of the electric motor 2 is performed. carry out. Therefore, the amount of electricity stored in the battery 7 is basically reduced by discharging in the discharge traveling mode, but the battery 7 is charged by partially performing the regenerative operation of the electric motor 2 like traveling on a long downhill. It is.

そして蓄電量が下限蓄電量以下になった時点で充電走行モードに切り替わり、車両が減速を開始した時点でバッテリ7を充電するものである。さらに、この充電走行モードにあっては、車両が走行を継続している間は、減速状態以外の走行状態において、電動機2による走行、つまりバッテリ7が放電する走行は行わない。したがって、減速状態以外の走行状態にあっては、バッテリ7の蓄電量は変化せず、充電走行モードでの充電による蓄電量を維持するものである。   Then, when the storage amount becomes equal to or lower than the lower limit storage amount, the mode is switched to the charging travel mode, and the battery 7 is charged when the vehicle starts to decelerate. Further, in this charging travel mode, while the vehicle continues traveling, traveling by the electric motor 2, that is, traveling in which the battery 7 is discharged, is not performed in a traveling state other than the deceleration state. Therefore, in a traveling state other than the deceleration state, the amount of electricity stored in the battery 7 does not change, and the amount of electricity stored by charging in the charge traveling mode is maintained.

このような第二実施形態にあっても、充電走行モードにあって、一回もしくは複数回の回生運転により蓄電手段6を構成するバッテリ7の充電状態が所定の距離を走行し得るに十分な充電量となるまで、充電走行モードで電動機2を作動させる、つまり回生運転により電動機2を発電機として作動させるものである。そして、回生運転による充電の結果、バッテリ7が所定の距離を走行し得るに十分な充電量となった場合は、放電走行モードに切り替えて、バッテリ7からの給電により電動機2を作動させるものである。   Even in such a second embodiment, in the charge travel mode, the state of charge of the battery 7 constituting the power storage means 6 is sufficient to travel a predetermined distance in one or more regenerative operations. The electric motor 2 is operated in the charge travel mode until the amount of charge is reached, that is, the electric motor 2 is operated as a generator by regenerative operation. Then, as a result of charging by regenerative operation, when the battery 7 has a sufficient amount of charge that can travel a predetermined distance, the motor 2 is operated by supplying power from the battery 7 by switching to the discharge travel mode. is there.

したがって、満充電状態から下限蓄電量になるまで主としてバッテリ7を放電させるようにして走行し、また下限蓄電量に一旦なった後はバッテリ7を充電するが電動機2に給電してバッテリ7を放電させることはないので、その間のバッテリ7の充放電を切り替える回数を極力少なくすることができる。したがって、蓄電手段6のバッテリ7の経時劣化を抑制することができる。加えて、放電走行モードの間に減速走行をした場合に、バッテリ7を充電するので、放電走行モードにおける走行距離を増加することができる。これに伴い、電動機2を利用して走行できる距離が減少することも抑制することができ、放電走行モードの間は、ほぼ燃料を消費することなく走行することができる。   Therefore, the vehicle travels mainly by discharging the battery 7 from the fully charged state until the lower limit charged amount is reached. After the lower limit charged amount is reached, the battery 7 is charged, but the electric motor 2 is fed to discharge the battery 7. Therefore, the number of times of switching between charging and discharging of the battery 7 during that period can be reduced as much as possible. Therefore, deterioration with time of the battery 7 of the power storage means 6 can be suppressed. In addition, since the battery 7 is charged when the vehicle travels at a reduced speed during the discharge travel mode, the travel distance in the discharge travel mode can be increased. Accordingly, it is possible to suppress a decrease in the distance that can be traveled using the electric motor 2, and it is possible to travel without consuming fuel during the discharge travel mode.

また、充電手段6が、家庭の電灯線からの電力を用いてバッテリ7を充電することができるので、例えばガレージに駐車中にバッテリ7を充電し、車両の使用開始までに常時高充電状態に維持することができる。   Moreover, since the charging means 6 can charge the battery 7 using the electric power from a household power line, for example, the battery 7 is charged while parked in a garage, and the battery 7 is always in a high charge state by the start of use of the vehicle. Can be maintained.

