JP2009058910A - Adjusting device for optical modulator driver and adjusting method thereof - Google Patents

Adjusting device for optical modulator driver and adjusting method thereof Download PDF

Info

Publication number
JP2009058910A
JP2009058910A JP2007228252A JP2007228252A JP2009058910A JP 2009058910 A JP2009058910 A JP 2009058910A JP 2007228252 A JP2007228252 A JP 2007228252A JP 2007228252 A JP2007228252 A JP 2007228252A JP 2009058910 A JP2009058910 A JP 2009058910A
Authority
JP
Japan
Prior art keywords
optical
driver
waveform
optical modulator
modulation waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007228252A
Other languages
Japanese (ja)
Other versions
JP4884338B2 (en
Inventor
Kazushige Yonenaga
一茂 米永
Kazunobu Suzuki
和宣 鈴木
Katsuya Tanaka
克也 田中
Kiyotaka Kikuchi
清隆 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Electronics Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Electronics Corp
Priority to JP2007228252A priority Critical patent/JP4884338B2/en
Publication of JP2009058910A publication Critical patent/JP2009058910A/en
Application granted granted Critical
Publication of JP4884338B2 publication Critical patent/JP4884338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adjusting device for optical duobinary modulation type optical modulator driver and an adjusting method of the optical duobinary modulation type optical modulator driver capable of performing the adjustment of cross-points of output amplitude and driving waveform of a driver circuit of an optical duobinary modulation type optical modulator on the basis of an optical modulation waveform observed while operating an ABC circuit. <P>SOLUTION: The adjusting device for optical duobinary modulation type optical modulator driver is configured as follow: modulated light output from the optical modulator 103 is transduced to an electric signal by an optical/electric transducer (O/E) 108 and is input to a sampling scope 109; an ABC circuit is operated, at the same time, a pseudo random signal is produced by a driving signal producing circuit 104 to drive the optical modulator and an optical modulation waveform is observed by a sampling scope 109; a driver control circuit 101 performs the adjustment of the cross-points of the driver circuit 105 so that the distortion of the optical modulation waveform observed by the sampling scope may be reduced; and, further, the driver control circuit 101 performs the adjustment of the output amplitude of the driver circuit 105 so that modulated light power may become the largest. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光デュオバイナリ送信機における光変調器用ドライバ調整装置及び調整方法に関し、より詳細には、光送信機を組上げた状態で光変調器ドライバ回路の調整が可能な光変調器用ドライバ調整装置及び調整方法に関する。   The present invention relates to an optical modulator driver adjustment apparatus and adjustment method in an optical duobinary transmitter, and more specifically, an optical modulator driver adjustment apparatus capable of adjusting an optical modulator driver circuit in a state where the optical transmitter is assembled. And an adjustment method.

光通信において用いる光送信機では、光に信号を乗せるために光に対して変調を行う。光変調には、半導体レーザの出力を変調する直接変調と、半導体レーザから出力された光を光源以外の手段で変調する外部変調とがある。外部変調で使用される変調器は一般に光変調器と呼ばれ、これら光変調器では、駆動信号に応じて物理的変化を起こし、光の強度、位相などの変調を行う。   An optical transmitter used in optical communication modulates light in order to place a signal on the light. The light modulation includes direct modulation for modulating the output of the semiconductor laser and external modulation for modulating light output from the semiconductor laser by means other than the light source. Modulators used in external modulation are generally called optical modulators, and these optical modulators cause physical changes in accordance with drive signals and modulate light intensity, phase, and the like.

マッハ・ツェンダ(MZ)型光変調器は、光強度変調(NRZ,RZなど)、位相制御型光強度変調(光デュオバイナリ、CS−RZなど)、光位相変調(DPSK,DQPSKなど)などに幅広く利用されている。MZ型光変調器は2つの光導波路を伝搬する光の干渉を利用しているため両導波路を伝搬する光の位相を精度よく制御する必要がある。特に、広く利用されているニオブ酸リチウム(LN)基板を用いたMZ型光変調器では、最適なバイアス電圧が時間的にドリフトするため自動バイアス制御(ABC)回路によって光変調器に印加するバイアス電圧の調整を行う。   Mach-Zehnder (MZ) type optical modulators are used for optical intensity modulation (NRZ, RZ, etc.), phase control type optical intensity modulation (optical duobinary, CS-RZ, etc.), optical phase modulation (DPSK, DQPSK, etc.), etc. Widely used. Since the MZ type optical modulator uses interference of light propagating through two optical waveguides, it is necessary to accurately control the phase of light propagating through both waveguides. In particular, in an MZ type optical modulator using a widely used lithium niobate (LN) substrate, since an optimum bias voltage drifts in time, a bias applied to the optical modulator by an automatic bias control (ABC) circuit. Adjust the voltage.

さらに、光送信機の光伝送特性を最適化するためには、光変調器ドライバ回路の出力振幅、駆動波形のクロスポイントの最適化を行う必要がある。   Furthermore, in order to optimize the optical transmission characteristics of the optical transmitter, it is necessary to optimize the output amplitude of the optical modulator driver circuit and the cross point of the drive waveform.

光変調器ドライバ回路の出力振幅及び駆動波形のクロスポイントの調整は、NRZ変調方式の場合には従来から可能であった。図4(a)、(b)に、NRZ変調方式型光変調器のドライバ出力波形、光変調器の動作曲線、及び光変調波形を示す。図に示したようにNRZ変調方式では、光変調器のドライバ出力波形と光変調波形とが共に2値波形で1対1に対応しているため、光変調波形とドライバ出力波形が相似形になる。そのため、NRZ変調方式では、光変調波形を観測しながらドライバの振幅及びクロスポイントの調整を行うことができる。図4(a)に示すように、ドライバ出力波形と光変調波形のクロスポイントずれの方向は同じであり、クロスポイントが50%から大きくずれない条件では変調曲線がほぼ直線近似できるため、光変調波形から電気波形のクロスポイントを見積もることが可能である。同様に、図4(b)に示すように、ドライバ出力波形のクロスポイントが最適化されれば、光変調波形のクロスポイントも最適化される。   The adjustment of the output amplitude of the optical modulator driver circuit and the cross point of the drive waveform has been possible in the case of the NRZ modulation method. 4A and 4B show the driver output waveform of the NRZ modulation type optical modulator, the operation curve of the optical modulator, and the optical modulation waveform. As shown in the figure, in the NRZ modulation method, since the driver output waveform and the optical modulation waveform of the optical modulator are both binary waveforms and correspond one-to-one, the optical modulation waveform and the driver output waveform are similar. Become. Therefore, in the NRZ modulation method, the driver amplitude and crosspoint can be adjusted while observing the optical modulation waveform. As shown in FIG. 4A, the driver output waveform and the optical modulation waveform have the same cross point deviation direction, and the modulation curve can be approximated almost linearly under the condition that the cross point does not deviate greatly from 50%. It is possible to estimate the cross point of the electric waveform from the waveform. Similarly, as shown in FIG. 4B, if the cross point of the driver output waveform is optimized, the cross point of the optical modulation waveform is also optimized.

しかしながら、光デュオバイナリ変調方式の光送信機の場合には、光変調器を2Vπの振幅で駆動する必要があるため、特に光変調器のドライバのクロスポイントを、光変調波形を観測しながら調整することは困難であるという課題があった。図5(a)、(b)に、光デュオバイナリ変調型光変調器のドライバ出力波形、3値電気波形、光変調器の動作曲線及び光変調波形を示す。光デュオバイナリ変調の場合は、2値波形であるドライバ出力をローパスフィルタ(LPF)で3値電気波形に変換した後に光変調器に印加する。そのため、バイアス自動電圧制御回路(ABC回路)が動作している条件においては、光変調波形は3値電気波形が光変調器の消光電圧に対して折り返された2値波形となるため、ドライバ出力波形と光変調波形は相似形にならない。図5(a)に示すように、光変調器の駆動振幅は最適なものの2値の電気信号のクロスポイントが50%からずれている場合には、光変調出力の消光比が劣化する形での波形歪を生ずる。また、波形のジッタ成分の劣化も観測される。そのため、光変調波形からドライバ出力波形の歪みを読み取るのは難しい。一方、図5(b)のようにドライバのクロスポイントが50%に設定されている場合には良好な光変調波形が得られている。   However, in the case of an optical duobinary modulation type optical transmitter, it is necessary to drive the optical modulator with an amplitude of 2Vπ, and thus the cross point of the driver of the optical modulator is particularly adjusted while observing the optical modulation waveform. There was a problem that it was difficult to do. FIGS. 5A and 5B show a driver output waveform, a ternary electric waveform, an operation curve of the optical modulator, and an optical modulation waveform of the optical duobinary modulation optical modulator. In the case of optical duobinary modulation, a driver output having a binary waveform is converted into a ternary electric waveform by a low-pass filter (LPF) and then applied to the optical modulator. Therefore, under the condition that the automatic bias voltage control circuit (ABC circuit) is operating, the optical modulation waveform is a binary waveform obtained by folding the ternary electrical waveform with respect to the extinction voltage of the optical modulator. Waveforms and light modulation waveforms are not similar. As shown in FIG. 5A, when the drive amplitude of the optical modulator is optimum, but the cross point of the binary electric signal is deviated from 50%, the extinction ratio of the optical modulation output deteriorates. This produces the waveform distortion. In addition, deterioration of the jitter component of the waveform is also observed. For this reason, it is difficult to read the distortion of the driver output waveform from the optical modulation waveform. On the other hand, when the driver cross point is set to 50% as shown in FIG. 5B, a good light modulation waveform is obtained.