なお、上記それぞれの実施形態において、放電走行モードの間は電動機2のみによる走行を説明したが、要求されるトルクに応じて、内燃機関1の駆動力を電動機2の駆動力に足し合わせるものであってもよい。   In each of the above embodiments, the traveling by only the electric motor 2 has been described during the discharge traveling mode. However, the driving force of the internal combustion engine 1 is added to the driving force of the electric motor 2 according to the required torque. There may be.

また、充電走行モードにおいて、上記実施形態においては、減速走行における駆動輪3からの駆動力により電動機2を回生運転させてバッテリ7を充電するものを説明したが、内燃機関1の駆動力の一部により電動機2を回生運転させ(発電機として作動させ)、バッテリ7を充電するものであってもよい。この場合、減速走行以外の走行状態においてもバッテリ7を充電させることができ、短時間の内に蓄電量を回復させることができる。   Further, in the charging travel mode, in the above-described embodiment, the description has been given of the case where the electric motor 2 is regeneratively operated by the driving force from the driving wheels 3 in the deceleration traveling and the battery 7 is charged. The electric motor 2 may be regeneratively operated by the unit (actuate as a generator) and the battery 7 may be charged. In this case, the battery 7 can be charged even in a traveling state other than the decelerating traveling, and the charged amount can be recovered within a short time.

その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each part is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明の第一及び第二実施形態の概略構成を示すブロック図。The block diagram which shows schematic structure of 1st and 2nd embodiment of this invention. 同第一実施形態の制御手順の概略を示すフローチャート。The flowchart which shows the outline of the control procedure of the first embodiment. 同第一実施形態の作用説明図。Action | operation explanatory drawing of the 1st embodiment. 同第二実施形態の制御手順の概略を示すフローチャート。The flowchart which shows the outline of the control procedure of the second embodiment. 同第二実施形態の作用説明図。Action | operation explanatory drawing of the 2nd embodiment.

符号の説明Explanation of symbols

1…内燃機関
2…電動機
4…電子制御装置
6…蓄電手段
7…バッテリ
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Electric motor 4 ... Electronic control device 6 ... Power storage means 7 ... Battery

Claims (3)

内燃機関と、発電機としても機能する電動機と、電動機に電気的に接続される蓄電手段と、蓄電手段の蓄電量に応じて電動機の作動を切り替える走行モード制御手段とを備え、蓄電手段の蓄電量に応じて内燃機関と電動機との少なくとも一方を動力源とするハイブリッド車両であって、
走行モード制御手段は、蓄電手段が蓄電量の高い高蓄電量状態にある場合に利用可能な下限蓄電量が検出されるまでは主として蓄電手段から電動機に給電して走行する放電走行モードで電動機を作動させ、放電走行モードによる走行の後に下限蓄電量が検出されて蓄電手段が蓄電量の低い低蓄電量状態にある場合には高蓄電量状態が検出されるまで主として電動機から蓄電手段に給電する充電走行モードで電動機を発電機として作動させるハイブリッド車両。
An internal combustion engine; an electric motor that also functions as a generator; an electric storage means that is electrically connected to the electric motor; and a travel mode control means that switches an operation of the electric motor in accordance with an electric storage amount of the electric storage means. A hybrid vehicle having at least one of an internal combustion engine and an electric motor as a power source according to the quantity,
The traveling mode control means mainly operates the electric motor in a discharge traveling mode in which the electric power is supplied from the electric storage means to the electric motor until an available lower limit electric storage amount is detected when the electric storage means is in a high electric storage amount state where the electric storage amount is high. When the lower limit storage amount is detected after running in the discharge travel mode and the storage means is in a low storage state where the storage amount is low, power is supplied mainly from the motor to the storage means until a high storage state is detected. A hybrid vehicle that operates an electric motor as a generator in charging mode.
走行モード制御手段は、充電走行モードにあって、蓄電手段の蓄電状態が所定の距離を走行し得るに十分な蓄電量となるまで充電走行モードで電動機を作動させる請求項1記載のハイブリッド車両。   The hybrid vehicle according to claim 1, wherein the travel mode control means operates in the charge travel mode until the travel mode control means is in the charge travel mode and the power storage state of the power storage means becomes a sufficient amount of power that can travel a predetermined distance. 走行モード制御手段は、充電走行モードにあって、蓄電手段の蓄電状態が所定の距離を走行し得るに十分な蓄電量となった際に放電走行モードで電動機を作動させる請求項1記載のハイブリッド車両。   2. The hybrid according to claim 1, wherein the travel mode control means operates in the discharge travel mode when the power storage state of the power storage means is sufficient to travel a predetermined distance when the travel mode control means is in the charge travel mode. vehicle.
JP2007229994A 2007-09-05 2007-09-05 Hybrid vehicle Pending JP2009061850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007229994A JP2009061850A (en) 2007-09-05 2007-09-05 Hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007229994A JP2009061850A (en) 2007-09-05 2007-09-05 Hybrid vehicle