また、光変調器に入れる前のドライバ出力波形をドライバ回路から直接観測して調整を行うことも可能であるが、調整に手間が掛かるという課題があった。通常の光デュオバイナリ送信機においてはドライバとLPFが直結されていることが多く、ドライバ出力を直接観測することは困難であった。また、ドライバ波形を分離して観測することが可能な場合においてもドライバとLPFとの接続を取り外してクロスポイントの調整を行い、続いて元に戻すという手順は煩雑であった。この場合、LPFの挿入損失や使用する光変調器のVπのばらつきを考慮すると、電気的な測定のみではドライバの振幅の最適値を決定することは困難であった。   Further, although it is possible to perform adjustment by directly observing the driver output waveform before entering the optical modulator from the driver circuit, there is a problem in that adjustment takes time. In ordinary optical duobinary transmitters, the driver and the LPF are often directly connected, and it is difficult to directly observe the driver output. Even when the driver waveform can be separated and observed, the procedure of removing the connection between the driver and the LPF, adjusting the cross point, and then restoring it is complicated. In this case, considering the LPF insertion loss and the variation in Vπ of the optical modulator to be used, it is difficult to determine the optimum value of the driver amplitude only by electrical measurement.

本発明は、このような課題に鑑みてなされたもので、その目的とするところは、光デュオバイナリ変調型光変調器のドライバ回路の出力振幅及び駆動波形のクロスポイントの調整を、ABC回路を動作させながら観測した光変調波形に基づいて実施することができる光デュオバイナリ変調型光変調器ドライバ調整装置及び調整方法を提供することにある。   The present invention has been made in view of such a problem, and an object of the present invention is to adjust the output amplitude of the driver circuit of the optical duobinary modulation type optical modulator and the cross point of the driving waveform by using the ABC circuit. An object of the present invention is to provide an optical duobinary modulation type optical modulator driver adjustment apparatus and adjustment method that can be implemented based on an optical modulation waveform observed while operating.

このような目的を達成するために、請求項1に記載の発明は、光デュオバイナリ送信機の光変調器を駆動するドライバ回路を調整するための光変調器ドライバ調整装置であって、前記光変調器で変調された変調光の光変調波形情報を取得する波形情報取得装置と、前記光変調波形情報に基づいて前記ドライバ回路を調整するドライバ制御回路とを備え、前記前記ドライバ回路は、クロスポイントを前記光変調波形の消光比が最大になる値に調整し、及び前記ドライバ回路の出力振幅を前記変調光パワーが最大になる値に調整することを特徴とする。   In order to achieve such an object, the invention described in claim 1 is an optical modulator driver adjustment device for adjusting a driver circuit for driving an optical modulator of an optical duobinary transmitter, wherein the optical modulator driver adjustment device A waveform information acquisition device that acquires optical modulation waveform information of modulated light modulated by a modulator; and a driver control circuit that adjusts the driver circuit based on the optical modulation waveform information. The point is adjusted to a value that maximizes the extinction ratio of the light modulation waveform, and the output amplitude of the driver circuit is adjusted to a value that maximizes the modulated light power.

請求項2に記載の発明は、請求項1に記載の光変調器ドライバ調整装置において、前記波形情報取得装置が、アイマスクを用いることによって前記光変調波形の歪の有無を検出することを特徴とする。   According to a second aspect of the present invention, in the optical modulator driver adjustment device according to the first aspect, the waveform information acquisition device detects the presence or absence of distortion of the optical modulation waveform by using an eye mask. And

請求項3に記載の発明は、請求項1に記載の光変調器ドライバ調整装置において、前記波形情報取得装置が、前記光変調波形の振幅方向のヒストグラムを取ることにより前記光変調波形の歪を検出することを特徴とする。   According to a third aspect of the present invention, in the optical modulator driver adjusting device according to the first aspect, the waveform information acquiring device takes distortion of the optical modulation waveform by taking a histogram in the amplitude direction of the optical modulation waveform. It is characterized by detecting.

請求項4に記載の発明は、請求項1に記載の光変調器ドライバ調整装置において、前記波形情報取得装置が、前記光変調波形の時間軸方向のヒストグラムを取ることにより前記光変調波形のジッタを検出することを特徴とする。   According to a fourth aspect of the present invention, in the optical modulator driver adjusting device according to the first aspect, the waveform information acquisition device takes a histogram of the optical modulation waveform in the time axis direction to obtain jitter of the optical modulation waveform. Is detected.

請求項5に記載の発明は、光デュオバイナリ変調方式の光変調器を駆動するドライバ回路を調整するための光変調器ドライバ調整方法であって、前記光変調器で変調された変調光の光変調波形を観測するステップと、観測された前記光変調波形に基づいて前記ドライバ回路のクロスポイントを前記光変調波形の波形歪が最小になる値に調整するステップと観測された前記光変調波形に基づいて前記ドライバ回路を、前記ドライバ回路の出力振幅を前記変調光パワーが最大になる値に調整するステップとを有することを特徴とする。   According to a fifth aspect of the present invention, there is provided an optical modulator driver adjustment method for adjusting a driver circuit that drives an optical modulator of an optical duobinary modulation method, wherein the modulated light modulated by the optical modulator A step of observing a modulation waveform, a step of adjusting a cross point of the driver circuit to a value at which waveform distortion of the light modulation waveform is minimized based on the observed light modulation waveform, and the observed light modulation waveform And the step of adjusting the output amplitude of the driver circuit to a value at which the modulated optical power is maximized.

本発明によれば、光デュオバイナリ送信機における光変調器のドライバ回路の出力振幅及び駆動波形のクロスポイントの調整が、光送信機を組上げた状態において光変調波形を観測することで可能になる。   According to the present invention, it is possible to adjust the output amplitude of the driver circuit of the optical modulator and the cross point of the driving waveform in the optical duobinary transmitter by observing the optical modulation waveform in a state where the optical transmitter is assembled. .

以下、図面を参照しながら本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に、本発明の一実施形態に係る光デュオバイナリ変調型光変調器ドライバの調整装置の構成を示す。半導体レーザ(LD)102から出力された光は、マッハ・ツェンダ型光変調器103に入力し、LPF106およびABC回路107から印加されるバイアス電圧によって駆動される光変調器103から変調光として出力される。LPF106の出力は、ドライバ回路105から出力される2値波形の出力を3値波形の出力に変換したものである。ドライバ回路105は、駆動信号発生回路104から出力される駆動信号に基づいて動作する。ABC回路107は、矩形波的に変化する電気信号が重畳されたDCバイアス電圧を光変調器103に印加し、光変調器103から出力された光信号に含まれる低周波成分を検出し、光変調器103に印加されるDCバイアス電圧を最適値に制御するように動作する。   FIG. 1 shows a configuration of an adjustment apparatus for an optical duobinary modulation type optical modulator driver according to an embodiment of the present invention. The light output from the semiconductor laser (LD) 102 is input to the Mach-Zehnder optical modulator 103 and output as modulated light from the optical modulator 103 driven by the bias voltage applied from the LPF 106 and the ABC circuit 107. The The output of the LPF 106 is obtained by converting the output of the binary waveform output from the driver circuit 105 into the output of the ternary waveform. The driver circuit 105 operates based on the drive signal output from the drive signal generation circuit 104. The ABC circuit 107 applies a DC bias voltage on which an electrical signal that changes in a rectangular wave is superimposed to the optical modulator 103, detects a low-frequency component contained in the optical signal output from the optical modulator 103, and It operates so as to control the DC bias voltage applied to the modulator 103 to an optimum value.

光変調器103から出力された変調光を光/電気変換器(O/E)108で電気信号に変換し、サンプリングスコープ109に入力する。ABC回路を動作させながら、駆動信号発生回路104で擬似ランダム信号を生成させて光変調器を駆動し、サンプリングスコープ109で光変調波形を観測する。サンプリングスコープ109は、観測された光変調波形情報をドライバ制御回路101に送信する。ドライバ制御回路101は、受信した波形情報を後述する基準で解析し、その解析結果に基づいてドライバ回路105の振幅調整端子105a及びクロスポイント調整端子105bに印加する制御電圧を変化させドライバの動作パラメータの調整を行う。   The modulated light output from the optical modulator 103 is converted into an electrical signal by an optical / electrical converter (O / E) 108 and input to the sampling scope 109. While operating the ABC circuit, the drive signal generation circuit 104 generates a pseudo random signal to drive the optical modulator, and the sampling scope 109 observes the optical modulation waveform. The sampling scope 109 transmits the observed light modulation waveform information to the driver control circuit 101. The driver control circuit 101 analyzes the received waveform information according to a reference to be described later, and changes the control voltage applied to the amplitude adjustment terminal 105a and the crosspoint adjustment terminal 105b of the driver circuit 105 based on the analysis result, thereby operating parameters of the driver. Make adjustments.

図2(a)、(b)に、ドライバ出力におけるクロスポイントのずれとそれに対応する光変調波形を示す。光デュオバイナリ変調の場合、ドライバ出力波形のクロスポイントのずれは、間接的に光変調波形の消光比劣化として観測される。ABC回路が動作している場合には、3値化された電気信号の”1”および”−1”レベルの電位は、変調器の光透過率の最大値にほぼ制御されている。図2(a)に示すようにドライバ出力波形のクロスポイントがずれると、3値化された電気信号の”0”レベルの電圧値が光変調器の消光電位からずれる。従って”0”レベルに相当する光変調波形のレベルが増加し、結果として光変調された”1”レベルと”0”レベルの比で規定される消光比が劣化する。ドライバ出力波形のクロスポイントのずれが大きいとき、光変調後のシンボルが”0”→”1”もしくは”1”→”0”への遷移に対応するトレースのジッタが増加する。そこで、ドライバ制御回路101は、サンプリングスコープで観測された光変調波形の消光比が大きくなるように、ドライバ回路105のクロスポイントの調整を行う。   FIGS. 2A and 2B show cross point shifts in the driver output and the corresponding light modulation waveforms. In the case of optical duobinary modulation, the shift of the cross point of the driver output waveform is indirectly observed as the extinction ratio deterioration of the optical modulation waveform. When the ABC circuit is in operation, the potentials at the “1” and “−1” levels of the ternarized electric signal are substantially controlled to the maximum value of the light transmittance of the modulator. As shown in FIG. 2A, when the cross point of the driver output waveform is deviated, the voltage value of the “0” level of the ternary electric signal is shifted from the extinction potential of the optical modulator. Accordingly, the level of the light modulation waveform corresponding to the “0” level increases, and as a result, the extinction ratio defined by the ratio between the light modulated “1” level and the “0” level deteriorates. When the deviation of the cross point of the driver output waveform is large, the jitter of the trace corresponding to the transition from “0” → “1” or “1” → “0” of the symbol after optical modulation increases. Therefore, the driver control circuit 101 adjusts the cross point of the driver circuit 105 so that the extinction ratio of the light modulation waveform observed by the sampling scope is increased.