Publications (1)

Publication Number Publication Date
JP2009061850A true JP2009061850A (en) 2009-03-26

Family

ID=40556873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007229994A Pending JP2009061850A (en) 2007-09-05 2007-09-05 Hybrid vehicle

Country Status (1)

Country Link
JP (1) JP2009061850A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001095104A (en) * 1999-09-22 2001-04-06 Honda Motor Co Ltd Controller for hybrid vehicle
JP2002078105A (en) * 2000-08-25 2002-03-15 Toyota Motor Corp Power output system and vehicle having it
JP2002186111A (en) * 2000-10-27 2002-06-28 Ford Motor Co Method of controlling energy of hybrid electric vehicle
JP2005143173A (en) * 2003-11-05 2005-06-02 Nissan Motor Co Ltd Hybrid vehicle
JP2007125913A (en) 2005-11-01 2007-05-24 Toyota Motor Corp Hybrid control unit for hybrid car

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001095104A (en) * 1999-09-22 2001-04-06 Honda Motor Co Ltd Controller for hybrid vehicle
JP2002078105A (en) * 2000-08-25 2002-03-15 Toyota Motor Corp Power output system and vehicle having it
JP2002186111A (en) * 2000-10-27 2002-06-28 Ford Motor Co Method of controlling energy of hybrid electric vehicle
JP2005143173A (en) * 2003-11-05 2005-06-02 Nissan Motor Co Ltd Hybrid vehicle
JP2007125913A (en) 2005-11-01 2007-05-24 Toyota Motor Corp Hybrid control unit for hybrid car

Similar Documents

Publication Publication Date Title
JP5829652B2 (en) Vehicle power supply
US8467924B2 (en) Control apparatus and control method for hybrid vehicle
CN103448564B (en) The control method of vehicle power supply device and control device
US9114726B2 (en) Vehicle and method for controlling vehicle
US8570000B2 (en) Vehicle power-generation control apparatus
JP5941019B2 (en) Vehicle power supply
US8589009B2 (en) Method for controlling the state of charge of an electrical energy store
US20150019097A1 (en) Control system for vehicle
JP2015009791A (en) Vehicle power supply device
JP5691919B2 (en) Vehicle power control device
CN102883933A (en) Hybrid-vehicle control device and hybrid vehicle provided therewith
KR101926896B1 (en) Controlling method and apparatus for charging low-voltage battery
JP2007510567A (en) Method for controlling state of charge of energy storage in vehicle with hybrid drive
CN105050854A (en) Power source controller
JP5146487B2 (en) Power supply
CN103827467A (en) Vehicle and method for controlling vehicle
JP6268145B2 (en) Regenerative system and regenerative system control method
US9682695B2 (en) Vehicle control apparatus and vehicle control method
JP6131533B2 (en) Vehicle power supply control method and apparatus
JP5915390B2 (en) Vehicle power supply control method and apparatus
JP2013049381A (en) Control device of hybrid vehicle
JP4192658B2 (en) Vehicle control apparatus and control method
JP5885236B2 (en) Vehicle power supply
JP2011168226A (en) Control device for series hybrid vehicle
JP7021570B2 (en) Vehicle power control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120924

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121005