ドライバ制御回路101は、ドライバ回路105のクロスポイント調整端子105bに印加する電圧を変化することにより、クロスポイントの位置を変化させながらサンプリングスコープで観測される消光比をモニタし、消光比を最大化するクロスポイントの検出を行う。クロスポイントを一方向に変化させるとき、消光比は、クロスポイントが最適値に近づくにしたがって大きくなり、クロスポイントが最適値をとるとき最大化される。さらにクロスポイントを同一方向に変化させると、クロスポイントが最適値からずれ、消光比は再び小さくなる。そのため、消光比の極大値に対応するクロスポイントが最適なクロスポイントとなる。ドライバ制御回路101は、ドライバ回路105のクロスポイントを消光比が最大となるクロスポイントに調整する。光変調波形の形状変化の評価は、例えば、サンプリングスコープで取得したアイ波形においてアイの開くタイミングにおける振幅方向のヒストグラムを取ることによって行う。   The driver control circuit 101 monitors the extinction ratio observed by the sampling scope while changing the position of the crosspoint by changing the voltage applied to the crosspoint adjustment terminal 105b of the driver circuit 105, and maximizes the extinction ratio. Detect cross points to be performed. When the cross point is changed in one direction, the extinction ratio increases as the cross point approaches the optimum value, and is maximized when the cross point takes the optimum value. Further, when the cross point is changed in the same direction, the cross point is deviated from the optimum value, and the extinction ratio becomes small again. Therefore, the cross point corresponding to the maximum value of the extinction ratio is the optimal cross point. The driver control circuit 101 adjusts the cross point of the driver circuit 105 to a cross point that maximizes the extinction ratio. The shape change of the light modulation waveform is evaluated by, for example, taking a histogram in the amplitude direction at the eye opening timing in the eye waveform acquired by the sampling scope.

図2に示したように、変調器ドライバのクロスポイントがずれている場合は変調光の”0”レベルがダブルトレース化するのに対し、クロスポイントがほぼ50%に制御されている場合にはシングルトレースとなる。これを用いると、光変調波形の”0”レベルの振幅方向の幅を評価パラメータとし、これを最小化するように変調器ドライバ105のクロスポイント調整端子105bへの印加電圧を最適化するという方法も可能である。   As shown in FIG. 2, when the cross point of the modulator driver is deviated, the “0” level of the modulated light is double-traced, whereas when the cross point is controlled to approximately 50%. Single trace. When this is used, the width in the amplitude direction of the “0” level of the optical modulation waveform is used as an evaluation parameter, and the applied voltage to the crosspoint adjustment terminal 105b of the modulator driver 105 is optimized so as to minimize it. Is also possible.

また、変調器ドライバのクロスポイントがずれた場合に、光変調波形の”0”→”1”、”1”→”0”への遷移のジッタが増加することから、光変調波形をサンプリングスコープで評価し、時間軸方向のジッタを最小化するように、変調器ドライバ105のクロスポイント制御電圧を制御しても良い。   In addition, when the cross point of the modulator driver is shifted, the jitter of the transition from “0” to “1” or “1” to “0” of the optical modulation waveform increases. The crosspoint control voltage of the modulator driver 105 may be controlled so as to minimize the jitter in the time axis direction.

図3(a)〜(c)に、3値化された光変調器の駆動電圧の振幅の大きさと光変調波形の歪みの対応を示す。光変調器の変調特性が2Vπ周期で変化しているため、駆動電圧の振幅が2Vπより小さいとき、図3(a)に示すように、振幅が最適化されている図3(b)に比べ変調光パワーが低く観測される。ドライバ出力の振幅が2Vπより大きいとき、3値化出力の”1”および”−1”レベルで光変調波形が折り返るため、図3(c)に示すように波形劣化として観測され、信号が2値の間を行き来する際一時的に最大振幅になるが、”1”連続部分の振幅は低下する。結果として、変調光の平均パワーが最適振幅条件から低下する。そこで、ドライバ制御回路101は、ドライバ回路105の振幅調整端子105aに印加する電圧を変化することにより、変調光パワーが最大になるように、ドライバ回路105の出力振幅の調整を行う。   FIGS. 3A to 3C show the correspondence between the amplitude of the drive voltage of the ternary optical modulator and the distortion of the optical modulation waveform. Since the modulation characteristic of the optical modulator changes at a cycle of 2Vπ, when the amplitude of the drive voltage is smaller than 2Vπ, as shown in FIG. 3A, the amplitude is optimized as compared with FIG. The modulated light power is observed to be low. When the amplitude of the driver output is larger than 2Vπ, the optical modulation waveform is folded back at the “1” and “−1” levels of the ternary output, so that waveform degradation is observed as shown in FIG. When going back and forth between the two values, the maximum amplitude is temporarily reached, but the amplitude of the “1” continuous portion decreases. As a result, the average power of the modulated light is reduced from the optimum amplitude condition. Therefore, the driver control circuit 101 adjusts the output amplitude of the driver circuit 105 so that the modulated light power is maximized by changing the voltage applied to the amplitude adjustment terminal 105a of the driver circuit 105.

また、ドライバ制御回路101は、出力振幅を変化させながら変調光パワーの変化をモニタし、変調光パワーのピークの検出を行う。出力振幅を一方向に変化させるとき、変調光パワーは、出力振幅が最適値に近づくにしたがって大きくなり、出力振幅が最適値をとるとき最大化される。さらに出力振幅を同一方向に変化させると、出力振幅が最適値からずれ、変調光パワーは再び小さくなる。そのため、変調光パワーの極大値に対応する出力振幅が最適な出力振幅となる。ドライバ制御回路101は、ドライバ回路105の出力振幅を変調光パワーが最大となる出力振幅に調整する。   Further, the driver control circuit 101 monitors the change of the modulated light power while changing the output amplitude, and detects the peak of the modulated light power. When the output amplitude is changed in one direction, the modulated light power increases as the output amplitude approaches the optimum value, and is maximized when the output amplitude takes the optimum value. Further, when the output amplitude is changed in the same direction, the output amplitude deviates from the optimum value, and the modulated light power decreases again. For this reason, the output amplitude corresponding to the maximum value of the modulated light power is the optimum output amplitude. The driver control circuit 101 adjusts the output amplitude of the driver circuit 105 to an output amplitude that maximizes the modulated light power.

変調器ドライバ105の振幅およびクロスポイントの調整値が所望の範囲内にあるかどうかを確認するために、サンプリングスコープで取得した波形が、あらかじめ設定したアイマスクからはみ出していないかどうかにより判断する方法もある。アイマスクの設定パラメータには、アイの振幅方向の分布の幅、許容ジッタ量、消光比などの要求条件が含まれるようにしておく。変調器ドライバの振幅およびクロスポイントのパラメータを調整しながらアイマスクとの合致を調べることによって、ドライバの動作の最適化を図ることができる。   Method for determining whether or not the waveform acquired by the sampling scope protrudes from a preset eye mask in order to check whether the amplitude and crosspoint adjustment values of the modulator driver 105 are within a desired range There is also. The eye mask setting parameters include required conditions such as the distribution width of the eye in the amplitude direction, the allowable jitter amount, and the extinction ratio. By examining the match with the eye mask while adjusting the amplitude and crosspoint parameters of the modulator driver, the operation of the driver can be optimized.

本発明の一実施形態に係る光デュオバイナリ変調型光変調器ドライバの調整装置の構成図である。It is a block diagram of the adjustment apparatus of the optical duobinary modulation type | mold optical modulator driver which concerns on one Embodiment of this invention. (a)は、ドライバ出力におけるクロスポイントのずれ、三値電気波形の歪み、及び光変調波形の歪みの対応を示す図であり、(b)は、最適化されたドライバ出力波形、三値電気波形の歪み、及びそれらに対応する光変調波形を示す図である。(A) is a figure which shows the response | compatibility of the shift | offset | difference of the cross point in a driver output, distortion of a ternary electric waveform, and distortion of an optical modulation waveform, (b) is the optimized driver output waveform, ternary electricity It is a figure which shows the distortion of a waveform, and the optical modulation waveform corresponding to them. (a)は、3値化された変調器駆動電圧の振幅が2Vπよりも小さいときの光変調波形を示す図であり、(b)は、振幅が2Vπのときの光変調波形を示す図であり、(c)は、振幅が2Vπよりも大きいときの光変調波形を示す図である。(A) is a figure which shows an optical modulation waveform when the amplitude of the ternary modulator drive voltage is smaller than 2Vπ, and (b) is a figure which shows an optical modulation waveform when the amplitude is 2Vπ. (C) is a figure which shows an optical modulation waveform when an amplitude is larger than 2V (pi). (a)は、クロスポイントがすれているときのNRZ変調方式のドライバ出力波形と光変調特性、光変調波形を示す図であり、(b)は、クロスポイントが最適化されているときのNRZ変調方式のドライバ出力波形と光変調特性、光変調波形を示す図である。(A) is a figure which shows the driver output waveform of the NRZ modulation system when the cross point is passing, the optical modulation characteristic, and the optical modulation waveform, and (b) is the NRZ when the cross point is optimized. It is a figure which shows the driver output waveform of a modulation system, an optical modulation characteristic, and an optical modulation waveform. (a)は、クロスポイントがずれているときの光デュオバイナリ変調方式におけるドライバ出力波形、3値電気波形、光変調特性及び光変調波形を示す図であり、(b)は、クロスポイントが最適化されているときの光デュオバイナリ変調方式におけるドライバ出力波形、3値電気波形及び光変調波形を示す図である。(A) is a figure which shows the driver output waveform in the optical duobinary modulation system when the cross point has shifted | deviated, a ternary electric waveform, an optical modulation characteristic, and an optical modulation waveform, (b) is an optimal cross point. It is a figure which shows the driver output waveform, the ternary electric waveform, and the optical modulation waveform in the optical duobinary modulation system when it is made into.

符号の説明Explanation of symbols

101 ドライバ制御回路
102 半導体レーザ(LD)
103 マッハ・ツェンダ型光変調器
104 駆動信号発生回路
105 ドライバ回路
105a 振幅調整端子
105b クロスポイント調整端子
106 ローパスフィルタ(LPF)
107 自動バイアス制御(ABC)回路
108 光/電気変換器(O/E)
109 サンプリングスコープ
101 Driver Control Circuit 102 Semiconductor Laser (LD)
103 Mach-Zehnder optical modulator 104 Drive signal generation circuit 105 Driver circuit 105a Amplitude adjustment terminal 105b Crosspoint adjustment terminal 106 Low-pass filter (LPF)
107 Automatic Bias Control (ABC) Circuit 108 Optical / Electric Converter (O / E)
109 Sampling scope

Claims (5)

光デュオバイナリ送信機の光変調器を駆動するドライバ回路を調整するための光変調器ドライバ調整装置であって、
前記光変調器で変調された変調光の光変調波形情報を取得する波形情報取得装置と、
前記光変調波形情報に基づいて前記ドライバ回路を調整するドライバ制御回路と
を備え、
前記前記ドライバ回路は、クロスポイントを前記光変調波形の消光比が最大になる値に調整し、及び前記ドライバ回路の出力振幅を前記変調光パワーが最大になる値に調整することを特徴とする光変調器ドライバ調整装置。
An optical modulator driver adjusting device for adjusting a driver circuit for driving an optical modulator of an optical duobinary transmitter,
A waveform information acquisition device for acquiring optical modulation waveform information of modulated light modulated by the optical modulator;
A driver control circuit for adjusting the driver circuit based on the light modulation waveform information,
The driver circuit adjusts the cross point to a value that maximizes the extinction ratio of the light modulation waveform, and adjusts the output amplitude of the driver circuit to a value that maximizes the modulated light power. Optical modulator driver adjustment device.
前記波形情報取得装置は、アイマスクを用いることによって前記光変調波形の歪の有無を検出することを特徴とする請求項1に記載の光変調器ドライバ調整装置。   2. The optical modulator driver adjustment device according to claim 1, wherein the waveform information acquisition device detects the presence or absence of distortion of the optical modulation waveform by using an eye mask. 前記波形情報生成装置は、前記光変調波形の振幅方向のヒストグラムを取ることにより前記光変調波形の歪を検出することを特徴とする請求項1に記載の光変調器ドライバ調整装置。   2. The optical modulator driver adjustment device according to claim 1, wherein the waveform information generation device detects distortion of the optical modulation waveform by taking a histogram in an amplitude direction of the optical modulation waveform. 3. 前記波形情報生成装置は、前記光変調波形の時間軸方向のヒストグラムを取ることにより前記光変調波形のジッタを検出することを特徴とする請求項1に記載の光変調器ドライバ調整装置。   2. The optical modulator driver adjustment device according to claim 1, wherein the waveform information generation device detects jitter of the optical modulation waveform by taking a histogram of the optical modulation waveform in a time axis direction. 光デュオバイナリ変調方式の光変調器を駆動するドライバ回路を調整するための光変調器ドライバ調整方法であって、
前記光変調器で変調された変調光の光変調波形を観測するステップと、
観測された前記光変調波形に基づいて前記ドライバ回路のクロスポイントを前記光変調波形の波形歪が最小になる値に調整するステップと
観測された前記光変調波形に基づいて前記ドライバ回路を、前記ドライバ回路の出力振幅を前記変調光パワーが最大になる値に調整するステップと
を有することを特徴とする光変調器ドライバ調整方法。
An optical modulator driver adjustment method for adjusting a driver circuit for driving an optical modulator of an optical duobinary modulation method,
Observing an optical modulation waveform of modulated light modulated by the optical modulator;
Adjusting the cross point of the driver circuit based on the observed light modulation waveform to a value that minimizes the waveform distortion of the light modulation waveform; and the driver circuit based on the observed light modulation waveform, Adjusting the output amplitude of the driver circuit to a value at which the modulated optical power is maximized.
JP2007228252A 2007-09-03 2007-09-03 Optical modulator driver adjustment device and adjustment method Active JP4884338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007228252A JP4884338B2 (en) 2007-09-03 2007-09-03 Optical modulator driver adjustment device and adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007228252A JP4884338B2 (en) 2007-09-03 2007-09-03 Optical modulator driver adjustment device and adjustment method

Publications (2)

Publication Number Publication Date
JP2009058910A true JP2009058910A (en) 2009-03-19
JP4884338B2 JP4884338B2 (en) 2012-02-29

Family

ID=40554665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007228252A Active JP4884338B2 (en) 2007-09-03 2007-09-03 Optical modulator driver adjustment device and adjustment method

Country Status (1)

Country Link
JP (1) JP4884338B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243767A (en) * 2009-04-06 2010-10-28 Fujitsu Ltd Driving method and driving apparatus for optical modulator, and optical transmitter using the same
WO2012063413A1 (en) * 2010-11-10 2012-05-18 日本電気株式会社 Optical phase modulation circuit and method of optical phase modulation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162563A (en) * 1998-11-25 2000-06-16 Fujitsu Ltd Optical modulating device and control method for optical modulator
JP2002077059A (en) * 2000-08-30 2002-03-15 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter
JP2004117729A (en) * 2002-09-25 2004-04-15 Toshiba Corp Optical modulator controlling device, optical transmitting device, and controlling method and controlling program for optical modulator
JP2006020325A (en) * 2004-06-30 2006-01-19 Lucent Technol Inc Method and device for transmitting optical signal
JP2006208472A (en) * 2005-01-25 2006-08-10 Seiko Epson Corp Apparatus for manufacturing optical device, method for manufacturing the same, and projector
JP2007067902A (en) * 2005-08-31 2007-03-15 Fujitsu Ltd Differential four phases deviation modulator and its driving voltage setting method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162563A (en) * 1998-11-25 2000-06-16 Fujitsu Ltd Optical modulating device and control method for optical modulator
JP2002077059A (en) * 2000-08-30 2002-03-15 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter
JP2004117729A (en) * 2002-09-25 2004-04-15 Toshiba Corp Optical modulator controlling device, optical transmitting device, and controlling method and controlling program for optical modulator
JP2006020325A (en) * 2004-06-30 2006-01-19 Lucent Technol Inc Method and device for transmitting optical signal
JP2006208472A (en) * 2005-01-25 2006-08-10 Seiko Epson Corp Apparatus for manufacturing optical device, method for manufacturing the same, and projector
JP2007067902A (en) * 2005-08-31 2007-03-15 Fujitsu Ltd Differential four phases deviation modulator and its driving voltage setting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243767A (en) * 2009-04-06 2010-10-28 Fujitsu Ltd Driving method and driving apparatus for optical modulator, and optical transmitter using the same
US8483576B2 (en) 2009-04-06 2013-07-09 Fujitsu Limited Driving method and driving apparatus for optical modulator, and optical transmitter using same
WO2012063413A1 (en) * 2010-11-10 2012-05-18 日本電気株式会社 Optical phase modulation circuit and method of optical phase modulation

Also Published As

Publication number Publication date
JP4884338B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
JP5318278B2 (en) Optical transmitter
US8098998B2 (en) Optical transmitter
US8121492B2 (en) Optical transmitting apparatus
JP4922594B2 (en) Optical transmitter, optical receiver, and optical communication system including them
JP5405716B2 (en) Optical transmitter
US8457503B2 (en) Optical transmitter apparatus
JP5506575B2 (en) Optical modulator, optical transmitter, and bias adjustment method
JP5853386B2 (en) Light modulation device and light modulation control method
JP5644893B2 (en) Optical transmitter, optical receiver, and optical communication system including them
US8400702B2 (en) Optical modulation device and optical modulation method
CN105656563B (en) Optical transmitter and bias control method for optical modulator
JP5353387B2 (en) Method and apparatus for driving optical modulator, and optical transmitter using the same
JP2018054907A (en) Optical module and method of controlling bias of optical modulator
JP2008129476A (en) Optical modulator
JP4884338B2 (en) Optical modulator driver adjustment device and adjustment method
JP4422651B2 (en) Optical modulator with relaxed bandwidth condition and method of operating the same
JP4704596B2 (en) Optical quaternary modulator and optical quaternary modulation method
US20030218790A1 (en) Chirp control in a high speed optical transmission system
EP1986353B1 (en) Optical duobinary transmitter with bias control of the modulator
JP2012080322A (en) Optical transmitter, optical transmission device, and method of controlling optical transmitter
JP2008242283A (en) Optical modulating device and optical transmitting device
JP2869585B2 (en) Light modulator
JP2004301965A (en) Bias controlling device of optical modulator and optical modulation device using bias controlling device
JP6992787B2 (en) Optical modulation circuit, optical transmitter and optical modulation method
US20200033642A1 (en) Optical transmitter and optical transmission method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090312

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100519

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110223

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4884338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250